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Abstract
Warehouses recently face increasing stress imposed by a volatile customer demand 
and increasing customer expectations in terms of ever shorter order response times. 
In that respect, warehouses more and more offer same-day and next-day shipment 
conditions. However, same-day shipment promises are challenging to fulfil, espe-
cially as the order fulfilment process operates against fixed deadlines imposed by 
the predefined truck departure times. As a natural mitigation strategy, warehouses 
set a cutoff point and offer same-day shipment only to customers that order until 
the cutoff point, but next-day shipment to all customers ordering thereafter. Setting 
an appropriate cutoff point is challenging as it affects multiple facets of the service 
quality, such as the order response time and the service level. In this paper, we study 
the design of cutoff-based shipment promises for stochastic deadline-oriented order 
fulfilment processes in warehouses. We present a discrete-time Markov chain model 
for exact steady-state performance analysis and propose two novel performance 
measures – �− and �−cutoff service level – for service level measurement in these 
systems. We numerically show the benefit of cutoff-based shipment promises. Even 
with a late cutoff point, there is a significant gain in the system performance. Fur-
thermore, we find that warehouses should set the cutoff point such that it balances 
customer expectations in terms of service level and order response time. Finally, 
warehouses can improve their shipment promises when referring to �− instead of  
�−cutoff service level and by implementing measures reducing the utilisation and 
the variabilities of the order fulfilment process.

Keywords Order fulfilment · Deadline · Service level · Shipment · Markov chain

1 Introduction

Today’s warehouses face increasing stress imposed by a highly volatile cus-
tomer demand and increasing customer expectations in terms of ever shorter 
order response and delivery times. In that respect, warehouses more and more 

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-023-00739-7&domain=pdf
http://orcid.org/0000-0001-9218-0536


 U. Mohring et al.

1 3

offer same-day and next-day shipment conditions to attract and retain custom-
ers and differentiate from their competitors. Customers in the business-to-con-
sumer (B2C) segment, in particular in e-commerce, place orders in the afternoon 
or evening, and expect the products to be shipped immediately so that they are 
delivered the next day (Yaman et al. 2012; Boysen et al. 2021; Vanheusden et al. 
2021). In dense urban areas, customers even expect those products to be delivered 
the same day, especially grocery (Klapp et  al. 2018; Voccia et  al. 2019; Ulmer 
2020). Same-day and next-day shipment promises also become increasingly rel-
evant for warehouses operating in the business-to-business (B2B) segment, e.g. 
warehouses that supply regional warehouses, local warehouses, or retail stores, 
due to the tough competition among off-line and online retailers and novel ser-
vices in omni-channel retailing, such as click-and-collect (Boysen et  al. 2021). 
Click-and-collect-services offer customers to order online and pick up the prod-
ucts at a retail store the next day (Kim 2020). So, the supplying warehouse is 
expected to ship those products the same day. From the operational perspective 
of the warehouse, however, same-day shipment promises are challenging, espe-
cially by the end of the day when the remaining time for order fulfilment becomes 
tighter. Hence, offering same-day shipment has to be well-coordinated with the 
order fulfilment capacities available at the warehouse to ensure an efficient order 
fulfilment process while meeting the shipment promises.

In warehouses, customer orders typically arrive continuously during the day, and 
the order fulfilment process of these orders, which incorporates order picking, con-
solidation, packing, and preparing for shipment, also runs continuously. Then, the 
orders are handed over to a parcel delivery company that is responsible for the actual 
delivery of the parcels to the customers. The parcels are consolidated into large 
batches for delivery, and there is a fixed daily delivery schedule with predefined 
truck departure times, usually late each day (Doerr and Gue 2013; Ceven and Gue 
2017). These fixed predefined deadlines impose additional challenges on the order 
fulfilment process in the warehouse, as missing a truck departure by only a few min-
utes may result in a delay to the customer of one day. So, promising same-day ship-
ment not only includes that an order is ready for shipment any time the same day, 

timeCutoff point Deadline Cutoff point Deadline

Yesterday Today

Same-day shipmentNext-day
shipment

Next-day
shipment

Orders that arrive
within this time period...

...are promised to be
shipped by this deadline.

Fig. 1  Cutoff-based shipment promises
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but it has to be ready for shipment by the specific deadline (truck departure) associ-
ated with its destination.

In the pursuit of offering increasingly shorter order response and delivery times, 
warehouses might run the risk of over-promising their shipment services: The 
amount of orders requiring same-day shipment exceeds the warehouse capacities for 
fulfilling these orders the same day by the given truck departure, and some orders 
are not shipped on time. So, the resulting service level, which measures whether 
orders are ready by their promised due dates (van Gils et al. 2018), is low.

As a natural mitigation strategy, warehouses set a cutoff point and offer cutoff-
based shipment promises. Consider an arbitrary day (today). All customers ordering 
until today’s cutoff point receive same-day shipment, i.e. their orders are promised 
to be shipped by today’s deadline. In contrast, all customers ordering after today’s 
cutoff point receive next-day shipment, i.e. their orders are promised to be shipped 
by tomorrow’s deadline. This cutoff-based pattern of shipment promises applies 
every day. So, the total amount of orders promised to be shipped by today’s deadline 
is given by the sum of orders that arrived between yesterday’s and today’s cutoff 
point. Figure 1 shows the situation.

Setting an appropriate cutoff point is challenging as it concurrently affects mul-
tiple facets of the service quality perceived by the customers, such as the order 
response and delivery times and the service level. Setting a late cutoff point, such 
that same-day shipment is offered to customers until shortly before the truck depar-
ture, ensures short order response times for the customers, but comes at the expense 
of a high risk of not meeting the promised shipment dates, reflected in a low service 
level. In contrast, to ensure high service levels, the cutoff point has to be set early in 
the day, such that customers experience longer order response and delivery times.

In this paper, we investigate the design of cutoff-based shipment promises for 
deadline-oriented stochastic order fulfilment processes in order to offer competitive 
shipment services and meet customer expectations in terms of service quality. To 
measure service quality, we focus on the order response time, reflected by the cutoff 
point itself, and the service level, which is an important key performance indicator 
for service quality of order fulfilment processes in practice (van Gils et al. 2018). 
In line with service level measurement in inventory management (Tempelmeier 
2011), there are multiple types of service level in order fulfilment: probability-based  
�−service level (Schleyer and Gue 2012), quantity-based �−service level (Doerr 
and Gue 2013; Ceven and Gue 2017; MacCarthy et al. 2019; Mohring et al. 2020), 
and quantity- and time-based �−service level (Mohring et al. 2020). We propose an  
�− and �−cutoff service level for deadline-oriented order fulfilment processes and 
study how the considered type of cutoff service level affects the selection of the cut-
off point. The �−cutoff service level gives the probability that all orders are ready 
for shipment by their promised deadline. The �−cutoff service level is the ratio of 
the number of orders that are ready for shipment by their promised deadline and the 
total number of orders due by that deadline.

To this end, we build a multi-period stochastic model, where each period ends 
with a deadline upon which orders that are due for shipment by this deadline are 
handed over to the parcel delivery company. Throughout each such period, customer 
orders arrive randomly according to a time-dependent demand pattern. Customers 
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ordering until the cutoff point receive same-day shipment, customers ordering 
thereafter receive next-day shipment. If the available random processing capacity is 
insufficient to process all orders due for shipment in the current period, these orders 
become backorders and are carried over for shipment in the subsequent period. We 
are interested in studying the interplay between the cutoff point and the cutoff ser-
vice level in these systems while concurrently considering the effects of the selected 
type of cutoff service level as well as system parameters, such as utilisation and vari-
ability of customer demand and processing capacity.

The main contribution of this paper is three-fold: 

1. We are the first to study the design of cutoff-based shipment promises for sto-
chastic deadline-oriented order fulfilment processes in warehouses. We present a 
discrete-time Markov chain model for exact steady-state performance analysis and 
propose two performance measures – �− and �−cutoff service level – for service 
level measurement of deadline-oriented order fulfilment processes.

