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In this work, we propose an algorithm for acoustic source localization based on time delay of arrival (TDOA) estimation. In earlier
work by other authors, an initial closed-form approximation was first used to estimate the true position of the speaker followed
by a Kalman filtering stage to smooth the time series of estimates. In the proposed algorithm, this closed-form approximation
is eliminated by employing a Kalman filter to directly update the speaker’s position estimate based on the observed TDOAs. In
particular, the TDOAs comprise the observation associated with an extended Kalman filter whose state corresponds to the speaker’s
position. We tested our algorithm on a data set consisting of seminars held by actual speakers. Our experiments revealed that the
proposed algorithm provides source localization accuracy superior to the standard spherical and linear intersection techniques.
Moreover, the proposed algorithm, although relying on an iterative optimization scheme, proved efficient enough for real-time

operation.
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1. INTRODUCTION

Most practical acoustic source localization schemes are based
on time delay of arrival estimation (TDOA) for the following
reasons: such systems are conceptually simple. They are rea-
sonably effective in moderately reverberant environments.
Moreover, their low computational complexity makes them
well-suited to real-time implementation with several sensors.

Time delay of arrival-based source localization is based
on a two-step procedure.

(1) The TDOA between all pairs of microphones is esti-
mated, typically by finding the peak in a cross-correla-
tion or generalized cross-correlation function [1].

(2) For a given source location, the squared error is calcu-
lated between the estimated TDOAs and those deter-
mined from the source location. The estimated source
location then corresponds to that position which min-
imizes this squared error.

If the TDOA estimates are assumed to have a Gaussian-
distributed error term, it can be shown that the least-squares
metric used in Step (2) provides the maximum likelihood
(ML) estimate of the speaker location [2]. Unfortunately,
this least-squares criterion results in a nonlinear optimiza-
tion problem that can have several local minima. Several au-
thors have proposed solving this optimization problem with
standard gradient-based iterative techniques. While such

techniques typically yield accurate location estimates, they
are typically computationally intensive and thus ill-suited for
real-time implementation [3, 4].

For any pair of microphones, the surface on which the
TDOA is constant is a hyperboloid of two sheets. A sec-
ond class of algorithms seeks to exploit this fact by group-
ing all microphones into pairs, estimating the TDOA of each
pair, then finding the point where all associated hyperboloids
most nearly intersect. Several closed-form position estimates
based on this approach have appeared in the literature; see
Chan and Ho [5] and the literature review found there. Un-
fortunately, the point of intersection of two hyperboloids can
change significantly based on a slight change in the eccen-
tricity of one of the hyperboloids. Hence, a third class of al-
gorithms was developed wherein the position estimate is ob-
tained from the intersection of several spheres. The first al-
gorithm in this class was proposed by Schau and Robinson
[6], and later came to be known as spherical intersection. Per-
haps the best-known algorithm from this class is the spherical
interpolation method of Smith and Abel [7]. Both methods
provide closed-form estimates suitable for real-time imple-
mentation.

Brandstein et al. [4] proposed yet another closed-form
approximation known as linear intersection. Their algorithm
proceeds by first calculating a bearing line to the source for
each pair of sensors. Thereafter, the point of nearest approach
is calculated for each pair of bearing lines, yielding a potential
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source location. The final position estimate is obtained from
a weighted average of these potential source locations.

In the algorithm proposed here, the closed-form approx-
imation used in prior approaches is eliminated by employ-
ing an extended Kalman filter to directly update the speaker’s
position estimate based on the observed TDOAs. In partic-
ular, the TDOAs comprise the observation associated with
an extended Kalman filter whose state corresponds to the
speaker’s position. Hence, the new position estimate comes
directly from the update formulae of the Kalman filter. It is
worth noting that similar approaches have been proposed by
Dvorkind and Gannot [8] for an acoustic source localizer, as
well as by Duraiswami et al. [9] for a combined audio-video
source localization algorithm based on a particle filter.

We are indebted to a reviewer who called our attention
to other recent works in which particle filters were applied
to the acoustic source localization problem [10, 11]. As ex-
plained in the tutorial by Arulampalam et al. [12], particle
filters represent a generalization of Kalman filters that can
handle nonlinear and non-Gaussian state estimation prob-
lems. This is certainly a desirable characteristic, and makes
particle filters of interest for future study. It remains to be
seen, however, whether particle filters will prove better-suited
for acoustic source localization than the extended Kalman fil-
ters considered here. To wit, Arulampalam et al. [12] discuss
several problems that can arise with the use of particle fil-
ters, namely, degeneracy and sample impoverishment. While
solutions for circumventing these problems have appeared in
the literature, the application of a particle filter to a track-
ing problem clearly requires a certain amount of engineer-
ing to obtain a working system, much as with our approach
based on the Kalman filter. Moreover, it is not clear that the
assumptions inherent in the Kalman filter, namely, linearity
and Gaussianity, make it unsuitable for the speaker track-
ing problem: Hahn and Tretter [13] show that the observa-
tion noise encountered in time delay of arrival estimation
is in fact Gaussian, as required by a Kalman filter. More-
over, as shown here, the nonlinearity seen in the acoustic
source localization problem is relatively mild and can be ad-
equately handled by performing several local iterations for
each time step as explained in [14]. Such theoretical consid-
erations, notwithstanding, the question of whether Kalman
or particle filters are better suited for speaker tracking, will
only be answered by empirical studies. We believe that such
studies should be conducted on real, rather than simulated,
data such as we have used for the experiments discussed in
Section 5, as only results obtained on real data will be truly
compelling. We hope to make such empirical comparisons
the topic of a future publication.

The balance of this work is organized as follows. In
Section 2, we review the process of source localization based
on time delay of arrival estimation. In particular, we for-
mulate source localization as a problem in nonlinear least-
squares estimation, then develop an appropriate linearized
model. Section 3 summarizes the standard and extended
Kalman filters. It also presents a less well-known variant
known as the iterated extended Kalman filter. Section 4 first
discusses two possible models for speaker motion, then

discusses how the preceding development can be combined
to develop an acoustic localization algorithm capable of
tracking a moving speaker. Section 5 presents the results of
our initial experiments comparing the proposed algorithm
to the standard techniques. Section 6 presents our conclu-
sions and plans for future work. The appendix presents a nu-
merically stable implementation of the Kalman filtering algo-
rithms discussed in this work that is based on the Cholesky
decomposition.

