KIT | KIT-Bibliothek | Impressum | Datenschutz

Incremental Unsupervised Training for University Lecture Recognition

Heck, Michael; Stüker, Sebastian; Sakti, Sakriani; Waibel, Alex; Nakamura, Satoshi

Abstract:

In this paper we describe our work on unsupervised adaptation of the acoustic model of our simultaneous lecture translation system. We trained a speaker independent acoustic model, with which we produce automatic transcriptions of new lectures in order to improve the system for a specific lecturer. We compare our results against a model that was trained in a supervised way on an exact manual transcription. We examine four different ways of processing the decoder outputs of the automatic transcription with respect to the treatment of pronunciation variants and noise words. We will show that, instead of fixating the latter informations in the transcriptions, it is of advantage to let the Viterbi algorithm during training decide which pronunciations to use and where to insert which noise words. Further, we utilize word level posterior probabilities obtained during decoding by weighting and thresholding the words of a transcription.


Verlagsausgabe §
DOI: 10.5445/IR/1000166325
Veröffentlicht am 06.02.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2013
Sprache Englisch
Identifikator KITopen-ID: 1000166325
Erschienen in Proceedings of the 10th International Workshop on Spoken Language Translation: Papers. Ed.: J. Y. Zhang
Veranstaltung 10th International Workshop on Spoken Language Translation (IWSLT 2013), Heidelberg, Deutschland, 05.12.2013 – 06.12.2013
Verlag Association for Computational Linguistics (ACL)
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page