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Abstract. Oscillatory integral operators with 1-homogeneous phase functions
satisfying a convexity condition are considered. For these we show the Lp–Lp-
estimates for the Fourier extension operator of the cone due to Ou–Wang via
polynomial partitioning. For this purpose, we combine the arguments of Ou–Wang
with the analysis of Guth–Hickman–Iliopoulou, who previously showed sharp
Lp–Lp-estimates for non-homogeneous phase functions with variable coefficients
under a convexity assumption. Furthermore, we provide examples exhibiting
Kakeya compression, which shows a more restrictive range than dictated by the
Knapp example in higher dimensions. We apply the oscillatory integral estimates
to show new local smoothing estimates for wave equations on compact Riemannian
manifolds (M, g) with dimM ≥ 3. This generalizes the argument for the Euclidean
wave equation due to Gao–Liu–Miao–Xi.

1 Introduction

In the following we consider oscillatory integral operators which naturally gener-
alize the Fourier extension operator for the cone

(1) Ef (x) =
∫

An−1
ei(〈x′,ω〉+xn|ω|)f (ω)dω.

We consider operators with λ ≥ 1,

(2) Tλf (x) =
∫

eiφλ(x;ω)aλ(x;ω)f (ω)dω

and a ∈ C∞
c (Rn × Rn−1,R), φ ∈ C∞(Rn × Rn−1\0;R), φλ(x;ω) = λφ(x/λ;ω),

aλ(x;ω) = a(x/λ;ω). We suppose that φ is 1-homogeneous in ω: it holds forμ > 0
that

(3) φ(x;μω) = μφ(x;ω).

For the support of a we suppose that

supp(a) ⊆ An−1 = Bn−1(0, 2)\Bn−1(0, 1/2).

Above Bd(c, r) ⊆ Rd denotes the open ball with centre c and radius r > 0.
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We write x = (x′, xn) ∈ R
n−1 × R and impose the following conditions on φ in

supp(a):

rank(∂2
xωφ) = n − 1,(C1)

∂2
ωω〈∂xφ,G(x;ω0)〉

∣∣
ω=ω0

(C2+)

has n − 2 non-vanishing eigenvalues of the same sign,

where G denotes the Gauss map

(4) G0(x;ω) =
n−1∧
j=1

∂2
xωj
φ(x;ω), G = G0/|G0|

of the embedded surface ω �→ ∂xφ(x;ω). We identify
∧n−1

R
n � R

n.
In this note we prove new estimates

(5) ‖Tλf‖Lp(Rn) �ε,φ,a λ
ε‖f‖Lp(An−1)

for operators (2) like described above. Firstly, we recall that the conjectured range
of Lp-estimates

(6) ‖Ef‖Lp(Rn) � ‖f‖Lp(An−1)

is given by p > 2(n−1)
n−2 . This prominent open problem is known as the restriction

conjecture for the cone and goes back to Stein. The corresponding conjecture for
the paraboloid is given by∥∥∥∥ ∫

Bn−1(0,1)
ei(〈x′,ω〉+xn|ω|2)f (ω)dω

∥∥∥∥
Lp(Rn)

� ‖f‖Lp(Bn−1)

for p > 2n
n−1 . Note that there is a shift of dimension by one, which is commonly

explained by the number of principal curvatures being reduced by one. More
pictorially, disregarding the null direction of the cone, the conical hypersurface
in n dimensions locally looks like a parabolic hypersurface in n − 1 dimensions.

The restriction conjecture for the cone was solved for n = 3 by Taberner [33],
for n = 4 by Wolff [40] via bilinear estimates, and for n = 5 by Ou–Wang [26] via
polynomial partitioning. Let

(7) pn =

⎧⎪⎪⎨⎪⎪⎩
4, n = 3,

2 · 3n+1
3n−3 , n > 3 odd,

2 · 3n
3n−4 , n > 3 even.
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Ou–Wang showed (6) for p > pn, which is also currently the widest range in
higher dimensions to the best of the author’s knowledge. Notably, in the case
of Carleson–Sjölin phase functions (cf. [8, 19]), which are not 1-homogeneous
anymore, where (C2+) is replaced with

(H2+) ∂2
ωω〈∂xφ(x;ω),G(x;ω0)〉

∣∣
ω=ω0

has n − 1 eigenvalues of the same sign,

Guth–Hickman–Iliopoulou [14] showed the sharp range of Lp–Lp-estimates, in the
sense that there are phase functions for which the estimate fails for lower values
of p. The deviation from the corresponding generalized restriction conjecture
for the paraboloid occurs due to Kakeya compression. This means that wave
packets, which we find after decomposing Tλf into non-oscillating components,
can cluster in low-dimensional varieties. This is not known to happen in the
constant-coefficient case: The restriction conjecture for the sphere implies the
Kakeya conjecture.

Kakeya compression was initially observed by Bourgain [5], see also Wisewell
[38] and Bourgain–Guth [7]. Related phenomena were discussed by Minicozzi–
Sogge [23] and Sogge [30]. In this note we point out Kakeya compression for 1-
homogeneous phases with variable coefficients, which shows a genuinely different
behavior of the variable-coefficient case compared to the constant-coefficient case
in dimensions n ≥ 8:

Theorem 1.1. Let φ : Rn ×R
n−1\{0} → R be a 1-homogeneous phase satis-

fying (C1) and (C2+) and a ∈ C∞
c (An−1) be an amplitude. Then, the estimate (5)

holds for p ≥ pn with pn as in (7).

We remark that for p > pn the λε-factor can be dropped. Guth–Hickman–
Iliopoulou showed the ε-removal lemma for oscillatory integral operators in [14,
Section 12], albeit with a stronger non-degeneracy hypothesis than presently con-
sidered. The idea goes back to Tao [34, 35]. In Section 8 we prove the following
global estimates for p > pn by a small variation of the argument in [14]:

‖Tλf‖Lp(Rn) �φ,a ‖f‖Lp(An−1).

The proof of Theorem 1.1 combines ideas from the case of constant-coefficient
homogeneous phases due to Ou–Wang [26] and Gao–Liu–Miao–Xi [10] and vari-
able-coefficient non-homogeneous phases due to Guth–Hickman–Iliopoulou [14].

We digress for a moment to describe the tools we will use and put them into
context. Bennett–Carbery–Tao [4] delivered an important contribution with sharp
n-multilinear restriction estimates: The k-restriction conjecture for the cone reads

(8)
∥∥∥∥ k∏

i=1

|Efi| 1
k

∥∥∥∥
Lpk (Bn(0,R))

�ε Rε
k∏

i=1

‖fi‖
1
k
2
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with |n(ξ1) ∧ · · · ∧ n(ξk)| � 1 with n(ξ) = (− ξ
|ξ| , 1), ξi ∈ supp(fi) ⊆ An−1, and

pk = 2(n+k)
n+k−2 . For k = 2, this is due to Wolff [40] (see Tao [36] for the endpoint

without Rε-loss), and for k = n this is an instance of the Bennett–Carbery–Tao
theorem [4]. There are only few partial results for 3 ≤ k ≤ n − 1, see [1] and
references therein.

We note that in [4] the multilinear estimates were shown as well for constant-
coefficient phase functions as smooth perturbations thereof. Bourgain–Guth [7]
devised an iteration to deduce linear estimates from multilinear estimates. Guth
[12] observed that the full strength of k-multilinear estimates is not required, but
a slightly weaker variant given by k-broad norms suffices to run the iteration. He
used polynomial partitioning to improve on the previous results in [12, 13]. The
idea is to equipartition the broad normwith polynomials of controlled degree: After
wave packet decomposition, one finds that either the broad norm is concentrated
on “cells” or on the “wall”, which is a neighbourhood of a variety. To oversimplify
matters for a moment, if the broad norm is concentrated on the cells, then sharp
bounds follow from induction on scales. If the broad norm is concentrated along the
wall, then we are morally dealing with a restriction problem in lower dimensions,
which is amenable to another induction hypothesis.

We introduce the k-broad norms in the present context: For the definition de-
compose An−1 into finitely overlapping sectors τ of aperture ∼ K−1 and length ∼ 1,
whereK is a large constant. Given f :An−1 →C, write f =

∑
fτ, where fτ is supported

in τ. In view of the rescaling φλ of the phase, we define the rescaled Gauss map

Gλ(x;ω) = G
( x
λ

;ω
)

for (x;ω) ∈ supp(aλ).

For each x ∈ B(0, λ) let

Gλ(x; τ) = {Gλ(x;ω) : ω ∈ τ and (x;ω) ∈ supp(aλ)}.
For V ⊆ Rn a linear subspace, let ∠(Gλ(x; τ),V) denote the smallest angle between
any non-zero vector v ∈ V and Gλ(x; τ).

The spatial ball B(0, λ) is decomposed into relatively small balls BK2 of ra-
dius K2. We fix BK2 a collection of finitely-overlapping K2-balls, which are
centred in and cover B(0, λ). For BK2 ∈ BK2 centred at x̄ ∈ B(0, λ), define

(9) μTλf (BK2) = min
V1,...,VA∈Gr(k−1,n)

(
max

τ:∠(Gλ(x̄;τ),Va)>K−2 ∀a
‖Tλfτ‖p

Lp(BK2 )

)
,

where Gr(k−1, n) denotes the Grassmannian manifold of (k−1)-dimensional sub-
spaces in R

n. We stress the deviation from [14], in which the angle threshold K−1

was considered. In case of the Fourier extension operator for the cone, the angle
condition was narrowed to K−2 to further confine the narrow part in [26]. Hence,
we presently use the same threshold for the variable-coefficient operator.
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We write τ �∈ Va as shorthand for ∠(Gλ(x̄; τ),Va) > K−2 provided that x̄ is clear
from context. Thus, we can write as well

μTλf (BK2) = min
V1,...,VA∈Gr(k−1,n)

(
max
τ:τ �∈Va,

for 1≤a≤A

‖Tλfτ‖p
Lp(BK2 )

)
.

For U ⊆ R
n the k-broad norm is defined as

‖Tλf‖BLp
k,A(U) =

( ∑
BK2∈BK2 ,

BK2∩U �=∅

μTλf (BK2)
)1/p

.

A key step in the proof of the Lp–Lp-estimate is to show k-broad estimates, which
are a substitute for the k-restriction conjecture.

Theorem 1.2. For 2 ≤ k ≤ n and all ε > 0, there exists a constant Cε > 1 and
an integer A such that, wheneverTλ is an oscillatory integral operatorwith reduced

(φ, a) and φ a 1-homogeneous phase satisfying (C1) and (C2+), the estimate

(10) ‖Tλf‖BLp
k,A(Rn) �ε KCελε‖f‖L2(An−1)

holds for all λ ≥ 1 and K ≥ 1 whenever

(11) p ≥ p̄(k, n) =
2(n + k)
n + k − 2

.

Reduced phase functions are introduced in Section 3.1. These phases are basi-
cally small CN perturbations of 1-homogeneous phases with constant coefficients
satisfying the convexity assumption. These reduced phase functions were previ-
ously used by Beltran–Hickman–Sogge [2] to derive decoupling estimates. As in
[2], general phase functions satisfying (C1) and (C2+) are transformed by parti-
tioning the support of the amplitude and parabolic rescaling to reduced phases.
Additionally, we impose size conditions on the amplitude and a margin condition
on its support.

The scheme to deduce Theorem 1.1 from Theorem 1.2 is essentially due to
Bourgain–Guth [7] and in the variable-coefficient context, see alsoGuth–Hickman–
Iliopoulou [14]. We find like in [14, p. 263] that

(12) ‖Tλf‖p
Lp(BK2 ) �A KO(1)μTλf (BK2) +

A∑
a=1

∥∥∥∥∑
τ∈Va

Tλfτ

∥∥∥∥p

Lp(BK2 )
.

The first term is captured by the broad estimate; the second term is estimated by
	p-decoupling (cf. [6, 2]) and induction on scales [26, 10]. A suitable narrow
decoupling, taking into account a reduced number of sectors τ ∈ Va, is discussed



6 R. SCHIPPA

in detail in the variable-coefficient case. For the constant-coefficient case we refer
to [26] and [10].

Very recently,Gao–Liu–Miao–Xi [10] proved an extension ofOu–Wang’s result
for the circular cone φ(x, ω) = x′ · ω + xn|ω| for more general conic surfaces, but
still with constant-coefficients. For these constant coefficient phase functions, the
Kakeya compression described in the present work cannot happen. Gao et al. [10]
used k-broad estimates to derive new local smoothing estimates for the wave
equation in Euclidean space. At small spatial scales, the variable-coefficient
phases are approximated with extension operators for conic surfaces. Then we can
use arguments from [10]. Furthermore, Hickman and Iliopoulou showed sharp
Lp-estimates for non-homogeneous phases with indefinite signature in [18]. This
suggests to study also homogeneous phase functions with indefinite signature by
the present methods.

Notably, we do not use the usual wave packet decomposition for the cone as,
e.g., in [26] or [10] to prove the broad estimate. Instead, we stick to the wave packet
decomposition commonly used for the Fourier extension operator of the paraboloid
or its variable coefficient counterpart [14]. This allows us to use many arguments
from [14] without change and hints at the possibility of a unified approach. A
major change happens for the transverse equidistribution estimates, to be analyzed
in Section 5. Secondly, the narrow decoupling requires additional considerations,
see Section 7.

We remark that the idea to use the same wave packet decomposition for homo-
geneous and inhomogeneous phase functions in the variable-coefficient context is
not new: In [21] S. Lee considered linear and bilinear estimates for oscillatory inte-
gral operators and could treat variable-coefficient versions of the Fourier extension
operator of the paraboloid and the cone with the same wave packet decomposition.
He generalized bilinear estimates due to Tao [37] and Wolff [40] to variable co-
efficient phases. Lee [21] pointed out for the first time that a convexity condition
as (H2+) or (C2+) allows to go beyond Tomas–Stein L2–Lp-estimates, which are
sharp for phases without convexity condition. Bourgain [5] showed in the context
of non-homogeneous phases without convexity conditions that the Tomas-Stein
range is sharp (see also [7]). In the present work, the Lp–Lp-estimates for general
oscillatory integral operators with phase satisfying (C1) and (C2+) due to Lee [21]
are improved to the sharp range up to the endpoint for n = 5, and the previously
known sharp Lp–Lp-estimates in lower dimensions 3 ≤ n ≤ 4 are recovered. The
estimates for n ≥ 6 are new as well for variable-coefficient phase functions.

Furthermore, Ou–Wang [26] proved Lq–Lp-estimates for the cone extension op-
erator E; see [26, Theorem 1.2]. The conjectured boundedness range of E : Lq →Lp
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is given by p > 2(n−1)
n−2 and q′ ≤ n−2

n p. For n = 5 Ou–Wang proved this more general
Fourier restriction conjecture for the cone and made progress for n ≥ 6. The proof
of [26, Theorem 1.2] is a minor variant of the proof of Lp–Lp-estimates. It is based
on the k-broad estimate and narrow decoupling. At one point, also interpolation
with the bilinear estimates due to Wolff [39] is invoked. In the present work the
k-broad estimate and narrow decoupling are extended to the variable coefficient
setting, and Wolff’s bilinear estimate was already generalized by Lee [21]. For
this reason, the arguments to show Lq–Lp-estimates in [26] can be extended to the
variable-coefficient case and yield the same range as stated in [26, Theorem 1.2]
for the estimate

‖Tλf‖Lp �ε,φ,a λ
ε‖f‖Lq .

In Section 9 we apply the new estimates for oscillatory integral operators to
prove new local smoothing estimates for solutions to wave equations on compact
Riemannian manifolds (M, g) with dim(M) ≥ 3. To avoid confusion with the
number of space-time dimensions, which was previously denoted by n, we denote
the space dimension in the following by d. We consider

(13)

⎧⎨⎩∂2
t u −
gu = 0, (x, t) ∈ M × R,

u(·, 0) = f0, u̇(·, 0) = f1;


g denotes the Laplace–Beltrami operator, and the solution u to (13) is given by

u(t) = cos(t
√

−
g)f0 +
sin(t

√−
g)√−
g
f1.

By results due to Seeger–Sogge–Stein [28] relying on the parametrix representation
(see also [27, 24] in the Euclidean case), it is known that the fixed-time estimate

‖u(·, t)‖Lp(Rd) � ‖f0‖Lp
s̄p (Rd) + ‖f1‖Lp

s̄p−1(R
d)

with

(14) s̄p = (d − 1)
∣∣∣1
2

− 1
p

∣∣∣
is sharp for all 1 < p < ∞ provided that t avoids a discrete set. The local
smoothing conjecture due to Sogge [29] for the Euclidean wave equation, i.e.,
(M, g) = (Rd, (δij)) in (13), states that

(15)
(∫ 2

1
‖u(·, t)‖p

Lp(Rd)

) 1
p

� ‖f0‖Lp
s̄p−σ(Rd) + ‖f1‖Lp

s̄p−1−σ(Rd)
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for σ < 1
p and 2d

d−1 ≤ p < ∞. (Note that s̄p − 1
p = 0 for p = 2d

d−1 .) This
conjecture stands on top of prominent open problems in Harmonic Analysis as it
implies as well the restriction conjecture for the paraboloid as the Bochner–Riesz
conjecture. Initial progress was due to Sogge [29] and Mockenhaupt–Seeger–
Sogge [25]. Wolff identified decoupling inequalities [39] to yield sharp local
smoothing estimates. Further progress in this direction was made in [11, 20, 22].
Bourgain–Demeter [6] covered the sharp range for decoupling inequalities, which
implies sharp local smoothing estimates for p ≥ 2(d+1)

d−1 . We refer to the survey by
Beltran–Hickman–Sogge [3] for local smoothing estimates for FIOs. Guth–Wang–
Zhang [16] verified the Euclidean local smoothing conjecture for d = 2 by a sharp
L4-square function estimate. Gao et al. [9] extended this to compact Riemannian
surfaces. We remark that for d ≥ 3, counterexamples due to Minicozzi–Sogge [23]
show that (15) fails if one replacesRd with general compact Riemannian manifolds
for σ < 1/p, if p < pd,+ with

(16) pd,+ =

⎧⎨⎩
2·(3d+1)
3d−3 , if d is odd,

2·(3d+2)
3d−2 , if d is even.

Hence, local smoothing estimates for solutions to wave equations on compact
Riemannian manifolds are only conjectured for p ≥ pd,+ with σ < 1/p.

Local parametrices for eit
√−
g are given by

Ff (x′, xn) =
∫
Rn−1

eiφ(x′,xn;ω)a(x;ω)f̂ (ω)dω

with φ ∈ C∞(Rn × R
n−1\{0}) a phase function satisfying (C1) and (C2+) and

a ∈ S0(Rn) with compact support in x. Hence, it suffices to prove local smooth-
ing estimates of rescaled Fourier integral operators Fλ. In Theorem 9.1 we ex-
tend the recent results due to Gao et al. [10] for the Euclidean wave equation to
wave equations on compact Riemannian manifolds. This improves on the previ-
ously best local smoothing estimates due to Beltran–Hickman–Sogge [2] in some
range p ≤ 2(d+1)

d−1 for wave equations on compact manifolds.