2. SOURCE LOCALIZATION

Consider a sensor array consisting of several pairs of micro-
phones. Let m;; and my;,, respectively, denote the positions
of the first and second microphones in the ith pair, and let
x € R? denote the position of the speaker. Then the time
delay of arrival (TDOA) between the microphones can be ex-
pressed as

T(mi1>mi2>x) = ||x—m,-1||:||x—m,-2||’ (1)

where s is the speed of sound. Denoting

X Mijx
x=1y1, m;; = | Mij,y (2)
z mij z

allows (1) to be rewritten as
1
Ti(x) = T(mj, mp,x) = E(dil —dp), (3)

where

dij = \/(X - mij,x)z +(y— mij,y)2 +(z - mij,z)2 @)

= Hx_mij”

is the distance from the source to microphone m;;. Source
localization based on a maximum likelihood (ML) criterion
[2] proceeds by minimizing the error function

N-1 ,
ex) = > p[?z‘ -Tix)], (5)
i=o 0i

where 7; is the observed TDOA for the ith microphone pair
and o7 is the error covariance associated with this observa-
tion. The TDOAs can be estimated with a variety of well-
known techniques [1, 15]. Perhaps the most popular method
involves the phase transform (PHAT), a variant of the gener-
alized cross-correlation (GCC), which can be expressed as

X, (e747) X5 (e°T)

1 " jwT
R = 5 |, Ty (e ©
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For reasons of computational efficiency, R;»(7) is typically
calculated with an inverse FFT. Thereafter, an interpolation
is performed to overcome the granularity in the estimate cor-
responding to the sampling interval [1].

Solving for that x minimizing (5) would be eminently
straightforward were it not for the fact that (3) is nonlinear in
x = (x, ¥,2). In the coming development, we will find it use-
ful to have a linear approximation. Hence, we take a partial
derivative with respect to x on both sides of (3) and write

JTi(x) _ 1 [x— Milx X — mi2,x] )
ox B N d,‘l d,‘z ’

Taking partial derivatives with respect to y and z similarly,

we find

1 X—m;; X—mp

VI - o [Fm - @
Although (5) implies we should find that x which minimizes
the instantaneous error criterion, we would be better advised
to attempt to minimize such an error criterion over a se-
ries of time instants. In so doing, we exploit the fact that the
speaker’s position cannot change instantaneoulsy, thus, both
the present 7;(t) and past TDOA estimates {7;(n)}!_} are
potentially useful in estimating a speaker’s current position
x(t). Hence, let us approximate T;(x) with a first-order Tay-
lor series expansion about the last position estimate X(¢ — 1)
by writing

Ti(x) ~ T;(x(t - 1)) + cf (1) [x = X(t = )], )

where we have defined the row vector

() = [VeTi(x)] 4

X=X(t-1)

(10)

1 [X_milix_miZ]T
s di di  Ix=%¢-1)
Substituting the linearization (9) into (5) provides

N-1 1

kst~ 3 {70 - TiR( - 1) - ¢ ([x - X(t - 1)

1,_
=2 2 H0 = ol (t)x]’,
(11)
where
Fi(t) = 74(t) — Ti(X(t — 1)) + ] (Hx(t = 1), (12)
fori=0,...,N — 1. Let us define
To(t) To(1)
71(1) R 21(0)
T(t) = : , T(t) = . ,
'EN—‘I(t) '?N—.l(t) (13)
To(x(1)) 10
R Ty (x(1)) cf (1)
T(x(1)) = : ,  C=| .

Ty-1 (X(1) S

so that (12) can be expressed in matrix form as
(t) = 7(t) — [T(X(t - 1)) — C()x(t — 1)]. (14)

Similarly, defining

0y
of
z- . (15)
TR
enables (11) to be expressed as
e(xt) = [#(1) - CHx]) =7 [#() - C()x].  (16)

In past work, the criterion in (5) was minimized for each
time instant ¢, typically with a closed-form approximation
[4-7, 16]. Thereafter, some authors have proposed using a
Kalman filter to smooth the position estimates over time
[17]. In this work, we propose to incorporate the smooth-
ing stage directly into the estimation. This is accomplished as
follows: first we note that (16) represents a nonlinear least-
squares estimation problem that has been appropriately lin-
earized; we can associate 7(t) with the observation vector
appearing in a Kalman filter such as we will encounter in
Section 3. Moreover, we can define a model for the motion
of the speaker, in the form typically seen in the process equa-
tion of a Kalman filter. Thereafter, we can apply the standard
Kalman filter update formulae directly to the given recur-
sive estimation problem without ever having recourse to a
closed-form approximation for the speaker’s position. It is
worth noting that similar approaches have been proposed by
Dvorkind and Gannot [8] for an acoustic source localizer, as
well as by Duraiswami et al. [9] for a combined audio-video
source localization algorithm based on a particle filter.

To see more clearly how this approach can be imple-
mented, we review the Kalman filter and several variations
thereof in Section 3.

3. KALMAN FILTERING

To set the stage for the development to follow, this section
summarizes the Kalman filter based on the Riccati equation,
as well as the extended Kalman filter.

3.1. Riccati-based Kalman filter

Our purpose here is to present, without proof, the principal
quantities and equations required to implement a Kalman fil-
ter based on the Riccati equation. Let x(#) denote the current
state of a Kalman filter and y(t) the current observation. Nor-
mally, x(t) cannot be observed directly and thus must be in-
ferred from the times series {y(t)}; this is the primary func-
tion of the Kalman filter. The operation of the Kalman filter
is governed by a state space model consisting of a process and
an observation equation, respectively,

x(t+1) =F(t+ 1, 0)x(t) + 1 (1), (17)

y(8) = C(O)x(t) + 72(8), (18)
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where F(t+ 1, t) and C(t) are the known transition and obser-
vation matrices. By definition, the transition matrix satisfies

F(t+ 1,0)F(t,t+1) = F(t,t + )F(t+ 1,t) = L (19)

In (17)—(18), the process and observation noise terms are de-
noted by v, (t) and »,(¢), respectively. These noise terms are
by assumption zero mean, white Gaussian random vector
processes with covariance matrices defined by

Q;(t) fort=k,

20
0 otherwise, (20)

ety ()} = {

for i = 1,2. Moreover, v, (t) and v, (k) are statistically inde-
pendent such that & {v,(t)v (k)} = 0 for all ¢ and k.

