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Abstract

The effective reproductive number Rt has taken a central role in the scientific, political, and

public discussion during the COVID-19 pandemic, with numerous real-time estimates of this

quantity routinely published. Disagreement between estimates can be substantial and may

lead to confusion among decision-makers and the general public. In this work, we compare

different estimates of the national-level effective reproductive number of COVID-19 in Ger-

many in 2020 and 2021. We consider the agreement between estimates from the same

method but published at different time points (within-method agreement) as well as retro-

spective agreement across eight different approaches (between-method agreement). Con-

cerning the former, estimates from some methods are very stable over time and hardly

subject to revisions, while others display considerable fluctuations. To evaluate between-

method agreement, we reproduce the estimates generated by different groups using a vari-

ety of statistical approaches, standardizing analytical choices to assess how they contribute

to the observed disagreement. These analytical choices include the data source, data pre-

processing, assumed generation time distribution, statistical tuning parameters, and various

delay distributions. We find that in practice, these auxiliary choices in the estimation of Rt

may affect results at least as strongly as the selection of the statistical approach. They

should thus be communicated transparently along with the estimates.
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Author summary

The effective reproductive number describes how many new infections an individual

infected with a given disease causes on average in a population which is subject to a cer-

tain degree of immunity and intervention measures. Public health agencies and research-

ers commonly attempt to keep track of its value over time using various data sources and

statistical methods. In this work we compare estimates produced by different research

groups in a case study on COVID-19 in Germany. We find pronounced differences

between different estimates and shed light on how these are shaped by varying analytical

choices. Our results indicate that the employed statistical method has some influence on

results, but surrounding analytical choices including epidemiological parameterizations

and tuning parameter choices are at least as influential. As estimates are subject to regular

updates, we moreover assess how strongly real-time estimates based on different methods

were revised retrospectively. While for some methods hardly any retrospective changes

occurred, for others there were strong revisions, often incoherent with the uncertainty

intervals provided for previous estimates. Our results will be helpful for analysts aiming to

set up estimation schemes for the effective reproductive number, and for users confronted

with a multitude of potentially disagreeing estimates.

1 Introduction

The definition of the effective reproductive number Rt as “the expected number of new infec-

tions caused by an infectious individual in a population where some individuals may no longer

be susceptible” [1] has become widely known even outside of the scientific community during

the COVID-19 pandemic. Values above 1 imply epidemic growth, while values below 1 corre-

spond to a decline. Public health agencies and academic groups from around the world have

been publishing Rt values in a daily rhythm since the beginning of the pandemic. In the politi-

cal debate on the tightening or loosening of intervention measures, these numbers have been

routinely cited. Likewise, numerous scientific works on the efficacy of control measures have

attempted to link the development of Rt to specific policy choices (e.g., [2–4]).

A major difference between Rt and other epidemiological indicators is that it is not directly

observable in practice. While numbers of confirmed cases or occupied hospital beds come

with their own problems, they are data, i.e., observed values. The effective reproductive num-

ber, on the other hand, requires estimation unless the complete transmission chain is observed,

which is unrealistic in most settings. Estimation is based on statistical models which combine

data and epidemiological assumptions, leading to a considerable number of analytical choices

to be made. Usually, various defensible options exist, which will influence the results. Estimates

produced by different groups of researchers can therefore differ, as is illustrated in Fig 1. The

top panel shows estimates of the effective reproductive number of COVID-19 in Germany

from January 1, 2021, to June 10, 2021, as published by eight different research teams on July

10, 2021. When taken at face value, these numbers often imply disagreement even on whether

Rt was above or below 1. The widths of 95% uncertainty intervals, shown in the bottom panel,

vary considerably, and for some pairs of methods, they hardly overlap. In this article, we are

concerned with how these discrepancies come about and how they are shaped by different ana-

lytical choices.

The pronounced differences between estimates of the effective reproductive number have

been pointed out recently by [5]. In an illustration of different estimates of Rt in the United

PLOS COMPUTATIONAL BIOLOGY Why are different estimates of the effective reproductive number so different?

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011653 November 27, 2023 2 / 27

KITmetricslab/reproductive_numbers. Stable

Zenodo releases can be found at https://zenodo.

org/record/8343704 and https://zenodo.org/record/

8343658, respectively.

Funding: JB was supported by the Helmholtz

Foundation via the project SIMCARD. JB’s work

was moreover partly funded by the Deutsche

Forschungsgemeinschaft (DFG, German Research

Foundation) – project number 512483310. SA and

SF were supported by The Wellcome Trust

(210758/Z/18/Z). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors declare that

there are no competing interests.

https://doi.org/10.1371/journal.pcbi.1011653
https://github.com/KITmetricslab/reproductive_numbers
https://zenodo.org/record/8343704
https://zenodo.org/record/8343704
https://zenodo.org/record/8343658
https://zenodo.org/record/8343658


Kingdom from early October 2020, they found the variability between different estimates to

exceed the width of the respective uncertainty intervals. Occasionally, the disagreement

between estimates has also spurred confusion in the public debate. For example, on October

27, 2020, Bavarian governor Markus Söder cited an effective reproductive number of 0.57 for

his state, which led representatives of the parliamentary opposition to demand a loosening of

restrictions [6]. This number, however, differed substantially from the value of 0.9 reported for

Bavaria on the same day by Robert Koch Institute ([7]), the German federal public health

agency. As clarified subsequently by the Bavarian State Office for Health and Food Safety,

Söder had cited an estimate from Helmholtz Centre for Infection Research (HZI, [8]). The

statement detailed that the Bavarian authorities monitored estimates from RKI and HZI in

parallel, but did not always state the respective source in public communications. The situation

is further complicated by the fact that estimates referring to the same day and based on the

same method often evolve over time, which has likewise been subject to public debate. As an

example, in Fall 2020 it was pointed out that the estimates by RKI were often corrected

upwards retrospectively [9].

Fig 1. Overlay of different Rt estimates. Estimates for the effective reproductive number of COVID-19 in Germany published

by eight different research teams on July 10, 2021 (July 11, 2021, for HZI). Top: point estimates (only available for the last 15

weeks for epiforecasts); bottom: 95% uncertainty intervals (not available for HZI).

https://doi.org/10.1371/journal.pcbi.1011653.g001
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Given these challenges, a systematic comparative evaluation of Rt estimates is desirable.