2. We numerically show the benefit of cutoff-based shipment promises. Even with 
a late cutoff point, system performance already improves significantly compared 
to a benchmark without a cutoff point.

3. We provide insights on how warehouses should set the cutoff point in order to 
balance customer expectations in terms of service level and order response time, 
and how they can improve their shipment promises by selecting �− instead of  
�−cutoff service level and implementing measures to reduce the utilisation and 
the variabilities of the order fulfilment process.

The remainder of this paper is structured as follows: Sect. 2 gives an overview of the 
related literature. Section 3 provides the formal problem description. We introduce 
our discrete-time Markov chain model in Sect.  4. The numerical analysis is pre-
sented in Sect. 5, and the implications derived from its results are given in Sect. 6. 
Section 7 provides concluding remarks and an outlook.

2  Literature review

The challenges of managing stochastic order fulfilment processes in warehouses 
have been studied extensively in the literature. There are related surveys concerning 
warehousing for e-commerce (Boysen et al. 2019) and brick-and-mortar retail chains 
(Boysen et al. 2021), as well as for the design and control of manual order picking 
(de Koster et al. 2007) and automated parts-to-picker systems (Boysen et al. 2023). 
In the following, we review the research streams on stochastic order fulfilment pro-
cesses in warehouses that incorporate daily order deadlines.

The research interest primarily focuses on strategies for increasing operations 
efficiency. As many warehouses still operate with manual picker-to-parts systems, 
and manual labour accounts for a large part of the total operating expense (de 
Koster et  al. 2007; van Gils et  al. 2018), increasing order picking efficiency is a 
natural subject of research interest. Typically, it is assumed that the efficiency of an 
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order picker can be increased if several orders are grouped into a batch and picked 
simultaneously on one tour. The critical issue is to determine the batch size that 
minimises the average flow time of a random order (Le-Duc and de Koster 2007). 
An early attempt to solve this Order Batching Problem (OBP) is presented by Chew 
and Tang (1999) using queueing models to compute the lower bound, upper bound, 
and an approximate value for the average throughput time of the first order in a 
batch. However, using the first order in a batch as means for the throughput time 
of the entire batch is a limitation. Therefore, Le-Duc and de  Koster (2007) con-
sider a two-block warehouse and compute the mean flow time for a random order in 
the batch. Van Nieuwenhuyse and de Koster (2009) extend this approach to multi-
server picking and sorting operations, and general setup and service time distri-
butions. Schleyer and Gue (2012) use discrete-time queueing models to compute 
the throughput time distribution in a one-block warehouse which allows for more 
detailed evaluations based on its percentiles. The aforementioned papers assume 
fixed time windows for batching, which means that the time interval for collecting 
incoming orders for batch building is fixed. This assumption is relaxed by Xu et al. 
(2014) who investigate the effects of variable time windows for batching on the 
expected throughput time.

However, focusing on reducing the average flow time may induce some unintended 
behaviour (e.g. invoked overtime on Friday nights to clear orders for shipment, even 
though no shipments were scheduled over the weekend), that provides no benefit, but 
results in additional costs (Doerr and Gue 2013). Hence, it is common to assign each 
order a due date (i.e. the respective truck departure) for batch building (Boysen et al. 
2019). The Order Batching and Sequencing Problem (OBSP) aims to minimise the 
tardiness between the order’s due date and the actual completion time. The composi-
tion of the batches, their processing times, and the release sequence have a signifi-
cant impact on whether and to which extent due dates are violated (Henn and Schmid 
2013). Henn and Schmid (2013) and Menéndez et al. (2017) present metaheuristics 
for the OBSP to minimise total tardiness for a given set of customer orders. Chen et al. 
(2015) and Scholz et al. (2017) study the simultaneous optimisation of order batching, 
batch sequencing, and picker routing in order to minimise total tardiness of customer 
orders. In addition to these decisions, Zhang et al. (2016) differentiate between urgent 
orders and orders that can be processed later to complete the maximum number of 
orders in the shortest service time.

Recent research interest focuses on the mitigation of workload peaks in order ful-
filment to guarantee that daily deadlines are met. Workload peaks are time periods 
throughout the day when the required order throughput exceeds the available picker 
capacity (Vanheusden et al. 2020). They are caused by customers who tend to order 
products in the late afternoon or evening and expect these products to be delivered 
the next day (Vanheusden et al. 2021), and therefore result in a high risk of missing 
the truck departure times. Warehouse managers tend to set the workforce levels suf-
ficiently high to cover workload peaks at any time. However, operations efficiency 
can be significantly improved by flexible workforce planning combined with an 
accurate prediction of daily workload peaks. Van  Gils et  al. (2017) propose fore-
casting methods to predict the future workload of order fulfilment processes. Using 
these workload forecasts, Vanheusden et  al. (2020) and Vanheusden et  al. (2021) 
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schedule the workload such that peaks are avoided throughout the day and derive the 
required workforce levels from these balanced schedules. Beyond flexible workforce 
planning, levelled order release is an appropriate approach to manage workload 
peaks (Mohring et al. 2020). The key idea of levelled order release is to convert the 
volatile workload of the order fulfilment process into a smooth and regular workload 
per time period that can be managed by a constant workforce level (Mohring et al. 
2020). Inspired by flow-job scheduling methods known from manufacturing, Kim 
(2020) applies flow job-scheduling methods to effectively reduce the order fulfil-
ment time in OEM warehouses.

The papers presented so far focus on improving order fulfilment efficiency in 
order to meet daily deadlines. While efficient use of resources is undeniably impor-
tant, introducing a cutoff point can be beneficial as it keeps a time window remain-
ing for fulfilling orders that arrive late in the day. To the best of our knowledge, 
there are only three publications investigating cutoff-based shipment promises so far. 
Doerr and Gue (2013) are the first to introduce a cutoff point to manage deadline-
oriented order fulfilment processes. The authors propose a novel performance met-
ric, called Next Scheduled Deadline (NSD), to better reflect the deadline-orientation 
of the order fulfilment process in the system performance of the warehouse. NSD 
measures the fraction of orders targeted for a particular deadline that are ready by 
that deadline. An order is targeted for a particular deadline if it arrives before the 
cutoff point associated with this deadline. NSD is a meaningful performance met-
ric for the service quality perceived by customers, implicitly installs cutoff-based 
shipment conditions offered to customers, and motivates workers to accelerate the 
operating speed when it matters most, so just before the deadline. Focusing on the 
latter dimension of NSD, Doerr and Gue (2013) investigate how to steer the cut-
off point and the percentage of NSD in order to improve worker motivation. Case 
study results show that the cutoff points are set later and the percentage is set lower 
than an intuitive policy based on the percentage of orders finished without delay 
would suggest. The dimension of NSD as a performance metric for service qual-
ity is discussed by Ceven and Gue (2017) and MacCarthy et al. (2019): Ceven and 
Gue (2017) study wave picking policies in warehouses operating against daily dead-
lines and derive the optimal number and timing of wave releases in terms of NSD. 
By this, the proportion of on-time shipments significantly increases compared to 
intuitive wave release policies. Applying the introduced model in a case study, the 
authors show that a higher capacity and an earlier cutoff point increase NSD, respec-
tively. MacCarthy et al. (2019) investigate the order picking operations for same-day 
buy-online-pickup-in-store services in retail stores, where online orders are fulfilled 
in conventional retail stores while also serving walk-in customers. The online orders 
are promised to be ready for pickup in store after a specific time later the same day 
if they have been placed until a predefined cutoff point. The authors derive best per-
formance frontiers for single-wave and multi-wave order picking and determine the 
optimal number and timing of picking waves as well as the minimum picking rate 
needed to guarantee a target value of NSD.