In the sequel, it will prove useful to define two estimates
of the current state x(¢): let X(t | Y1) denote the predicted
state estimate of x(t) obtained from all observations Y, 1 =
{y(i)}f;1 up to time ¢ — 1. The filtered state estimate X(t | Y),
on the other hand, is based on all observations Y, = {y(i)}{_,
up to time t. The predicted observation is then given by

y(t | Y1) = COX(E | Yi1) (21)

as can be readily derived from (17). By definition, the inno-
vation is the difference

a(t) =y(t) — C(OX(t | Y1) (22)

between actual and predicted observations. Exploiting the
statistical independence of v, (t) and »,(t), the correlation
matrix of the innovations sequence can be expressed as

R(1) = E{a(t)a’ (1)}

= C()K(t,t — NCT (1) + Qy (1), )
where
K(t,t—1) = &{e(t,t — 1)el (t,t — 1)} (24)
is the correlation matrix of the predicted state error,
e(t,t —1) =x(t) = x(¢t | Yi-1). (25)
The Kalman gain is defined as
G(t) = &{x(t+ Dal () }R7I(2). (26)

This definition can be readily shown to be equivalent to
G(t) = F(t+ 1, H)K(t, t — 1)CT(HR™(1). (27)

To calculate G(t), we must know K(t,t — 1) in advance. The
latter is available from the Riccati equation, which can be
stated as

K(t+1,t) = F(t+ 1, )K(OFT (£ + 1, 1) + Q, (¢), (28)
K(t) = [I- F(t,t+ 1)G(t)C(t) |[K(t,t — 1),  (29)
where

K(1) = {e(t)e’ (1)} (30)

TaBLE 1: Calculations for Kalman filter based on the Riccati equa-
tion.

Input vector process: y(1),y(2),...,y(t).
Known parameters:
(i) state transition matrix: F(t + 1, t),
(ii) measurement matrix: C(t),
(iii) covariance matrix of process noise: Q (f),
(iv) covariance matrix of measurement noise: Q,(¢),
(v) initial diagonal loading: 3.
Initial conditions:

x(11 Y%o) = xo,

K(1,0) = Gizl. (36)
D

Computation: t = 1,2,3,...,

R(t) = C(HK(t,t — 1)CT (1) + Qy (1),

G(t) = F(t + 1, H)K(t,t — 1)CT ()R (¢¥),
a(t) = y(t) — COX(t | Y1),
X(t+11Y) =Ft+1,0%(t | Y1) + G(Hal(t),
K(t) = [I = B(t,t + 1)G(t)C(t) | K(t, t — 1),
K(t+1,t) = F(t+ 1, )K(OF (£ + 1,1) + Q; (1)

(37)

is the correlation matrix of the filtered state error,
€(t) =x(t) —X(t | Y1) (31)

Finally, the filtered state estimate can be updated based on
the Kalman gain G(¢) and innovation «(t) according to

X(t+11Y,) =Ft+1,0x(t ] Y1) + G(Halt). (32)

These relations are summarized in Table 1.

We have now formulated the one-step prediction form of
the Kalman filter, which returns the predicted state estimate
X(t+ 11 Y;). In Section 3.2, we will require the filtered state
estimate X(¢ | Y;), which can be obtained as follows. Taking
an expectation conditioned on Y, on both sides of (17), we
can write

X(t+11Y) =F@t+1,0x(¢ 1Y) +1(t | Yo). (33)

As the process noise is zero mean, we have 7, (¢t | ¥,) = 0, so
that (33) becomes

x(t+11%Y,) =Ft+1,0x(t] Y). (34)

To obtain the desired filtered estimate, we multiply both sides
of (34) by F(¢ | t + 1) and invoke (19) and write

X(t] %) =Ett+ DX(E+ 1] %) (35)

3.2. Extended Kalman filter (EKF)

For the sake of completeness, we provide here a brief deriva-
tion of the general extended Kalman filter (EKF). This devel-
opment is based on that in Haykin [18, Section 10.10].
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To begin, let us split the filtered state estimate update for-
mula (35) into two steps. Firstly, we make a one-step predicti-
ton to update X(t — 1 | Y,_1) to X(¢ | Y;-1), which is achieved
by (34). Secondly, we update x(¢ | Y1) to X(¢ | Y,), which
is achieved by substituting (32) into (35) and using (19) to
simplify

X(t ] Ye) = x(t | Y1) + Gr(t)a(t), (38)
where the filtered Kalman gain Gp(t) is defined as
Gr(t) = B(t, t + 1)G(1). (39)

The complete filtering algorithm is then

R(t) = C()K(t,t — 1)CT (1) + Qy (1), (40)
Gr(t) = K(t,t — DCT (R (1), (41)
a(t) = y(t) - COX(t | Ye1), (42)
x(t | Ye) =x(t | Y1) + Ge(H)a(2), (43)
K(t) = [I - Ge(t)C(t)|K(t, t — 1), (44)

K(t+1,t) = F(t+ LOK(EF (t+1,6) + Q, (1),  (45)
X(t+11Y) =F+1L,oOx(t | Ye). (46)

To formulate the extended Kalman filter, we first posit a less
restrictive state-space model, namely,

x(t+1) = B(t+ 1, t)x(t) + v (1),

y(t) = C(t,x(t)) + (1), “7)
where the observation functional' C(t,x(t)) is, in general,
nonlinear and time varying. The main idea behind the EKF
is then to linearize this functional about the most recent state
estimate X(¢ | Y;_1). The corresponding linearization can be
written as

dC(t,x)
X Ix=x(tly, )

C(t) = (48)

In the above, entry (i, j) of C(#,x) is the partial derivative of
the ith component of C(t,x) with respect to the jth compo-
nent of x.

Based on (48), we can express the first-order Taylor series
of C(t,x(t)) as

C(t,x(t)) = C(t,x(t | Ys-1)) + C(t)[x(t) = x(t | Y1) ].
(49)

I Most authors formulate the extended Kalman filter with a nonlinear
process functional F(t,x(#)) in addition to the observation functional
C(t,x(t)); see, for example, Haykin [18, Section 10.10]. This more gen-
eral formulation is not required here.