This, however, is hampered by several conceptual difficulties. Firstly, there is leeway in the

technical definition of the effective reproductive number [10], and different approaches may

not actually refer to the exact same estimand. Secondly, the effective reproductive number

remains a latent quantity even in hindsight. Systematic comparison of estimates and true val-

ues is thus only feasible on synthetic data (e.g., [1], [11]). Simulation results, however, will nec-

essarily depend on which model is used to generate data, and it is unclear to what degree they

translate to the real world. It has been argued that Rt estimates can be evaluated based on

derived short-term forecasts [12]; this, however, is challenging as e.g., errors in the estimated

Rt and the assumed generation time distribution may cancel out so that even bad Rt estimates

can yield acceptable forecasts. In this work, we take a complementary approach to simulation

and forecasting studies by describing discrepancies between real-world Rt estimates and relat-

ing them to underlying analytical choices. A somewhat similar approach has previously been

taken by [13], who compared Rt estimates based on an SEIR model and the method by [14].

We will analyze Rt estimates for COVID-19 in Germany to study the following aspects:

• Within-method temporal coherence: We assess to which degree estimates based on the same

method and referring to the same date, but published at different times, vary. In particular,

we analyze the agreement of consolidated point estimates with the uncertainty intervals pub-

lished near-real-time.

• Between-method agreement of retrospective estimates: We retrospectively compare estimates

across different estimation methods. Reproducing the results published by different groups

and harmonizing analytical decisions, we gain insights into how they contribute to the

observed discrepancies.

With our analysis we intend to enable readers to critically assess published Rt estimates and

make informed decisions when implementing an estimation scheme themselves. The remain-

der of the paper is structured as follows. Section 2 provides an overview of the different choices

an analyst needs to make to estimate Rt. Moreover, different estimation approaches applied in

real-time to German surveillance data during the COVID-19 pandemic are described. In Sec-

tion 3 we explore within-method temporal coherence, before turning to the between-method

agreement in Section 4. Section 5 concludes with a discussion.

2 Analytical choices in the estimation of Rt

Estimating Rt requires numerous decisions by the analyst, ranging from the definition of Rt
and the statistical approach to epidemiological parameterizations and the choice of the data set

(see also [15]). In this section, we review these dimensions and contrast the decisions underly-

ing various routinely published estimates of Rt of COVID-19 in Germany. Table 1 provides an

overview of the research groups whose estimates we consider. Most systems were launched

throughout the year 2020 (starting with epiforecasts in early March), and by mid-2023 all of

them had been retired. Table 2 provides an abridged summary of the model characteristics.

For all methods, estimates (and in most cases, analysis codes) were shared under open licences

in dedicated repositories, see Section A in S1 Text.

2.1 Definition of Rt

There are at least two ways of formalizing the concept of the (time-varying) effective reproduc-

tive number [1]. The case reproductive number, Rcase
t , quantifies how many new infections indi-

viduals who became infected at time t will cause on average. It is thus forward-looking and

compares these individuals to the following generation of infected. The instantaneous
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reproductive number, Rinst
t , on the other hand, is backward-looking and compares them to the

previous generation. Specifically, it is given by the expected number of infections occurring at

time t, divided by the number of previously infected individuals, each weighted by their rela-

tive infectiousness at time t. A simple discrete-time display of the recursive relationship

between infections Xt occurring on days t = 1, 2, . . . can help to understand this distinction

[24]. For the instantaneous reproductive number, the recursion, also called the renewal equa-
tion, is given by

EðXt j Xt� 1; . . . ;X1Þ ¼ Rinst
t �

Xt� 1

i¼1

wiXt� i; ð1Þ

where wi is the probability that the generation time (i.e., the time between primary and second-

ary infection) equals i time units. Here, the index t in Rt refers to the time of secondary infec-

tion. For the case reproductive number the recursion is

EðXt j Xt� 1; . . . ;X1Þ ¼
Xt� 1

i¼1

Rcase
t� i wiXt� i; ð2Þ

the index t − i in Rt−i thus referring to the time of primary infection. We note that Rcase
t� i can be

seen as a convolution of Rinst
t and the generation time distribution [25]. Shifting Rcase

t back by

the mean generation intervalm usually leads to good agreement with Rinst
t (i.e., Rcase

t� m and Rinst
t

can be expected to be similar; [1]). The case reproduction number, however, will change some-

what more gradually; in case of sudden changes discrepancies can thus arise [1, Fig. 2], but

these are attenuated if estimation involves smoothing as in most methods considered in our

paper.

Table 1. Overview of the groups who regularly published Rt estimates for Germany during the COVID-19 pandemic. Descriptions of the respective methodology are

provided in Section 2.2. Note that web domains provided in footnotes may be discontinued at some point; the links to the repositories provided in S1 Text, Section A, are

likely to be more stable.

Institution Abbrev. Reference Active period

ETH Zurich1 ETH [16] 2020-05-01–2023-03-23

Robert-Koch Institute2 RKI [17] 2020-06-04–2023-06-21

Technische Universität Ilmenau3 Ilmenau [18] 2020-04-22–2023-03-24

Swiss Data Science Center and Institut de SDSC [19] 2020-10-01–2023-06-14

Santé Globale, Université de Genève4 epiforecasts group / LSHTM5 epiforecasts [20] 2020-03-02–2022-03-31

Forschungszentrum Jülich6 rtlive [21] 2020-09-24–2021-07-31

globalrt7 globalrt [22] 2021-02-15–2023-01-06

Helmholtz Centre for Infection Research8 HZI [23] 2020-04-29–2023-06-03

Links to dashboards:
1 https://ibz-shiny.ethz.ch/covid-19-re-international/
2 https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/COVID-19-Trends/COVID-19-Trends.html
3 https://stochastik-tu-ilmenau.github.io/COVID-19/germany
4 https://renkulab.shinyapps.io/COVID-19-Epidemic-Forecasting/
5 https://epiforecasts.io/covid/, previously at https://cmmid.github.io/topics/covid19/global-time-varying-transmission.html
6 https://rtlive.de
7 http://www.globalrt.live/
8 https://gitlab.com/simm/covid19/secir/-/wikis/Report

https://doi.org/10.1371/journal.pcbi.1011653.t001
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Table 2. Methodological characteristics and parameterizations of the compared estimation approaches. The table follows the structure of Sections 2.1–2.5. The consen-
susmodel is introduced in Section 4.1 By conditional distribution of Xt we refer to the distribution of new cases Xt in formulation (1) or (2). The concept of “revision due to

smoothing” is discussed in Section 3.3.

Panel A: Methods based on the Cori method [14] and a consensus parameterization used in Section 4.