Outline of the paper. In Section 2 we show the necessary conditions for
Lp-estimates for variable-coefficient 1-homogeneous phases. Preliminaries for the
polynomial partitioning argument to show Theorem 1.2 are given in Section 3. In
this section we introduce the notion of a reduced homogeneous phase function and
collect geometric consequences. This will simplify the proof of Theorem 1.2. We
recall the wave packet analysis in the context of variable coefficients [21, 14] and
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collect facts on the k-broad norms. In Section 4 we recall the polynomial parti-
tioning tools. In Section 5 transverse equidistribution estimates are proved. These
differ from the transverse equidistribution estimates shown in [14] for Carleson–
Sjölin phase functions. In Section 6 we deduce Theorem 1.2 from Theorem 6.1,
which is suitable for induction on dimension and radius. The proof relies on
polynomial partitioning and transverse equidistribution estimates play a key role.
In Section 7 we show how Theorem 1.2 implies Theorem 1.1. In Section 8 we
show how the λε-factor can be removed away from the endpoint. In Section 9
we apply the oscillatory integral estimates and narrow decoupling to show new
local smoothing estimates for solutions to wave equations on compact Riemannian
manifolds.

Basic notations.
• For x, y ∈ R

n we denote the Euclidean inner product by

〈x, y〉 = x · y =
n∑

i=1

xiyi.

• |x| =
√〈x, x〉 denotes the Euclidean norm.

• For a Lebesgue-measurable set A ⊆ R
d, we denote by |A| the d-dimensional

Lebesgue measure.
• For x ∈ R, we denote Gauss brackets by

�x� = max{k ∈ Z : k ≤ x}.
• For x, y ∈ R

n\{0} we denote the angle between x and y by

∠(x, y) = arccos
x · y
|x| |y| .

• For x ∈ R
n\{0} and A ⊆ R

n with A\{0} �= ∅, we let

∠(x,A) = inf
y∈A\{0}∠(x, y).

Similarly, we define ∠(A1,A2) for A1,A2 ⊆ R
n with Ai\{0} �= ∅:

∠(A1,A2) = inf
x1∈A1\{0},
x2∈A2\{0}

∠(x1, x2).

2 Kakeya compression

In the following we modify the example due to Guth–Hickman–Iliopoulou [14,
Section 2] (see also [7]) for homogeneous phase functions. This yields the neces-
sary conditions:
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Proposition 2.1. Necessary for the estimate (5) to hold for n ≥ 6 is

p ≥ p̃n

with

p̃n =

⎧⎨⎩2 · 3n+3
3n−1 , n odd,

2 · 3n+2
3n−2 , n even.

For n ≥ 8 this gives a more restrictive range than the Knapp example, which
describes precisely one wave packet and leads to the restriction p ≥ 2(n−1)

n−2 . For
n = 6, 7 this matches p̃n, but for 3 ≤ n ≤ 5 this gives a less restrictive condition
than the Knapp example. Moreover, the range, for which the variable coefficient
estimate holds, does not differ for 3 ≤ n ≤ 5 from the translation-invariant case.
Hence, we consider n ≥ 6 in the following.

Let

x = (x′′, xn−1︸ ︷︷ ︸
x′

, xn) ∈ R
n−2 × R × R and ω = (ω′, ωn−1) ∈ R

n−2 × R.

We consider the phase functions

(17) φ(x;ω) = x′ · ω +
〈A(xn)ω′, ω′〉

2ωn−1
, ωn−1 ∈ (1/2, 1).

where A(xn) denotes the (n − 2) × (n − 2)–positive definite matrix

(18) A(xn) =

⎧⎨⎩
⊕ n−2

2
i=1 ( xn x2

n

x2
n xn+x3

n
), n − 2 even,⊕ n−3

2
i=1 ( xn x2

n

x2
n xn+x3

n
) ⊕ (xn), n − 2 odd.

The main idea is to construct many wave packets which are concentrated in the
neighbourhood of a lower-dimensional algebraic variety. Whereas the direction
governed by the frequency ωθ below varies, for fixed ωθ we consider precisely
one starting position vθ. This concentration in a low-dimensional algebraic variety
does not happen in the linear case (1).

We consider wave packets adapted to φ as follows: � = Bn−2(0, c1) × (1/2, 1)
is covered by essentially disjoint elongated caps

�θ = {(ω′, ωn−1) ∈ � : |ω′/ωn−1 − ωθ| � λ− 1
2 }

with ωθ ∈ Bn−2(0, c1) for |c1| � 1. These regions will be referred to as ‘sectors’
in the following. Apparently, � can be covered by ∼ λ

n−2
2 finitely overlapping

sets�θ. We consider a corresponding smooth partition of unity (ψθ)ωθ∈� and wave
packets

fθ,v(ω) = e−iλ〈v,ω′〉ψθ(ω), v = (v1, . . . , vn−2) ∈ R
n−2.
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We have by non-oscillation of the phase

|Tλfθ,v (x′′, xn−1, xn)| � λ− n−2
2 χTθ,v (x);

where χTθ,v denotes the characteristic function of Tθ,v . The Tθ,v are curved ‘slabs’
of size (1 × λ1/2 × · · · × λ1/2︸ ︷︷ ︸

n−2 times

×λ) with

Tθ,v ⊆
{
x ∈ B(0, λ) :

∣∣∣x′′ −λγθ,v
(xn

λ

)∣∣∣<c2λ
1
2 +ε and |xn−1 −λγ′

θ(xn/λ)|<c2λ
1
2 +ε
}
,

for any ε > 0, which follows fromnon-stationary phase; c2 denotes a small constant
and γθ,v , γ′

θ denote curves:

γθ,v(xn) = v − A(xn)ωθ, γ′
θ(xn) =

1
2
〈A(xn)ωθ, ωθ〉.

Furthermore, note that the conditions on ω′ and ωn−1∣∣∣ ω′

ωn−1
− ωθ

∣∣∣ � λ− 1
2 , ωn−1 ∈ (1/2, 1), ω′ ∈ Bn−2(0, c1)

correspond to consideringλ− 1
2 -sectors in direction (ωθ, 1). The degeneracyof ∂2

ωωφ

in the radial direction, which is immediate from the 1-homogeneity of φ, gives the
localization of slabs to size λε in this direction: We have

∂ωφ(x;ω) · (ωθ, 1)
|(ωθ, 1)| = ∂ωφ(x; (ωθ, 1)) · (ωθ, 1)

|(ωθ, 1)| + O(λ−1)

for
∣∣∣ ω|ω| − (ωθ, 1)

|(ωθ, 1)|
∣∣∣ � λ− 1

2 .

The non-degeneracy of ∂2
ωωφ gives localization to size less than λ

1
2 +ε in the remain-

ing directions. We argue in the following why the curved tubes χTθ,v are in fact of
size 1 × λ

1
2 × · · · × λ

1
2 × λ (and not significantly less): Consider the oscillatory

integral

F(x) =
∫

ei(x′ ·ω+λφ̃(xn/λ,ω))ψθ(ω)dω

with ψθ ∈ C∞
c (An−1) localizing to a slab into direction θ ∈ S

n−2 and

φ̃(xn, μω) = μφ̃(xn, ω) for μ > 0.

We use Taylor expansion in ω to write

λφ̃(xn/λ,ω) = |ω|(λφ̃(xn/λ,ω/|ω|))
= |ω|

(
λφ̃(xn/λ, θ) + λ∇ωφ̃(xn/λ, θ)

( ω
|ω| − θ

))
+ O(c).
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For ω ∈ supp(ψθ) we have

|ω| = ω · θ + O(cλ−1).

Hence, we can write

λφ̃(xn/λ,ω) = λφ̃(xn/λ, θ)(ω · θ) + λ∇ωφ̃(xn/λ, θ)(ω− (ω · θ)θ) + O(c).

Let {θ1⊥, . . . , θn−2⊥ , θ} be an orthonormal basis of Rn−1. Then,

λφ̃(xn/λ,ω) = λφ̃(xn/λ, θ)(ω · θ) + λ
n−2∑
i=1

(∇ωφ̃(xn/λ, θ) · θi
⊥)(ω · θi

⊥) + O(c).

Consequently,

x′ · ω + λφ̃(xn/λ,ω) = (x′ · θ + λφ̃(xn/λ, θ))(ω · θ)

+
n−2∑
i=1

(x′ · θi
⊥ + λ∇ωφ̃(xn/λ, θ) · θi

⊥)(ω · θi
⊥) + O(c).

And for |x′ · θ + λφ̃(xn/λ, θ)| � c and |x′ · θi⊥ + λ∇ωφ̃(xn/λ, θ) · θi⊥| � cλ1/2,
we see that the modulus of the whole phase is O(c). Hence, there is no os-
cillation within supp(ψθ) and for fixed xn this defines a region Axn for x′ of
size 1 × λ1/2 × · · · × λ1/2, for which |Tλf (x′, xn)| is roughly constant. Taking
Tθ =

⋃
xn

Axn yields the 1×λ1/2 ×· · ·×λ1/2 ×λ-tube. Note that the factor e−iλ〈v,ω′〉

amounts to a shift in x′ by λv, but does not change the size of the tube.
We prepare the initial data with randomized signs:

f =
∑
θ

εθfθ,v .

By Khintchine’s theorem, the expected value of |Tλf (x)| is given by the square
sum:

E[|Tλf (x)|] ∼
(∑

θ

|Tλfθ,vθ |2
)1/2

� λ− n−2
2

(∑
θ

χTθ,vθ
(x)
)1/2

.

Taking Lp-norms yields by Minkowski’s inequality

λ− n−2
2

(∫ (∑
θ

χTθ,vθ

) p
2
) 1

p

� E[‖Tλf‖Lp].

Next, we find by applying Hölder’s inequality that

λ− n−2
2

(∫ ∑
θ

χTθ,vθ

)1/2

�
∣∣∣∣⋃
θ

Tθ,vθ

∣∣∣∣1/2−1/p

E[‖Tλf‖Lp]

�
∣∣∣∣⋃
θ

Tθ,vθ

∣∣∣∣1/2−1/p

‖f‖p �
∣∣∣∣⋃
θ

Tθ,vθ

∣∣∣∣1/2−1/p

.
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The penultimate estimate is by hypothesis, and the final estimate follows from
|f | = 1 and |supp f | ∼ 1. Since the tubes Tθ,vθ are (1×λ1/2 ×· · ·×λ1/2 ×λ)-slabs,∫
χTθ,vθ

∼ λ
n
2 . Moreover, there are about λ

n−2
2 slabs. Hence,

λ− n−2
2

(∫ ∑
χTθ,vθ

)1/2

∼ λ
1
2 .

Thus, we arrive at

(19) 1 �
∣∣∣∣⋃
θ

Tθ,vθ

∣∣∣∣1/2−1/p

λ− 1
2 .

Next, we shall see how to choose vθ such that the curved slabs are concentrated in
a neighbourhood of a low-dimensional algebraic variety inspired by [14].

For �θ, we set

(20) vθ,2j−1 = −(ωθ)2j and vθ,2j = vθ,n−2 = 0 for 1 ≤ j ≤
⌊n − 2

2

⌋
.

Let d = n − 1 − � n−2
2 � and Z = Z(P1, . . . ,Pn−1−d) be the common zero set of

the polynomials

(21) Pj(x1, . . . , xn−2, xn) = λx2j − x2j−1xn for 1 ≤ j ≤
⌊n − 2

2

⌋
.

It is straight-forward to show that the image of xn �→ (λγθ,vθ (xn/λ), xn) is contained
in Z(P1, . . . ,Pn−1−d); Z is an algebraic variety of dimension

(22) d = (n − 1) −
⌊n − 2

2

⌋
in R

n−1 and of degree On(1). Thus, Wongkew’s theorem (cf. [41]) on the size of
neighbourhoods of algebraic varieties applies, and we find that

(23) Ñ
λ

1
2

= |N
λ

1
2
(Z) ∩ Bn−1(0, λ)| � λd+ n−1−d

2 .

We find by (22) and (23) that

(24) Ñ
λ

1
2
�

⎧⎨⎩λ
3n−2

4 , n even,

λ
3n−1

4 , n odd.

Moreover, for (x1, . . . , xn) ∈ Tθ,vθ we have xn−1 ∈ B(λγ′
θ(xn/λ), λ

1
2 +ε).
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This yields

(25)
∣∣∣∣⋃
θ

Tθ,vθ

∣∣∣∣1/2−1/p

� (Ñ
λ

1
2
· λ) 1

2 − 1
p .

Plugging (25) into (19) with the estimate from (24), we find that

p ≥
{

2 · 3n+2
3n−2 , n even,

2 · 3n+3
3n−1 , n odd.

This finishes the proof of Proposition 2.1. �

Remark 2.2. In an earlier version of the manuscript was claimed that we have
the improved estimate of (25)

(26)

∣∣∣∣⋃
θ

Tθ,vθ

∣∣∣∣1/2−1/p

� (Ñ
λ

1
2

· λ 1
2 )

1
2 − 1

p .

If this were true, then it would follow

p ≥
{

2 · 3n
3n−4 , n even,

2 · 3n+1
3n−3 , n odd,

and consequently, the sharpness of Theorem 1.1 up to endpoints in all dimensions.
The claim in (26) was based on observing that for (x1, . . . , xn) ∈ Tθ,vθ we have

xn−1 ∈ B(λγ′
θ(xn/λ), λ

1
2 +ε).

However, this does not suffice for the estimate for the union of tubes.
In order to verify (26) one needs to find an additional algebraic relation, which

relates xn−1 with the remaining coordinates. This is different from the inhomoge-
neous case considered in [14] due to nonlinear behavior of γ′

θ in ωθ. It remains
open whether the range from Theorem 1.1 is sharp.

3 Preliminaries

3.1 Basic reductions of the phase and amplitude function. In this
paragraph we shall normalize 1-homogeneous phase functions, which satisfy (C1)
and (C2), and the amplitude. This will highlight that the class of considered phase
functions are indeed (CN-perturbations of the translation-invariant case

φ∗(x;ω) = 〈x′, ω〉 +
xn(ω′)2

2ωn−1
, ω′ ∈ B(0, c), ωn−1 ∈ (1, 2).

Constant-coefficient perturbations were analyzed in [10].
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The arguments were provided in [2, Section 2], and details are omitted here (see
also [21]). It is important to workwith a class of phase functions, which is stable un-
der rescaling. After localisation and translation, we may assume that a is supported
inside X × �, where X = X′ × T for X′ ⊆ B(0, 1) ⊆ R

n−1 and T ⊆ (−1, 1) ⊆ R

are small open neighbourhoods of the origin and � ⊆ An−1 is a small sector of
dimensions 1× c× · · ·× c with 0 < c � 1 centred at en−1 = (0, . . . , 0, 1) ∈ R

n−1.
Firstly, we can suppose that

det ∂2
ωx′φ(x;ω) �= 0 for all (x, ω) ∈ X ×�,(C1′)

∂2
ω′ω′∂xnφ(x, ω) has eigenvalues of the same sign for all (x, ω) ∈ X ×�.(C2′)

This follows as in [2]. By rotation in the x-variables, we can also suppose that

G(0; en−1) = en and ∂2
xnω
φ(0; en−1) = 0.

Hence, by making � small enough, we find that

(27) |∂2
xnω
φ(x;ω)| ≤ ccone for (x, ω) ∈ X ×�.

By non-degeneracy (C1′) and the implicit function theorem, we find a smooth
mapping �xn,ω : X′ → Rn−1 such that

∂ωφ(�xn,ω(x
′), xn;ω) = x′.

We shall also write�xn,ω(x
′) = �(x′, xn;ω). There is also a smooth mapping�(x, ·)

with
∂x′φ(x;�(x;ω)) = ω.

For λ ≥ 1, we consider the rescaled versions �λ(x;ω) = λ�(x/λ;ω) and
�λ(x;ω) = �(x/λ;ω). We assume that X and � are such that the above map-
pings are defined on the whole support of a.

In the following we shall quantify the deviation from φ∗ by restricting the values
of second and third derivatives and bounding higher order derivatives: Let ccone > 0
denote a small constant and Im ∈ R

m×m, (Im)ij = δij denote the unit matrix. Firstly
note that there are (possibly large) constants A1,A2,A3 ≥ 1 such that

|∂2
ωx′φ(x;ω) − In−1| ≤ cconeA1 for (x;ω) ∈ X ×�,(C1′′) ∣∣∣∂2

ω′ω′∂xnφ(x;ω) − In−2

ωn−1

∣∣∣ ≤ cconeA2 for (x;ω) ∈ X ×�.(C2′′)

In the above display and in the following we abuse notation and denote the Eu-
clidean normof a vector v ∈ R

m or the Hilbert–Schmidt normof a matrix A ∈ R
m×m

by |v| or |A|.
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For technical reasons, we shall impose in the following for the higher order
derivatives:

‖∂βω∂xkφ‖L∞(X×�) ≤ cconeA1 for 1 ≤ k ≤ n − 1 and β = (β′, βn−1) ∈ N
n−1
0 ,(D1)

which satisfies 2 ≤ |β| ≤ 3 and |β′| ≥ 2;

‖∂βω∂xnφ‖L∞(X×�) ≤ ccone

2n
A1 for all β ∈ N

n−1
0 with |β′| ≥ 3 and |β| ≤ N.

For some large integer N ∈ N, one has(D2)

‖∂βω∂αxφ‖L∞(X×�) ≤ ccone

2n
A3 for all (α, β) ∈ N

n
0 × N

n−1
0 with 2 ≤ |α| ≤ 4N

and 1 ≤ |β| ≤ 4N + 2 satisfying 1 ≤ |β| ≤ 4N or |β′| ≥ 2.

By parabolic rescaling (cf. Lemma 7.9), we see that we can reduce to phases
with Ai = 1; these phases are said to be reduced.

Moreover, we can suppose that uniform bounds hold for the amplitude
a ∈ C∞

c (X ×�):

(28) ‖∂αωa‖L∞(Z×�) ≤ Camp for 0 ≤ |α| ≤ N,

and Camp denotes a universal constant; (28) is accomplished by dividing a through
a large constant depending on a and its derivatives. Furthermore, we can suppose
by Fourier series expansion (see [2]) that a is of product form

a(x, ω) = a1(x)a2(ω).

For the spatial part, we require a margin condition:

(29) dist(supp a1,R
n+1\X) ≥ 1

4A3
.

This will become useful for variable-coefficient decoupling in Section 7 and can
always be achieved by finite decomposition and re-centering (cf. [2]). An ampli-
tude a is said to be reduced, if it is of product form, satisfies (29) with A3 = 1 and
uniform bounds on the derivatives (28).

Definition 3.1. We say that (φ, a) are of type (A1,A2,A3), if

• φ satisfies (C1′′), (C2′′), (D1), (D2), and a satisfies (29),
• a is of product form and satisfies (28).

Moreover, (φ, a) is said to be reduced if φ is a reduced phase function and a is
a reduced amplitude.

The following observation will be useful at a later point:
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Lemma 3.2. Suppose that φ is a reduced phase function. Then we have

(30) ‖∂xn∂
β
ωφ‖L∞(X×�) �N,ccone 1 for 1 ≤ |β| ≤ N.

Proof. For β = (β′, βn−1) ∈ Nn−1
0 with |β′| ≥ 3 this is covered by D1) and

for |β| = 1 this is C2′′). So it remains to show (30) for |β| = 2, and |β| ≥ 3 with
|β′| ≤ 2: We obtain by homogeneity

∂xnφ(x;ω
′, ωn−1) = ωn−1∂xnφ(x;ω

′/ωn−1, 1).