TaBLE 2: Calculations for extended Kalman filter.

Input vector process: y(1),y(2),...,y(t).

Known parameters:
(i) state transition matrix: F(¢ + 1, t),
(ii) nonlinear measurement functional: C(¢,x(t)),
(iii) covariance matrix of process noise: Q, (¢),
(iv) covariance matrix of measurement noise: Q,(f),
(v) initial diagonal loading: 3.

Initial conditions:

)A((l \ yo) = Xo»

K(1,0) = a_lf)I' (53)
Computation: t = 1,2,3,...,
R(t) = C(HK(t, t — 1)CT (1) + Q, (1), (54)
Gr(t) = K(t,t — 1)CT(HOR™' (1), (55)
a(t) = y(t) — C(6,X(¢ | Y1), (56)
X(t 1Y) =%(t | Y1) + Ge(Da(t), (57)
K(t) = [T - Gp(t)C(t)|K(t,t — 1), (58)
K(t+1,t) = F(t+ L, OK(EF (1 + 1, 1) + Q, (1), (59)
X(t+11Y,)=Ft+1,0x(t 1Y) (60)

Note: the linearized matrix C(t) is computed from the
nonlinear functional C(¢,x(t)) as in (48).

Using this linearization, the nonlinear state-space equations
(47) can be written as

x(t+1) = B(t+ 1, t)x(t) + v (1),
(50)
y(t) = C()x(t) + 7 (1),

where we have defined

y(t) =y(®) - [C(6X(t | Ye-1)) — C(OX(t | Yo1) ] (51)

As everything on the right-hand side of (51) is known at time
t, y(t) can be regarded as an observation.

The extended Kalman filter is obtained by applying the
computations in (40)—(46) to the linearized model in (50),
whereupon we find

x(t+11%Y,) =Ft+1,0x(t 1Y),
X(t1Yy) =x(t | Y1) + Ge(Dal(2),
(52)
a(t) = y(t) — C(OX(t | Yi-1)

= y(t) = C(LX(t | Y1)

These computations are summarized in Table 2.
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3.3. Iterated extended Kalman filter (IEKF)

We now consider a further refinement of the extended
Kalman filter. Repeating (54)—(57) of Table 2, we can write

R(6X(t | Ye1)) = COK(LE - 1DCT (1) + Qy(8),  (61)

Gr(6,X(t | Y1) = K(t,t — DCT(6,X(¢ | Yo1))
XRUER(E] Y1),

“(t’ﬁ(t ‘ %—1)) = Y(t) - C(tﬂ?(t | yt—l))) (63)
X(t 1Y) =x(t | Y1) + Gr(6,X(t | Y1)
xa(t,X(t ] Y1), (64)

where we have explicity indicated the dependence of the rel-
evant quantities on X(¢ | Y;_1). Jazwinski [14, Section 8.3]
describes an iterated extended Kalman filter (IEKF), in which
(61)—(64) are replaced with the local iteration,

R(t,7;) = C(n,)K(t,t — 1)C" (1,) + Qy(1),
G (t,1;) = K(t,t = 1)C" ()R (5, ,),
a(t,n;) = y(t) - C(t,m,), (65)
C(tm;) = a(tn,) — Clu) [X(£ ] Yeor) — i),

N1 = X(t | Y1) + Ge(t,1m,) (8 1;),

where C(#,) is the linearization of C(¢, ;) about #,. The local
iteration is initialized by setting

1, = x(t| Yer). (66)

Note that 5, = X(t | %) as defined in (64). Hence, if the local
iteration is run only once, the IEKF reduces to the EKE Nor-
mally (65) are repeated, however, until there are no substan-
tial changes between 5, and #,,,. Both G (¢, #,) and C(#,) are
updated for each local iteration. After the last iteration, we set

R(t1 %) = 1 (67)

and this value is used to update K(¢) and K(t+1, t). Jazwinski
[14, Section 8.3] reports that the IEKF provides faster conver-
gence in the presence of significant nonlinearities in the ob-
servation equation, especially when the initial state estimate
7, = X(t | Y1) is far from the optimal value. The calcula-
tions for the iterated extended Kalman filter are summarized
in Table 3.

(62)

3.4. Numerical stability

All variants of the Kalman filter discussed in Sections 3.1-3.3
are based on the Riccati equation (28)—(29). Unfortunately,
the Riccati equation possesses poor numerical stability prop-
erties [18, Section 11] as can be seen from the following:
substituting (29) into (28) and making use of (19) provide

K(t+1,t) = F(t+ 1L,OK(t, £ — DFT(t+ 1, 1)

— G(OHC(OK(t,t — DET(t+1,1) + Q, (1).
(79)

TaBLE 3: Calculations for the iterated extended Kalman filter.

Input vector process: y(1),y(2),...,y(t).

Known parameters:
(i) state transition matrix: F(¢ + 1, t),
(ii) nonlinear measurement functional: C(¢,x(t)),
(iii) covariance matrix of process noise: Q, (¢),
(iv) covariance matrix of measurement noise: Q,(t),
(v) initial diagonal loading: 3.

Initial conditions:

)A((l \ yo) = Xo»

K(1,0) = GLZI. (68)
D

Computation: t = 1,2,3,...,
1, =Xt | Yer). (69)
Iterate:i=1,2,3,..., f — 1,

R(t,n;) = C(y)K(t,t — 1)C" (n,) + Q,(t),  (70)

Gr(t,n;) = K(t,t = DC" ()R (t,7,), (71)

a(t,n;) =y(t) — C(tn,), (72)

{(t,m) = a(t,n,) = Cly) [X(t | Yr) — 1], (73)

Hipn = X(t 1 Y1) + Ge(t, ) {(t,7,). (74)
Calculate:

X(t1 %) =np (75)

K(t) = [1 - Ge(t,X(t | %)) C(x(t | Y))IK(t, £ 1), (76)

K(t+1,t) = F(t+ L OK(EF (1 + 1, 1) + Q, (1), (77)

X(E+11Y) =F+1,0x(t | Ye). (78)

Note: the local iteration over i continues until there is no
significant difference between #; and #,, ;.