In summary, academic literature mainly focuses on efficiency improvements for 
order fulfilment processes (and herein especially in the order picking operations). 
The only papers including cutoff-based shipment promises focus on the effects of 
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introducing a cutoff point on worker motivation (Doerr and Gue 2013) and the design 
of wave picking strategies in order fulfilment settings with a given cutoff point (Ceven 
and Gue 2017; MacCarthy et  al. 2019). Based on case study analyses, these papers 
include some first results on the effects of the cutoff point on the system performance. 
However, it is currently unclear how introducing a cutoff point affects service qual-
ity and customer satisfaction in terms of service level and order response time, and 
what competitive cutoff-based shipment promises should look like in the B2C- and 
B2B-segment. This paper addresses these research gaps by providing a comprehensive 
analysis of the design of cutoff-based shipment promises in order to offer competitive 
shipment conditions and meet customer expectations.

3  Problem description

We investigate the stylised stochastic deadline-oriented order fulfilment process of a 
warehouse with cutoff-based shipment promises. In the following, we provide the 
assumptions and the formal description of the order fulfilment process and the cutoff-
based shipment promises. The problem notation is summarised in Table 1 at the end of 
this section.

3.1  Order fulfilment

The order fulfilment process of a warehouse starts with receiving orders from the cus-
tomers. Customer orders arrive continuously throughout the day and are released for 
order fulfilment after some preparatory administrative steps. By this, the continuous 
inflow of customer orders transforms into a discrete-time order income for the actual 
order fulfilment process. Order fulfilment in warehouses incorporates picking, consoli-
dating, and packing products and preparing parcels for shipment (de Koster et al. 2007). 
These steps are organised in small batches, and discrete-time modelling of the order 
fulfilment process is appropriate. Hence, we consider the order fulfilment process at 
discrete times t ∈ ℕ0 that are integer multiples of a constant discretisation interval tinc , 
e.g. one hour. We normalise time such that the discretisation interval equals tinc ∶= 1.

The order fulfilment process ends with handing over the parcels to a parcel delivery 
company, which consolidates the parcels into large transportation batches for delivery 
depending on their destinations. Parcel delivery companies have fixed delivery sched-
ules with predefined truck departure times. Hence, order fulfilment in warehouses oper-
ates against fixed predefined deadlines (Doerr and Gue 2013; Ceven and Gue 2017). 
These recurring deadlines subdivide the discrete time axis t ∈ ℕ0 into operating cycles 
k ∈ ℕ0 , e.g. days, which consists of T time periods. Operating cycle k corresponds to 
the time periods {kT , kT + 1,… , kT + T − 1

}
 . It starts at deadline kT and ends imme-

diately before reaching the subsequent deadline (k + 1)T (cf. Fig. 2). Note that order 
fulfilment in operating cycle k operates against deadline (k + 1)T . For time period t, the 
corresponding operating cycle is
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time

Operating cycle kk − 1 k + 1

τ : 0 1 τC T − 1 0
t : kT kT + 1 kT + τC kT + T − 1 (k + 1)T

Deadline Cutoff point Deadline

tinc

T

Fig. 2  Representation of the timeline and corresponding notation of our model

Table 1  Problem notation

Notation Name

Input parameters
T Duration of each operating cycle
�
C

Cutoff point
D� , � ∈ {0,… ,T − 1} Customer demand at age �
B Processing capacity per time period
Derived input parameters
Btotal Processing capacity per operating cycle
U Utilisation
S Order income for same-cycle shipment per operating cycle
N Order income for next-cycle shipment per operating cycle
Variables
t Time
k Operating cycle
� Age of operating cycle
D

t
Customer demand at time t

B
t

Processing capacity at time t
Bk Processing capacity in operating cycle k

Sk Order income for same-cycle shipment in operating cycle k

Nk Order income for next-cycle shipment in operating cycle k

Xk Number of unprocessed orders at the beginning of operating cycle k

Mk Number of backorders at the end of operating cycle k

Pk Number of preprocessed orders in operating cycle k

Rk Number of unprocessed orders for next-cycle shipment at the end of 
operating cycle k

SLk
�

�-cutoff service level of operating cycle k

SL
k

�
�-cutoff service level of operating cycle k

Output parameters
�[M] Expected number of backorders per operating cycle
�[P] Expected number of preprocessed orders per operating cycle
SL� �-cutoff service level
SL� �-cutoff service level
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and the age � of operating cycle k at time t is

The random customer demand D
t
 arriving at time t gives the number of orders 

that are released for order fulfilment at time t. Note that the orders have a uniform 
size. The random variables D

t
 , t ∈ ℕ0 , are specified by a periodic demand pattern 

depending on the age � of the operating cycle:

D� , � ∈ {0, 1,… , T − 1} , are discrete generally-distributed random variables that 
specify the customer demand at age � of the operating cycle.

The order fulfilment process is modelled as a single-stage system covering all 
processing steps, e.g. picking and packing, in the warehouse. The random process-
ing capacity B

t
 provided at time t determines the system’s capability of fulfilling the 

customer demand. It gives the number of orders that can be completely processed at 
time t. The random variables B

t
 , t ∈ ℕ0 , are i.i.d., specified by the discrete generally-

distributed processing capacity per time period B:

We obtain the total processing capacity Bk in operating cycle k by the T-fold convo-
lution of B as follows:

Processing capacity B
t
 and customer demand D

t
 are independent of each other, and 

the system utilisation is smaller than one. System utilisation U is calculated as the 
ratio of the expected total customer demand per operating cycle and the expected 
total processing capacity per operating cycle as follows:

3.2  Shipment promises

The shipment conditions offered to a customer are time-dependent in the sense that 
they depend on the age of the operating cycle at the customer’s time of arrival. Con-
sider a customer arriving at time t, and let k = ⌊t∕T⌋ and � = t mod T  . If the age 
� of operating cycle k at time t is smaller than or equal to the cutoff point �

C
 , the 

customer receives same-cycle shipment, meaning that the order is promised to be 
shipped by the next deadline after t, i.e. by time (k + 1)T  . Otherwise, if the age � of 
operating cycle k exceeds the cutoff point �

C
 , next-cycle shipment is offered to the 

customer, meaning that the order is promised to be shipped by the second deadline 

(1)k =

⌊
t

T

⌋
,

(2)� = t mod T .

(3)D
t
∼ D� .

(4)B
t
∼ B.

(5)B
k
∼ B

total
= ⊗T

B.

(6)U =

∑T−1

�=0
�[D�]

�[Btotal
]

.
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after t, i.e. by time (k + 2)T  . So, assuming that the operating cycle equals one day 
( T = 24 hours), same-cycle shipment corresponds to same-day shipment and deliv-
ery to the customer the next day, and next-cycle shipment is equivalent to next-day 
shipment and delivery to the customer the day after the next.

Based on these cutoff-based shipment promises, the customer demand arriving 
within operating cycle k subdivides into an order income for same-cycle shipment 
Sk and an order income for next-cycle shipment Nk . We follow the same pattern of 
shipment promises every operating cycle. So, by convoluting the customer demand 
D� arriving until/after the cutoff point �

C
 , we have:

4  Markov chain model

In this section, we introduce a discrete-time Markov chain model for steady-state 
performance analysis of deadline-oriented order fulfilment processes with cutoff-
based shipment promises. We provide the discrete-time Markov chain formula-
tion (cf.  Sect.  4.1) and derive exact formulas for multiple performance measures 
(cf.  Sect.  4.2). Input parameters, variables, and output parameters of the Markov 
chain model are summarised in Table 1.

4.1  Discrete‑time Markov chain

For k ∈ ℕ0 , let Xk denote the state of the Markov chain at the beginning of operating 
cycle k, i.e. at time kT. Xk gives the number of unprocessed orders at the beginning 
of operating cycle k, covering all unprocessed orders that are due by the next dead-
line, i.e. by time (k + 1)T  , and all orders that are already too late.