From this follows

(31) ∂2
xnωn−1

φ(x;ω′, ωn−1) = ∂xnφ(x;ω
′/ωn−1, 1) − ∂2

xnω′φ(x;ω′/ωn−1, 1) · ω′

ωn−1
.

And moreover,

(32) ∂3
xn, ωn−1, ωn−1

φ =
1

ωn−1

〈
∂3

xn, ω′, ω′φ(x;ω′/ωn−1, 1)
ω′

ωn−1
,
ω′

ωn−1

〉
.

Hence, by C2′′) this is uniformly bounded.
For |β| = 2 and |β′| = 1, the claim follows from taking an additional derivative

in (31) and estimates (27) and (C1′′).
For 3 ≤ |β| ≤ N and |β′| ≤ 1, the claim is evident from taking derivatives

in (32), and the estimates (C2′′) and (D1). �

3.2 Geometric consequences. Let φ be a reduced phase function in the
above sense. We shall see how the corresponding hypersurfaces �x paramet-
rized by ω �→ ∂xφ(x;ω) resemble the ones from φ∗. To see this, recall that
� : U → � satisfies ∂x′φ(x;�(x;ω)) = ω. Hence, �x is the graph of the func-
tion hx(ω) = ∂xnφ(x;�(x;ω)) over the fibre Ux.

Each hx is a perturbation of the translation-invariant case in the following sense:

Lemma 3.3. The following estimate holds for all ω ∈ Ux:

(33) ‖∂2
ω′ω′hx(ω) − In−1/ωn−1‖L∞ � ccone.

Here ccone > 0 denotes the constant from the definition of a reduced phase function.

Proof. This is a consequence of properties of �. Firstly, we record that
�(x; en−1) = 1. By the implicit function theorem and non-degeneracy of φ, we find
that

∂ω�(x;ω) = ∂2
x′ωφ(x;�(x;ω))−1.
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Hence,
‖∂ω�(x;ω) − In−1‖L∞ = O(ccone).

As a consequence of this identity (and choosing ccone to be sufficiently small),

|�(x;ω) −�(x;ω′)| ∼ |ω− ω′| for all ω,ω′ ∈ Ux

with implicit constant only depending on n.
Additionally, if 1 ≤ k ≤ n − 1, then by twice differentiating the identity

∂xkφ(x;�(x;ω)) = ωk

in the ω-variables, it follows that

‖∂2
ωω�k(x;ω)‖L∞ = O(ccone).

By the previous estimate, (33) follows from (C2′′). �
By similar means, we infer estimates for the generalized Gauss map associated

with Tλ. To give the results, let

Xλ =
{
x ∈ R

n| x
λ

∈ X
}

denote the λ-dilate of X, so that aλ is supported in Xλ ×�.

Lemma 3.4. For all x, x̄ ∈ Xλ and ω, ω̄ ∈ �, the estimates

∠(Gλ(x;ω),Gλ(x; ω̄)) ∼
∣∣∣ ω|ω| − ω̄

|ω̄|
∣∣∣ ∼ ∠(ω, ω̄),

∠(Gλ(x;ω),Gλ(x̄;ω)) � λ−1|x − x̄|
(34)

hold true.

This will be helpful to understand the wave packet analysis in the following
sections.

3.3 Wave packet decomposition. We carry out the wave packet decom-
position with respect to some spatial parameter 1 � R � λ. For this purpose,
we follow [14] and use that the construction only depends on the non-degeneracy
condition (C1). We do not use the usual wave packet decomposition for the cone
as, e.g., in [26], but adapt the parabolic case, as previously done by Lee [21]. The
reason is that in Section 6 we would sort the smaller cone tubes into larger tubes
anyway. It appears that the present choice of wave packet decomposition allows
us to transfer arguments from [14] to the homogeneous setting more directly. In
the following we introduce notations from [14].
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Cover An−1 by finitely overlapping balls of radius R−1/2, and let ψθ be a smooth
partition of unity adapted to this cover. These θ will frequently be referred to
as R−1/2-balls. For a ball θ, cover R

n−1 with finitely overlapping balls of size
R

1+δ
2 × · · · × R

1+δ
2 with centre v ∈ R

1+δ
2 Z

n−1. Let ηv = η(· − v) denote a bump
function adapted to B(v,R

1+δ
2 ) such that∑

v∈Zn−1

ηv = 1

with η̂v essentially supported in B(0,CR− 1+δ
2 ). This is possible by the Poisson

summation formula.
Let T denote the collection of all pairs (θ, v). Then, for f : Rn−1 → C with

support in An−1 and sufficiently regular, we find that

f =
∑

(θ,v)∈T
(ηv(ψθf )ˇ)ˆ =

∑
(θ,v)∈T

η̂v ∗ (ψθf ).

For each R−1/2-ball θ, let ωθ denote its centre. Choose a real-valued smooth
function ψ̃ so that ψ̃θ is supported in θ, and ψ̃θ(ω) = 1 whenever ω belongs to a
cR−1/2-neighbourhood of the support of ψθ for some small c > 0. Finally, define

fθ,v = ψ̃θ · [η̂v ∗ (ψθf )].

The function η̂v is rapidly decaying outside B(0,CR− 1+δ
2 ) and, consequently,

‖fθ,v − (η̂v ∗ (ψθf ))‖L∞(Rn−1) ≤ RapDec(R)‖f‖L2(An−1).

The functions fθ,v are almost orthogonal: if S ⊆ T, then∥∥∥∥ ∑
(θ,v)∈S

fθ,v

∥∥∥∥2

L2(Rn−1)
∼ ∑

(θ,v)∈S
‖fθ,v‖2

L2(Rn−1).

Let Tλ be an oscillatory integral operator with reduced phase φ satisfying (C1′)
and amplitude a supported inX×�. For (θ, v) ∈ T define the curve γ1

θ,v : I
1
θ,v→Rn−1

by setting γ1
θ,v(t) = �(v, t;ωθ), where� is the function introduced in Subsection 3.1

and
I1
θ,v = {xn ∈ T|∂ωφ(x′, xn;ωθ) = v for some x′ ∈ X′}.

Hence, ∂ωφ(γ1
θ,v(xn), xn;ωθ) = v for all xn ∈ I1

θ,v . For the rescaled curve

γλθ,v(t) = λγ1
θ,v/λ(t/λ),

we find that

∂ωφ
λ(γλθ,v(xn), xn;ωθ) = v for all t ∈ Iλθ,v =

{
t ∈ R :

t
λ

∈ I1
θ,v

}
.
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Let �λθ,v : Iλθ,v → R
n denote the graph mapping �λθ,v(xn) = (γλθ,v(xn), xn); for the

sake of brevity, the image of this mapping is denoted by �λθ,v , too.

Lemma 3.5 ([14, Lemma 5.2]). The tangent space T�λθ,v (xn)�
λ
θ,v lies in the

direction of the unit vector Gλ(�λθ,v(xn);ωθ) for all xn ∈ Iλθ,v .

We consider curved tubes

Tθ,v = {(x′, xn) ∈ B(0,R) : xn ∈ Iλθ,v and x′ ∈ B(γλθ,v(xn),R
1
2 +δ)}.

We refer to the curve �λθ,v as the core of Tθ,v . Since φ is of reduced form, we find
by the diffeomorphism property of � (writing x′ = �−1

xn,ωθ
◦�xn,ωθ (x

′)) that

|x′ − γλθ,v | ∼ |∂ωφλ(x;ωθ) − v|,

for all x = (x′, xn) ∈ Xλ with xn ∈ Iλθ,v uniformly in λ. This has the following
consequence:

Lemma 3.6 ([14, Lemma 5.4]). If 1 � R � λ and x ∈ B(0,R)\Tθ,v, then

|Tλfθ,v(x)| ≤ (1 + R−1/2|∂ωφλ(x;ωθ) − v|)−(n+1)RapDec(R)‖f‖L2(An−1).

3.4 L2–L2-estimate. We recall the following generalization of Parseval’s
theorem, only depending on non-degeneracy (C1′) of the phase function (cf. [31,
Section 2.1]):

Lemma 3.7 ([14, Lemma 5.5]). If 1 ≤ R ≤ λ and BR is any ball of radius R,
then

(35) ‖Tλf‖L2(BR) � R1/2‖f‖L2(An−1).

This is based on the following estimate:

Lemma 3.8 ([14, Lemma 5.6]). For any fixed xn ∈ R, we find the estimate

(36) ‖Tλf‖L2(Rn−1×{xn}) � ‖f‖L2(An−1).

3.5 k-broad norms. Here we recall basic properties of the k-broad norms.
Although the naming is misleading as k-broad norms are, strictly speaking, no
norms, the properties are similar enough to make the following arguments work.
We shall also see that U �→ ‖Tλf‖p

BLp
k,A(U) behaves as a measure.
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Lemma 3.9 (Finite (sub-)additivity, [14, Lemma 6.1]). Let U1,U2 ⊆ R
n and

U = U1 ∪ U2. If 1 ≤ p < ∞ and A is a non-negative integer, then

(37) ‖Tλf‖p
BLp

k,A(U) ≤ ‖Tλf‖p
BLp

k,A(U1)
+ ‖Tλf‖p

BLp
k,A(U2)

holds for all integrable f : An−1 → C.

Secondly, we have the following variant of the triangle inequality:

Lemma 3.10 (Triangle inequality, [14, Lemma 6.2]). If U ⊆ Rn, 1 ≤ p < ∞
and A = A1 + A2 for A1 and A2 non-negative integers, then

(38) ‖Tλ(f1 + f2)‖BLp
k,A(U) � ‖Tλf1‖BLp

k,A1
(U) + ‖Tλf2‖BLp

k,A2
(U)

holds for all integrable f1, f2 : An−1 → C.

We further have the following variant of Hölder’s inequality:

Lemma3.11 (Logarithmic convexity, [14, Lemma6.3]). Suppose thatU⊆R
n,

1 ≤ p, p1, p2 <∞ and 0 ≤ α1, α2 ≤ 1 satisfy α1 + α2 = 1 and

1
p

=
α1

p1
+
α2

p2
.

If A = A1 + A2 for A1, A2 non-negative integers, then

‖Tλf‖BLp
k,A(U) � ‖Tλf‖α1

BL
p1
k,A1

(U)
‖Tλf‖α2

BL
p2
k,A2

(U)
.

Later on, we shall only consider A � 1, which allows us to use Hölder’s and
Minkowski’s inequality for k-broad norms.

3.6 Overview of parameters. For the reader’s convenience, we provide
an overview of the parameters to be used in Sections 3–7:

• 0 < ε � 1 denotes the parameter, for which we aim to prove the estimates
in Theorems 1.1 and 1.2.

• m will denote the dimension of the algebraic variety, which is used for the
polynomial partitioning (see Section 4).

• We have the hierarchy of parameters:

δ � δn � · · · � δ1 � ε

with δi = δi(ε) and δ = δ(ε). The parameters δi will quantify tangentiality of
wave packets with respect to a variety of dimension i and will be specified in
the iteration in Section 6.
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• δ is the parameter from wave packet decomposition and eventually, δ = δ(ε),
and N = N(δ) = N(ε); the parameter N for reduced data will be chosen only
depending on ε.

• In Section 7 we need the derivative bounds for reduced phase functions up
to N for a possibly larger value of N depending on a parameter δ1 = δ1(ε)
used in a narrow decoupling estimate.

4 Polynomial partitioning

A key tool in the proof will be polynomial partitioning following previous work
by Guth [12, 13] (see also Guth–Katz [15]) and in the variable coefficient case
Guth–Hickman–Iliopoulou [14]. The idea is to divide the ball BR by the zero set of
a polynomial into cells, which equidistribute the broad norm. Either μTλf will be
concentrated in the cells or at the wall, i.e., an appropriate neighbourhood of the
zero locus of the polynomial. Both cases will be handled by induction. We recall
some facts from [14], which we will use in the following.

4.1 Tools from algebraic geometry. Given a polynomial P in R
n, its

zero set is denoted by Z(P). To make the varieties Z(P1, . . . ,Pn−m) smooth m-
dimensional manifolds, we consider transverse complete intersections:

Definition 4.1. Let m ∈ N, m ≤ n, and let P1, . . . ,Pn−m be polynomi-
als on R

n whose common zero set is denoted by Z(P1, . . . ,Pn−m). The variety
Z(P1, . . . ,Pn−m) is called a transverse complete intersection if

∇P1(x) ∧ · · · ∧ ∇Pn−m(x) �= 0 ∀x ∈ Z(P1, . . . ,Pn−m).

The degree of the transverse complete intersection degZ is defined as
maxj=1,...,n−m degPj.

We have the following partitioning argument:

Theorem 4.2 ([14, Theorem 7.3]). Suppose that W ≥ 0 is a non-zero L1-
function on Rn. Then, for any degree D ∈ N, there exists a non-zero polynomial P

of degree degP � D such that the following holds:

• The set Z(P) is a finite union of � log D transverse complete intersections.

• If (Oi)i∈I denotes the set of connected components of Rn\Z(P), then #I � Dn

and

(39)
∫

Oi

W ∼ D−n
∫
Rn

W for all i ∈ I.
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The connected components are called cells.
We further need the following lemma on transverse intersections of tubes with

varieties:

Lemma 4.3 ([13, Lemma 5.7]). Let T be a cylinder of radius r with central
line 	 and suppose that Z = Z(P1, . . . ,Pn−m) ⊆ Rn is a transverse complete

intersection, where the polynomials Pj have degree at most D. For α > 0, let

Z>α = {z ∈ Z : ∠(TzZ, 	) > α}.
Then Z>α ∩ T is contained in a union of � Dn balls of radius � rα−1.

For the application, we are interested in r = R(1+δ)/2, as this will be the radius
of the (thin) tubes and α = R− 1

2 +δ.

4.2 Polynomial approximation. However, with smooth core curves,
Lemma 4.3 is not applicable directly. We approximate the core curves by polyno-
mials such that algebraicmethods can still be applied to the curved tubes. We follow
[14, Section 7.2]. Let ε > 0 be a small parameter and let N = Nε := �1/(2ε)� ∈ N.
Suppose that � : (−1, 1) → R

n is a smooth curve with

‖�‖CN+1(−1,1) = max
0≤k≤N+1

sup
|t|<1

|�(k)(t)| � 1.

After the reductions of Section 3.1, we find the following estimates:

Lemma 4.4. The curves �1
θ,v satisfy

|(�1
θ,v)

′(t)| ∼ 1 for all t ∈ I1
θ,v ,

and

sup
t∈I1

θ,v

|(�1
θ,v)

(k)(t)| � cpar for 2 ≤ k ≤ N.

The proof from [14, Lemma 7.4] applies verbatim because of bounds (27)
and (D2) from Subsection 3.1 although the phase functions are from different
classes.

We denote by [�]ε : R → Rn the polynomial curve given by the degree-N
Taylor approximation of � around zero. Observe that

‖[�]ε‖C∞(−2,2) ≤ e2‖�‖CN (−1,1) � 1.

Furthermore, for λ � 1, noting that λ−εN ≤ λ−1/2, Taylor’s theorem yields

|�(i)(t) − [�](i)ε (t)| �ε λ
− 1

2 |t|1−i for all |t| �ε λ
−ε and i = 0, 1.
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Letting �λ : (−λ, λ) → R
n denote the rescaled curve �λ(t) = λ�(t/λ), the above

inequalities imply that

(40) ‖[�λ]′ε‖C∞(−2λ,2λ) � 1 and ‖[�λ]′′ε‖C∞(−2λ,2λ) � λ−1,

and

|(�λ)(i)(t) − ([�λ]ε)
(i)(t)| �ε λ

− 1
2 |t|1−i for all |t| �ε λ

1−ε and i = 0, 1.

As a consequence of |(�λ)′(t)| ∼ |[�λ]′ε(t)| ∼ 1, the tangent spaces to the curves�λ

and [�λ]ε have a small angular separation, i.e.,

(41) ∠(T�λ(t)�
λ,T[�λ]ε(t)[�

λ]ε) �ε λ
− 1

2 for all |t| �ε λ
1−ε.

4.3 Transverse interactions between curved tubes and varieties.
We have the following generalization of Lemma 4.3:

Lemma 4.5 ([14, Lemma 7.5]). Let n ≥ 2, 1 ≤ m ≤ n and

Z = Z(P1, . . . ,Pn−m) ⊆ R
n

be a transverse complete intersection. Suppose that � : R → Rn is a polynomial

graph satisfying

(42) ‖�′‖L∞(−2λ,2λ) � 1 and ‖�′′‖L∞(−2λ,2λ) ≤ δ

for some λ, δ > 0. There exists a dimensional constant C̄ > 0 such that, for all
α > 0 and 0 < r < λ satisfying α ≥ C̄δr, the set Z>α,r,� ∩ B(0, λ) is contained in

a union of
O((degZ · deg�)n)

balls of radius r/α.

This will be used when proving the k-broad estimate via polynomial partition-
ing.

5 Transverse equidistribution estimates

5.1 Outline of the argument. In this section transverse equidistribution
estimates for wave packets tangential to varieties will be examined. Functions
having wave packets tangential to a variety arise in the algebraic case when
applying polynomial partitioning in the main induction argument. Contrary to
[26] or [10], however, we stick to the wave packet decomposition used in [14]. We
make the following definition (see [14, 13]):
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Definition 5.1. Let Z = Z(P1, . . . ,Pn−m) be a transverse complete intersec-
tion. A wave packet (θ, v) is said to be R− 1

2 +δm-tangent to Z in B(0,R) if

(43) Tθ,v ∩ BR ⊆ N
R

1
2 +δm (Z)

and

(44) ∠(Gλ(x;ωθ),TzZ) ≤ c̄tangR
− 1

2 +δm

for any x ∈ Tθ,v and z ∈ Z ∩ B(0, 2R) with |x − z| ≤ C̄tangR
1
2 +δm .

We want to study functions concentrated on the collection of wave packets

TZ = {(θ, v) ∈ T : Tθ,v in R− 1
2 +δm − tangent to Z in B(0,R)}.

Precisely, we make the following definition:

Definition 5.2. If S ⊆ T, then f is said to be concentrated on wave packets
from S if

f =
∑

(θ,v)∈S
fθ,v + RapDec(R)‖f‖L2.

Let B ⊆ Rn be a ball of radius R
1
2 +δm with centre x̄ ∈ B(0,R). We study ηB ·Tλg,

where ηB is a suitable choice of Schwartz function adapted to B. A stationary
phase argument yields that the Fourier transform of ηB ·Tλgθ,v is concentrated near
the surface � = {�(ω) : ω ∈ An−1}, where �(ω) = ∂xφλ(x̄;ω). This leads to the
refined set of wave packets

TZ,B = {(θ, v) ∈ TZ : Tθ,v ∩ B �= ∅}.
For (θ, v) ∈ TZ,B, the direction Gλ(x̄;ωθ) of Tθ,v must make a small angle with
each of the tangent spaces TzZ for all z ∈ Z ∩ B. This constrains �(ωθ) to lie
in a small neighbourhood of some typically m-dimensional manifold Sξ . But in
the homogeneous case, Sξ might only be one-dimensional, or “close” to a one-
dimensional manifold. This will be quantified below. We refer to this as case of
narrow space-time frequencies. This case does not contribute in the broad norm,
for which reason it is referred to as narrow. The role of space-time frequencies is
emphasized, as in the analysis we are rather considering sectors on the generalized
cone (and not the projection to R

n−1).
To linearize Sξ , if it is not a “narrow”, essentially one-dimensional set, let

R
1
2 < ρ � R and for the remainder of this section, let τ ⊆ An−1 denote a sector of

aperture O(ρ− 1
2 +δm). We define

TZ,B,τ = {(θ, v) ∈ TZ : θ ∩ τ �= ∅ and Tθ,v ∩ B �= ∅}.
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We recall the constant-coefficient case. Suppose that Z is an m-dimensional
affine plane so that TzZ = V for all z ∈ Z, where V ‖ Z.