ETH RKI Ilmenau SDSC1 consensus

type of Rt instantaneous instantaneous instantaneous instantaneous instantaneous

underlying epidemic

model

[14] [14] [14] [14] [14]

regularization/prior

on Rt
sliding window sliding window sliding window sliding window sliding window

cond. distr. of Xt Poisson Poisson Poisson Poisson Poisson

inference Bayesian max. lik. max. lik. Bayesian Bayesian

preprocessing smooth. + deconv. nowcast – smoothing –

window size 3 7, 4 1 4 7

rev. due to

smoothing

yes no no yes no

GT distribution type gamma constant ad hoc gamma exponential

mean GT (sd) 4.8 (2.3) 4.0 5.6 (4.2) 4.8 (2.3) 4 (4)

source of GT [32] – – [32] 2

mean IP (sd) 5.3 (3.2) 1.0 5.0 – 0

mean RD (sd) 5.5 (3.8) 3.4 2.0 7.0 7

incidence data RKI, by onset date RKI, by onset date RKI, by test date JHU RKI, by test date

other data inputs line list line list – – –

programming

language

R R R R R, Python2

output posterior mean, 95% HPD

interval

point estimate, 95% conf. int. point est., stand. err., 95%

conf. int.

posterior mean, 95%

cred. int.

posterior mean, 95%

cred. int.

Panel B: Other Methods

epiforecasts rtlive globalrt HZI1

type of Rt instantaneous case case instantaneous

underlying epidemic

model

[20] [21] [22] [23]

regularization/prior

on Rt
Gaussian process random walk random walk sliding window

cond. distr. of Xt negative binomial negative binomial Gaussian3 deterministic

inference Bayesian Bayesian Kalman smoother literature est., least squares

preprocessing – – – –

window size – – – 10 & 7

rev. due to

smoothing

yes yes yes no

generation time distr. gamma log-normal exponential mixt./conv. of exponentials

mean GT (sd) 3.6 (3.1)4 4.7 (2.9) 7 (7) 10.3 (7.6)

source of GT [33] [32] – –

mean IP (sd) 5.4 (2.2)3 5.0 – 5.2

mean RD (sd) 5.9 (14.6)3 7.1 (5.9) – 3.7

incidence data WHO RKI, by test date JHU RKI, by test date

other data inputs – testing volumes – mortality

programming

language

R Python Python MATLAB, C++

(Continued)
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2.2 Modelling and estimation approaches

Numerous statistical approaches exist to estimate Rt from data. We do not provide a compre-

hensive review, but focus on methods various research teams have employed in real time to

estimate Rt of COVID-19 in Germany (see Table 1). Descriptions are kept concise and we

point to the respective references for details.

Variations and extensions of the Cori method. Four groups made use of the method by Cori

et al [14], but with different parameterizations and data pre-processing. This method uses

formulation (1) combined with a Poisson distribution for new cases. Estimation of Rt is
then carried out for sliding windows of a width chosen by the analyst. In the widely used R

package EpiEstim [26] inference is based on a Bayesian approach.

RKI (Robert Koch Institute, [17, 27]). First, sampling-based nowcasting is applied in

order to impute missing symptom onset dates in incidence data and to correct recent

values for reporting delays. Next, the method by Cori et al [14] is applied to each sampled

time series, using a fixed generation time and frequentist inference. Uncertainty intervals

result from the spread of the Rt estimates across different nowcasting samples. The esti-

mation of uncertainty from the Cori method is not taken into account. The window size

is set to either 4 or 7 days. We focus on the latter, which has been used more widely.

ETH (Swiss Federal Institute of Technology, [16]). Local polynomial regression

(LOESS) is applied to the time series of reported cases to account for weekday effects.

The smoothed time series is deconvoluted using various types of delay distributions to

reconstruct the time series of infections. Rt is then estimated using the EpiEstim package

and a window size of 3 days. Uncertainty intervals are obtained by combining the credi-

ble intervals and a block bootstrapping approach. The bootstrapping step was only

added on January 26, 2021, and led to a widening of intervals (leaving point estimates

unaffected). The ETH team published four estimates in parallel (based on confirmed

cases as used here, as well as on new hospitalizations, deaths, and test positivity percent-

ages). We focus on the Rt estimates referred to as “sliding window” (the default in the

ETH dashboard).

SDSC (Swiss Data Science Center, [19]). The case time series is smoothed via a LOESS-

based seasonal-trend decomposition prior to estimation using the EpiEstim package.

The window size is set to 4 days. The proposed extension is focused on the point esti-

mates from the Cori method and does not involve the computation of uncertainty inter-

vals. The provided intervals thus correspond to those returned by the EpiEstim package.

Table 2. (Continued)

output posterior median, 50%,

90% cred. int.

posterior median, mean, stand. dev.,

50%, 95% cred. int.

point estimate,65%, 95%

conf. int.

point estimate, 100 samples for sensitivity

analysis

1 Some statements were derived for the present study or retrieved from analysis codes rather than the referenced paper; for details on HZI see Appendix A3.
2 Python was only used in some data pre-processing steps (adopted from the rtlive code base).
3 The globalrt model operates on the scale of daily growth rates rather than incidences, but implies a conditional Gaussian distribution for the latter.
4 The epiforecasts team was the only one to account for uncertainty in the GT, IP and RD distributions; see also Fig 2.

Abbreviations: conv. = convolution; cond. distr. = conditional distribution; conf. / cred. int. = confidence / credible interval; deconv. = deconvolution; est. = estimate;

GT = generation time; HPD = highest posterior density; IP = incubation period; max. lik. = maximum likelihood; mixt. = mixture; RD = reporting delay; rev. = revision;

smooth. = smoothing; stand. dev. / err. = standard deviation / error

https://doi.org/10.1371/journal.pcbi.1011653.t002
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Ilmenau (Technische Universität Ilmenau, [18]). The effective reproductive number is

estimated in a frequentist fashion using Eq (1) and a window size of one day. Wald-type

confidence intervals are based on newly derived asymptotic standard errors of the

employed estimator.

epiforecasts (London School of Hygiene and Tropical Medicine, [20]). The estimation of Rt
is based on a Bayesian latent variable approach, implemented in the R package EpiNow2
[28]. The infection dynamics are modeled as in Eq (1) and linked to the observed case time

series via convolutions with the assumed incubation time and reporting delay distributions.

The observation model is given by a negative-binomial distribution. A zero-mean Gaussian

process with a Matérn kernel is used for the first-order temporal differences of the effective

reproductive number with the magnitude and lengthscale estimated jointly with other

parameters. Like for ETH, estimates based on hospitalizations and deaths were available,

too, but we focus on estimates based on case incidences.

rtlive (Forschungszentrum Jülich, [21, 29]). Estimates are based on relationship (2), which is

combined with a delay process from infection to detection and a re-scaling of case numbers

with inverse testing volumes. Inference is conducted in a Bayesian fashion. Similarly to the

epiforecasts approach, a negative binomial observation model is used and Rt is assigned a

random walk prior.

globalrt [22]. This approach exploits a relationship between the epidemic growth rate and the

effective reproductive number which holds under the SIR (susceptible-infected-removed)

model. The effective reproductive number is assumed to follow a random walk and estima-

tion from observed growth rates is done via a Kalman filter or smoother. We here focus on

the smoothing version, which corresponds to a case reproductive number, as this was dis-

played in the public dashboard. The generation time distribution is assumed to be exponen-

tial as in the SIR model.

