KIT | KIT-Bibliothek | Impressum | Datenschutz

The 2016 KIT IWSLT Speech-to-Text Systems for English and German

Nguyen, Thai-Son; Müller, Markus; Sperber, Matthias; Zenkel, Thomas; Kilgour, Kevin; Stüker, Sebastian; Waibel, Alexander

Abstract:

This paper describes our German and English Speech-to-Text (STT) systems for the 2016 IWSLT evaluation campaign. The campaign focuses on the transcription of unsegmented TED talks. Our setup includes systems using both the Janus and Kaldi frameworks. We combined the outputs using both ROVER [1] and confusion network combination (CNC) [2] to archieve a good overall performance. The individual subsystems are built by using different speaker-adaptive feature combination (e.g., lMEL with i-vector or bottleneck speaker vector), acoustic models (GMM or DNN) and speaker adaption (MLLR or fMLLR). Decoding is performed in two stages, where the GMM and DNN systems are adapted on the combination of the first stage outputs using MLLR, and fMLLR. The combination setup produces a final hypothesis that has a significantly lower WER than any of the individual subsystems. For the English TED task, our best combination system has a WER of 7.8% on the development set while our other combinations gained 21.8% and 28.7% WERs for the English and German MSLT tasks.


Verlagsausgabe §
DOI: 10.5445/IR/1000166276
Veröffentlicht am 22.01.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2016
Sprache Englisch
Identifikator KITopen-ID: 1000166276
Erschienen in Proceedings of the 13th International Conference on Spoken Language Translation. Ed.: M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, R. Cattoni, M. Federico
Veranstaltung 13. International Workshop on Spoken Language Translation (IWSLT 2016), Seattle, WA, USA, 08.12.2016 – 09.12.2016
Verlag Association for Computational Linguistics (ACL)
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page