The extension operator for the cone has the unnormalized Gauss map
G0(ω) = (− ω

|ω| , 1). Let V+ = {ω ∈ R
n−1\{0} : G0(ω) ∈ V}. By a crucial ob-

servation due to Ou–Wang [26], if V+ is tangent to C = {(ω, ω|ω| ) : ω ∈ An−1} up
to an angle R−δm , then N

R− 1
2 +δm V+ ∩ C is a O(R−δm)-neighbourhood of O(1) radial

lines. In the easier case of the extension operator of the paraboloid (see [13]), this
narrow case does not happen. As an example in case of the cone, we can consider
V = 〈e1 + en, ei1, . . . , eim−1〉 ⊆ Rn with eij �= eik for j �= k and ik ∈ {2, . . . , n − 1}.
Here ei denotes the ith unit vector. We have dim(V) = m, but clearly

V+ =
{
ω ∈ R

n−1\{0} :
(−ω

|ω| , 1
)

∈ V
}

= {−μe1 : μ > 0}

is always one-dimensional.
In the variable coefficient case, we see that if V+ is tangent to Cx = {∂xφλ(x̄;ω)}

up to an angle R−δm , then N
R− 1

2 +δm V+ ∩ Cx is a O(R−δm)-neighbourhood of O(1)
radial lines. Hence, the case of narrow space-time frequencies does not contribute
to the k-broad norm. Otherwise, we refer to this as a case of broad space-time
frequencies, and we shall see that we find quantitative transversality to hold. We
can deduce transverse equidistribution estimates similar to the paraboloid case
(or its variable-coefficient counterpart). In the constant-coefficient case, but for
arbitrary cones, this was recently investigated by Gao et al. in [10]. We shall see
how the arguments extend to the variable-coefficient case.

In this section we aim to prove the following estimate for g concentrated on
wave packets tangential to Z in the case of broad space-time frequencies:∫

B∩N
ρ

1
2 +δm

(Z)
|Tλg|2 � R

1
2 +O(δm)

(ρ
R

) n−m
2 ‖g‖2

L2.

The precise statement with additional assumptions on g is provided in Lemma 5.8.

5.2 Geometric preliminaries: narrow and broad space-time fre-
quencies. In this subsection we quantify the above cases of narrow and broad
space-time frequencies. There are two linearizations involved. The transverse
complete intersection is linearized and below V plays the role of the tangent space
of Z. Moreover, the phase function is linearized such that we can apply arguments
from the constant-coefficient case due to Ou–Wang [26] and Gao et al. [10].

We consider an m-dimensional linear subspace V ⊆ R
n. Let

A = (ai,j)i,j ∈ R
(n−m)×n
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be a matrix of maximal rank such that

V = {x ∈ R
n : Ax = 0}.

We consider the intersection of V with the hyperplane {xn = 0} perceived as
subspace of Rn−1:

V− = {x′ ∈ R
n−1 : A(x′, 0) = 0}.

With V playing the role of the tangent space of Z, which is close to the values of
the generalized Gauss map, which are not contained in the hyperplane {xn = 0},
we suppose that dim V− = dimV − 1.

The linearization is easier to carry out after changing to graph parametrization
in u-frequencies via �λ, which we recall is implicitly defined by

∂x′φλ(x̄;�λ(x̄; u)) = u.

We use short-hand notation �(u) = �λ(x̄; u). Note that � is 1-homogeneous
like ∂x′φλ and the identity mapping because

∂x′φλ(x̄;�(μu)) = μu = μ∂x′φλ(x̄;�(u)) = ∂x′φλ(x̄;μ�(u)).

By substituting φ̃(u) = hx̄(u) = ∂xnφ
λ(x̄;�(u)) the arguments due to Gao et al. [10]

apply. We define a set

L = {u ∈ Bn−1(0, 2)\Bn−1(0, 1/2) : A(−∇uφ̃(u), 1) = 0}.
The set {(u, φ̃(u)) : u ∈ L} describes the points on the generalized cone, which
have a normal in V . The case of narrow space-time frequencies gives a negligible
contribution to the broad norm:

Lemma 5.3 ([10, Lemma 4.5]). Let η ∈ Sn−2 ⊆ Rn−1. If η ∈ L and

∠(η,V−) >
π

2
− K−2,

then L is contained in the set {ξ ∈ R
n−1\{0} : ∠(ξ, η) � K−2}.

Remark 5.4. It is important to note that, contrary to the case of broad space-
time frequencies analyzed below, the lemma does not hinge on a stronger local-
ization of η. For later purposes, note that balls B(x̄;R

1
2 +δm), for which Lemma 5.3

applies, do not contribute in the k-broad norm.

We turn to the more involved case of broad space-time frequencies: In general
{(u, φ̃(u)) : u ∈ L} does not lie in an affine subspace because L is not an affine sub-
space. We start by linearizing L at η ∈ Sn−2. By taking the orthogonal complement
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of a suitable extension of the tangent space of L at η we shall construct W, which
is quantitatively transverse to V . Let η ∈ L ∩ S

n−2 with ∠(η,V−) < π
2 − K−2. Let

Li =
{

u ∈ An−1 :
n−1∑
j=1

ai,j∂jφ̃(η) − ai,n = 0
}
, i = 1, . . . , n − m

such that

L =
n−m⋂
i=1

Li.

We compute the normal n(i) of Li at η to be

n(i)
k =

n−1∑
j=1

ai,j∂
2
jkφ̃(η), n(i) = ∂2

ηηφ̃(η)αi

with αi = (ai,1, . . . , ai,n−1), i = 1, . . . , n − m.

The tangent space of Li at η is given by

TηLi = (n(i))⊥ = {ξ′ ∈ R
n−1 : (n(i), ξ′) = 0}

= {ξ′ ∈ R
n−1 : (∂2

ηηφ̃(η)αi, ξ
′) = 0}.

We argue that the normals are linearly independent: Let Ṽ = 〈n(1), . . . , n(n−m)〉.
Lemma 5.5. Ṽ ⊆ R

n−1 is a subspace of dimension n − m.

Proof. It is key to observe that ∂2
ηηφ̃(η)αi, i = 1, . . . , n − m are linearly

independent due to the angle condition ∠(η,V−) < π
2 − K−2. Indeed, the Hessian

is degenerate only in the direction of η, but αi is orthogonal to V−, and A has
maximal rank. �

Therefore, the tangent space of L is given by the intersection of TηLi:

TηL = γ⊥
1 ∩ · · · ∩ γ⊥

n−m = 〈γ1, . . . , γn−m〉⊥.
We have TηL = V̄− = Ṽ⊥ is the orthogonal complement of Ṽ in Rn−1 such that

R
n−1 = Ṽ ⊕ V̄−.

Let V̄ = 〈V̄−, en〉 be the linear subspace spanned by V̄− and en. We let W = V̄⊥

be the orthogonal complement of V̄ in R
n:

R
n = V̄ ⊕ W.

As pointed out in [10], all the linear subspaces depend on the choice of η. We have
the following quantitative transversality:

Lemma 5.6 ([10, Lemma 4.6]). Let η ∈ S
n−2 ∩ L. If ∠(η,V−) ≤ π

2 − K−2,
then W and V are transverse in the sense that ∠(V,W) � K−4.
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5.3 Verifying the transverse equidistribution estimate: broad space-
time frequencies. We turn to the key equidistribution estimate in case of broad
space-time frequencies.

Remark 5.7. We can suppose that Z in 2B is K-flat, i.e., for any z, z′ ∈Z ∩ 2B

we have
∠(TzZ,Tz′Z) � K−5

with K � Rδ � ρδm . If there is a wave packet with ∠(Gλ(x;ωθ),TzZ) � R− 1
2 +δm for

all z ∈ Z ∩ 2B, it follows from the triangle inequality for small angles that

∠(TzZ,Tz′Z) � R− 1
2 +δm .

If there is no wave packet such that the above holds, then there is nothing to show.

Lemma 5.8. Let Z be a transverse complete intersection with dimZ = m,

deg Z �ε 1, B = B(x̄,R
1
2 +δm) a ball of radius R

1
2 +δm, and let g be concentrated

on wave packets in TZ,B,τ. Suppose that with the notations of Subsection 5.2,

with φ̃ = hx̄, and for some η ∈ �−1(τ)∩ S
n−2 we are in the situation of Lemma 5.6,

that is in the case of broad space-time frequencies. Then, for any R
1
2 � ρ ≤ R,

(45)
∫

B∩N
ρ

1
2 +δm

(Z)
|Tλg|2 � R

1
2 +O(δm)

(ρ
R

) n−m
2 ‖g‖2

L2.

The proof relies on quantifying the uncertainty principle from [14, Subsec-
tion 8.2]. Let G : Rn → C be such that supp(Ĝ) ⊆ B(c, r). Then we have
essentially for 0 < ρ < r−1:

(46) −
∫

B(x0,ρ)
|G|2 � −

∫
B(x0,r−1)

|G|2.

As a first step in the proof of Lemma 5.8, we consider wave packets tangential
to linear subspaces: In the following transverse equidistribution estimates are
considered with respect to some fixed linear subspace V ⊆ Rn. Recall that B is a
ball of radius R

1
2 +δm with centre x̄ ∈ R

n, and define

TV,B = {(θ, v) : ∠(Gλ(x̄;ωθ),V) � R− 1
2 +δm and Tθ,v ∩ B �= ∅}.

Recall that R
1
2 < ρ < R and, for τ ⊆ Rn−1 a sector of aperture O(ρ− 1

2 +δm) centred
around a point in An−1, define

TV,B,τ =
{
(θ, v) ∈ TV,B : θ ∩ ( τ

10

)
�= ∅
}
.
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Lemma 5.9. If V ⊆ R
n is a linear subspace, then there exists a linear sub-

space W with the following properties:
(1) dimV + dimW = n;

(2) V and W are quantitatively transverse: we have ∠(V,W) � K−4;
(3) if g is concentrated on wave packets from TV,B,τ, and there is η ∈ �−1(τ)

such that for φ̃ = hx̄ the assumptions of Lemma 5.6 are valid, � is any plane
parallel to W and x0 ∈ � ∩ B, then the inequality∫

�∩B(x0,ρ
1
2 +δm )

|Tλg|2 �δ RO(δm)
(ρ

R

) dimW
2 ‖g‖2δ/(1+δ)

L2

(∫
�∩2B

|Tλg|2
) 1

1+δ

holds, up to inclusion of RapDec(R)‖g‖L2 on the right-hand side.

Proof. The proof largely follows [14]. The difference is that we are dealing
with the larger sectors τ here having an aperture O(ρ− 1

2 +δm) in contrast to balls
of radius O(ρ− 1

2 +δm). This will be compensated by the null direction of the conic
surface.

Constructing the subspace W. Recall that

hx̄(u) = ∂xnφ
λ(x̄;�(u))

with ∂x′φλ(x̄;�(u)) = u such that (u, hx̄(u)) is a graph parametrization of ∂xφλ(x̄; ·)
in u-frequencies with ω = �(u). If L ∩�−1(τ) = ∅, then �(L) ∩ τ = ∅, but then, by
Lemma 3.4 we had TV,B,τ = ∅ and there is nothing to show.

Suppose L ∩�−1(τ) �= ∅ in the following and fix η ∈ L ∩�−1(τ). Note that

∂2
xu1
φλ(x̄;�(u)) ∧ · · · ∧ ∂2

xun−1
φλ(x̄;�(u)) = G0(x̄;ω) · det J�(u).

Hence, we can construct W around η ∈ L ∩�−1(τ) as in Subsection 5.2; W and V
are quantitatively transverse as in (2) by Lemma 5.6.

Verifying the transverse equidistribution estimate. Recall that g is
concentrated on wave packets TV,B,τ, B is a R

1
2 +δm-ball, and τ is a O(ρ− 1

2 +δm)-sector.
Let ηB(x) = η((x − x̄)/R

1
2 +δm) denote a Schwartz cutoff, which satisfies η(x) = 1

for x ∈ B(0, 2).
Let �(ω) = ∂xφλ(x̄;ω). If ω ∈ supp(gθ,v), then |ω− ωθ| < R− 1

2 , and so

|�(ω) − ξθ| � R− 1
2 ,

where ξθ = �(ωθ). By non-stationary phase, we find like in [14] that

|(ηB · Tλgθ,v)|� (̂ξ)| �N RO(1)w
B(projWξθ,R

− 1
2 )

(ξ)‖gθ,v‖L2.
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Let

L = {u ∈ An−1 : (−∇hx̄(u), 1) ∈ V}, Sω = {ω ∈ An−1 : Gλ(x̄;ω) ∈ V}.
Let Au = η + TηL denote the affine variant of the linear subspace TηL, and

Aξ = Au × R.

Let Vξ be the linear subspace corresponding to Aξ . We have V⊥
ξ = W.

Next, we shall show that

(47) dist(ξθ,Aξ) � R− 1
2 +δm .

Once the above is proved, the proof can then be concluded like in [14]. Since the
space-time frequencies of ηB · Tλg|� are concentrated in a ball of radius R− 1

2 +δm ,
we can then use a rigorous version of (46) to conclude.

We turn to the proof of (47): Fix (θ, v) ∈ TV,B,τ and let

uθ = (�(ωθ)1, . . . , �(ωθ)n−1).

The triangle inequality yields

(48) dist(ξθ,Aξ) = dist(uθ,Au) ≤ dist(uθ,L ∩�−1(τ)) + sup
u∗∈L∩�−1(τ)

dist(u∗,Au).

Furthermore, by Lemma 3.4, taking advantage of the null direction,

dist(uθ,L ∩�−1(τ)) ∼ dist(ωθ, Sω ∩ τ) � ∠(Gλ(x̄;ωθ),V) � R− 1
2 +δm,

where the last inequality is by the definition of TV,B,τ.
We turn to the estimate of the second term in (48): Fix u∗ ∈ L ∩�−1(τ). We

note that dist(u∗,Au) = dist(u∗,Aū) for ū = |u∗|
|u| u by null direction. Let Aū = u0 +Vu

for some linear subspaceVu. Now we note that the surfaceL∩�−1(τ)∩(|u∗|·Sn−2),
provided ρ is large enough, can be written as a subset of the graph of a function
ψ : W → V⊥

u , where W ⊆ Vu is a subset around the origin of size O(ρ− 1
2 +δm).

More precisely, we may write

L ∩�−1(τ) ∩ (‖u∗‖ · Sn−2) ⊆ {w + ψ(w) : w ∈ W} + u0

with ψ(0) = 0 and ∇ψ(0) = 0. The estimate now follows from Taylor expansion:

|ψ(w)| = O(ρ−1+2δm) = O(R− 1
2 +δm).

Here we used the hypothesis R
1
2 < ρ � R (cf. [14]), which is absent for constant-

coefficients. �
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For the proof of the transverse equidistribution estimate in Lemma 5.8, we have
to extend the estimate from a fixed vector space to a variety. The argument follows
[14, Section 8.4] with the difference that the quantitative transversality (see [14,
Definition 8.11]) mildly depends on the scale. This is due to the necessity of
distinguishing between broad and narrow space-time frequencies and reflected in
Lemma 5.6. The vector space W constructed in Subsection 5.2 now satisfies

∠(v,w) � K−4 for all 0 �= v ∈ TzZ and 0 �= w ∈ W.

Proof of Lemma 5.8. First, by Lemma 3.4, we have

|Gλ(x̄; θ) − Gλ(x; θ)| � |x − x̄|/λ � R− 1
2 +δm .

This yields
∠(Gλ(x̄; θ),TzZ) � R− 1

2 +δm for all z ∈ Z ∩ 2B.

Letting V = TzZ, we have
TZ,B,τ ⊆ TV,B,τ.

We can apply Lemma 5.9 to find a subspace W such that

(49) ∠(V,W) � K−4

and

(50)
∫
�∩B(x0,ρ

1
2 +δm )

|Tλg|2 �δ RO(δm)
(ρ

R

) dimW
2 ‖g‖ 2δ

1+δ

L2

(∫
�∩2B

|Tλg|2
) 1

1+δ

for every affine subspace � parallel to W. By Remark 5.7, (TzZ,W) is a quan-
titatively transverse pair for all z ∈ Z ∩ 2B. We have by (the proof of) [14,
Lemma 8.13]

� ∩ N
ρ

1
2 +δm (Z) ∩ B ⊆ N

CK4ρ
1
2 +δm (� ∩ Z) ∩ 2B.

Here is a minor change compared to [14] as the size of the neighbourhood of�∩Z

is now increased by K4. However, this factor can be absorbed into RO(δm). Since
� ∩ Z is a transverse complete intersection of dimension dimW + dimZ − n, a
result due to Wongkew [41] yields that� ∩ N

ρ
1
2 +δm (Z) ∩ B can be covered by

O
(
RO(δm)

(R
ρ

)(dimW+dim Z−n)/2)
= O(RO(δm))

balls of radius ρ
1
2 +δm because K � Rδ � ρδm . Now the argument is concluded by

integrating over� parallel to W and Hörmander’s L2-bound (cf. Lemma 3.7). For
details we refer to [14, p. 318]. �
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6 Main inductive argument: Proof of the k-broad esti-
mate

The k-broad estimate is a consequence of the following claim, which is amenable
to induction on scales and dimension. Let

p̄(k, n) = 2 · n + k
n + k − 2

.

Theorem 6.1. For ε > 0 sufficiently small, there are

0 < δ � δn � δn−1 � · · · � δ1 � ε

and large dyadic parameters Āε, C̄ε, Dm,ε �ε 1 and θm < ε such that the following
holds. Suppose Z = Z(P1, . . . ,Pn−m) is a transverse complete intersection with

degZ ≤ Dm,ε. For all 2 ≤ k ≤ n, 1 ≤ A ≤ Āε dyadic and 1 ≤ K ≤ R ≤ λ, the
inequality

(51) ‖Tλf‖BLp
k,A(B(0,R)) �ε KC̄εRθm+δ(log Āε−logA)−ek,n(p)+ 1

2 ‖f‖L2(An−1)

holds whenever f is concentrated on wave packets from TZ and

(52) 2 ≤ p ≤ p̄0(k,m) =

⎧⎨⎩p̄(k,m), if k < m,

p̄(m,m) + δ, if k = m.

Above,

ek,n(p) =
1
2

(1
2

− 1
p

)
(n + k).

For future reference we denote by Em,A(R) the constant on the right-hand side
of (51):

(53) Em,A(R) = Cm,εK
C̄εRε−cnδm+δ(log Āε−logA)−ek,n(p)+ 1

2 .

In the first step we reduce to R �ε λ
1−ε by covering B(0, λ) with balls of

radiusλ1−ε. The technical details are provided in [14, Lemma 10.2]. This reduction
is necessary for polynomial approximation of the core curve γλω,v uniformly in R.