HZI (Helmholtz Centre for Infection Research, [23, 30]). A deterministic SECIR (suscepti-

ble—exposed—carrier—infected—recovered) model with time-varying parameters is fitted

to cumulative case and death numbers, with certain parameters fixed to or varied around

literature estimates. Estimates of Rt are computed from the model parameters, which are

estimated for sliding 10-day windows. We use estimates which in addition were smoothed

using a 7-day moving average, as shown in the HZI dashboard.

2.3 Epidemiological assumptions and parameterization

All described approaches require some parameterization, i.e., specification of epidemiological

assumptions. In particular, the distributions of the following durations and delays need to be

chosen.

• The generation time (GT), i.e., time between primary and secondary infection. The impact of

the chosen generation time distribution on Rt estimates is well-studied [31]. The longer the

assumed mean generation time, the greater the amplitude of estimates away from 1 (i.e., esti-

mates are increased if R̂t > 1 and decreased if R̂t < 1 for a prolonged period of time). The

variance of the GT has a more subtle effect. If Rt is time-constant, Rt estimates are further

from 1 the smaller the variance [31]; for time-varying Rt, the assumed variance also influ-

ences the smoothness of the estimated trajectories.

• The incubation period (IP), i.e., time from infection to symptom onset. Changing the mean

incubation time shifts Rt estimates in time (as the actual infection events will be assumed to
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precede the respective symptom onsets and reports by a longer or shorter time period). The

impact of the variance is not well-studied, but it likely affects the smoothness of estimates.

• The reporting delay (RD) between symptom onset and reporting. Like the incubation period,

the reporting delay will mainly shift estimates in time.

Table 2 summarizes the distributions used by the different groups. The means and standard

deviations of the generation time distributions are moreover displayed in Fig 2. To illustrate

that the variability in assumed values is not limited to the German context we added values

used by various European public health agencies (see Section B in S1 Text for sources). Note

that the values for HZI are not explicitly provided in the manuscript by [23], but have been

computed by us based on model parameters reported there (see Section C.1 in S1 Text). The

globalrt dashboard allowed users to select a mean generation time between five and ten days;

we here use the default setting of seven days.

2.4 Methods-specific tuning parameters and prior distributions

The standardized display of analytical choices in Table 2 neglects that in each modeling

approach, some additional decisions arise. Bayesian estimation as employed by several teams

Fig 2. Scatter plot of mean generation time and corresponding standard deviation used by different research groups. The red rhombus represents a

“consensus value” chosen for further analysis, see Section 4.1. epiforecasts accounted for uncertainty in the generation time distribution by assuming

independent normal priors for the mean and standard deviation; we illustrate the respective 95% uncertainty intervals by a cross. For context, we also show

values used by public health agencies of other European countries. In the Netherlands (due to the transition to the Omicron variant) and Austria (due to a

data update) the parameterization was revised. For details and references see Section B in S1 Text.

https://doi.org/10.1371/journal.pcbi.1011653.g002
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requires choosing prior distributions. The HZI approach takes into account numerous epide-

miological characteristics other than the generation time, which are informed by literature

estimates. The SDSC and ETH approaches involve data smoothing and deconvolution, which

require fixing various tuning parameters. These aspects cannot be standardized across meth-

ods, and we refrain from analyzing them in detail. Instead, we pragmatically leave them at the

values specified by the respective teams wherever needed.

2.5 Input data sources

While Rt can also be estimated from death or hospitalization counts [16, 34], we focus on esti-

mates based on COVID-19 case numbers. In Germany and during the considered time period

(April 2020—July 2021), such data were regularly released by Robert Koch Institut (RKI, [7]),

the World Health Organization (WHO, [35]), and the Center for Systems Science and Engi-

neering at Johns Hopkins University (JHU, [36]). The WHO and JHU data were aggregated

by the time cases first appeared in the respective data set. The RKI data were in a line list for-

mat containing a reference date called theMeldedatum (“reporting date”) and for a subset of

cases the symptom onset date. TheMeldedatum denoted when a local health authority digitally

registered a case and usually corresponded to the date of the positive test. The Ilmenau, HZI,

and rtlive groups aggregated the RKI data by this date. RKI and ETH used the date of symptom

onset where available. While RKI completed missing onset dates via multiple imputation, ETH

used the reporting date when the symptom onset date was not available and adjusted the

reporting delay in the deconvolution accordingly. rtlive additionally used (not publicly avail-

able) data on testing volumes, while the HZI model also used mortality data.

Fig 3 shows the different case incidence time series for January through June 2021. The

series denoted “RKI, positive test” is aggregated by the date of the positive test using the imple-

mentation from rtlive. “RKI, symptom onset” is the time series by symptom onset date as

reconstructed by RKI. The series by symptom onset is shifted to the left compared to the oth-

ers; the WHO data are somewhat shifted to the right, while the JHU and RKI data by test date

Fig 3. Case incidence time series used by different research groups. To enhance visibility we only display the period January through June 2021 (data

version: November 23, 2021).

https://doi.org/10.1371/journal.pcbi.1011653.g003
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are largely aligned. All series display within-week seasonality, with a smaller amplitude for the

RKI data by onset date. The JHU data occasionally display spikes absent in the other series. A

last relevant aspect, going beyond Fig 3, is the temporal stability of the data. While the WHO

and JHU data were only rarely subject to revisions, the last 3–5 entries in the RKI case data

were typically still updated retrospectively.

3 Within-model temporal coherence of real-time estimates

We now move to the analysis of Rt estimates based on the methods and parameterizations

described before. Estimates were typically updated each day in an automated fashion. Often-

times these updates also concerned estimates for the past, which were revised in light of new

data. Consequently, for each target date, i.e., the date to which an estimate refers, a multitude

of estimates issued on different publication dates are available. This raises the question of tem-
poral coherence of estimates. By this, we mean that estimates issued at various times should not

differ more than implied by the respective uncertainty intervals. Temporal coherence is a nec-

essary, though not sufficient, prerequisite for reliable estimation. After all, if subsequent esti-

mates from a method are incompatible, agreement with the underlying truth is necessarily

limited. Our analyses are based on real-time estimates obtained from the repositories refer-

enced in S1 Text, Section A. These will be compared to consolidated estimates issued at a later

time point by the same method, using data which can be assumed to have stabilized; see the

following subsections for details. We do not explicitly take into account possible modifications

of methods during the considered time period; strictly speaking, we thus assess the coherence

of estimation systems, which may evolve over time, rather than uniquely defined methods

with fixed parameterizations.