The processing capacity Bk
∼ Btotal provided for order fulfilment in operating 

cycle k is initially used to process the orders Xk and the order income for same-
cycle shipment Sk ∼ S released in operating cycle k. Note that orders that are 
already too late are prioritised over the ones that are due by the next deadline. Any 
remaining processing capacity is used to process the order income for next-cycle 
shipment Nk

∼ N or remains unused in case the system runs idle. Otherwise, the 
orders remaining unprocessed in operating cycle k are carried over to the next oper-
ating cycle (k + 1) . Accordingly, the transitions of the Markov chain are defined as 
follows:

(7)S
k
∼ S = ⊗

𝜏C

𝜏=0
D𝜏

(8)N
k
∼ N = ⊗T−1

𝜏=𝜏C+1
D𝜏 .

(9)X
k+1

=

(
X
k
+ S

k
− B

k
+ N

k
)
+

,
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where (x)+ denotes max(x, 0).
Note that the Markov chain that arises from given shipment promises, i.e. a given 

cutoff point �
C
 , has a limiting distribution since U < 1 . Therefore, defining perfor-

mance measures in terms of long-run averages is appropriate.

4.2  Performance measures

We derive several performance measures from the limiting distribution of the 
Markov chain. In general, any performance measure including its entire probabil-
ity distribution can be derived.

In order fulfilment, the service level is the key performance indicator for meas-
uring the service quality perceived by customers. It quantifies whether orders are 
ready on time by their promised due dates or not. Despite its great practical rel-
evance, the service level has been barely investigated in the order fulfilment lit-
erature (van Gils et al. 2018). In line with service level measurement in inventory 
management (Tempelmeier 2011), there are also multiple types of service level 
in order fulfilment: probability-based �−service level (Schleyer and Gue 2012), 
quantity-based �−service level (Doerr and Gue 2013; Ceven and Gue 2017; Mac-
Carthy et al. 2019; Mohring et al. 2020), and quantity- and time-based �−service 
level (Mohring et al. 2020).

In the following, we introduce two types of service level for deadline-oriented 
order fulfilment processes with cutoff-based shipment promises: �− and �−cutoff 
service level. Beyond, we consider the expected number of backorders and the 
expected number preprocessed orders.

4.2.1  Backorders

Some orders that remain unprocessed in operating cycle  k potentially become 
backorders by the end of operating cycle k. This includes all unprocessed orders 
that are due by deadline (k + 1)T  immediately after operating cycle k or that are 
already too late in operating cycle k. In general, there is a random number of 
backorders Mk at the end of operating cycle k if the sum of the orders Xk and the 
order income for same-cycle shipment Sk exceeds the total processing capacity Bk 
in operating cycle k:

The long-run average number of backorders per operating cycle equals

(10)M
k
=

(
X
k
+ S

k
− B

k
)
+

.

(11)�[M] = lim
K→∞

1

K

K−1∑

k=0

�[M
k
].
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4.2.2  Preprocessed orders

Some orders of the order income for next-cycle shipment Nk are potentially pre-
processed in operating cycle k. Hence, these orders are ready for shipment by 
the next deadline (k + 1)T  , although they are only due by the subsequent dead-
line (k + 2)T  . In general, there is a random number of preprocessed orders Pk in 
operating cycle k, if the total processing performance Bk exceeds the number of 
unprocessed orders that are due by deadline (k + 1)T  , which is given by the sum 
of the orders Xk and the order income for same-cycle shipment Sk:

The long-run average number of preprocessed orders per operating cycle equals

4.2.3  ̨ −cutoff service level

�−service levels are probability-based service level definitions that measure the 
probability that all orders are completed on time (Schleyer and Gue 2012). We 
define the �−cutoff service level in the context of deadline-oriented order fulfilment 
processes with cutoff-based shipment promises as the probability that all orders are 
ready for shipment by their promised deadline. Recall that orders for same-cycle 
shipment Sk arriving in operating cycle k are promised to be ready for shipment by 
the deadline immediately after operating cycle k, i.e. by time (k + 1)T  , and all orders 
for next-cycle shipment Nk are promised to be ready for shipment by the next dead-
line thereafter, i.e. by time (k + 2)T .

First, consider operating cycle k in isolation: Some orders of the order backlog 
Xk and all orders of the order income for same-cycle shipment Sk are due by the 
deadline immediately after operating cycle k. If all these orders are processed in 
operating cycle k, no backorder occurs ( Mk

= 0 ), and the �−cutoff service level SLk
�
 

of operating cycle k equals one. Otherwise, if at least one of these orders remains 
unprocessed in operating cycle k, there are some backorders Mk > 0 , and the  
�−cutoff service level SLk

�
 of operating cycle k equals zero:

Following these considerations, we obtain the �−cutoff service level SL� as the long-
run average of the �−cutoff service level per operating cycle:

(12)P
k
= min

{
N

k,
(
B
k
− (X

k
+ S

k
)

)
+

}
.

(13)�[P] = lim
K→∞

1

K

K−1∑

k=0

�[P
k
].

(14)SL
k

𝛼
=

{
1 if Mk

= 0,

0 if Mk > 0.

(15)SL� = lim
K→∞

1

K

K−1∑

k=0

SL
k

�
.
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4.2.4  ̌ −cutoff service level

�−service levels are quantity-oriented service level definitions as they consider 
the proportion of on-time completed orders (Mohring et  al. 2020). We define the  
�−cutoff service level in the context of deadline-oriented order fulfilment processes 
with cutoff-based shipment promises as the ratio of the number of orders that are 
ready for shipment by their promised deadline and the total number of orders due by 
that deadline.

Consider two subsequent operating cycles (k − 1) and k. The number of orders 
due by the deadline immediately after operating period k, i.e. by time (k + 1)T  , con-
sists of the order income for next-cycle shipment Nk−1 in operating cycle (k − 1) and 
the order income for same-cycle shipment Sk in operating cycle k. If the processing 
capacity Bk−1 in operating cycle (k − 1) is insufficient to process all orders due by 
the deadline immediately after operating cycle (k − 1) , there are Mk−1 backorders 
(cf. (10)) at the end of operating cycle (k − 1) , and no order for next-cycle shipment 
is preprocessed in operating cycle (k − 1) . Otherwise, Pk−1 orders (cf. (12)) for next-
cycle shipment of Nk−1 are preprocessed in operating cycle (k − 1) , and the remain-
ing unprocessed orders for next-cycle shipment, denoted by Rk−1,

are postponed to operating cycle k. Those orders and the orders for same-cycle ship-
ment Sk are processed in operating cycle k depending on the remaining processing 
capacity (Bk

−Mk−1
)
+ . Note that only this remaining processing capacity is avail-

able to process the orders due by deadline (k + 1)T  as the potential backorders Mk−1 
are also postponed to operating cycle k, and they are prioritised over other orders. 
Hence, after operating cycle k, there are

orders ready for shipment by their promised deadline (k + 1)T  , and the �−cutoff ser-
vice level SLk

�
 of operating cycle k is given as follows:

The �−cutoff service level SL� is calculated as the long-run average of the �−cutoff 
service level per operating cycle:

In general, the �−cutoff service level is greater than or equal to the �−cutoff service 
level, i.e. SL� ≥ SL� , as SLk

�
≥ SLk

�
 holds in any operating cycle  k. This follows 

immediately when comparing the values of SLk
�
 and SLk

�
 in the different scenarios of 

R
k−1

=

(
N

k−1
−

(
B
k−1

−

(
X
k−1

+ S
k−1

))
+

)
+

P
k−1

+min

{(
B
k
−M

k−1
)
+

,Rk−1
+ S

k

}

(16)
SL

k

�
=

Pk−1
+min

{(
Bk

−Mk−1
)
+

,Rk−1
+ Sk

}

Nk−1
+ Sk

.