Next, we set up the induction argument for 1 ≤ R �ε λ
1−ε. For ε > 0

sufficiently small, it is enough to consider K ≤ Rδ by choosing C̄ε sufficiently large
(as the claim then follows from the trivial L1–L∞-estimate and crude summation).
We let furthermore

(54)
Dm,ε = ε−δ

−(2n−m)
, θm(ε) = ε− cnδm, Āε = �e 10n

δ �,
δi = δi(ε) = ε2i+1 for all i = 1, . . . , n, and δ = δ(ε) � δn.

The base case is given by m ≤ k − 1, and A ≥ 210. For details we refer to [14,
Subsection 10.3].
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6.1 Inductive step Let 2 ≤ k ≤ n − 1, k ≤ m ≤ n, and K ≤ Rδ. Assume,
by way of induction hypothesis, that (51) holds whenever dimZ ≤ m − 1 or the
radial parameter is at most R

2 . Fix ε > 0, 1 < A ≤ Āε and a transverse complete
intersection Z = Z(P1, . . . ,Pn−m) with degZ ≤ Dm,ε, where Āε and Dm,ε are as
in (54). Let f be concentrated on wave packets from TZ . It suffices to show (51)
for p = p̄0(k,m) by interpolation with the trivial L2-bound. We recall the two cases
to be analyzed:

The cellular case. For any transverse complete intersection Yl ⊆ Z of
dimension 1 ≤ l ≤ m − 1 and maximum degree at most (Dm,ε)n, the inequality

(55) ‖Tλf‖p
BLp

k,A(N
R

1
2 +δm /4

(Yl)∩B(0,R)) < calg‖Tλf‖p
BLp

k,A(B(0,R))

holds.

The algebraic case. There exists a transverse complete intersection Yl ⊆ Z

of dimension 1 ≤ l ≤ m − 1 of maximum degree at most (Dm,ε)n such that

(56) ‖Tλf‖p
BLp

k,A(N
R

1
2 +δm /4

(Yl)∩B(0,R)) ≥ calg‖Tλf‖p
BLp

k,A(B(0,R)).

Here calg > 0 depends on n and ε.

6.1.1 Cellular case. The cellular case is as usually treated by induction on
the radius. Via polynomial partitioning the BLp

k,A-norm is equidistributed among
the cells, and the induction closes. This case is handled as in [14, Section 10.5].
We omit the details.

6.1.2 Algebraic case. The algebraic case is more involved: Tλf can be
regarded as concentrated near a low-dimensional and low-degree variety Yl (for an
oversimplification, one can think of a hyperplane). In the tangential subcase the
wave packets from f are also tangential to this variety, then we can use induction
on the dimension to conclude. In the transverse subcase, many wave packets are
transverse to Yl. Then we can conclude via transverse equidistribution estimates.
For the homogeneous phase functions the transverse equidistribution estimates are
different from [14, Section 10.6], and we give the details.

Fix a transverse complete intersection Yl of dimension 1 ≤ l ≤ m − 1 of
maximum degree degYl ≤ (Dm,ε)n, which satisfies (51). Let R

1
2 � ρ � R be such

that ρ
1
2 +δl = R

1
2 +δm , and note that

R ≤ R2δlρ and ρ ≤ R−δl/2R.
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Let Bρ be a finitely overlapping cover of B(0,R) by ρ-balls, and for each B ∈ Bρ

define
TB = {(θ, v) ∈ T : Tθ,v ∩ N

R
1
2 +δm/4

(Yl) ∩ B �= ∅}
and

fB :=
∑

(θ,v)∈TB

fθ,v .

We have by the triangle inequality for broad norms that

‖Tλf‖p
BLp

k,A(B(0,R)) �
∑

B∈Bρ

‖TλfB‖p
BLp

k,A(N
R

1
2 +δm /4

(Yl)∩B)

up to RapDec(R)‖f‖p
L2 on the right-hand side by the rapid decay of the wave packets

away from the tubes.
For B = B(y, ρ) ∈ Bρ, let TB,tang denote the set of all (θ, v) ∈ TB with the

property that, whenever x ∈ Tθ,v and z ∈ Yl ∩B(y, 2ρ) satisfy |x− z| ≤ 2C̄tangρ
1
2 +δl ,

it follows that

∠(Gλ(x;ωθ),TzY
l) ≤ 1

2
c̄tangρ

− 1
2 +δl,

where C̄tang and c̄tang are the constants appearing in the definition of tangency.
Furthermore, let TB,trans = TB\TB,tang and define

fB,tang =
∑

(θ,v)∈TB,tang

fθ,v and fB,trans =
∑

(θ,v)∈TB,trans

fθ,v .

It follows that fB = fB,tang + fB,trans and, by the triangle inequality for broad norms,
we conclude that

‖Tλf‖p
BLp

k,A(B(0,R)) �
∑

B∈Bρ

‖TλfB,tang‖p
BLp

k,A/2(B) +
∑

B∈Bρ

‖TλfB,trans‖p
BLp

k,A/2(B).

Either the tangential or the transverse contribution to the above sum dominates,
and each case is treated separately.

Tangential subcase. Suppose that the tangential term dominates and we have

(57) ‖Tλf‖p
BLp

k,A(B(0,R)) �
∑

B∈Bρ

‖TλfB,tang‖p
BLp

k,A/2(B).

This case can be handled by applying the dimensional induction hypothesis. We
refer to [14, pp. 345–346] for the details.

Transverse sub-case. In this case, we have

‖Tλf‖p
BLp

k,A(B(0,R)) �
∑

B∈Bρ

‖TλfB,trans‖p
BLp

k,A/2(B).
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The strategy in the transverse case is to use induction on radius to show that for
some cε > 0 one has (redenoting fj for fBj,trans)

(58) ‖Tλfj‖BLp
k,A/2(B) ≤ cεEm,A(R)‖fj‖L2(An−1)

for all Bj ∈ Bρ.
Provided cε > 0 is chosen sufficiently small, depending only on n and ε, the

proof is concluded by almost orthogonality of fB,trans (see [14, eq. (10.23)]):

‖Tλf‖BLp
k,A/2(B(0,R)) �ε c̄εEm,A(R)‖f‖1− 2

p

L2

(∑
B∈Bρ

‖fB,trans‖2
L2

) 1
p ≤ Em,A(R)‖f‖L2.

This estimate relies on Lemma 4.5.
The main obstacle to (58) is that we cannot expect fj to satisfy the hypothesis

of Theorem 6.1 at scale ρ. The remedy is to break fj into pieces fj,b, which are
ρ

1
2 +δm-tangent to a translated variety of Z + b. To obtain a favorable estimate when

reassembling the pieces, we use transverse equidistribution estimates. This still
follows [14]. Recall however, as argued in Section 5, that after restricting to a ball
of size R

1
2 +δm , the transverse equidistribution estimates do not always hold true.

But if these do not hold true, then the contribution can actually be neglected. The
first step is to separate the essentially and non-essentially contributing balls.

Separating essentially and non-essentially contributing R
1
2 +δm-balls.

We cover Bj by finitely overlapping R
1
2 +δm-balls Bj,k. Let (θ, v) ∈ TZ,Bj,k and

x ∈ Tθ,v ∩ N
R

1
2 +δm (Z) ∩ Bj,k,

z ∈ Z with |x − z| ≤ C̄tangR
1
2 +δm . By definition of tangency, we have

∠(Gλ(x;ωθ),TzZ) � R− 1
2 +δm .

Let V = TzZ. By Lemma 3.4, we have

∠(Gλ(x̄;ωθ),V) � R− 1
2 +δm .

Now we consider the linearization φ̃(u) = ∂xnφ
λ(x̄;�λ(u)) around x̄, the centre

of Bj,k. We consider, like in Section 5.2 a matrix A ∈ R(n−m)×n of maximal rank
such that

V = {x ∈ R
n : Ax = 0},

L = {u ∈ Bn−1(0, 2)\Bn−1(0, 1/2) : A(−∇uφ̃(u), 1) = 0},
where L denotes the set of u-frequencies with normal in V .

We apply the dichotomy of Section 5.2:
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Case I: L is contained in O(1) sectors of size 1 × K−2 × · · · × K−2 by
Lemma 5.3. This is referred to as Case I. In Subsection 5.2 this was called
the case of narrow space-time frequencies. Note that if L is contained in
O(1) 1 × K−2 × · · · × K−2-sectors, then so is

⋃
θ with

∠(Gλ(x̄;ωθ),V) � R− 1
2 +δm

by Lemma 3.4. Consequently, by 2 ≤ k ≤ m, Case I-balls can be neglected
in the k-broad norm (see (59) below).

Case II: This was referred to as a case of broad space-time frequencies. We
consider the further refinement TV,Bj,k,τ with τ a ρ− 1

2 -sector. By Lemma 5.6,
there is a quantitatively transverse subspace W with V̄ ⊕ W = R

n and

∠(V,W) � K−4.

V̄ denotes the extension of a tangent space of L from Subsection 5.2.
We let XI and XII denote the union of balls Bj,k from Cases I and II.

Sorting into medium tubes. Redenote g = fj,trans. Next, we use the sorting
into medium tubes as in [14, Section 9].1 The idea is to carry out a wave packet
decomposition at smaller scale ρ � R on the ρ-ball. This requires us to mildly
modify the phase function, amplitude function, and input functionφ, a, g → φ̃, ã, g̃

to center the ρ-ball at the origin. The wave packets at scale ρ are denoted by T̃ with
indices θ̃ (a ρ− 1

2 -cap) and ṽ ∈ ρ 1+δ
2 Zn−1. We can break the R-wave packet (θ, v) ∈ T

into smaller scale ρ-wave packets essentially contributing to (θ, v). These ρ-wave
packets are denoted by T̃θ,v (see [14, Lemma 9.1]).

We use the following facts from [14]: Firstly, we recall how the tangency
properties are inherited. The ρ-wave packets obtained from a wave packet R− 1

2 +δm-
tangential to a variety Z are ρ− 1

2 +δm-tangential to a translate Z − b (cf. [14, Propo-
sition 9.2]).

There is a sorting
(
Tθ̃,w

)
θ̃,w

, Tθ̃,w ⊆ T with θ̃ a ρ− 1
2 -cap and w ∈ R

1+δ
2 Zn−1,

which partitions T (see [14, Section 9.3]). The corresponding medium tubes of
length ρ and width R

1
2 +δ are given by

Tθ̃,w =
( ⋃

(θ,v)∈Tθ̃ ,w
Tθ,v

)
∩ B(y, ρ).

We have the almost orthogonality:

‖g‖2
2 ∼ ∑

(θ̃,w)∈T
‖gθ̃,w‖2

2,

1The arguments in [14, Section 9] clearly only depend on the non-degeneracy condition (C1).



38 R. SCHIPPA

and we have that for every (θ, v) ∈ Tθ̃,w it holds

distH(Tθ,v ∩ B(y, ρ),Tθ̃,w) � R
1
2 +δ.

We can also consider the ρ-wave packet decomposition of (gθ̃,w) .̃ This is
concentrated on scale ρ-wave packets belonging to

⋃
(θ,v)∈Tθ̃,w T̃θ,v . We obtain a

covering (T̃θ̃,w)θ̃,w of T̃ by almost disjoint sets. Hence, the sorting into medium
tubes is suitable to switch between R and ρ-wave packets.

We define the essential part like in [26, p. 3582]:

gess =
∑

(θ̃,w)∈Tess

gθ̃,w = g − ∑
(θ̃,w)∈Ttail

gθ̃,w,

where

Tess = {(θ̃, w) : ∃(θ, v) ∈ Tθ̃,w : Tθ,v ∩ XII �= ∅},
Ttail = {(θ̃, w) : ∀(θ, v) ∈ Tθ̃,w : Tθ,v ∩ XII = ∅}.

Like in [26], we infer that

(59) ‖Tλg‖BLp
k,A/2(Bj) ≤ ‖Tλgess‖BLp

k,A/4(Bj) + RapDec(R)‖f‖L2.

Breaking the essential contribution into smaller neighbourhoods of
translates. As in [14], we choose a set of translates B, so that we can write

(60) ‖Tλgess‖BLp
k,A/4(Bj) � (logR)2

(∑
b∈B

‖Tλgess,b‖p
BLp

k,A/4(Bj)

) 1
p

,

where each piece gess,b is defined so that it is concentrated on scale ρwave packets,
which are tangential to some translate Z −y+b of Z. This construction is provided
in [14, Lemma 10.5]. The set of translates B are chosen so that effectively

(i) N
R

1
2 +δm (Z) ⊆ ⋃

b∈B N
ρ

1
2 +δm (Z − y + b),

(ii) N
ρ

1
2 +δm (Z − y + b) are essentially disjoint.

Technically, this decomposition also involves “tuning” the wave packets of gess,b

to a collection of balls B′ ⊆ BK2 . This quantifies (i) and (ii) and is necessary due
to the definition of the broad norm. In the following we take the resulting almost
orthogonality (62) for granted (see [14, Lemma 9.6]).

By modifying Tλ and gess,b, we can center the ball Bj at the origin:

‖Tλgess,b‖BLp
k,A/4(Bj) � (logR)2

(∑
b∈B

‖T̃λ(gess,b)˜‖p
BLp

k,A/4(B(0,ρ))

) 1
p

.

Now we can apply the radial induction hypothesis:(∑
b∈B

‖T̃λ(gess,b)˜‖p
BLp

k,A/4(B(0,ρ))

) 1
p ≤ Em,A/4(ρ)

(∑
b∈B

‖gess,b‖p
L2

) 1
p

.
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Once we have proved

(61)
(∑

b∈B
‖g̃ess,b‖p

L2

) 1
p

� RO(δm)
(ρ

R

)(n−m)( 1
4 − 1

2p )‖gess‖2,

the computation to conclude the proof is like in [14]; (61) is provedvia interpolation
between p = 2 and p = ∞.

Reassembling the set of translates. For p = 2 we can argue like in [14]
based on the almost orthogonality of the ρ-wave packets contributing to (gess,b)˜
(here we also use the essential disjointness of the translates in (ii) above):

(62)
(∑

b∈B
‖gess,b‖2

L2

) 1
2

� ‖gess‖2.

We turn to the proof of (61) for p = ∞, which requires an additional argument
compared to [14]. The crucial ingredient remains transverse equidistribution. By
almost orthogonality of (θ̃, w) ∈ T and the definition of Tess we have

‖gess,b‖2
L2 ∼ ∑

(θ̃,w)∈Tess

‖(gess,θ̃,w)b˜‖2
L2.

By construction of gess,θ̃,w there is (θ, v) ∈ Tθ̃,w such that Tθ,v intersects XII .
Let B = B(x̄;R

1
2 +δm) denote the corresponding ball in XII . Since the Hausdorff

distance between Tθ1,v1 for further (θ1, v1) ∈ Tθ̃,w is � R
1
2 +δ, we can apply the

reverse Hörmander estimate from [14] at scale ρ with r ∼ R
1
2 +δm to find that

(63) ‖(gess,θ̃,w)b˜‖2
L2 � R− 1

2 −δm‖T̃λ∗ (gess,θ̃,w)b˜‖2

L2(B(x̄−y;10R
1
2 +δm ))

.

The reverse Hörmander estimate [14, Lemma 9.5] relies on every ρ-wave packet
of (gess,θ̃,w)b˜ intersecting the R

1
2 +δm-ball B. The proof follows from Fourier series

expansion and the constant-coefficient analog. This yields a slightly different
oscillatory integral operator T̃λ∗ , whose data however inherits the properties of
(φ, a). We refer to [14].

Next, we can apply Lemma 5.8 to find that2

(64) ‖Tλ∗gess,b,θ̃,w‖2

L2(B(x̄;10R
1
2 +δm )∩N

ρ
1
2 +δm

(Z+b))
� R

1
2 +O(δm)

(ρ
R

) n−m
2 ‖(gess,θ̃,w)b˜‖2

L2 .

Now we can use the almost orthogonality induced by T̃θ̃,w to find, after taking (63)

2This holds up to RapDec(R). Note the shift and localization to N
ρ

1
2 +δm

(Z +b) on the left-hand side,

which is explained in [14, Equation (9.10)].



40 R. SCHIPPA

and (64) together:∑
(θ̃,w)∈Tess

‖(gess,θ̃,w)b˜‖2
L2 � RO(δm)

(ρ
R

) n−m
2

∑
(θ̃,w)∈Tess

‖(gess,θ̃,w)b˜‖2
L2

� RO(δm)
(ρ
R

) n−m
2 ‖gess,b‖2

L2

� RO(δm)
(ρ
R

) n−m
2 ‖gess‖2

L2 .

This finishes the proof of (61), and we can argue that induction closes like in [14].�

7 From k-broad to linear estimates

In this section we deduce the linear estimates from the k-broad estimates by
applying the Bourgain–Guth argument [7]. We show the following proposition:

Proposition 7.1. Suppose that for all K ≥ 1 and all ε > 0 any oscillatory

integral operator Tλ built from reduced data (φ, a) obeys the k-broad inequality

(65) ‖Tλf‖BLp
k,A(B(0,R)) �ε KCεRε‖f‖Lp(An−1)

for some fixed k, A = Aε, p, Cε, and all R ≥ 1. If

(66) p(k, n) ≤ p ≤ 2n
n − 2

, p(k, n) =

⎧⎨⎩2 · n−1
n−2 if 2 ≤ k ≤ 3,

2 · 2n−k+1
2n−k−1 if k > 3,

then any oscillatory integral operator with (C1) and (C2+) phase φ and amplitude
a satisfies

(67) ‖Tλf‖Lp(Rn) �φ,ε,a λ
ε‖f‖Lp(An−1).

From this proposition Theorem 1.1 is immediate by choosing k = n+1
2 for n odd

and k = n
2 + 1 for n even as max(p(k, n), p̄(k, n)) gives the lower bound for p in

Theorem 1.1.

7.1 Outline of the argument. For the proof we use induction on scales:
Qp,δ(R) will denote the infimum over all constants C for which the estimate

‖Tλf‖Lp(B(0,r)) ≤ C‖f‖Lp(An−1)

holds for 1 ≤ r ≤ R and all oscillatory integral operators built from a suitable
class of phase functions. This class is supposed to be invariant under rescaling and
amenable to narrow decoupling, which is explained below.
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With this definition, it remains to prove that for p as in Proposition 7.1

Qp,δ(R) �ε Rε

for all ε > 0 and 1 ≤ R ≤ λ.

To this end, we decompose B(0,R) into finitely overlapping balls BK2 of ra-
dius K2 and estimate ‖Tλf‖Lp(BK2 ). f is decomposed into “broad” and “narrow”
terms. The narrow term is of the form

(68)
∑
τ∈Va

for some a

fτ,

consisting of contributions to f from sectors for which Gλ(x̄; τ) makes a small angle
with some member of a family of (k −1)-planes. Here x̄ denotes the centre of BK2 .
The broad term consists of contributions to f from the remaining sectors. One may
choose the planes V1, . . . ,VA so that the broad term can be bounded by the k-broad
inequality. Thus, f of the form (68) has to be analyzed. This is accomplished by
narrow 	p-decoupling and rescaling.

7.2 Narrow decoupling and the induction quantity. In this subsec-
tion we shall find an estimate for V ⊆ R

n an m-dimensional linear subspace:∥∥∥∥∑
τ∈V

Tλgτ

∥∥∥∥
Lp(BK2 )

�δ max(1,K(m−2)( 1
2 − 1

p ))Kδ

(∑
τ∈V

‖Tλgτ‖p
Lp(wB

K2 )

) 1
p

+ l.o.t.