Manipulating (27), we can write
R(OHGT(t) = COK(t,t — DFT(t + 1, 1). (80)

Then, upon substituting (80) for the matrix product
C(HK(t,t — DFT(t+1,1) appearing in (79), we find

K(t+1,t) = F(t+ 1, )K(t, £ — DE (£ + 1, 1)
(81)
- G(HOR(GT (1) + Q ().

Equation (81) illustrates the problem inherent in the Riccati
equation: as K(t + 1,¢) is the covariance matrix of the pre-
dicted state error €(¢+1, ), it must be positive definite. Simi-
larly, R(#) is the covariance matrix of the innovation «(¢) and
must also be positive definite. Moreover, if F(¢+1, t) and G(t)
are full rank, then the terms F(¢ + 1, )K(t,t — 1)FL (¢t + 1,¢)
and G(H)R(H)GT(t) are positive definite as well. Therefore,
(81) implies that a positive definite matrix K(t + 1,¢) must
be calculated as the difference of the positive definite matrix
F(t+ 1,t)K(t, t — DFL(t + 1,£) + Q,(t) and positive definite
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matrix G(£)R(t)G (t). Due to finite precision errors, the re-
sulting matrix K(¢ + 1, f) can become indefinite after a suffi-
cient number of iterations, at which point the Kalman filter
exhibits a behavior known as explosive divergence [18, Section
11].

As discussed in the appendix, a more stable implemen-
tation of the Kalman filter can be developed based on the
Cholesky decomposition or square root of K(t + 1,t), which is
by definition that unique lower triangular matrix K2 (t+1, ¢)
achieving

K(t+1,0) 2 K2+ 1, 0Kt + 1,1). (82)

The Cholesky decomposition of a matrix exists if and only
if the matrix is symmetric and positive definite [19, Sec-
tion 4.2.3]. The basic idea behind the square-root imple-
mentation of the Kalman filter is to update KY2(t + 1,1)
instead of K(t + 1,t) directly. By updating or propagating
K"Y2(t+1,¢) forward in time, it can be assured that K(t + 1, f)
remains positive definite. Thereby, a numerically stable al-
gorithm is obtained regardless of the precision of the ma-
chine on which it runs. The appendix presents a procedure
whereby K2(t + 1,t) can be efficiently propagated in time
using a series of Givens rotations [19, Section 5.1.8].

In the acoustic source localization experiments con-
ducted thus far, the numerical stability has proven adequate
even using the Kalman filter based directly on the Riccati
equation. Instabilities can arise, however, when the audio fea-
tures are supplemented with video information as in Gehrig
et al. [20]. Hence, we have included the appendix for the sake
of completeness.

4. SPEAKER TRACKING WITH THE KALMAN FILTER

In this section, we discuss the specifics of how the linearized
least-squares position estimation criterion (16) can be re-
cursively minimized with the iterated extended Kalman filter
presented in Section 3.3. We begin by associating the “lin-
earized” TDOA estimate 7(t) in (14) with the modified ob-
servation y(t) appearing in (51). Moreover, we recognize that
the linearized observation functional C(t) in (48) required
for the Kalman filter is given by (10) and (13) for our acoustic
localization problem. Furthermore, we can equate the TDOA
error covariance matrix X in (15) with the observation noise
covariance Q,(t). Hence, we have all relations needed on the
observation side of the Kalman filter. We need only supple-
ment these with an appropriate model of the speaker dy-
namics to develop an algorithm capable of tracking a moving
speaker, as opposed to merely finding his position at a single
time instant. This is our next task.

4.1. Dynamic model

Consider the simplest model of speaker dynamics, wherein
the speaker is “stationary” inasmuch as he moves only under
the influence of the process noise v;(f). Assuming the pro-
cess noise components in the three directions are statistically

independent, we can write

(= ]

1 0
Q(t)=0pT* [0 1 0, (83)
0 1

where T is the time elapsed since the last update of the state
estimate, and o7 is the process noise power. Typically o3 is set
based on a set of empirical trials to achieve the best localiza-
tion results.

4.2. Position updates

Before performing an update, it is first necessary to deter-
mine the time T that has elapsed since an observation was
last received. This factor appears as a parameter of the pro-
cess noise covariance matrix Q,(t) in (83). Although we
assume the audio sampling is synchronous for all sensors,
it cannot be assumed that the speaker constantly speaks,
nor that all microphones receive the direct signal from the
speaker’s mouth, that is, the speaker sometimes turns so that
he is no longer facing the microphone array. As only the di-
rect signal is useful for localization [21], the TDOA estimates
returned by those sensors receiving only the indirect signal
reflected from the walls should not be used for position up-
dates. This is most easily assured by setting a threshold on
the PHAT (6), and using for source localization only those
microphone pairs returning a peak in the PHAT above the
threshold [21]. This implies that no update at all is made if
the speaker is silent.

Given the dynamic model in Section 4.1, we now have
everything required for an acoustic speaker tracking sys-
tem. The position update equations are given in Table 3. The
nonlinear functional C(¢,x(t)) appearing there corresponds
to the TDOA model

To(x(1))
Ty (x(1))

T(l’,X(t)) = ) (84)

Tn-1(x(t))

where the individual components T;(x(t)) are given by (3)-
(4). The linearized functional C(t) = C(x(t)) is given by (10)
and (13). To gain an appreciation for the severity of the non-
linearity in this particular Kalman filtering application, we
plotted the actual value of T;(x(t)) against the linearized ver-
sion. These plots are shown in Figures 1 and 2, respectively,
for deviations in the x- and y-directions from the point
about which Ti(x(t)) was linearized. For these plots, the D-
array in Figure 5 was used and the operating point was taken
as (x,,z) = (2.950,4.080,1.700) m in room coordinates,
which is approximately in the middle of the room. As is clear
from the plots, for deviations of +1 m from the nominal, the
linearized TDOA is within 2.33% of the true value for move-
ment in the x-direction, and within 1.38% for movement in
the y-direction.