(17)SL� = lim
K→∞

1

K

K∑

k=1

SL
k

�
.
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the order fulfilment process, i.e. when no/some/all orders for next-cycle shipment 
are preprocessed in operating cycle (k − 1) and no/some backorders occur in operat-
ing cycle k. Note that SL� ≤ SL� is intuitively clear as the �−cutoff service level 
measures the probability that all orders are completed on time, whereas the quantity-
based �−cutoff service level gives the proportion of on-time completed orders.

5  Numerical analysis

In this section, we conduct an extensive numerical analysis of deadline-oriented 
order fulfilment processes with cutoff-based shipment promises. We investigate 
the effects of cutoff-based shipment on the system performance (cf. Sect. 5.2), the 
benefit of cutoff-based shipment compared to a benchmark policy (cf. Sect. 5.3), 

Table 2  Input parameters of the numerical study

1 Assuming a discretisation interval tinc of one hour, we set the length of an operating cycle T to eight 
hours
2  Beta distributions are appropriate probability distributions to model D� , � ∈ {0, 1,… , 7} , and B for 
the following reasons: (1) As the numerical study aims to analyse the effects of utilisation and variabili-
ties of customer demand and processing capacity on system performance and the selection of the cutoff 
point, the probability distributions of customer demand and processing capacity must allow for varying 
the expected value (required for utilisation) and the squared coefficient of variation independently of each 
other. The Beta distribution meets these requirements as it is specified by two parameters that can be 
derived from the expected value and squared coefficient of variation (Law 2015, 295-297); (2) The Beta 
distribution has a scalable finite support which is helpful for implementing and computing the Markov 
chain model
3 The values of the support of D� , � ∈ {0, 1,… , 7} , and B as well as the total customer demand per oper-
ating cycle are chosen such that the computation times of the problem instances are moderate
4  The numerical study focuses on medium- and high-utilised warehouses as order fulfilment in low- 
utilised warehouses is not challenging, and these systems are cost-inefficient and not competitive

Notation Definition

T T = 81

�
C

�
C
∈ {0, 1,… , 7}

D� , � ∈ {0, 1,… , 7} Discretised Beta-distributed2 random variables with support {0, 1,… , 20}3 , 
expected values �[D� ] and squared coefficient of variation scv[D]

�[D� ] , � ∈ {0, 1,… , 7} , are a series of monotonously increasing values that 
reaches its peak at the cutoff point �

C
 (cf. (18), (19)) and constant total cus-

tomer demand per operating cycle of 
∑7

�=0
�[D� ] = 403

scv[D] ∈ {0.1, 0.2,… , 1.0}

B Discretised Beta-distributed2 random variable with support {0, 1,… , 20}3 , 
expected value �[B] =

�∑T−1

�=0
�[D� ]

��
(TU) (cf. (20)) and squared coefficient 

of variation scv[B]
U ∈ {0.5, 0.55,… , 0.95}4

scv[B] ∈ {0.1, 0.2,… , 1.0}
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and the decision problem of setting an appropriate cutoff point (cf. Sect. 5.4). The 
design of experiments and the model implementation are given in Sect. 5.1.

5.1  Design of experiments and model implementation

The numerical study covers a vast variety of warehouses operating in the B2C- (e.g. 
e-commerce) and B2B-segment (e.g. warehouses supplying regional warehouses, 
local warehouses, or retail stores). The assumptions and input parameters are sum-
marised in Table 2.

We consider warehouses with an operating cycle of constant length T = 8 and the 
cutoff point �

C
 varies between 0 and 7 to investigate the full range of cutoff-based 

shipment promises.
The time-dependent customer demand D� , � ∈ {0, 1,… , 7} , is modelled by dis-

cretised Beta-distributed random variables with finite support {0, 1,… , 20} , whose 
parameters derive from the expected values �[D�] and the squared coefficient of 
variation scv[D]. The expected customer demand �[D�] , � ∈ {0, 1,… , 7} , is charac-
terised by a series of monotonously increasing values reaching its peak at the cutoff 
point �

C
:

It is common sense that the peak customer demand volume occurs at the cutoff point 
(Kim 2020), i.e. in the time period when same-cycle shipment is offered for the 
last time.1 Note that due to the varying cutoff point �

C
 , the corresponding series of 

expected customer demand values �[D�] , � ∈ {0, 1,… , 7} , varies accordingly. How-
ever, the expected total customer demand per operating cycle 

∑7

�=0
�[D� ] is con-

stant. scv[D] varies between 0.1 and 1.0 to model different types of stochastic cus-
tomer demand. A high variability of customer demand is common for warehouses 
operating in the B2C-segment, whereas warehouses in the B2B-segment face a 
lower variability of customer demand (Boysen et al. 2021).

The processing capacity per time period B is a discretised Beta-distributed ran-
dom variable with finite support {0, 1,… , 20} , expected value �[B] and squared 
coefficient of variation scv[B]. The expected processing capacity �[B] derives from 
the system utilisation U and the expected total customer demand per operating cycle 
as follows (cf. (6)):

(18)max
{
�[D� ] ∣ � ∈ {0, 1,… , 7}

}
= �[D�C

]

(19)min
{
�[D�] ∣ � ∈ {0, 1,… , 7}

}
=

{
�[D0] if �

C
= 7,

�[D�C+1
] if �

C
≠ 7.

1 The results of a similar numerical study with a time-independent customer demand are provided in 
Appendix B.
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System utilisation U varies between 0.5 and 0.95 to model different types medium- 
and high-utilised warehouses. Hence, the expected processing capacity �[B] varies 
accordingly. The squared coefficient of variation scv[B] varies between 0.1 and 1.0 
to cover different types of order fulfilment processes (e.g. fully-automated, partially 
automated and manual warehousing systems; picker-to-parts and parts-to-picker sys-
tems) (Boysen et al. 2019, 2021).

To implement and compute our Markov model, we derive a finite upper bound X 
for its state space. Due to this finite upper bound, some orders are potentially rejected 
without being fulfilled. An incoming order is rejected in operating cycle k only if, by 
accepting this order, the current order backlog Xk would exceed the upper bound X . 
We determine X such that the probability of rejecting an order is negligibly small. In 
this study, the threshold value is 0.003. The formula of the rejection probability and 
the required adaptions of the state transition are given in Appendix A.

In total, the study incorporates 6,930 data points, and the average computation 
time per data point is nine seconds.2

(20)�[B] =

∑T−1

�=0
�[D�]

TU
.
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Fig. 3  Performance measures SL� , SL� , �[M] , �[P] depending on cutoff point �
C
 for an exemplary order 

fulfilment process ( U = 0.8 , scv[D] = 0.5 , scv[B] = 0.5)

2 The computations are conducted on a server with a CPU of 64 kernels and 128 threads and a RAM of 
128 GB.
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5.2  Performance analysis

We first analyse the effects of cutoff-based shipment promises on the performance of 
deadline-oriented order fulfilment processes. Figure 3 shows the expected number 
of backorders �[M] and preprocessed orders �[P] as well as �− and �−cutoff service 
level SL� , SL� depending on the cutoff point �

C
 for an exemplary order fulfilment 

process ( U = 0.8 , scv[D] = 0.5 , scv[B] = 0.5).
If the cutoff point is set as early as possible, i.e. �

C
= 0 , only 20% of the total cus-

tomer demand per operating cycle is due by the next deadline, which occurs imme-
diately after the current operating cycle. Hence, it is very likely that all orders are 
ready for shipment by their promised due date, reflected in a low number of back-
orders, �[M] = 0.4 , and high values of �− and �−cutoff service level, SL� = 97% 
and SL� = 100% . Concurrently, a high proportion of the total processing capac-
ity per operating cycle is used to already process orders for next-cycle shipment, 
reflected in a high number of preprocessed orders, �[P] = 26.5.