3.1 Illustrating the evolution of Rt estimates over time

Visual exploration. Fig 4 illustrates how real-time Rt estimates from different methods

evolved over time. For each method and a 70-day period, it overlays real-time estimates and a

consolidated estimate made six months later (black line) when all data and results can be

expected to have stabilized. Where available, 95% uncertainty intervals are shown as shaded

areas. We display estimates published on Thursdays where available and published on neigh-

boring days otherwise. Dates of publication are indicated by vertical lines. Note that most

teams do not provide estimates up to the publication date, i.e., the Rt trajectories do not reach

the vertical line in the respective color. Moreover, some teams (epiforecasts, Ilmenau, SDSC)

marked estimates for recent dates as “based on partial data” or “forecast”, which we indicate by

dashed and dotted lines, respectively. We note that epiforecasts reported 90% rather than 95%

uncertainty intervals, along with a standard deviation. As the 90% intervals agreed well with

the Gaussian approximation mean ± 1.645× sd, we approximated the 95% intervals as

mean ± 1.96× sd.

Identified patterns. Some patterns can be discerned in how and how strongly estimates

were revised. While the HZI estimates hardly changed, for RKI and Ilmenau recent values

tended to be corrected upwards. The ETH estimates, on the other hand, were mostly corrected

downwards for the displayed period. rtlive, epiforecasts and (to a lesser degree) globalrt esti-

mates tended to be corrected upwards when Rt was increasing and downwards in periods

when Rt was decreasing. For SDSC, there were some pronounced corrections, but without a

clear pattern. Moreover, the approaches differed in the width of the uncertainty intervals.

While those from SDSC and Ilmenau were very narrow, those of rtlive and globalrt were so

wide that they almost always included the threshold value of 1. For most methods, uncertainty

increased for recent dates, leading to funnel-shaped bands. This was particularly prominent
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Fig 4. Rt estimates published between October 1, 2020, and December 10, 2020, and a consolidated estimate published 6 months later

(epiforecasts: 15 weeks later). Note that different time periods are used for Ilmenau and globalrt as these were not operated during the period

shown for the other models. The consolidated ETH intervals are wider than those issued in real time due to a revision of methodology. The line

type represents the label assigned to the estimate by the respective team: solid: “estimate”, dashed: “estimate based on partial data”, dotted:

“forecast”. Shaded areas show 95% uncertainty intervals.

https://doi.org/10.1371/journal.pcbi.1011653.g004
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for epiforecasts, whereas the SDSC and ETH intervals were of almost constant width. As men-

tioned in Section 2.2, the ETH method was revised in early 2021; this change explains why the

consolidated intervals are wider than those from Fall 2020. The HZI estimates were published

in the form of samples, but it is unclear whether these can be seen as an uncertainty quantifica-

tion. As estimates were displayed without uncertainty bands on the HZI website, we likewise

omit them from panels A and B in Fig 5.

Fig 5. Temporal coherence of Rt estimates. Panels: A Proportion of 95% uncertainty intervals issued in real-time which contained the consolidated

estimate. B Mean width of 95%-uncertainty intervals (unavailable for HZI, who only published point estimates). C Mean absolute difference of the real-

time and consolidated estimates. D Same as C, but signed rather than absolute differences. E Proportions of cases in which real-time and consolidated point

estimates disagree on whether Rt> 1. F Same as D, but with a tolerance region [0.97, 1.03], i.e., only instances where real-time and consolidated estimates

are on different sides of this interval are counted. All indicators are shown as a function of the time between the target date (as stated by the teams) and the

publication date. Averages refer to the period October 1, 2020—July 22, 2021 (see Fig F in S1 Text for exact periods during which methods were operated).

The consolidated estimate corresponds to the one published 70 days after the respective target date. For ETH two additional lines are included in the top

row differentiating between intervals obtained from the old procedure before January 26, 2021 (n = 95), and from the new bootstrap approach afterward

(n = 171; see model description in Section 2.2).

https://doi.org/10.1371/journal.pcbi.1011653.g005
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3.2 Systematic assessment of temporal coherence

Metrics to assess temporal coherence. To substantiate these observations, we assess the

temporal coherence of estimates quantitatively. Unlike in the illustration in Fig 4 we do not

use estimates made at a single later time point as the consolidated ones. Instead, for each target

date the consolidated estimate is defined as the estimate generated 70 days later by the same

method. This ensures that the time during which the estimates could be revised is the same for

all target dates. Based on this definition we computed the following.

• The fraction of instances in which the 95% uncertainty intervals issued in real-time covered

the respective consolidated point estimate. If this quantity falls substantially below the nomi-

nal level of 0.95, there is an indication that the estimates are temporally incoherent.

• The average width of 95% uncertainty intervals. This serves to contextualize the coverage

fractions, which depend on both the degree of revisions and the width of uncertainty

intervals.

• The mean absolute difference (MAD) between real-time and consolidated point estimate.

This reflects the volatility of real-time estimates relative to the consolidated ones, thus sum-

marizing their temporal stability.

• The mean signed difference (MSD) of real-time and consolidated estimates. This reflects if

revisions are systematically in one direction. We orient this such that positive values indicate

upwards corrections.

• The fraction of instances in which the point estimate flipped from R̂t < 1 to R̂t > 1 or vice

versa. This describes how commonly the qualitative interpretation as epidemic growth or

decline changes. Note that this is based purely on the point estimate and ignores the uncer-

tainty intervals.

• The fraction of instances in which the point estimate flipped from R̂t < 0:97 to R̂t > 1:03 or

from R̂t > 1:03 to R̂t < 0:97. Instances where an initial estimate close to one crossed this

threshold via a minor revision are thus omitted, meaning that we focus on more major

revisions.

Fig 5 summarizes the results for estimates published between October 1, 2020, and July 22,

2021. Not all models were operated during the entirety of this period, but we consider it a rea-

sonable overlap (see Table 1 and Fig F in S1 Text on when methods were operated). This

period includes two full waves of infections (Fig G in S1 Text) so that effects caused by rising

or falling case numbers should largely cancel out. Results are shown as a function of the num-

ber of days between the publication date and the target date. E.g., “10d back” means that the

estimate refers to the date ten days before the time of estimation. We here stuck to the labeling

of estimates by the respective research teams. As they assumed different incubation periods

and reporting delays (Table 2), estimates from different methods are not necessarily aligned.

Notably, the estimates (and thus curves in Fig 5) by epiforecasts, rtlive, and ETH are shifted to

the left relative to the others, as longer incubation periods and reporting delays were assumed.

In Fig H in S1 Text we provide a display where curves are aligned to improve comparability.