Although the IEKF with the local iteration (72)—(74) was
used for the experiments reported in Section 5, the localiza-
tion system ran in less than real time on a Pentium Xeon
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F1GURE 1: Actual versus linearized T;(x(t)) for movement in the x-
direction.

processor with a clock speed of 3.0 GHz. This is so because
during normal operation very few local iterations are re-
quired before the estimate converges, typically five or fewer.
The local iteration compensates for the difference between
the original nonlinear least-squares estimation criterion (5)
and the linearized criterion (11). The difference between the
two is only significant during startup and when a significant
amount of time has passed since the last update, as in such
cases the initial position estimate is far from the true speaker
location. Once the speaker’s position has been acquired to
a reasonable accuracy, the linearized model (11) matches the
original (5) quite well. The use of such a linearized model can
be equated with the Gauss-Newton method, wherein higher
order terms in the series expansion (9) are neglected. The
connection between the Kalman filter and the Gauss-Newton
method is well-known, as is the fact that the convergence rate
of the latter is superlinear if the error 7; — T;(x) is small near
the optimal solution x = x*. Further details can be found in
Bertsekas [22, Section 1.5].

5. EXPERIMENTS

The test set used to evaluate the algorithms proposed here
contains approximately three hours of audio and video data
recorded during a series of seminars by students and fac-
ulty at the Universitdt Karlsruhe in Karlsruhe, Germany. The
seminar room is approximatly 6 X 7 m with a calibrated
camera in each corner. An initial set of seven seminars was
recorded in the fall of 2003. At that time, the seminar room
was equipped with a single linear 16-channel microphone
array with an intersensor spacing of 4.1 cm, as shown in
Figure 3. The linear array was used for both beamforming
and source localization experiments. In 2004, the audio sen-
sors in the seminar room were enhanced to the configuration
shown in Figure 5. The 16-channel linear array was replaced
with a 64-channel Mark III microphone array developed at
the US National Institute of Standards (NIST). This large
array is intended primarily for beamforming, and was not
used for the source localization experiments reported here.

Moving speaker in y-direction
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0.0015

0.001 k
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FIGURE 2: Actual versus linearized T;(x(t)) for movement in the y-
direction.

Four T-shaped arrays were mounted on the walls of semi-
nar room. The intersensor spacing of the T-arrays was cho-
sen as either 20 or 30 cm in order to permit more accurate
source localization. The T-shape was chosen to permit three-
dimensional localization, which was impossible with the ini-
tial linear configuration. In the balance of this section, we
report experimental results on both sensor configurations.

Prior to the start of the seminars, the four video cam-
eras in the corners of the room had been calibrated with the
technique of Zhang [23]. The location of the centroid of the
speaker’s head in the images from the four calibrated video
cameras was manually marked every 0.7 second. Using these
hand-marked labels, the true position of the speaker’s head
in three dimensions was calculated using the technique de-
scribed in [24]. These “ground truth” speaker’s positions are
accurate to within 10 cm.

As the seminars took place in an open lab area used both
by seminar participants as well as students and staff engaged
in other activities, the recordings are optimally suited for
evaluating acoustic source localization and other technolo-
gies in a realistic, natural setting. In addition to speech from
the seminar speaker, the far field recordings contain noise
from fans, computers, and doors, in addition to cross-talk
from other people present in the room.

5.1. Experiments with linear microphone array

The simple dynamic model presented in Section 4.1 was used
for all source localization experiments based on the IEKF
reported in this section and in Section 5.2. Table 4 presents
the results of a set of experiments comparing the new IEKF
algorithm proposed in this work to the spherical intersec-
tion (SX) method of Schau and Robinson [6], the spherical
interpolation (SI) method of [25] as well as the linear inter-
section (LI) technique of Brandstein et al. [4].

The SX method used three microphones of the array,
numbers 0, 2, and 4, to make an initial estimate of the
speaker’s position. Only three microphones can be used, as
the array is not two-dimensional, unlike the array in the orig-
inal work [6]. To improve estimation results, the SI method
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F1GURE 3: The room setup for the seminar recordings 2003 at Universitat Karlsruhe.

TABLE 4: Experimental results of source localization and tracking algorithms.

Algorithm RMS error
x (cm) y (cm) Azimuth (deg) Depth (cm)

SX 144.6 166.6 24.6 148

SX + Kalman filter 138.1 153.5 20.4 145
SI 121.4 132.0 16.5 133

SI + Kalman filter 121.2 131.7 16.4 132
LI 225.0 130.5 17.6 234

LI + Kalman filter 196.1 111.5 13.3 207
IEKF 91.7 119.7 12.9 100

extends the ideas of the SX and enables the use of more than
four microphones to take advantage of the redundancy. The
array was divided into two subarrays and all microphones of
these subarrays were used to estimate two positions. The fi-
nal position estimate was the average of the two initial es-
timates. The LI and IEKF techniques, on the other hand,
made use of the same set of 12 microphone pairs. These pairs
were formed out of the microphone array by dividing the ar-
ray into two eight-channel subarrays and taking each pos-
sible pair of microphones with an interelement distance of
8.14 cm. In all cases studied here, the TDOAs were estimated
using the PHAT (6). Figure 4 shows the configuration of the
array and definition of the microphone pairs in detail.

The results shown in Table 4 summarize the position es-
timation error over the 14 segments of the seminar data. The
root mean square (RMS) errors were obtained by comparing
the true speaker’s positions obtained from the video labels
with the position estimates produced by the several acoustic
source localization algorithms. The position estimates from
the Kalman filter were initially produced in Cartesian coor-
dinates then converted to azimuth and depth. Table 4 reports
results in both the original Cartesian coordinates, as well as
azimuth and depth, as the latter are more meaningful for the
linear array considered here. Position estimates from the SX,
SI, and LI methods lying outside the physical borders of the
room were omitted.
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FIGURE 4: Use of microphone pairs for the different methods.

Without any smoothing, the source localization estimates
returned by both the LI and SX methods are very inaccurate.
The LI method provides particularly poor estimates in depth.
Kalman filtering improved the position estimates provided
by both the SX and LI methods, yet the average RMS distance
from the true source location remained large. The SI method
shows significantly better performance than the SX and LI
methods both in total precision as well as in stability of the
position estimations, as the results did not show the big vari-
ance of the first two methods. On the other hand, this im-
proved stability reduces the improvement given by Kalman
filtering, hence the filtered results do not show the big im-
provements noticeable for the SX and LI methods. The new
IEKF approach outperformed all methods for both azimuth
and depth. We attribute this superior performance largely to
the elimination of the initial closed-form estimate associated
with the LI, SI, and SX methods, and its inherent inaccuracy.

The performance of the IEKF could be further improved
by implementing an adaptive threshold on the PHAT as pro-
posed in [21]. The total gain is about 46% relative in terms
of azimuth and about 47% in depth as shown in Table 5.