By postponing the cutoff point towards the deadline, the proportion of orders for 
same-cycle shipment on total customer demand per operating cycle increases, and 
there is a growing risk of missing the promised due date for some orders. Consider 
a cutoff point in the middle of the operating cycle, e.g. �

C
= 4 , the number of back-

orders increases to �[M] = 2.3 and the cutoff service levels reduce to SL� = 83% 
and SL� = 98%.

When setting the cutoff point just one time period ahead the deadline, i.e. �
C
= 7 , 

same-cycle shipment is offered to all customers arriving throughout the operating 
cycle. So, the total customer demand per operating cycle is due by the next dead-
line, and there are no orders for next-cycle shipment. Ensuring on-time shipment 
becomes very challenging in this setting, in particular when facing the peak of 
the customer demand at the cutoff point, as orders that arrive at the cutoff point 
are promised to be ready for shipment in the next time period thereafter. This is 
reflected in a high number of backorders, �[M] = 5.6 , and low cutoff service levels, 
SL� = 62% and SL� = 95% . Note that the number of preprocessed orders �[P] equals 
zero as there are no orders for next-cycle shipment.

5.3  Benefit of cutoff‑based shipment promises

We evaluate the benefit of cutoff-based shipment compared to a benchmark policy, 
called SameCycle, which offers same-cycle shipment to all customer orders irrespec-
tive of their arrival times. SameCycle can be seen as cutoff-based shipment with a 
cutoff point of �

C
= T − 1 = 7 . For ease of simplicity, the following analysis focuses 

on two selected cutoff-based shipment policies: LateCutoff sets the cutoff point two 
time periods ahead the deadline, i.e. �

C
= 6 , so that same-cycle shipment is offered 

only one time period less than under SameCycle. The other policy, called Medium-
Cutoff, sets the cutoff point in the middle of the operating cycle, i.e. �

C
= 4.

Table 3 gives the cutoff service levels SL� , SL� and the expected number of back-
orders �[M] and preprocessed orders �[P] of the policies LateCutoff, MediumCutoff, 
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and SameCycle, as well as the benefits of LateCutoff and MediumCutoff compared 
to SameCycle. LateCutoff achieves an average benefit of 14% in terms of �−cutoff 
service level and 1% in terms of �−cutoff service level compared to SameCycle, 
and the number of backorders reduces on average by 19%. Applying MediumCut-
off results in even higher average improvements: 38% increase of �−cutoff service 
level, 2% increase of �−cutoff service level, and 46% reduction in the number of 
backorders. The benefit of cutoff-based shipment in terms of �−cutoff service 
level highly depends on the utilisation U of the order fulfilment process. Consider 
LateCutoff, the benefit is 3% at a medium utilisation of U = 0.6 and 29% at a high 

Table 3  Benefit of cutoff-based shipment policies LateCutoff and MediumCutoff compared to benchmark 
policy SameCycle 

1 The benefit in terms of a given performance measure is calculated as the relative deviation of its value 
under a cutoff-based shipment policy from its value under the benchmark policy
2 The benefit in terms of the number of preprocessed orders cannot be calculated as the number of pre-
processed orders is zero under the benchmark policy

Cutoff-based shipment Benchmark Benefit1 2 [%]

Medium 
Cutoff

Late Cutoff Same Cycle Medium 
Cutoff

Late Cutoff

U = 0.6 SL� 0.9618 0.9243 0.8966 7.27 3.09
SL� 0.9933 0.9859 0.9802 1.34 0.59
�[M] 0.47 0.99 1.39 −66.28 −29.15
�[P] 11.30 3.63 0.00

U = 0.7 SL� 0.9190 0.8486 0.7994 14.96 6.16
SL� 0.9873 0.9753 0.9663 2.18 0.93
�[M] 1.14 2.19 2.98 −61.73 −26.47
�[P] 10.39 3.25 0.00

U = 0.8 SL� 0.8206 0.7089 0.6362 28.99 11.43
SL� 0.9741 0.9570 0.9452 3.05 1.25
�[M] 3.36 5.45 6.88 −51.10 −20.79
�[P] 8.71 2.60 0.00

U = 0.9 SL� 0.5961 0.4603 0.3810 56.45 20.81
SL� 0.9455 0.9275 0.9165 3.17 1.20
�[M] 13.62 17.60 19.99 −31.84 −11.95
�[P] 5.73 1.59 0.00

U = 0.95 SL� 0.3836 0.2698 0.2097 82.96 28.69
SL� 0.9207 0.9071 0.8996 2.34 0.83
�[M] 36.85 42.07 45.72 −19.41 −7.99
�[P] 3.42 0.89 0.00

Total SL� 0.7362 0.6424 0.5846 38.13 14.04
SL� 0.9642 0.9506 0.9416 2.41 0.96
�[M] 11.09 13.66 15.39 −46.07 −19.27
�[P] 7.91 2.39 0.00
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utilisation of U = 0.95 . Similarly, the benefit of MediumCutoff increases from 7% at 
U = 0.6 to 83% at U = 0.95.

These results indicate that introducing a cutoff point significantly improves sys-
tem performance compared to the same-cycle shipment benchmark policy. Even 
with a late cutoff point, such that same-cycle shipment is offered only one time 
period less than under the benchmark policy, higher service levels are achieved. By 
shifting the cutoff point to earlier time periods of the operating cycle, system per-
formance further improves. However, this happens at the expense of longer order 
response times perceived by the customers as same-cycle shipment is offered to a 
decreasing proportion of customers ordering early in the operating cycle, whereas an 
increasing proportion of customers receives next-cycle shipment.

5.4  Design of cutoff‑based shipment promises

Although we showed that offering cutoff-based shipment conditions is beneficial, 
the question of how to actually set the cutoff point in order to offer competitive ship-
ment services is still open. This decision problem depends on multiple aspects, such 
as customer expectations in terms of service quality, characteristics of the order ful-
filment process, and the considered performance measure. The following analysis 
focuses on the performance measures �− and �−cutoff service level as service levels 
are common key performance indicators of order fulfilment processes in practice 
(van Gils et al. 2018).

5.4.1  Effects of customer expectations

The cutoff point is negatively related to �− and �−cutoff service level, respectively 
(cf. Figure 3). By postponing the cutoff point towards the deadline of the operating 
cycle, the proportion of orders for same-cycle shipment increases, the risk of not 
meeting the promised order due dates grows, and the cutoff service levels reduce. 
However, late cutoff points have the merit of short order response times, and both 
service level and order response time are important facets of the service quality per-
ceived by customers.

These results are consistent with previous findings by Doerr and Gue (2013) and 
Ceven and Gue (2017) and confirm the general trade-off between high service levels 
and short order response times, reflected by late cutoff points, in stochastic order 
fulfilment settings. Given this trade-off, the cutoff point should be set such that it 
balances customer expectations in terms of service level and order response time.

5.4.2  Effects of type of cutoff service level

�−cutoff service level is more sensitive to a variation of the cutoff point than  
�−-cutoff service level. In other words, the trade-off between service level and order 
response time is more substantial regarding �−cutoff service level than �−cutoff 
service level. Consider e.g. the exemplary order fulfilment process in Fig.  3: For 
the given range of cutoff points �

C
∈ {0, 1,… , 7} , �−cutoff service level is between 
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97% and 62% (reduction by 35 percentage points), whereas �−cutoff service level 
varies between 100% and 95% (reduction by only 5 percentage points). To ensure 
a service level of 95% in this setting, the cutoff point is set early in the operating 
cycle, i.e. �

C
= 1 , when referring to �−cutoff service level. In contrast, regarding  

�−cutoff service level, it is possible to offer same-day shipment to all customers 
arriving throughout the operating cycle, i.e. �

C
= 7 , and still guarantee a service 

level of 95%. Furthermore, it is impossible to ensure a service level of 99% with 
cutoff-based shipment when referring to �−cutoff service level, whereas this service 
level target is achieved when considering �−cutoff service level, e.g. by setting a 
cutoff point of �

C
= 3.
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These examples illustrate that depending on the underlying type of cutoff service 
level, cutoff points are set differently, and even the range of achievable service level 
targets may vary. This is due to the fact that the �−cutoff service level is always 
greater than or equal to the �−cutoff service level in a given setting (cf. Sect. 4.2).