The respective shifts have been determined in a data-driven way, see Section 4.1 and Section D

in S1 Text.

Coherence of uncertainty intervals issued in real time and consolidated point esti-

mate. Panel A shows the coverage fractions of the 95% uncertainty intervals as defined

above. These were in the order of 95% for rtlive and consistently 100% for globalrt. For epifore-

casts, coverage was close to nominal less than 4 and more than 14 days back, while there was a
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moderate dip in between (this concerned mostly estimates marked as “based on partial data”).

RKI and Ilmenau achieved close to complete coverage for dates further back in the past, start-

ing from 9 and 14 days back, respectively. For more recent values, however, coverage dropped.

This was particularly pronounced for Ilmenau, with coverage falling to 0% at 8 days back. ETH

overall achieved coverage values of 40% to 75% during the period examined in this paper. As

can be seen from the additional lines labeled “old” and “new”, coverage was considerably

higher for estimates published after January 26, 2021, when the computation of intervals was

revised (with the explicit goal to account for more sources of uncertainty, see [37]). The cover-

age of the SDSC (default EpiEstim) intervals was around 25% for values labeled as “observed”

and dropped to roughly 10% for values labeled “predicted”. Panel B shows the average width of

the 95% uncertainty intervals. The funnel-shaped character of the confidence intervals of glo-

balrt, rtlive, epiforecasts, and RKI is reflected in the upward shape of the respective curves. As

already visible in Fig 4, the uncertainty intervals issued by globalrt and rtlive were considerably

wider than those from the other groups. SDSC and Ilmenau issued the most narrow intervals.

Prior to the change in methodology in January 2021, the ETH intervals were similarly narrow

but became wider afterward.

Revision of point estimates. Panels C and D display the mean absolute and mean signed

differences between real-time and consolidated estimates, respectively. For all methods, the

mean absolute difference was the largest for recent values. A particularly striking picture is

seen for the Ilmenau estimates, where the average correction of estimates 8 days back was 0.31.

For some methods the MAD approached zero after a few days (HZI, RKI, Ilmenau, globalrt),

indicating that the estimates stabilized. For the remaining models, the average corrections

were clearly non-zero even 20 days back, with epiforecasts and SDSC showing a flat pattern

from around 12 days back. Panel D shows that for most methods estimates tended to be cor-

rected upwards, especially recent ones. As already visible from Fig 4, this includes RKI and

Ilmenau. For ETH the picture is somewhat difficult to interpret, as the sign of the average cor-

rection flips at 16 days back. It should be noted that for most models the mean signed differ-

ences were much lower than the mean average differences, indicating that corrections in both

directions occurred.

Point estimates flipping above / below 1. Panel E shows in which proportion of cases the

real-time and consolidated estimates are on opposite sides of the threshold value of 1, i.e., flip

between epidemic growth and decline. This is relatively common for recent estimates from

Ilmenau, rtlive (more than a third of the cases), and to a lesser degree epiforecasts and SDSC.

As can be seen from panel F, these proportions roughly halve if we introduce a tolerance

region [0.97, 1.03] and only count instances where the two estimates are on different sides of

this region. This implies that many of the flips counted in panel E actually result from minor

corrections in cases where R̂t � 1. However, some more major revisions remain. We note,

though, that even in these cases the uncertainty intervals often contain values on either side of

1, meaning that there is not necessarily a contradiction. For instance, the rtlive intervals very

often include values to both sides of 1.

Sensitivity of results. To assess the sensitivity of these results to the definition of the con-

solidated estimates, we compared estimates published 50 and 70 days after the target date. As

Fig I in S1 Text shows, these agree closely. The exact definition of the consolidated estimates is

thus not crucial for our results.

3.3 Interpretation of observed patterns

We now provide some interpretation of the identified patterns, pointing out possible connec-

tions to modeling choices. Retrospective revisions of Rt estimates can stem from two main
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mechanisms. These are the revision of input data and information flow due to statistical

smoothing assumptions.

Revisions due to revised impact data. Firstly, past incidence values can be revised in the

input data, which will lead the same estimation method to produce different results when re-

run. The RKI data were subject to such revisions, while the JHU and WHO data were rarely

revised. Data revisions were typically upward as delayed reports were added. It seems likely

that the strong upward corrections in the Ilmenau estimates stem from this aspect as reporting

delays were not accounted for explicitly. We note that data were usually only revised over a

few days; afterwards, the Ilmenau estimates thus became quite stable and interval coverage

quite high, explaining the characteristic patters in Fig 5. The RKI method included a nowcast-

ing step to account for delays, but the correction seems to have been slightly too weak. The

rtlive model accounted for revisions by an empirically determined reporting delay distribu-

tion. However, it also relied on testing volume data which was more prone to data revision.

In the Cori and the HZI methods, the length of the estimation window moderates how

strongly results can change due to data revisions. The Ilmenau model, which used a one-day

window, was strongly affected as estimation hinged purely on the rather unstable last data

point. The HZI model, on the other hand, used a ten-day window for estimation and addition-

ally smoothed the consolidated estimates via a trailing seven-day moving average. The consoli-

dated estimates were thus based on a 16-day window (with some weighting). As the revisions

of the RKI data only concerned a small part of this window, the resulting revisions of estimates

were negligible. We illustrate this in Fig D in S1 Text, which shows that without the additional

smoothing step slightly more pronounced revisions of estimates occurred.

Revisions arising from smoothing assumptions. Another reason why estimates may

change is smoothing during the estimation process. This can enter either via data pre-process-

ing (ETH, SDSC) or model assumptions on the Rt trajectory (Gaussian process assumption in

epiforecasts, random walk in rtlive and globalrt). Via smoothing, a new data point can influ-

ence how the model treats previous data, and thus impact the results for preceding target

dates. We note that smoothing is a planned feature of the approaches in question. Indeed, esti-

mates up to the day of estimation as available from epiforecasts would not be feasible without a

generative assumption implying some smoothness. The trade-off is that near-real-time esti-

mates are increasingly extrapolations of the previous Rt trajectory, and likely to change once

more data become available. This explains why estimates from epiforecasts, globalrt, and rtlive

were often corrected upwards when Rt was on the rise and downwards when it was on the fall.

For methods based on trailing estimation windows (RKI, Ilmenau, HZI) revisions cannot arise

from this aspect, even though window sizes larger than one day also imply some smoothing.