5.2. Experiments with T-shaped microphone arrays

Here we report the results of a set of experiments conducted
with the T-shaped arrays whose location is indicated in
Figure 5. For the new sensor configuration, we report results
only in Cartesian coordinates, as azimuth and depth are no
longer meaningful. Shown in Table 6 are source localization
results obtained with the [EKF on two data sets: the develop-
ment set consisting of three 15-minute segments, on which
the parameters of the Kalman filter were tuned, and the eval-
uation set consisting of ten 15-minute segments chosen from
five seminars. These results were obtained with a fixed PHAT
threshold. Only TDOAs for pairs of microphones from the
same T-array were estimated, as the distances between the T'-
arrays were too great to allow for reliable cross-correlation.
The TDOASs from all microphone pairs for which the PHAT
was above the fixed threshold were concatenated into a single

observation vector, which was then used to update the posi-
tion estimate. As can be seen upon comparing the results in
Table 6 with those in Table 4, the T-shaped arrays provide
for significantly more accurate speaker localization. More-
over, the T-shape enables three-dimensional estimation. In
the column of Table 6 labeled “3D,” we report the total RMS
error for all dimensions; in the column labeled “2D,” the
height or z-dimension is ignored.

Given that the position estimate can only be updated
when the speaker is actually speaking, we also investigated
the application of speech activity detection (SAD) to the
source localization problem. We trained a neural net-based
speech activity detector on the data from the close-talking
microphone worn by the speaker, and only updated for time
segments declared to be speech by the detector. We still re-
tained the threshold criterion on the PHAT of each micro-
phone pair, to ensure the update was based the signal received
directly from the speaker’s mouth. As shown in Table 6, the
use of an explicit SAD module provided a marginal improve-
ment in the performance of the source localizer. We suspect
that this is so because the threshold on the PHAT already pro-
vides an effective means of speech activity detection.

We also tested the LI method on the T-shaped arrays; the
SI and SX methods require the calculation of all time delays
with respect to a reference microphone and, as noted pre-
viously, the distances between the T-arrays are too great to
estimate TDOAs reliably. In this case, we calculated a single
bearing line for each microphone array, then calculated the
point of nearest intersection for each unique pair of bearing
lines. The final position estimate was given by the average of
the points of nearest intersection, as specified in Brandstein
et al. [4]. The LI results are shown in Table 7 for the evalua-
tion set.

Comparing the results of Tables 6 and 7, we see that
the IEKEF still clearly outperforms LI. The accuracy of the LI
method improves in the x-direction when the four T-arrays
are used instead of the single linear array. The accuracy in
the y-direction, however, degrades due to the fact that fewer
microphone pairs are available to resolve the location of the
source along this dimension.

In a final set of studies, we investigated the effect of
speaker movement on the number of local iterations required
by the IEKE. In Figure 6, we plotted the number of local iter-
ations versus the time since the last update. Figure 7 shows
the number of local iterations plotted against the distance
the speaker has moved since the last update. Finally, Figure 8
displays local iterations versus speaker velocity. For each of
the three cases, we calculated a regression line, which is also
shown in the plot. As is clear from the figures, the average
number of local iterations increases in proportion to the time
since the last update, distance moved since the last update,
and speaker velocity. These results correspond to our expec-
tations, in that significant speaker movement implies that the
linearized error criterion (11) does not initially match the
true criterion (5). Hence, several local iterations are required
for the position estimate to converge. Five or fewer local iter-
ations were required for convergence in all cases, however, so
that the system is still suitable for real-time speaker tracking.
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TasLE 5: IEKF with and without adaptive threshold.
Algorithm RMS err(?r
x (cm) y (cm) Azimuth (deg) Depth (cm)
IEKF 91.7 119.7 12.9 100
IEKF with adaptive threshold 52.2 61.9 6.97 52.9
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FIGURE 5: Current sensor configuration in the seminar room at Universitit Karlsruhe.

Shown in Figure 9 are several images from a seminar 6.

recording. The light square marks the true speaker’s posi-

CONCLUSIONS

tion obtained from the hand-labeled images. The dark square
is the three-dimensional position estimate after back projec-
tion to the two-dimensional image plane.

In this work, we have proposed an algorithm for acoustic
source localization based on time delay of arrival estima-
tion. In earlier work by other authors, an initial closed-form
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TasLE 6: IEKF source localization results with the T-shaped arrays, both without and with explicit speech activity detection (SAD) on the

close-talking microphone (CTM).

. RMS error (cm)
Experiment
x y z 2D 3D
dev. set 39.0 40.4 9.9 56.3 57.1
eval. set 35.3 34.9 10.3 51.8 53.0
dev. set with SAD on CTM 36.0 35.6 9.4 50.7 51.6
eval. set with SAD on CTM 34.5 32.8 9.9 49.2 50.3
TaBLE 7: Source localization results for the T-shaped arrays based on linear intersection.
Experiment RMS error (cm)
x y z 2D 3D
LI 114.2 177.2 45.7 211.5 216.6
LI + Kalman filter 109.9 175.4 45.4 207.6 212.8
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FIGURE 6: Number of local iterations versus time since last update.
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FiGgure 7: Number of local iterations versus distance moved since
last update.

approximation was first used to estimate the true position of
the speaker followed by a Kalman filtering stage to smooth
the time series of position estimates. In our proposed algo-
rithm, the closed-form approximation is eliminated by em-
ploying a Kalman filter to directly update the speaker’s po-
sition estimate based on the observed TDOAs. To be more

Speed of speaker movement (mm/s)

FiGure 8: Number of local iterations versus speaker velocity.

precise, the TDOAs comprise the observation associated with
an extended Kalman filter whose state corresponds to the
speaker’s position. We tested our algorithm on a data set con-
sisting of seminars held by actual speakers, and recorded si-
multaneously with one or more microphone arrays, as well
as four calibrated video cameras. From the video images,
the true position of the speaker was extracted and used as
“ground truth” for the automatic localization experiments.
Our experiments revealed that the proposed algorithm pro-
vided source localization superior to the standard spherical
and linear intersection techniques. We found that further
improvements in localization accuracy could be obtained by
adaptively setting a threshold on the PHAT function. More-
over, our algorithm ran in less than real time on an Intel Xeon
processor with a 3.0 GHz clock speed.