5.4.3  Effects of system characteristics

The characteristics of the order fulfilment process are specified by the system param-
eters utilisation U, variability of processing capacity scv[B], and variability of cus-
tomer demand scv[D]. Figures 4 and 5 illustrate the effects of simultaneous variation 
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of these system parameters on the trade-off between service level and order response 
time, reflected by the cutoff point. They show �−cutoff service level SL� respec-
tive �−cutoff service level SL� depending on the cutoff point �

C
 for selected val-

ues of utilisation ( U = 0.6, 0.7, 0.8, 0.9, 0.95 ) in order fulfilment processes with low 
( scv[⋅] = 0.1 ), medium ( scv[⋅] = 0.5 ), and high ( scv[⋅] = 1.0 ) variability of customer 
demand scv[D] and processing capacity scv[B], respectively. Pairwise comparisons 
of selected graphs and curves illustrate the effects of any isolated or simultaneous 
variation of the system parameters on �− and �−cutoff service level.

We find that all system parameters are negatively related to �− and �−cutoff 
service level, respectively. Hence, an increase in each system parameter negatively 
affects the trade-off between service level and order response time. For example, 
consider an order fulfilment process with scv[B] = scv[D] = 0.5 (cf.  2nd graph in 
 2nd row of Fig.  4), given a utilisation of U = 0.8 , the �−cutoff service level var-
ies between 96.8% and 61.8% depending on the selected cutoff point. At a higher 
utilisation of U = 0.9 , �−cutoff service level is between 80.8% and 35.6%. Hence, 
to ensure a service level target of SL� = 80% , it is sufficient to set a cutoff point of 
�
C
= 4 in the setting with U = 0.8 , but given the higher utilisation of U = 0.9 , an 

early cutoff point of �
C
= 0 is required. Furthermore, in the setting with U = 0.9 , it 

is impossible to ensure any service level target greater than 80% with cutoff-based 
shipment. Similar effects occur when increasing the variabilities of processing 
capacity or customer demand, respectively.

However, the system parameters differ in terms of the magnitude of their effects: 
Utilisation U is the major impact factor, the variabilities of processing capacity 
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scv[B] and customer demand scv[D] are minor impact factors. For example, con-
sider an order fulfilment process with U = 0.8 and scv[B] = scv[D] = 1.0 (cf. 
 3rd graph in  3rd row of Fig. 4) that ensures a service level target of SL� = 80% by 
setting an early cutoff point of �

C
= 1 . When halving the variability of customer 

demand ( scv[D] = 0.5 ) or processing capacity ( scv[B] = 0.5 ), the service level tar-
get is achieved with later cutoff points of �

C
= 2 respective �

C
= 3 . In contrast, when 

reducing system utilisation by only 25% to U = 0.6 , it is possible to guarantee the 
service level target with a late cutoff point of �

C
= 7 , i.e. same-cycle shipment is 

offered to all customers arriving throughout the operating cycle.
These results indicate that the characteristics of the order fulfilment process, 

especially its utilisation, affect the purposive selection of the cutoff point and limit 
the range of achievable service level targets. Conversely, measures that reduce sys-
tem utilisation and variabilities of processing capacity and customer demand pro-
vide potentials to offer a later cutoff point at a given service level target or ensure a 
higher service level at a given cutoff point.

6  Implications

Offering cutoff-based shipment conditions is an effective measure to improve system 
performance in deadline-oriented order fulfilment processes. Cutoff service levels 
and related performance measures of a warehouse improve significantly by intro-
ducing a cutoff point compared to a benchmark policy that offers same-cycle ship-
ment to all customers. However, effective management of stochastic order fulfilment 
processes with deadlines is still challenging for warehouse managers. First, setting 
an appropriate cutoff point is non-trivial due to the trade-off between high service 
levels and short order response times. Second, this decision problem is affected by 
the considered type of cutoff service level. Third, there are several control levers to 
improve the offered shipment conditions. We discuss these implications for ware-
house managers in the following.

When setting the cutoff point, warehouse managers must balance customer expec-
tations in terms of service level and order response time. The ideal shipment condi-
tions would be that warehouses offer same-cycle shipment to customers that order 
late during the operating cycle (i.e. setting a late cutoff point), while at the same time 
achieving a high cutoff service level (cf. Fig. 6). Since these shipment conditions are 
usually not feasible, warehouse managers should concentrate on the primary influ-
ence on customers’ perceived service quality. For time-sensitive customers (e.g. cus-
tomers in competitive e-commerce), the perceived service quality is mainly driven 
by short order response times and service level is of secondary importance (Yaman 
et al. 2012; Boysen et al. 2019). Hence, to attract these customers, warehouses oper-
ating in the B2C-segment should focus on setting the cutoff point as late as possible 
while still guaranteeing an acceptable cutoff service level (cf. Fig. 6). In contrast, the 
time pressure for warehouses operating in the B2B-segment is lower (Boysen et al. 
2021). The customers are reliability-sensitive, meaning that the perceived service 
quality is mainly driven by the service level and they do not mind early cutoff points 
as long as a cutoff service level close to 100% is guaranteed. Hence, warehouses 
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in the B2B-segment should set the cutoff point only so late such that they can still 
guarantee a high cutoff service level (cf. Fig. 6).

Warehouse managers find it easier to ensure later cutoff points at a given ser-
vice level target or higher cutoff service levels at a given cutoff point when refer-
ring to �− instead of �−cutoff service level. Therefore, from the warehouse perspec-
tive, the quantity-based �-cutoff service level is preferable to the probability-based  
�−cutoff service level. For warehouses operating in the B2C-segment, it is straight-
forward to use �−cutoff service level to communicate their shipment promises 
(e.g.  on the order website). Furthermore, their customers are time-sensitive (as 
mentioned above), so the service level is only secondary for the perceived service 
quality. In the B2B-segment, warehouse managers should carefully select and trans-
parently communicate their service level measurement to the customers as they usu-
ally enter long-term service contracts that are legally binding to guarantee a certain 
service level and include penalties in case of not meeting the service level target. 
Compared to the B2C-segment, warehouse managers find it more difficult to negoti-
ate �−cutoff service level into service contracts, as long-term commercial customers 
tend to prefer �−cutoff service level. This is since commercial customers place mul-
tiple orders during an operating cycle (e.g. a company running multiple retail stores 
that are supplied from the same warehouse) and therefore expect that all orders are 
shipped on time.

Warehouse managers should exploit internal control levers to improve the offered 
shipment conditions. First, efforts can be made to increase the process stability of 
the order fulfilment process (e.g. by using tools of lean management and standardi-
sation) to decrease the variability of the processing capacity. Accordingly, reduc-
ing process variability from a high to a medium (low) value in a B2B-warehouse 
operating with an early cutoff point ( �

C
= 2 ) increases �−cutoff service level by 

2.8% (4.8%). Second, investments in additional resource capacity (e.g. manpower, 
machines, tools) reduce system utilisation which has enormous potential for improv-
ing the offered shipment conditions. By reducing system utilisation from 95% to 
90% (80%), B2C-warehouses operating with a target �−cutoff service level of 95% 
may postpone the cutoff point by 3 h (6 h) towards the deadline. In B2B-warehouses 
that operate with an early cutoff point ( �

C
= 2 ), reducing utilisation from 95% to 

90% (80%) increases �−cutoff service level by 6.7% (14.8%). Third, warehouses 
operating in the B2B-segment may have the opportunity to get access to custom-
ers’ demand forecast data (Boysen et al. 2021), which reduces the uncertainties in 
terms of customers’ purchasing behaviour and decreases the variability of customer 
demand. Our numerical results suggest that reducing the variability of customer 
demand from a medium to a low value increases �−cutoff service level by 3.3% and 
�−service level by 0.6%.