The additional assumptions to be imposed for the above estimate to hold will
motivate our choice of induction quantity below.

In the translation-invariant case, e.g., with E as in (1), this follows from the
	2-decoupling ∥∥∥∥∑

τ

Egτ

∥∥∥∥
Lp(BK2 )

�δ Kδ

(∑
τ∈V

‖Egτ‖2
Lp(wB

K2 )

) 1
2

for 2 ≤ p ≤ 2n
n−2 and by counting the sectors τ such that ∠(G(τ),V) ≤ K−2. This

is carried out in [26]; see also [17, Lemma 2.2]. It appears that the argument
from [17, 26] does not suffice to count the sectors already for general translation-
invariant phases under a convexity assumption, for which reason an additional
technical assumption is introduced.
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Let φ : R
n−1\{0} → R be a 1-homogeneous and smooth function with

supp(φ) ⊆ �.3 By Taylor expansion we find that

φ(ω′,ωn−1)

= ωn−1φ(ω
′/ωn−1, 1)

= ωn−1φ(en−1) + ∂ω′φ(en−1)ω
′ +

〈∂2
ω′ω′φ(en−1)ω′, ω′〉

2ωn−1
+ K−4E(ω),

(69)

with E(ω) 1-homogeneous. By comparison with Taylor’s formula we have

K−4E(ω) =
∑
|α|=3

3
α!

∫ 1

0
(1 − s)2(∂αω′φ)(

sω′

ωn−1
, 1)ds

(ω′)α

ω2
n−1

.

Gao et al. [10] showed that if E is bounded in CN one can recover the narrow
decoupling of general homogeneous phases satisfying a convexity condition in the
constant-coefficient case. This leads to the following notion of K-flatness.

Definition 7.2. Let φ be like above. We say that φ is K-flat if E like in (69)
satisfies

‖∂αE‖L∞(�) ≤ Cflat

for 0 ≤ |α| ≤ N0.

In this definition N0 and Cflat are universal constants, which allow us to extend
the arguments of [17, 26] for the circular cone to K-flat phase functions as shown
in [10].

To apply narrow decoupling for the variable-coefficient operator on a small
K2-ball with K2 � λ

1
2 −ε, we approximate the variable-coefficient phase with a

constant-coefficient phase. Beltran–Hickman–Sogge [2] worked out that this is
possible by Taylor expansion.

We need the following notations: Let φ be a reduced phase and x̄ ∈ R
n, which

will be the centre of the small ball on which we want to apply decoupling. Recall
that u �→ ∂xφ

λ(x̄;�λ(x̄; u)) is a graph parametrization of the hypersurface�ū. We
have

〈x, (∂xφλ)(x̄;�λ(x̄; u))〉 = 〈x′, u〉 + xnhx̄(u)

for all x = (x′, xn) ∈ R
n with hx̄(u) = (∂xnφ

λ)(x̄;�λ(x̄; u)). Recall that we can
suppose a(x;ω) = a1(x)a2(ω) by Fourier series expansion. Let Ex̄ denote the
extension operator associated to �x̄, given by

Ex̄g(x) =
∫
Rn−1

ei(〈x′,u〉+xnhx̄(u))ax̄(u)g(u)du for all x ∈ R
n,

3Recall that � ⊆ An−1 denotes a sector with small aperture c � 1 centred at en−1.
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where ax̄(u) = a2 ◦�λ(x̄; u)| det∂u�λ(x̄; u)|. We recall how Tλ is approximated by
Ex̄: Let x ∈ B(x̄;K2) ⊆ B(0, 3λ/4). By change of variables ω = �λ(x̄; u) and a
Taylor expansion of φλ around x̄, we have

Tλf (x) =
∫
Rn−1

ei(〈x−x̄,(∂xφλ)(x̄;�λ(x̄;u))〉+Eλx̄ (x−x̄;u))aλ1(x)ax̄(u)fz̄(u)du

with fx̄ = eiφλ(x̄;�λ(x̄;·))f ◦�λ(x̄; ·) and by Taylor expansion

Eλx̄ (v ; u) =
1
λ

∫ 1

0
(1 − r)〈(∂xxφ)((x̄ + rv)/λ;�λ(x̄; u))v, v〉dr.

Let N � 1 be a large constant to be specified. By the derivative bounds

sup
(v ;u)∈B(0,K2)×suppax̄

|∂βωEλx̄ (v ; u)| �N 1

and Fourier series expansion, the oscillation of Eλx̄ can be neglected. This yields
the following lemma:

Lemma 7.3 ([2, Lemma 2.6]). Let Tλ be an oscillatory integral operator built

from reduced data (φ, a). Let 0 < δ ≤ 1/2, 1 ≤ K2 ≤ λ
1
2 −δ and x̄/λ ∈ X so that

B(x̄;K2) ⊆ B(0, 3λ/4).
• Then

(70) ‖Tλf‖Lp(wB(x̄;K2))
�N ‖Ex̄fx̄‖Lp(wB(0;K2))

+ λ− δN
2 ‖f‖L2

holds provided that N is sufficiently large depending on n, δ, and p,

and wBK2 = (1 + K−2|x − x̄|)−N is a rapidly decaying weight off BK2 .
• Suppose that |x̄| ≤ λ1−δ′ . There exists a family of operators Tλ all with

phase φ and of type (1, 1,C) data (see Definition 3.1) such that

(71) ‖Ex̄fx̄‖Lp(wB(0,K2)) �N ‖Tλ∗ f‖Lp(wB(x̄;K2)) + λ− N min(δ,δ′)
2 ‖f‖2

holds for some Tλ∗ ∈ Tλ. The family Tλ has cardinality ON(1) and is inde-
pendent of B(x̄;K2).

To apply the narrow decoupling to Ex̄fx̄, we need the constant coefficient phase

hx̄(u) = ∂xnφ
λ(x̄;�λ(x̄; u))

to be K-flat.

Definition 7.4. Let K � 1. We say that a reduced homogeneous phase
φ : Rn × R

n−1\{0} → R is K-flat, if all its constant-coefficient approximations hx̄

for x̄ ∈ X are K-flat and φ satisfies



44 R. SCHIPPA

• for 1 ≤ k ≤ n − 1 and β = (β′, βn−1) ∈ N
n−1
0 with |β| ≤ N0 + 5 and |β′| ≥ 2:

(72) ‖∂xk∂
β
ωφ‖L∞(X×�) ≤ K−4,

• for β = (β′, βn−1) ∈ N
n−1
0 with |β| ≤ N0 + 5 and |β′| ≥ 3:

(73) ‖∂xn∂
β
ωφ‖L∞(X×�) ≤ K−4.

The derivative bounds are used to facilitate induction: They will allow us to
argue that the rescaled phase function becomes “flatter”. The choice of size of β′

in (72) and (73) will become clear from the formula for the phase function after
rescaling. The size conditions (72) and (73) (but not the number of derivatives!)
are more restrictive than the definition of a reduced phase function. We remark
that with this definition, Proposition 7.5 now follows from the constant-coefficient
decoupling and the approximation by constant-coefficient operators provided by
the previous lemma.

Regarding the choice of N in Lemma 7.3: We choose N = N(δ) = N(ε) ≥ N0+5
(since δ = δ(ε)) such that the error term λ−δN/2‖f‖2 becomes manageable when we
carry out the induction on scales.

Proposition 7.5 (Narrow variable coefficient decoupling). Suppose that Tλ

is an oscillatory integral operator with reduced (C1) and (C2+) phase φ, which is

K-flat, and let BK2 ⊆ B(0, λ1−δ) with 1 ≤ K2 ≤ λ
1
2 −δ, 0 < δ ≤ 1/2. If V ⊆ R

n is
an m-dimensional linear subspace, then for 2 ≤ p ≤ 2n

n−2 and any δ > 0 one has∥∥∥∥∑
τ∈V

Tλgτ

∥∥∥∥
Lp(BK2 )

�δ,N max(1,K(m−2)( 1
2 − 1

p ))Kδ

(∑
τ∈V

‖Tλ∗gτ‖p
Lp(wB

K2 )

) 1
p

+ λ− δN
2 ‖g‖L2

provided that N is chosen sufficiently large depending on n, δ, and p. Here, the

sum ranges over sectors τ for which ∠(Gλ(x̄; τ),V) ≤ K−2, where x̄ is the centre

of BK2 and wBK2 = (1 + K−2|x − x̄|)−N is a rapidly decaying weight off BK2; Tλ∗ is
an oscillatory integral operator with phase φ and some amplitude a∗ chosen from

a family of ON(1) many amplitudes. The amplitudes a∗ are reduced after uniform
decomposition of the support of a∗.

Proof. We apply (70) from Lemma 7.3 to approximate Tλ with Ex̄:

(74)

∥∥∥∥∑
τ∈V

Tλfτ

∥∥∥∥
Lp(BK2 )

�N

∥∥∥∥Ex̄

∑
τ∈V

fx̄,τ

∥∥∥∥
Lp(wB

K2 )
+ λ− δN

2 ‖f‖2.
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Since by our assumption on φ, the underlying phase hx̄ for Ex̄ is K-flat. Moreover,
the transformed functions fx̄,τ are disjoint sectors by the diffeomorphism property
of �λ(x̄; ·). Hence, we can apply the narrow decoupling for K-flat constant-
coefficient phase functions by [10]:

(75)

∥∥∥∥∑
τ∈V

Ex̄fx̄,τ

∥∥∥∥
Lp(wB

K2 )
�δ Kδ max(1,K(m−2)( 1

2 − 1
p ))
(∑
τ∈V

‖Ex̄fx̄,τ‖p
Lp(wB

K2 )

) 1
p

.

We can apply (71) from Lemma 7.3 to find that

(76) ‖Ex̄fx̄,τ‖Lp(wB
K2 ) �δ,N ‖Tλ∗ fτ‖Lp(wB

K2 ) + λ− δN
2 ‖fτ‖L2 .

Recall that Tλ∗ is a variable-coefficient extension operator from a family Tλ, which
is of size ON(1). The operators from Tλ have phase φ, but possibly different
amplitude a∗, which is independent of x̄, but still satisfies the bounds

|∂αξ a∗| �N 1 for α ∈ N
n−1
0 , |α| ≤ N.

Hence, taking the p-th power, summing over the sectors, and pigeonholing in Tλ∗
yields (∑

τ

‖Ex̄fx̄,τ‖p
Lp(wB

K2 )

) 1
p

�δ,N

(∑
τ

‖Tλ∗ fτ‖p
Lp(wB

K2 )

) 1
p

+ λ− δN
2 ‖f‖Lp .

We take (74), (75), and (76) together to find that∥∥∥∥∑
τ∈V

Tλfτ

∥∥∥∥
Lp(BK2 )

�N,δ Kδ max(1,K(m−2)( 1
2 − 1

p ))
(∑

τ

‖Tλ∗ fτ‖p
Lp(wB

K2 ))

) 1
p

+ λ
n
2 − δN

2 ‖f‖p.

We choose N = 5n/δ, which keeps the error term λ− δN
2 ‖g‖L2 manageable even

after summing over the balls.
The technicality of dealing with different amplitude functions is handled by

considering an appropriate class of data (φ, a), for which the induction on scales
is carried out:

Definition 7.6. For 1 ≤ p ≤ ∞ and R ≥ 1, let Qp,δ(R) denote the infimum
over all constants C for which the estimate

‖Tλf‖Lp(B(0,r)) ≤ C‖f‖Lp(An−1)

holds for 1 ≤ r ≤ R ≤ λ and all oscillatory integral operatorsTλ built from reduced
data (φ, a) with λδ-flat phase function.
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7.3 Parabolic rescaling. In this section we shall see how parabolic rescal-
ing flattens the phase function. Moreover, we observe how for functions supported
on a small sector, we can apply the estimate from the previous definition on the
smaller scale.

7.3.1 Change of spatial variables. For the parabolic rescaling we also
make use of a change of variables on the spatial side.

Lemma 7.7 (Change of spatial variables). Let x=(x′′, xn−1, xn)∈R
n−2×R×R

and φ be a reduced phase function. For xn ∈ T, ω ∈ � there is a smooth mapping

ϒ(·, xn;ω), which satisfies

∂ω′φ(ϒ(x′, xn;ω), xn;ω) = x′′ and φ(ϒ(x;ω), xn;ω) = xn−1.

Moreover, we have the uniform derivative bounds:

(77) |∂x′ϒ| ≤ Cϒ.

Proof. We shall apply the implicit function theorem. We consider the defining
equations

F(ϒ(x′, xn;ω), xn;ω) =

(
∂ω′φ(ϒ(x′, xn;ω), xn;ω)
φ(ϒ(x;ω), xn;ω)

)
=

(
x′′

xn−1

)
and differentiate:(

∂2
x′ωφ(ϒ(x′, xn;ω), xn;ω)
∂x′φ(ϒ(x′, xn;ω), xn;ω)

)
︸ ︷︷ ︸

A

∂x′ϒ(x′, xn;ω) = 1n−1.

By 1-homogeneity we have

∂x′φ(x;ω) =
n−1∑
j=1

ωj · ∂2
x′ωj
φ(x;ω).

Thus, for each xn ∈ T and ω ∈ �, the Jacobian determinant of the map

x′ �→ ((∂ω′φ(x;ω), φ(x;ω))

is given by ωn−1 ·det ∂2
ωx′φ(x;ω) and hence is non-vanishing. In fact, it is uniformly

bounded from above and below for reduced phases.
Hence, ∂x′F(ϒ(x′, xn;ω), xn;ω) is invertible, and therefore ϒ(·, xn;ω) exists for

xn ∈ T , ω ∈ �. We obtain by Cramer’s rule

∂x′ϒ(x′, xn;ω) =

(
∂2

x′ωφ(ϒ(x′, xn;ω))
∂x′φ(x′, xn;ω)

)−1

=
ad(A)
det(A)

.
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By reducedness of φ, we have detA ∼ 1. Secondly, the components of ∂2
x′ωφ are

uniformly bounded for a reduced phase function and by homogeneity,

∂x′φ(x′, xn;ω) =
n−1∑
i=1

ωi∂
2
x′ωi
φ(x′, xn;ω).

This also gives a uniform estimate on ∂x′φ for a reduced phase function. �

7.3.2 Phase and amplitude function after rescaling. We carry out the
parabolic rescaling Tλg for a function g supported in a ρ−1-sector. In [2] the phase
function was computed. It was shown how after rescaling we find the bounds for
higher order derivatives introduced in Section 3.1 to hold. For an arbitrary phase
function φ, ρ has to be chosen large enough depending on φ. For phase functions,
which are reduced before rescaling, ρ can be chosen uniform; see also Lemma 7.8
and its proof. Since we need some expressions from [2] to verify that the phase is
“flattened” in the sense of (72) and (73) upon rescaling, some details are repeated.
Furthermore, the amplitude and its derivatives satisfy stronger bounds as well.
However, the scale of the amplitude exceeds the scale of the phase function, but
this can be remedied by an argument due to Guth–Hickman–Iliopoulou [14]; see
the end of the proof of Lemma 7.9.

Let ω ∈ Bn−2(0, 1) with (ω, 1) the centre of the ρ−1-sector encasing the support
of g:

supp(g) ⊆
{
(ξ′, ξn−1) ∈ R

n−1 : 1/2 ≤ ξn−1 ≤ 2 and
∣∣∣ ξ′

ξn−1
− ω

∣∣∣ ≤ ρ−1
}
.

We perform the change of variables

(ξ′, ξn−1) = (ηn−1ω + ρ−1η′, ηn−1),

after which follows

Tλg(x) =
∫
Rn−1

eiφλ(x;ηn−1ω+ρ−1η′,ηn−1)aλ(x; ηn−1ω + ρ−1η′, ηn−1)g̃(η)dη,

where g̃(η) = ρ−(n−2)g(ηn−1ω+ρ−1η′, ηn−1) and supp(g̃) ⊆ �. By Taylor expansion
and homogeneity of the phase, we find that

φ(x; ηn−1ω + ρ−1η′, ηn−1)

= φ(x;ω, 1)ηn−1 + ρ−1〈∂ω′φ(x;ω, 1), η′〉

+ ρ−2
∫ 1

0
(1 − r)〈∂2

ω′ω′φ(x; ηn−1ω + rρ−1η′, ηn−1)η
′, η′〉dr.
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Letϒω(y′, yn) = (ϒ(y′, yn;ω, 1), yn) andϒλω(y
′, yn) = λϒω(y′/λ, yn/λ) and consider

anisotropic dilations

Dρ(y
′′, yn−1, yn) = (ρy′′, yn−1, ρ

2yn) and D′
ρ−1 (y′′, yn−1) = (ρ−1y′′, ρ−2yn−1)

on R
n and R

n−1, respectively. By definition of ϒ, we find that

(78) Tλg ◦ϒλω ◦ Dρ = T̃λ/ρ
2
g̃

where
T̃λ/ρ

2
g̃(y) =

∫
Rn−1

eiφ̃λ/ρ
2
(y;η)ãλ(y; η)g̃(η)dη

for the phase φ̃(y; η) given by

〈y′, η〉 +
∫ 1

0
(1 − r)〈∂2

ξ ′ξ′φ(ϒω(D
′
ρ−1y′, yn); ηn−1ω + rρ−1η′, ηn−1)η

′, η′〉dr

and the amplitude ã(y; η) = a(ϒω(D′
ρ−1y′, yn); ηn−1ω + ρ−1η′, ηn−1).

We make a harmless linear change of variables: Let L ∈ GL(n − 1;R) be such
that Len−1 = en−1 and

∂2
η′η′∂yn φ̃L(0, 0; en−1) = In−2,

where
φ̃L(y; η) = φ̃(L−1y′, yn;Lη).

It suffices to analyze T̃λ/ρ
2

L g̃L with T̃λ/ρ
2

L defined with respect to the data (φ̃L, ãL)
for φ̃L as above, ãL(y; η) = ã(L−1y′, yn;Lη) and g̃L = | detL|g̃ ◦ L.

To see that φ̃L is still a reduced phase, we use the representations

(79) φ̃L(y; η) = ρ2φ(ϒω(D
′
ρ−1 ◦ L−1y′, yn), yn; ηn−1ω + ρ−1L′η′, ηn−1)

and

(80)
〈y′, η〉 +

∫ 1

0
(1 − r)

× 〈∂2
ω′ω′φ(ϒω(D

′
ρ−1 ◦ L−1y′, yn); ηn−1ω + rρ−1L′η′, ηn−1)L

′η′,L′η′〉dr,

where L′ denotes the (n − 2) × (n − 2)-submatrix of L, containing the first n − 2
rows and columns. We can argue like in [2], that φ̃L is again a reduced phase
provided that φ was a reduced phase. Note that the notion of reduced phase is
slightly weaker in [2]. We have strengthened the second condition in D1) for
technical reasons. For reduced phase functions the components of L are uniformly
bounded (see [2]). Regarding K-flatness of the rescaled phase functions, we have
the following:
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Lemma 7.8. Suppose that φ is a reduced K-flat phase function supported in a

sector of aperture ∼ ρ−1. Then φ̃L is a reduced cKρ
1
4 -flat phase function provided

that ρ is chosen large enough.

Proof. We begin with the verification of (72). Let

Cm,ρ−1 =

⎧⎨⎩ρ−1, m = 1, . . . , n − 2,

ρ−2, m = n − 1.