Width of uncertainty intervals. Lastly, how well uncertainty intervals cover consolidated

estimates depends on how wide the former are. By issuing wide intervals, globalrt and rtlive

achieved high coverage despite substantial revisions. While we defer a general discussion of

the interval widths to Section 4, we provide some remarks on the widening of intervals for tar-

get dates close to the publication date. This funnel-like pattern was particularly pronounced

for epiforecasts, globalrt, and rtlive. These methods provided estimates closest up to the publi-

cation date, which as mentioned before, got less and less constrained by data. In the Bayesian

framework, this translated naturally to wider uncertainty intervals. In the case of rtlive, this

was reinforced by hard-coded assumptions on the variability of the random walk. In the RKI

approach, the uncertainty from the nowcasting step was forwarded to the Rt estimation, lead-

ing to similarly expanding intervals. For both epiforecasts and RKI, this widening was not

quite pronounced enough, however, and interval coverage fell below the minimum desired

level of 95%. The Ilmenau, ETH, and SDSC (default EpiEstim) approaches showed little to no

widening of intervals. The likely reason is that the uncertainty about the recent data points was
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not forwarded to the Rt estimation from earlier preprocessing steps (see the discussion section

of [18] on additional sources of uncertainty). In all three cases, this led to a drop in 95% inter-

val coverage below 50%.

4 Between-method agreement of retrospective estimates

We now turn to the agreement across estimates by different research groups, which as shown

in Fig 1 can differ substantially. Our approach is to standardize analytical choices in order to

assess their contribution to the overall disagreement. This is inspired by the vibration of effects
framework [38], which for observational studies serves to assess the sensitivity of effect esti-

mates to aspects like model choice and measurement errors. While e.g., the impact of the

assumed generation time distribution on estimates is well-understood at a theoretical level (see

Section 2.3), we aim to answer an empirical question: What differences arise in practice when

different researchers independently take the necessary analytical decisions?

4.1 Sequential standardization and individual variation of analytical

choices

The consensus setting. As visible from Table 2, the available Rt estimates are not only the

results of different statistical methods but also of different parameterizations and input data.

Isolating the contributions of these aspects requires standardizing the remaining dimensions

as far as possible. In what follows we describe a “consensus setting” which we implement for

each of the represented methods (see also Panel A of Table 2, last column).

• Incidence data: We use RKI data, which are the most common choice among teams. We use

data by test date as aggregated by rtlive for all methods requiring a simple time series. Models

making use of information on symptom onset dates (RKI, ETH), test positivity percentages

(rtlive) or mortality (HZI) can keep using these as we consider this an integral part of their

method.

• Epidemic model: We employ the Cori method [14], a common building block in the consid-

ered approaches, in its basic form without any pre-processing steps.

• Window size: When applying the Cori method we use a window size of 7 days. This is a com-

mon choice as it reduces fluctuations arising from within-week reporting patterns.

• Generation time distribution: We assume an exponential distribution with rate 1/4, i.e., mean

and standard deviation equal to 4 days. While an exponential distribution may not be the

most common choice to match the epidemiology of COVID-19, this enables us to include

the globalrt model, which can only accommodate an exponential GTD.

• Incubation period and reporting delay: These aspects are challenging to standardize across

methods, as variation in delays is an integral part of some methods (e.g., epiforecasts) but

incompatible with others (e.g., Ilmenau, SDSC). Temporal misalignment resulting from

these aspects is therefore handled pragmatically by shifting estimates in time. As the consen-

sus setting, we assume that the reporting delay and incubation period sum up to seven days

and shift estimates accordingly.

• Definition of Rt: By using the Cori method, we estimate instantaneous reproductive numbers.

Based on the notion that Rinst
t� i lags behind Rcase

t� i by one mean generation time (see Section

2.1), we again resort to shifting estimates of case reproductive numbers in time to align

them.
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In practice, it proved challenging to determine exactly how estimates needed to be shifted

to account for differing assumptions on incubation periods, reporting delays, and type of Rt.
Following [39], we therefore adjust temporal shifts for each method in a data-driven way by

minimizing the mean absolute difference to the consensus estimates (see Section D in S1 Text

for details and additional analyses based on reported delay distributions).

We moreover note that while all other approaches can be reproduced with standardized set-

tings, some compromises are necessary for the HZI model. The input data already correspond

to the consensus choice and the various delay distributions are handled by shifting estimates

(as for all other models). The generation time distribution, however, cannot be set directly to

the consensus setting, as it is not an independent parameter in the HZI model. Instead, it arises

from the interplay of numerous other parameters. We therefore opt to transform the published

estimates using a relationship linking the generation time distribution and Rt estimates from

[31] (see also Section C.2 in S1 Text).

Sequential standardization. It is not practically feasible to assess all combinations of stan-

dardizing or not standardizing the different analytical choices. We therefore vary them in two

specific fashions. In the first procedure, we start from the original settings used by different

teams. Then, in the above order, we standardize all analytical choices apart from the statistical

estimation approach (including possible pre-processing steps). We refer to this as sequential
standardization. The order of steps is motivated as follows. It seems natural to handle the data

source first (Step 1), establishing a common basis for the remaining aspects. As the choice of

window size has a strong impact, we handle it second (Step 2), thus avoiding that it obscures

the picture in the following steps. As the temporal shift is handled in a data-driven way, it

needs to be handled last (Step 4), leaving the generation time distribution to be handled in

Step 3.

Individual variation. The second procedure starts from the consensus model (i.e., a sim-

ple application of the Cori approach) and subsequently varies the different analytical choices

one by one. We refer to this as individual variation. An advantage of individual variation is

that it does not require specifying an order in which the various dimensions are aligned. The

sequential approach, on the other hand, helps to illustrate the compounding of the various

effects.

Retrospective approach. As some of the considered approaches are computationally

costly (in particular the Bayesian hierarchical models by epiforecasts and rtlive) it is not feasi-

ble to re-run the estimations under different parameterizations for all considered estimation

dates. We therefore refrain from mimicking a real-time setting and assess between-method

agreement retrospectively for a single estimation date. Specifically, we consider estimates for

the period April 1, 2020, until June 10, 2021, based on data as available on July 10, 2021.

4.2 Results for point estimates

Sequential standardization. Fig 6 shows how the agreement between methods improves

step by step in the sequential standardization of analytical choices. The visual impression of

closer and closer alignment from the left column is confirmed by the matrices of mean abso-

lute differences in the right column. These range from 0.03 (epiforecasts vs. ETH vs. SDSC) up

to 0.32 (Ilmenau vs. HZI) for the original versions of the estimates, with an average pairwise

value of 0.15. This is a substantial difference given that the estimates are mainly between 0.75

and 1.25. Once all analytical choices other than the estimation method and data pre-processing

are aligned, mean absolute differences range from 0.01 (ETH vs SDSC) to 0.07 (epiforecasts vs

rtlive). Particularly strong improvements result from standardizing the window size where

applicable and the generation time distribution. Aligning the window size removes the
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Fig 6. Step-by-step alignment of analytical choices to the consensus specifications. The left column shows the resulting Rt
estimates for a subset of the considered time period. The right column shows the mean absolute differences between point

estimates obtained from the different approaches. In the bottom panel all considered aspects other than the estimation method

(incl. data pre-processing) are aligned. Note that the two top rows we use wider y-axis limits to accommodate the Ilmenau

estimates.

https://doi.org/10.1371/journal.pcbi.1011653.g006
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periodic fluctuations in the Ilmenau estimates, which are based on a window of just one day.