7  Concluding remarks and outlook

In this paper, we studied the design of cutoff-based shipment promises for dead-
line-oriented stochastic order fulfilment processes in warehouses. We introduced a 
discrete-time Markov chain model for deadline-oriented order fulfilment processes 
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with cutoff-based shipment promises, time-dependent generally-distributed customer 
demand, and generally-distributed processing capacity. Customers ordering until the 
cutoff point receive same-cycle shipment, i.e. their orders are promised to be ready 
for shipment by the next truck departure, whereas customers ordering after the cutoff 
point receive next-cycle shipment, i.e. their orders are promised to ready for shipment 
by the truck departure after the next. Orders that are not completed on time become 
backorders and are carried over to the next period. The model enables an exact steady-
state performance analysis for these systems based on the performance measures back-
orders, preprocessed orders, �− and �−cutoff service level. By this, we are the first to 
study how cutoff-based shipment promises affect the system performance of stochastic 
deadline-oriented order fulfilment processes in warehouses.

Based on a comprehensive numerical study, we investigated the benefit of cutoff-
based shipment promises as well as the decision problem of setting an appropriate cut-
off point. Our results show that introducing cutoff-based shipment conditions signifi-
cantly improves the cutoff service level. Compared with a benchmark policy, �− and 
�−cutoff service level improve on average by 14% and 1%, respectively. However, due 
to the trade-off between high service levels and short order response times, setting an 
appropriate cutoff point is a managerial challenge. We conclude that B2C-warehouses 
serving time-sensitive customers should focus on setting the cutoff point as late as pos-
sible while still ensuring an acceptable service level. B2B-warehouses serve reliability-
sensitive customers, so the cutoff point should only be set so late such that they can 
still ensure a high service level. In general, warehouses should prefer �− over �−cutoff 
service level as they are able to ensure later cutoff points at a given service level target 
or higher service levels at a given cutoff point. To improve the offered shipment condi-
tions, warehouse managers may implement measures to reduce the utilisation, increase 
process stability of the order fulfilment process, or reduce the uncertainty of the cus-
tomer demand.

The approach of cutoff-based shipment promises studied in this paper offers a 
single shipment option to every customer. Interesting future research directions are 
settings which offer multiple shipment options concurrently, e.g. same-day and next-
day shipment, such that the customers can select their preferred option. In these set-
tings, it is furthermore common to charge different fees for the shipment options to 
incentive the customers to choose the shipment option that is favourable from the 
operational perspective of the warehouse. Beyond, future research can be conducted 
on studying the effects of cutoff-based shipment promises on general operational 
decisions in a warehouse, such as capacity planning.

Appendix A Implementation details

To implement and compute the Markov model, we derive a finite upper bound for its 
state space. We determine the upper bound X using a binary search algorithm such 
that the probability J of rejecting an incoming order is negligibly small. An incom-
ing order is rejected whenever, by accepting this order, the current order backlog 
would exceed the predefined upper bound X . The rejection probability J measures 
the proportion of incoming orders that are rejected, and it is calculated as follows
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Applying the upper bound X requires some adaptions of the state transition: Con-
sider the system in state Xk in operating cycle k and assume order income Sk and Nk 
and processing capacity Bk such that the resulting order backlog at the beginning of 
operating cycle (k + 1) would exceed the upper bound X by Ok orders:

Then, some incoming orders of Sk and Nk are rejected. Note that orders for same-
cycle shipment Sk are hereby prioritised over orders for next-cycle shipment Nk . The 
resulting adapted order income Sk′ and Nk′ are given as follows:
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Fig. 7  Performance measures SL� , SL� , �[M] , �[P] depending on cutoff point �
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 for an exemplary order 

fulfilment process ( U = 0.8 , scv[D] = 0.5 , scv[B] = 0.5 ); given time-independent customer demand
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Appendix B Numerical study for a time‑independent customer 
demand

In this section, we present the results of the numerical study when assuming a time-
independent customer demand, i.e. �[D�] = �[D] = 5 , � ∈ {0, 1,… , 7} , instead of 
the time-dependent demand pattern given by (18)-(19) assumed for the numerical 
study in Sect. 5. The results and insights we obtain in this study are similar to the 
ones discussed in Sect. 5. In the following, we provide the results of the numerical 

Table 4  Benefit of cutoff-based shipment policies LateCutoff and MediumCutoff compared to benchmark 
policy SameCycle; given time-independent customer demand

1 The benefit in terms of a given performance measure is calculated as the relative deviation of its value 
under a cutoff-based shipment policy from its value under the benchmark policy
2 The benefit in terms of the number of preprocessed orders cannot be calculated as the number of pre-
processed orders is zero under the benchmark policy

Cutoff-based shipment Benchmark Benefit1 2 [%]

Medium 
Cutoff

Late Cutoff Same Cycle Medium 
Cutoff

Late Cutoff

U = 0.6 SL� 0.97 0.9321 0.8987 8.14 3.7
SL� 1.00 0.9874 0.9805 1.49 0.7
�[M] 0.34 0.87 1.35 −75.25 −35.8
�[P] 13.99 4.52 0.00

U = 0.7 SL� 0.94 0.8633 0.7969 17.83 8.3
SL� 0.99 0.9778 0.9662 2.51 1.2
�[M] 0.84 1.94 3.00 −71.94 −35.4
�[P] 12.97 4.06 0.00

U = 0.8 SL� 0.86 0.7314 0.6391 33.96 14.4
SL� 0.98 0.9605 0.9457 3.54 1.6
�[M] 2.68 4.93 6.76 −60.37 −27.2
�[P] 11.03 3.28 0.00

U = 0.9 SL� 0.64 0.4856 0.3836 67.86 26.6
SL� 0.95 0.9313 0.9171 3.80 1.5
�[M] 11.89 16.41 19.69 −39.60 −16.7
�[P] 7.44 2.02 0.00

U = 0.95 SL� 0.43 0.2888 0.2111 101.56 36.8
SL� 0.93 0.9102 0.9002 2.88 1.1
�[M] 34.34 40.27 45.15 −23.94 −10.8
�[P] 4.51 1.14 0.00

Total SL� 0.77 0.6602 0.5859 45.87 18.0
SL� 0.97 0.9534 0.9420 2.84 1.2
�[M] 10.02 12.88 15.19 −54.22 −25.2
�[P] 9.99 3.00 0.00
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study with a time-independent customer demand similar to the one conducted in 
Sect. 5.

Figure 7 gives the expected number of backorders �[M] and preprocessed orders 
�[P] and �− and �−cutoff service level SL� , SL� depending on the cutoff point �

C
 for 

an exemplary order fulfilment process ( U = 0.8 , scv[D] = 0.5 , scv[B] = 0.5).
Table 4 gives the cutoff service levels SL� , SL� and the expected number of back-

orders �[M] and preprocessed orders �[P] of the policies LateCutoff, MediumCutoff, 
and SameCycle, as well as the benefits of LateCutoff and MediumCutoff compared to 
SameCycle.

Figures  8 and  9 illustrate the effects of simultaneous variation of these sys-
tem parameters on the trade-off between service level and order response time, 
reflected by the cutoff point. They show �−cutoff service level SL� respective  
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�−cutoff service level  SL� depending on the cutoff point �
C
 for selected values 

of utilisation ( U = 0.6, 0.7, 0.8, 0.9, 0.95 ) in order fulfilment processes with low 
( scv[⋅] = 0.1 ), medium ( scv[⋅] = 0.5 ), and high ( scv[⋅] = 1.0 ) variability of customer 
demand scv[D] and processing capacity scv[B], respectively.
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