In an other recent work [20], we have extended our tech-
nique to include features obtained from calibrated video
cameras, as in the work by Strobel et al. [17]. This can
be accomplished in a straightforward manner through the
use of a video-based detector to find the speaker’s face in a
video image. Thereafter, the difference between the location
of the detected face in the image and its predicted position
obtained by back projecting from three-dimensional room
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FIGURE 9: Images from four calibrated video cameras taken during
a seminar recording at Universitéit Karlsruhe.

coordinates to two-dimensional image coordinates serves as
the innovation vector. Hence, it is never necessary to triangu-
late the speaker’s position from several video images as was
done in [17]. We need only follow the approach adopted in
this work and perform the standard update for a Kalman fil-
ter. Such an incremental update procedure was investigated
by Welch and Bishop [26] for a different set of sensors. Welch
[27] also analyzed this incremental scheme in terms of the
observability criterion typically encountered in state-space
control theory. He found that although the state of the system
(i.e., the speaker’s position) is not observable based on the in-
formation from any single sensor, the state becomes observ-
able when the information from all sensors is combined. To
achieve a stable update, it is only necessary to ensure that all
sensors are sampled frequently enough.

APPENDIX

IMPLEMENTATION BASED ON THE CHOLESKY
DECOMPOSITION

Using manipulations similar to those leading to (81), it is
possible to combine (76)—(77) as

K(t+1,t) = FK(t,t — 1)FT

~FK(t,t=1)C" ()R (6m;) (A1)

x C(n,)K(t, t— DFT +Q (1),

where F = F(t + 1,1) is the constant transition matrix and
n; is the current local iterate. Equation (A.1) is a statement
of the Riccati equation for this particular formulation of the
Kalman filter. The Riccati equation specifies how the state er-
ror correlation matrix K(t + 1,¢) can be recursively updated
or propagated in time. As is well documented in the literature,
however, this equation has poor numerical stability prop-
erties [18, Section 13.3]. In this section, we present a rem-
edy, the square-root implementation [28], for the explosive

divergence phenomenon seen in Kalman filters based on the
Riccati equation. Our discussion follows that in Haykin [18,
Section 11].

The Cholesky decomposition [19, Section 4.2] or square-
root KY?(t+1, t) of the state estimation error covariance ma-
trix K(¢+1, t) is the unique lower triangular matrix achieving

K72+ 1, 0K (t+ 1, 2 K(t + 1, ¢8). (A.2)

Square-root implementations of RLS estimators and Kalman
filters propagate K/>(t+1, ). The advantage of this approach
is that the Cholesky decomposition exists only for positive
definite matrices [19]. Thus, in propagating K"?(t + 1,t) in-
stead of K(t + 1, 1), we ensure that the latter remains positive
definite. The square-root implementation is derived from the
following well-known lemma [28].

Lemma 1 (matrix factorization). Given any two N X M ma-
trices A and B with dimensions N < M,

AAT = BB (A.3)
if, and only if, there exists a unitary matrix 0 such that
A0 = B. (A4)

To develop an update strategy based on the Cholesky de-
composition, we set Q,(t) = X, Q,(¢) = Q(t), and write

(A.5)

0 : FKZ(tt-1) : Q%)

We seek a unitary transform 6 that achieves A@ = B, such
that

22 Cly) K2 (Lt—1) 1 0

AAT =
0 : FKZtt-1) : QY%
ZT/Z 0
K™ (t,t — )C' () : K™2(t,t — 1)FT
................. ('1) (A.6)
0 QT/Z(t)
B11 Bgl
By, 0 offl------eeee

where both By, and By, are lower triangular. Performing the
required multiplications on the block components, we find

BBl =X+ C(n)K(t,t — DC"(y,), (A7)
B, Bl = FK(t,t - 1)C" (n,), (A.8)
B, Bl + By,BY, = FK(t,t — 1)FT + Q(1). (A.9)
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From (A.7), clearly,

B;;BY, = R(t,7,). (A.10)
Hence, as By is lower triangular,
By = R"2(t,1,). (A.11)
Based on (71),
Gr(t,,)R(t,1,) = K(t,t — 1)CT (n,). (A.12)
Substituting for K(t,¢ — I)CT(ni) in (A.8), we find
B, B], = FGr(t,1;)R(t,n;) = FGr(t,11,)B1iBY}, (A.13)
where the last equality follows from (A.10). Hence,
By = FGr(t,1,)RV*(t,1,). (A.14)

Finally, substituting (55) into (A.14), we can rewrite (A.9) as
B,,BL, = FK(t,t — 1)FT — BBl + Q(t)
= FK(t,t — 1)FT — FK(t,t — 1)C" (y1,)R"' (t,7,)

x C(n,) K" (t,t — 1)FT + Q(¢).

(A.15)
The last equation, together with (A.1), implies
BBL = K(t+ 1,1) (A.16)
or, as By, is lower triangular,
By, = KY2(t+ 1,1). (A.17)
In light of (A.11)—(A.17), we have
=20 Cc(g)K(ht—-1) 1 0
AO=|......... ("1) ... ( ....... ) ........... 0
0 FKY2(t,t — 1) Q2(1)
RY2(t, 9. : 0 : 0
=l (. . .".’.) ........................... =B.
| FGe(t, )RV (t,5;) K2 (t+1,t) : 0
(A.18)

Although a new estimate of the predicted state error covari-
ance matrix is generated with each local iteration, only the
final result KY?(¢ + 1,¢) is saved for use on the succeeding
time step.

The final position update is achieved as follows: through
forward substitution we can find that {'(,#,) achieving

{(tn;) =RV (6,1)¢ (t,1,),

where {(t,;) is defined in (73). The development in
Section 4.1 shows that F is upper triangular for station-
ary source model of interest here. Hence, we can find that
{"(t,n,) achieving

F{"(t,n;) = Bu{ (t,7,)

(A.19)

(A.20)

through back substitution on F. Finally, as in (74), we update
n; according to

Ny = X(t 1 Y1) + 7 (61), (A.21)
where 51, = X(t | Y,-1). The new state estimate X(t + 1 | Y,)
is taken as the final iterate ;.

A unitary transform 0 that imposes the desired zeros on
A can be readily constructed from a set of Givens rotations;
details are given in [29].
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