From the representation (79) we find for k = 1, . . . , n − 1 that

∂yk φ̃L = ρ2
n−1∑
	=1

∂y	φ(ϒω(D
′
ρ−1 ◦ L−1y′, yn); ηn−1ω + ρ−1L′η′, ηn−1)

× ∂

∂yk
ϒ	(D′

ρ−1 ◦ L−1y′, yn;ω, 1)

= ρ2
n−1∑
	,m=1

∂y	φ(ϒω(D
′
ρ−1 ◦ L−1y′, yn); ηn−1ω + ρ−1Lη′, ηn−1)

× ∂ϒ	

∂ym
(D′

ρ−1 ◦ L−1y′, yn;ω, 1)Cm,ρ−1L−1
mk .

We take derivatives in η′, which gives factors of ρ−1 and components of L: Recall
that these are uniformly bounded. We obtain by Cm,ρ−1 ≤ ρ−1 and |∂ϒ| ≤ Cϒ for
2 ≤ |α| ≤ N0 + 5 by hypothesis:

|∂yk∂
α
η′ φ̃L| ≤ ρ2ρ−1ρ−|α|C|α|+1

L

∑
|α̃|=|α|

n−1∑
	=1

|∂y	∂α̃η′φ|

≤ ρ1−|α|C|α|+1
L CϒCN0K

−4.

Taking derivatives in ηn−1 only changes the result by a constant (use, e.g., ho-
mogeneity in ηn−1): For 2 ≤ |α| ≤ N0 + 5 and 0 ≤ |β| ≤ N0 + 5 − |α| we
obtain

|∂yk∂
α
η′∂βηn−1

φ̃L| ≤ ρ1−|α|C|α|+|β|+1
L CϒCN0K

−4.

For ρ = ρ(N0, n,Cϒ) large enough this verifies (72) with cρ
1
4 K instead of K.

We turn to the proof of (73). By the chain rule

∂yn φ̃L(y; η) = ρ2
n−1∑
k=1

∂ykφ(ϒω(D
′
ρ−1 ◦ L−1y′, yn); ηn−1ω + ρ−1L′η′, ηn−1)

× ∂ϒk
ω

∂xn
(D′

ρ−1 ◦ L−1y′, yn)

+ ρ2∂ynφ(ϒω(D
′
ρ−1 ◦ L−1y′, yn); ηn−1ω + ρ−1L′η′, ηn−1).
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We find when taking derivatives in η′:

|∂αη′∂yn φ̃L(y; η)| ≤ ρ2C|α|
L ρ

−|α|Cϒ
n∑

k=1

|∂xk∂
α
η′φ|.

For |α| ≥ 3 we find by hypothesis

|∂αη′∂yn φ̃L(y; η)| ≤ ρ2−|α|C|α|
L CϒCN0,nK

−4.

This suffices to conclude like above. Likewise the argument with additional
derivatives in ηn applies.

To showK-flatness for the constant-coefficient approximations,we first suppose
that ψ(x̄; u) = u. Then we find that

hx̄(η) = ηn−1ρ
2

n−1∑
k=1

∂xkφ
λ
(
ϒλω(D

′
ρ−1 ◦ L−1y′, yn);ω + ρ−1L′ η′

ηn−1
, 1
)

× ∂ϒk
ω

∂xn

(D′
ρ−1 ◦ L−1y′, yn)

+ ηn−1ρ
2∂xnφ

λ
(
ϒλω(D

′
ρ−1 ◦ L−1y′, yn);ω + ρ−1 L′η′

ηn−1
, 1
)
.

We need to prove boundedness of

Ehx̄(η) = ρK4
∑
|α|=3

3
α!

∫ 1

0
(1 − s)2(∂αη′hx̄)

( sη′

ηn−1
, 1
)
ds

(η′)α

η2
n−1

.

By (72) and (73) we find that

(81) |∂αηEhx̄(η)| � 1 for 0 ≤ |α| ≤ N0.

However, in the general case ψ(x̄; ·) is not the identity mapping, and we need to
prove bounds for the derivatives up to order N0 + 3.

We show that

|∂uψ(x̄; u)| � 1 and |∂αuψ(x̄; u)| � ρ−1 for 2 ≤ |α| ≤ N0 + 3.

The first estimate is immediate from

∂x′φλ(x̄;ψ(x̄; u)) = u ⇒ ∂2
x′ωφ(x̄;ψ(x̄; u))∂uψ(x̄; u) = 1n−1.

Hence, ∂uψ(x̄; u) = (∂2
x′ωφ

λ(x̄;ψ(x̄; u)))−1. This proves the first estimate since φ is
a reduced phase.
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For the second estimate we consider

ui = ψi(x̄; u) +
∑
	

C	,ρ−1CL

∫ 1

0
(1 − r)

×
n−1∑
j,k=1

∂x′
	
∂2
ω′

jω
′
k
φ(ϒω(D

′
ρ−1 ◦ L−1y′, yn);ψn−1ω + rρ−1ψ′(x̄; u)ψn−1(x̄; u))

× ∂ϒ	ω
∂xi

(D′
ρ−1 ◦ L−1y′, yn)ψj(x̄; u)ψk(x̄; u)dr.

From this expression we can argue by induction that

∂αuψi(x̄; u) = O(ρ−1)∂αuψi(x̄; u) + O(ρ−1) for 2 ≤ |α| ≤ N0 + 3.

Here we use (72), Lemma 7.7, and the chain rule. This yields

|∂αuψi(x̄; u)| �ϒ,N0,n ρ
−1

and extends (81) to the general case. �

Lemma 7.9 (Parabolic rescaling). Let supp(f ) ⊆ � be supported in a ρ−1-

sector and φ be a reduced phase, that is λδ-flat. Then, for any 1 ≤ ρ ≤ R ≤ λ:

(82) ‖Tλf‖Lp(B(0,R)) �δ′ Rδ
′
Qp,δ(R/ρ)ρ

2(n−1)
p −(n−2)‖f‖Lp .

The proof combines arguments from [2] and [14]. With many preliminaries
already settled in Lemma 7.8, we shall be brief.

Proof. By a change of spatial variables, we find from (83) that

(83) ‖Tλg‖Lp(BR) � ρ
n
p ‖T̃λ/ρ

2
g̃‖Lp((ϒλω◦Dρ)−1(BR)).

We have proved in Lemma 7.8 that the phase φ̃L used for the operator T̃ is still
reduced and cρ

1
4λδ flat with c a universal constant. In particular, for ρ large enough,

the phase function is (λ/ρ2)δ-flat.
We want to use the definition of Qp,δ(R/ρ2) with λ/ρ2 playing the role of λ.

However, (ϒλω ◦ Dρ)−1(BR) is an approximate ellipsoid of dimensions

∼ R/ρ× · · · × R/ρ× R × R/ρ2

and possibly not contained anymore in B(0, λ/ρ2). Nonetheless, in [14] it was
argued for a different class of phase functions that the estimate

‖Tλf‖Lp(DR) �δ′ Qp,δ(R)Rδ
′‖f‖Lp
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still holds for an ellipsoid with 1 ≤ R′ ≤ R and R ≤ λ:

DR =
{
x ∈ R

n :
( |x′|

R′
)2

+
( |xn|

R

)2 ≤ 1
}
.

The argument is based on discretization by the essentially constant property and
orthogonality between balls of size R, on which the estimate at smaller scale can
be applied. In the present context the balls of size R/ρ2 are centred at the origin
such that the containment in B(0, λ/ρ2) is achieved. The arguments from [14,
Section 11.2] extend without significant change to the present case, for which
reason the details are omitted. This completes the proof. �

7.4 Proof of Proposition 7.1. With the narrow decoupling and parabolic
rescaling at hand, we can now derive linear estimates from broad estimates:

Proof of Proposition 7.1. Let ε > 0. By interpolation it suffices to prove
the linear estimate for p satisfying the additional constraint

p(k, n) < p.

In the first step, for λ � 1, we carry out a parabolic rescaling depending on the
phase so that we can reduce to λδ̃-flat phase functions by Lemma 7.8. This loses
a factor Cφλ10nδ̃ by partitioning � into sectors, which will be admissible provided
that

(84) 10n δ̃ ≤ ε/10.

We shall next prove that Qp,δ̃(R) ≤ CεR
3ε
4 . In the following let K = K0Rη ≤ λδ̃

with K0 and η to be determined (see (91)).
By the assumed k-broad estimate, we find that

(85)
∑

BK2∈BK2 ,

BK2∩B(0,R)�=∅

min
V1,...,VA

max
τ/∈Va

∫
BK2

|Tλfτ|p ≤ C̃εK
CεR

pε
2 ‖f‖p

Lp(An−1),

where V1,...,VA are (k − 1)-planes and τ /∈ Va is shorthand for

∠(Gλ(x̄; τ),Va) > K−2,

with x̄ being the centre of BK2 . Moreover, we can suppose that R ≤ λ1−δ1 by
covering B(0, λ) with R-balls and losing an additional factor λ10nδ1 , which is
admissible provided that

(86) 10nδ1 ≤ ε

10
.
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We choose V1, . . . ,VA for each BK2 , which attains the minimum in (85). By
this, we may write

∫
BK2

|Tλf |p ≤ K10n max
τ/∈Va

∫
BK2

|Tλfτ|p +
A∑

a=1

∫
BK2

∣∣∣∣∑
τ∈Va

Tλfτ

∣∣∣∣p.
By summing over BK2 and using (85), we find that

∫
B(0,R)

|Tλf |p ≤ K10nC̃εK
CεRpε/2‖f‖p

Lp +
∑

BK2∈BK2 ,

BK2∩B(0,R)�=∅

A∑
a=1

∫
BK2

∣∣∣∣∑
τ∈Va

Tλfτ

∣∣∣∣p.
By the decoupling result Proposition 7.5, we find for any δ1 > 0, provided that
K ≤ λδ̃ and BK2 ⊆ B(0, λ1−δ1), that∫

BK2

∣∣∣∣∑
τ∈Va

Tλfτ

∣∣∣∣p �δ1 Kmax((k−3)( p
2 −1),0)+δ1

∑
τ∈Va

∫
Rn

|Tλ∗ fτ|pwBK2 + λp( n
2 − δ1N

2 )‖f‖p
Lp

and summing over a and BK2 , we find that

∑
BK2∈BK2

A∑
a=1

∫
BK2

∣∣∣∣∑
τ∈Va

Tλfτ

∣∣∣∣p
�δ1 Kmax((k−3)(p/2−1),0)+δ1

∑
τ:K−1

∫
B(0,2R)

|Tλ∗ fτ|p + ‖f‖p
Lp .

(87)

Here we make use of the choice N = N(δ1) large enough. We shall choose
δ1 = δ1(ε, p, k, n). This requires to possibly increaseN above the needs of Section 6.

The separated expressions Tλ∗ fτ are amenable to Lemma 7.9, which gives

(88)
∫

B(0,2R)
|Tλ∗ fτ|p �δ2 (Qp,δ̃(R))pRδ2K2(n−1)−(n−2)p‖fτ‖p

Lp.

Let

−e(k, p) = 2(n − 1) − (n − 2)p + max
(
(k − 3)

(p
2

− 1
)
, 0
)
.

Plugging (88) into (87), we find that∫
B(0,R)

|Tλf |p ≤ (K10nC̃εK
CεRpε/2 + Cδ1,δ2 (Qp,δ̃(R))pRδ2K−e(k,p)+δ1 )‖f‖p

Lp(An−1).

This yields

(89) (Qp,δ̃(R))p ≤ K10nC̃εK
CεRpε/2 + Cδ,δ′(Qp,δ̃(R))pRδK−e(k,p)+δ′ .
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Since p is as in (66), we find e(k, p) > 0, and may choose δ1 = min(e(k, p)/2, ε
100n ),

so that the K exponent in the second term on the right-hand side is negative and (86)
is satisfied.

Moreover, we can choose δ2 small enough such that

(90)
2δ2

e(k, p)
Cε ≤ pε

8
and

10nδ2
2e(k, p)

≤ ε

60
≤ pε

8
.

If

(91) K = K0R
2δ2

e(k,p)

for a sufficiently large K0, depending on ε, δ2 = δ2(ε), p and n, (90) ensures for the
first term on the right-hand side of (89) that

K10nKCεRpε/2 ≤ C̃εK
10n+Cε
0 R

3pε
4 = D̃εR

3pε
4 .

We find for the second term on the right-hand side of (89):

Cδ1,δ2 (Qp,δ̃(R))pRδK−e(k,p)+δ1 ≤ Cδ1,δ2 (Qp,δ̃(R))pRδ2 (K0R
2δ2

e(k,p) )−
e(k,p)

2

= Cδ1,δ2K
− e(k,p)

2
0 (Qp,δ̃(R))p ≤ 1

2
(Qp,δ̃(R))p.

The ultimate estimate follows from choosing K0 = K0(δ1, δ2, k, p, n) = K0(ε) large
enough.

It remains to make sure that K ≤ λδ̃ to apply the narrow decoupling result: By

choosing δ̃ = 3δ2
e(k,p) and λ ≥ λ0(ε) such that λδ̃ ≥ K0λ

2δ2
e(k,p) , the proof is complete

because (84) is ensured by

10nδ̃ =
30nδ2
e(k, p)

= 6
10nδ2

2e(k, p)
≤ ε

10
. �

Remark 7.10. We can similarly prove an estimate

‖Tλf‖Lp(B(0,R)) �ε,φ,a Rε‖f‖Lp,

for which we have to modify the induction quantity to work with Rδ̃-flat phase
functions.

8 ε-removal away from the endpoint

In the following we prove the estimate

(92) ‖Tλf‖Lp(Rn) �φ,a ‖f‖Lp(An−1)
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for p > pn with pn defined in (7). The argument is essentially well-known in the
literature [34, 35, 14] and we shall be brief. The detailed argument from [14]
cannot be applied directly because it relies on non-degenerate curvature properties
(H2) of the phase function. However, we shall see that the partial non-degeneracy

(93) ∃ non-vanishing eigenvalue of ∂2
ωω〈∂xφλ(x;ω),Gλ(x;ω0)〉|ω=ω0

suffices for the argument. In the following we suppose that the phase φ satisfies the
non-degeneracy (C1) and (93). We shall prove that, if for p̄ ≥ 2 and for all ε > 0
the estimate

(94) ‖Tλf‖Lp(BR) �ε,φ,a Rε‖f‖Lp(An−1)

holds for all p ≥ p̄, all R-balls BR, and any amplitude, then we find the global
estimate (92) to hold for all p > p̄. The following notion plays an important role
in the argument:

Definition 8.1 (Tao [35]). Let R ≥ 1. A collection {B(xj,R)}N
j=1 of R-balls

in R
d is sparse if {x1, . . . , xN} are (RN)C̄-separated. Here C̄ ≥ 1 is a fixed constant,

chosen large enough to satisfy the requirements of the forthcoming argument.

Like in previous instances of the argument, it suffices to analyze sparse families
of balls.

Lemma 8.2 ([14, Lemma 12.2]). To prove (92) for all p > p̄, it suffices to

show that for all ε > 0 the estimate

(95) ‖Tλf‖Lp̄(S) �ε,φ,a Rε‖f‖Lp̄(An−1)

holds whenever R ≥ 1 and S ⊆ R
n is a union of R-balls belonging to a sparse

collection, for any choice of amplitude function.

The key ingredient in the proof of Lemma 8.2 is the following covering lemma
due to Tao [34]:

Lemma8.3 (Covering lemma, [34, 35]). Suppose that E ⊆ R
n is a finite union

of 1-cubes and N ≥ 1. Define the radii Rj inductively by R0 = 1 and Rj = (Rj−1|E|)C̄
for 1 ≤ j ≤ N. Then, for each 1 ≤ j ≤ N, there exists a family of sparse collections
(Bj,α)α∈Aj of balls of radius Rj such that the index sets Ak have cardinality O(|E|1/N)
and

E ⊆
N⋃
j=1

⋃
α∈Aj

Sj,α,

where Sj,α is the union of all the balls belonging to the family Bj,α.
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With Lemma 8.3 at hand, the proof of Lemma 8.2 from [14] applies. It remains
to establish the estimates for Tλ over sparse collections of R-balls.

Lemma 8.4. Let φ satisfy (C1) and (93). If p ≥ p̄, then the estimate

‖Tλf‖Lp(S) �ε,φ,a Rε‖f‖Lp

holds for all ε > 0 whenever S ⊆ Rn is a union of R-balls belonging to a sparse

collection.

Proof. Let (B(xj,R))Nj=1 be a sparse collection of balls. We can suppose
that R � λ and that all B(xj,R) intersect the x-support of aλ. Fix η ∈ C∞

c (Rn−1)
satisfying 0 ≤ η ≤ 1, supp(η) ⊆ Bn−1 and η(z) = 1 for all z ∈ B(0, 1/2).
For R1 := CNR, where C ≥ 1 is a large constant, define ηR1(z) = η(z/R1).
Let ψ ∈ C∞

c (Rn−1) satisfy 0 ≤ ψ ≤ 1, supp(ψ) ⊆ � and ψ(ω) = 1 for ω
belonging to the ω-support of aλ. Fix 1 ≤ j ≤ N and write

eiφλ(xj;·)ψf = Pjf + (eiφλ(xj;·)ψf − Pjf ) =: Pjf + fj,∞,

where Pjf = η̂R1 ∗ [eiφλ(xj;·)ψf ]. Arguing like in [14], it suffices to show that( N∑
j=1

‖Pjf‖p
Lp

) 1
p

� ‖f‖Lp .

This follows via interpolation between p = 2 and p = ∞. For p = ∞, this is a
consequence of Young’s inequality. The estimate for p = 2 is by duality equivalent
to ∥∥∥∥ N∑

j=1

e−2πiφλ(xj;·)ψ · [η̂R1 ∗ gj]
∥∥∥∥

L2(Rd−1)
�
( N∑

j=1

‖gj‖2
L2

) 1
2

.

By squaring the left-hand side, we find that

N∑
j1,j2=1

∫
Rd−1

Gj1,j2 (ω)η̂R1 ∗ gj1 (ω)η̂R1 ∗ gj2(ω)dω

with Gj1,j2 (ω) = ei(φλ(xj1 ;ω)−φλ(xj2 ;ω))ψ2(ω).

By the Van der Corput-lemma [32, Proposition 5, p. 342], we still find due to (93)
that

|Ǧj1,j2 (z)| � |xj2 − xj1 |−
1
2 .

This suffices to estimate the absolute value and straight-forward summation of the
off-diagonal terms. The contribution of the diagonal terms is easier to estimate.
For details we refer to [14]. �
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9 Improved local smoothing for Fourier integral oper-
ators

In this section we improve Lp-smoothing estimates for solutions to wave equations
on compact Riemannian manifolds (M, g) with dim(M) ≥ 3: We consider

(96)

⎧⎨⎩∂2
t u −
gu = 0, (x, t) ∈ R × M,

u(·, 0) = f0, u̇(·, 0) = f1,

with the solution u to (96) given by

u(t) = cos(t
√

−
g)f0 +
sin(t

√−
g)√−
g
f1.

Parametrices for the half-wave equation are provided by Fourier integral oper-
ators (FIOs); see below.

Gao et al. [10] improved the previous results on Euclidean local smoothing
for d ≥ 3 and p ≤ 2(d+1)

d−1 due to Bourgain–Demeter by a broad–narrow iteration.
Presently, we extend their arguments to the variable-coefficient case.

Let d ≥ 3 and

(97) pd =

⎧⎨⎩2 · 3d+5
3d+1 for d odd,

2 · 3d+6
3d+2 for d even.

We show the following:

Theorem 9.1 (Improved local smoothing on compact manifolds). Let (M, g)
be a compact Riemannian manifold with dim(M) ≥ 3. Let s̄p = (d − 1)| 1

2 − 1
p |,

pd ≤ p < ∞ with pd as in (97) and σ < 2
p − 1

2 . Let u be a solution to (96). Then,
the following estimate holds:

(98) ‖u‖Lp
t ([1,2],Lp

x (M)) �M,g,p,σ ‖f0‖Lp
s̄p−σ(M) + ‖f1‖Lp

s̄p−σ+1(M).

Like in [10], we can interpolate with the trivial L2-estimate and the sharp local
smoothing estimates for p ≥ 2(d+1)

d−1 following from decoupling due to Beltran–
Hickman–Sogge [2] to obtain an extended range of estimates. This gives the same
range of estimates like in [10, Corollary 1.3].

It is well-known (cf. [31, Chapter 4], [23, p. 224]) that local parametrices
for (96) take the form of FIOs

(99) (Ff )(x, t) =
∫
Rd

eiφ(x,t;ξ)a(x, t; ξ)f̂ (ξ)dξ
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with phase functions φ ∈ C∞(Rd+1 ×R
d\{0}), which are 1-homogeneous in ξ and

satisfy (C1) and (C2+). a ∈ S0(Rd+1) is a symbol of order zero. Recall that this
means a ∈ C∞(Rd+1 × R

d+1) and

∀α, β ∈ N
d+1
0 : |∂α(x,t)∂βξ a(x, t, ξ)| �α,β 〈ξ〉−|β|.

Moreover, we assume that a is compactly supported in (x, t) ∈ R
d+1.

It turns out that for the proof of Theorem 9.1, it suffices to prove bounds for
rescaled operators

(100) (Fλf )(x, t) =
∫
Rd

eiφλ(x,t;ξ)aλ(x, t; ξ)f̂ (ξ)dξ

with aλ and φλ defined like in previous sections. Theorem 9.1 is a consequence of
the following (cf. [2, Section 3]):

Proposition 9.2. Let F be an FIO as in (99) and pd as in (97). Then, the

following local smoothing estimate holds for pd ≤ p < ∞:

(101) ‖Fλf‖Lp
t,x(Rd+1) �ε,φ,a λ

d( 1
2 − 1

p )+ε‖f‖Lp(Rd).

Proposition 9.2 improves on the previously best estimates due to Beltran–
Hickman–Sogge [2], which read

‖Fλf‖Lp
t,x(Rd+1) �ε,φ,a λ

d−1
2 ( 1

2 − 1
p )+ 1

p +ε‖f‖Lp(Rd)

for 2 ≤ p ≤ 2(d+1)
d−1 . Beltran–Hickman–Sogge [2] extended the decoupling inequal-

ities in the constant-coefficient case [6] to variable coefficients. This argument also
yields local smoothing estimates for FIOs, which do not satisfy the convexity con-
dition (C2+). Indeed, the FIOs, for which decoupling yields the sharp smoothing
estimates (cf. [2, Section 4]), are the ones with d odd, and

∂2
ξξ〈∂(x,t)φ(x, t; ξ),G0(x, t; ξ0)〉|ξ=ξ0

having d−1
2 positive and d−1

2 negative eigenvalues. Recall that the generalized
Gauss map is defined by

G0(x, t; ξ) = ∂2
(x,t) ξ1φ(x, t; ξ) ∧ · · · ∧ ∂2

(x,t) ξdφ(x, t; ξ) ∈
d∧

i=1

R
d+1 � R

d+1.

For the proof of Proposition 9.2, we run almost the same iteration as in the
proof of Theorem 1.1. The following lemma based on finite speed of propagation
allows us to convert L2-estimates for Tλ into Lp-estimates for Fλ by Plancherel’s
theorem and Hölder’s inequality (see [10, Section 2.2]):
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Lemma 9.3. Let (φ, a) be reduced data and ψ ∈ S(Rd) such that

supp(ψ̂) ⊆ B(0, 1),
∑
	∈Zd ψ(x − 	) ≡ 1 for any x ∈ R

d. Assume supp(f̂ ) ⊆ Ad.
Then, for any δ > 0, the following estimate holds true:

|Fλf (x, t)| �δ |Fλ(ψR1+δ(x0)f )(x, t)|
+ RapDec(R)

∑
|	|>Rδ

(1 + |	|)−M‖f |ψ	(· − x0)| 1
2 ‖Lp(w

Bd
R(x0))

(102)

for (x, t) ∈ B(x0,R) × [−R,R], 1 < p <∞, where

ψR1+δ(x0)(x) =
∑

|	|<Rδ

ψ(R−1(x − x0) − 	).

Proof. The claim follows from a kernel estimate. We have

Fλ(x, t) =
∫

eiφλ(x,t;ξ)aλ(x, t; ξ)f̂ (ξ)dξ

=
1

(2π)d

∫
ei(φλ(x,t;ξ)−〈y,ξ〉)aλ(x, t; ξ)f (y)dydξ.

We set

Kλ(x, t; y) =
∫

ei(φλ(x,t;ξ)−〈y,ξ〉)aλ(x, t; ξ)dξ.

Let �λ(x, y, ξ, t) = φλ(x, t; ξ) − 〈y, ξ〉. We have

∇ξ�
λ(x, y, ξ, t) = ∇ξφ

λ(x, t; ξ) − y,

∇ξφ
λ(x, 0; ξ) = x, ∇ξφ

λ(x, t; ξ) =
1
λ
∇ξ

∫ λt

0
∂tφ

λ(x, s; ξ)ds + x.

By |∇ξ∂tφ(x, t; ξ)| � 1 for a reduced phase function, we find for |t| ≤ R and
|x − y| ≥ R1+δ rapid decay by non-stationary phase. We have the estimate

|Kλ(x, t; y)| ≤ CN(1 + R|x − y|)−N.

For reduced data (φ, a), CN can be chosen uniformly. This follows from estimates,
which hold because a is reduced and due to Lemma 3.2:

‖∂αξ a(x, ξ)‖L∞(X×�) ≤ Camp and ‖∂t∂αξ φ‖L∞(X×�) �N 1 for α ∈ N
d
0, |α| ≤ N.

This yields (102). �
By the same arguments as in Section 7, we can show the following narrow

decoupling (cf. Proposition 7.5):
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Proposition 9.4. Let BK2 ⊆B(0, λ1−δ′)⊆R
d+1 be a K2-ball centred at x̄∈R

d+1.

Let (φ, a) be reduced and φ be a K-flat phase function. Let k ≥ 3 and V be a
(k − 1)-dimensional vector space. Suppose that supp(f̂ ) ⊆ ⋃

ν Sν, where (Sν)ν is a

family of K−1-sectors Sν centred at τν such that ∠(Gλ(x̄; τν),V) ≤ K−2. Let f̂ν be
the localization of f̂ to Sν. Then, the following estimate holds:

(103)

‖Tλf̂‖Lp(BK2 )

�δ KδKmax((k−3)( 1
2 − 1

p ),0)
(∑

ν

‖Tλ∗ f̂ν‖p
Lp(wB

K2 )

)1/p

+ λ− min(δ,δ′)N
2 ‖f‖L2

for 2 ≤ p ≤ 2(k−1)
k−3 . Above, wBK2 denotes a weight, which decays polynomially

off BK2 . The operator T∗
λ is built from a reduced amplitude function; a∗ and the

same phase φ. a∗ can be chosen from a family of size ON(1). The family is uniform
over balls BK2 ⊆ B(0, λ1−δ′).

Remark 9.5. Note that (103) can be written as

‖Fλf‖Lp(BK2 ) �δ KδKmax((k−3)( 1
2 − 1

p ),0)
(∑

ν

‖Fλ∗fν‖p
Lp(wB

K2 )

)1/p

+ λ− min(δ,δ′)N
2 ‖f‖L2

simply by definition of Tλ and Fλ. We used the formulation in Proposition 9.4 to
highlight the parallel to Proposition 7.5.

The discrepancy in the amplitude functions will be remedied by carrying out
the induction on scales for an appropriate class of phase and amplitude functions.

Definition 9.6. Let Qp,δ(R) be the infimum over all constants such that

‖Fλf‖Lp(B(0,R)) ≤ Qp,δ(R)Rd( 1
2 − 1

p )‖f‖Lp

for 1 ≤ R ≤ λ and all FIOs F with reduced (φ, a) and λδ-flat phase φ.

As further ingredient we use the following parabolic rescaling for FIOs.

Lemma 9.7 (Parabolic rescaling for FIOs). Let (φ, a) be reduced with φ a

λδ-flat phase function and ĝ supported in a ρ−1-sector in Ad. Then, for any
1 ≤ ρ ≤ R ≤ λ, the following estimate holds:

(104) ‖Fλg‖Lp(B(0,R)) �δ′ Rδ
′
Qp,δ(R/ρ

2)Rd( 1
2 − 1

p )ρ
2(d+1)

p −d‖g‖Lp.
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Proof. The proof has much in common with the proof of Lemma 7.9. How-
ever, after rescaling, we use almost orthogonality in space-time, which comes from
finite speed of propagation (cf. Lemma 9.3). Let ω ∈ Bd−1(0, 1) with (ω, 1) the
centre of the ρ−1-slab encasing the support of ĝ:

supp(ĝ) ⊆
{
(ξ′, ξd) ∈ R

d : 1/2 ≤ ξd ≤ 2 and
∣∣∣ ξ′

ξd
− ω

∣∣∣ ≤ ρ−1
}
.

We perform the change of variables

(ξ′, ξd) = (ηdω + ρ−1η′, ηd),

after which it follows that

(Fλg)(x, t) =
∫
Rd

eiφλ(x,t;ηdω+ρ−1η′,ηd)aλ(x, t; ηdω + ρ−1η′, ηd) ˆ̃g(η)dη,

where ˆ̃g(η) = ρ−(d−1)ĝ(ηdω + ρ−1η′, ηd) and supp( ˆ̃g) ⊆ �. By Taylor expansion
and homogeneity of the phase, we find that

φ(x, t; ηdω + ρ−1η′, ηd) = φ(x, t;ω, 1)ηd + ρ−1〈∂ξ′φ(x, t;ω, 1), η′〉

+ ρ−2
∫ 1

0
(1 − r)〈∂2

ξ ′ξ′φ(x, t; ηdω + rρ−1η′, ηd)η
′, η′〉dr.

Let ϒω(x, t) = (ϒ(x, t;ω, 1), xd) and ϒλω(x, t) = λϒω(x/λ, t/λ) and consider
anisotropic dilations

Dρ(x
′, xd, t) = (ρx′, xd, ρ

2t) and D′
ρ−1 (x′, xd) = (ρ−1x′, ρ−2xd)

on R
d+1 and R

d, respectively. By definition of ϒ, we find that

Fλg ◦ϒλω ◦ Dρ = F̃λ/ρ
2
g̃,

where
F̃λ/ρ

2
g̃(y, τ) =

∫
Rd

eiφ̃λ/ρ
2
(y,τ;η)ãλ(y, τ; η) ˆ̃g(η)dη

for the phase φ̃(y, τ; η) given by

〈y, η〉 +
∫ 1

0
(1 − r)〈∂2

ξ ′ξ′φ(ϒω(D
′
ρ−1y, τ); ηdω + rρ−1η′, ηd)η

′, η′〉dr

and the amplitude

ã(y, τ; η) = a(ϒω(D
′
ρ−1y; τ); ηdω + ρ−1η′, ηd).

By change of space-time variables, we find that

(105) ‖Fλg‖Lp(BR) � ρ
d+1
p ‖F̃λ/ρ2

g̃‖Lp((ϒλω◦Dρ)−1(BR)).
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Note that (ϒλω◦Dρ)−1(BR) = DR is roughly a set of size R/ρ×· · ·×R/ρ×R×R/ρ2.
We want to apply an estimate at a smaller scale R/ρ2, to which end we use
finite speed of propagation: Since the time-scale is R/ρ2, we can decompose
∼ R/ρ × · · ·R/ρ × R × R/ρ2 into balls of size R/ρ2 and correspondingly, the
support of g̃ into balls of size R/ρ2. We have almost orthogonality between the
localized pieces by Lemma 9.3, which yields

(106) ‖F̃λ/ρ2
g̃‖Lp(DR) �δ′ Rδ

′
Qp,δ(R/ρ

2)(R/ρ2)d( 1
2 − 1

p )‖g̃‖Lp .

Since g̃(x) = g(ρx′, xd − ωx′), we find that

(107) ‖g̃‖Lp = ρ− d−1
p ‖g‖Lp.

Taking (105), (106), and (107) together, (104) holds.

We are ready for the proof of the following proposition:

Proposition 9.8. Let d ≥ 3, 2 ≤ k ≤ d, and λ ≥ 1. Let

p̄(k, d) ≤ p ≤
⎧⎨⎩∞, 2 ≤ k ≤ 3,

2 · k−1
k−3 , k ≥ 4,

with p̄(k, d) =

⎧⎨⎩
2(d+1)

d , k = 2,

2 · 2d−k+5
2d−k+3 , k ≥ 3.

Suppose that for all ε > 0, FIOs with reduced (φ, a) obey the following k-broad

estimate for all 1 ≤ K ≤ R ≤ λ and choice of A = Aε:

‖Fλf‖BLp
k,A(BR) ≤ C̃εK

CεRεRd( 1
2 − 1

p )‖f‖Lp .

Set (φ̃, ã) with φ̃ a 1-homogeneous phase function that satisfies (C1) and (C2+)
and ã ∈ S0(R2d+1), which is compactly supported in (x, t). There is Dε,φ̃,ã such that

for the FIO F̃ built from (φ̃, ã) the following estimate holds:

(108) ‖F̃λf‖Lp(Rd+1) ≤ Dε,φ̃,ãλ
d( 1

2 − 1
p )+ε‖f‖Lp(Rd).

The k-broad estimate is valid by Theorem 1.2 (see also Remark 7.10) and an
application of Lemma 9.3.

Proposition 9.2 follows from Proposition 9.8 by choosing k = d+5
2 for d odd

and k = d+4
2 for d even. Hence, the proof of Theorem 9.1 will be complete once

Proposition 9.8 is proved.

Proof of Proposition 9.8. The proof has much in common with the proof
of Proposition 7.1, and we shall be brief. By one parabolic rescaling depending on
the phase as in the beginning of the proof of Proposition 7.1, we can suppose that
(φ, a) is λδ̃-flat, and R ≤ λ1− ε

10d .
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Recall that Qp,δ̃(R) denotes the smallest constant such that for reduced (φ, a)

with λδ̃-flat phase functions, we have

‖Fλf‖Lp(B(0,R)) ≤ Rd( 1
2 − 1

p )Qp,δ̃(R)‖f‖Lp.

It suffices to prove that for any ε > 0 there is Cε > 0 such that Qp,δ̃(R) ≤ CεRε for
any R ≤ λ1− ε

10d . We shall choose

(109) K = K0R
η

with K0 and η to be determined later. This is similar to the argument in the proof
of Proposition 7.1.

For a given ball BK2 ⊆ B(0,R), let V1, . . . ,VA be (k − 1)-dimensional linear
subspaceswhich achieve the minimum in the definition of the k-broad norm. Then,∫

Bd+1
K2

|Fλf (x, t)|pdxdt � KO(1) max
τ/∈V	

∫
Bd+1

K2

|Fλf τ(x, t)|pdxdt

+
A∑

a=1

∫
Bd+1

K2

∣∣∣∣∑
τ∈Va

Fλf τ(x, t)
∣∣∣∣pdxdt.

Summing over a finitely overlapping family
(
BK2

)
= BK2 covering B(0,R) yields∫

B(0,R)
|Fλf (x, t)|pdxdt � KO(1)

∑
BK2∈BK2

min
V1,...,VA

max
τ/∈V	

∫
BK2

|Fλf τ(x, t)|pdxdt

+
∑

BK2∈BK2

A∑
a=1

∫
BK2

∣∣∣∣∑
τ∈V	

Fλf τ(x, t)

∣∣∣∣pdxdt.

By the broad norm estimate, we find that

∑
BK2∈BK2

min
V1,...,VA

max
τ/∈V	

∫
BK2

|Fλf τ(x, t)|pdxdt ≤ C̃εK
CεR

εp
2 Rdp( 1

2 − 1
p )‖f‖p

Lp .

The narrow contribution is estimated by Proposition 9.4:4

A∑
a=1

∫
BK2∈BK2

∣∣∣∣∑
τ∈Va

Fλf τ(x, t)
∣∣∣∣pdxdt

≤ Cδ1K
δ1Kmax((k−3)( 1

2 − 1
p )p,0)

∑
τ

∫
Rd+1

wBK2 |Fλf τ(x, t)|pdxdt.

(110)

4Here we omit the error term, which can be handled like in the proof of Proposition 7.1.
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Summing over BK2 ∈ BK2 in (110), we find

∑
BK2∈BK2

A∑
a=1

∫
Bd+1

K2

∣∣∣∣∑
τ∈V	

Fλf τ(x, t)
∣∣∣∣pdxdt

≤ Cδ1K
δ1Kmax((k−3)( 1

2 − 1
p )p,0)

∑
τ

∫
Rd+1

wB(0,2R)|Fλf τ(x, t)|pdxdt.

By Lemma 9.7, we find that∫
B(0,4R)

|Fλf τ(x, t)|pdxdt

�δ2 K−2d( 1
2 − 1

p )p+2Qp
p,δ̃

(R/K2)Rdp( 1
2 − 1

p )+δ2‖f τ‖p
p + RapDec(R)‖f‖p

p.

(111)

We have the following estimate for 2 ≤ p ≤ ∞:

(112)
(∑

τ

‖f τ‖p
p

) 1
p

� ‖f‖p.

For p = 2 this holds by Plancherel’s theorem, for p = ∞ by a kernel estimate, and
the remaining cases are covered by interpolation.

Hence, summing (111) over τ yields, by (112),∫
Bd+1

R

|Fλf (x, t)|pdxdt ≤ C̃εK
O(1)+CεRdp( 1

2 − 1
p )+ εp

2 ‖f‖p
Lp

+ Cδ1,δ2K
δ1Rdp( 1

2 − 1
p )+δ2K−e(p,k,d)Qp

p,δ̃
(R/K2)‖f‖p

Lp

with

e(p, k, d) = min
{
2d
(1

2
− 1

p

)
p − 2, 2d

(1
2

− 1
p

)
p − 2 − (k − 3)

(1
2

− 1
p

)
p
}
.

We find that e(p, k, d) ≥ 0, if

p ≥
⎧⎨⎩

2(d+1)
d , k = 2,

2 · 2d−k+5
2d−k+3 , k ≥ 3.

By the definition of Qp,δ̃ , we have

Qp
p,δ̃

(R) ≤ KO(1)C̃εK
CεR

εp
2 + Cδ1,δ2R

δ2Qp
p,δ̃

(R)K−e(p,k,d)+δ1 .

Similar to the end of the proof of Proposition 7.1, we can choose δ1(ε), δ2(ε),
and K0 and η (from (109)) to finish the proof. �
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