Standardizing the generation time distribution has a strong impact on the HZI estimates,

which use a long mean generation time of 10.3 days.

As can be seen from the improvement between Steps 3 and 4, temporal shifting of estimates

is necessary to achieve good alignment. This shift, which is determined in a data-driven way,

accounts for differences arising from the assumed incubation periods and reporting delays

and the choice between case and instantaneous reproductive numbers. In almost all cases the

shifts agree well with what would be expected based on the respective model descriptions, see

Table A in S1 Text. An alternative display where shifts are determined based on these descrip-

tions is available in Fig H in S1 Text. A version of Fig 6 with mean relative rather than absolute

differences is available in Fig J in S1 Text, but looks similar.

Individual variation. Results for the individual variation approach are shown in Fig 7.

Here, we also vary the data pre-processing step separately; this corresponds to nowcasting for

RKI, smoothing for SDSC, and a combination of nowcasting, smoothing, and deconvolution

for ETH. Pre-processing as well as the choice of data source impact the smoothness of the esti-

mates, but in terms of mean absolute deviations play a limited role. The window size and gen-

eration time distribution have a stronger impact on the results. The resulting mean absolute

differences are in fact more pronounced than when varying the estimation approach (bottom

panel). As implied by theory, the estimates are fanned out away from Rt = 1 when longer mean

generation times are used. In particular, the HZI choice with a mean generation time of 10.3

days stands out. Concerning the window length in the Cori approach, choices that are not

multiples of 7 lead to periodically fluctuating estimates. We note, however, that the ETH and

SDSC teams, who use widths of 3 and 4 days, employ data pre-processing steps to suppress

this behavior.

4.3 Some remarks on uncertainty intervals

Visual comparison. An analog display of the bottom panels of Figs 6 and 7 showing 95%

uncertainty intervals can be found in Fig 8. Here, all analytical choices have been standardized

apart from the estimation method and data pre-processing. While similarly to the point fore-

casts, the intervals are more aligned in terms of their temporal course, considerable differences

in their widths remain. Rather narrow intervals are produced by the Ilmenau, SDSC, RKI, and

ETH approaches (based on the updated version of the method). The intervals obtained from

the epiforecasts, globalrt, and rtlive methods are wider. This divide coincides with variations of

the Cori method on the one hand, and more complex hierarchical approaches on the other.

Including overdispersion in the Cori method. One particularity of the Cori approach

[14] compared to the three others is that it combines Eq (1) with a conditional Poisson distri-

bution of observed case counts. The epiforecasts and rtlive approaches assume a negative bino-

mial distribution and globalrt implicitly assumes a Gaussian distribution. These distributions,

unlike the Poisson distribution, have a free parameter steering the degree of dispersion. It is

known that in generalized regression, assuming a Poisson distribution can lead to an underes-

timation of standard errors when the data are actually over-dispersed [40]. To assess whether

this aspect plays a role in the observed patterns we re-ran the Cori method swapping the Pois-

son for a negative binomial distribution. As can be seen from Fig 9, this results in considerably

wider uncertainty intervals, comparable to those from globalrt.

We note that the negative binomial version of the Cori method needed to be newly imple-

mented. For technical ease and to avoid having to specify prior distributions we performed fre-

quentist estimation via the function glm.nb from the R package MASS. The overdispersion

parameter of the negative binomial distribution was estimated jointly with Rt (under the
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Fig 7. Individual variation of analytical choices in the consensus model. Left column: Rt estimates for a subset of the

considered time period. Right column: mean absolute differences between point estimates. The values over which the

respective quantities are varied correspond to those chosen by the different teams. For the generation time distribution, we

adopt the notation mean (standard deviation). Note that the different panels use different y-axis limits. The bottom panel is

identical to the one of Fig 6.

https://doi.org/10.1371/journal.pcbi.1011653.g007
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assumption of a constant value over the 7-day estimation window); see Section F in S1 Text for

details. As an analog implementation of the Poisson version yielded almost identical results to

EpiEstim we consider the use of a frequentist rather than Bayesian implementation

unproblematic.

Potential role of generative models for Rt. Another potentially relevant difference

between the Cori approach and the three others involves the assumptions on the process gov-

erning Rt. While the Cori method assumes Rt to be constant on a certain time window, the oth-

ers assume truly generative models, specifically random walks or a Gaussian process. Both

assumptions serve to stabilize estimates. However, it is difficult to assess their impact, as

replacing them would be a fundamental change to the respective models.

5 Discussion

In this paper, we assessed temporal coherence and between-method agreement of Rt estimates

for COVID-19 in Germany. We found that for most considered methods, the real-time esti-

mates for dates close to the publication date were subject to substantial revisions. In many

cases, these were more pronounced than implied by the accompanying uncertainty intervals.

Some methods were able to avoid temporal incoherence but at the cost of wide uncertainty

Fig 8. Comparison of uncertainty intervals after standardization of analytical choices. The figure shows 95% uncertainty intervals corresponding to Fig

6, Step 4.

https://doi.org/10.1371/journal.pcbi.1011653.g008

Fig 9. Comparison of 95% uncertainty intervals of the Cori method (consensus settings) with a Poisson (dark) and negative binomial distribution

(light). The uncertainty intervals under the Poisson distribution are hardly discernible from the line representing the point estimate.

https://doi.org/10.1371/journal.pcbi.1011653.g009
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intervals. In our retrospective assessment of the between-method agreement, we found that

while the choice of estimation method led to some discrepancies, surrounding analytical

choices, e.g., on the generation time distribution, were at least as influential. In terms of the

uncertainty intervals of retrospective estimates we found a certain divide between approaches

based on the method by Cori et al [14] and more sophisticated Bayesian approaches, which

yielded wider uncertainty intervals. As discussed in Section 4.3 the former may tend to under-

estimate the overall estimation uncertainty, which arises from the compounding of various

factors.

Our assessment of temporal self-coherence highlights the importance of continuously

tracking the real-time behavior of Rt estimates. If these are overly fluctuating or subject to sys-

tematic corrections, this may lead to a loss in user trust. However, the stability of estimates is

not the only relevant goal, and there is a trade-off with the timeliness of estimates. Rt estimates

are quickly outdated, and results for recent days are the most relevant for public health pur-

poses. These are unavoidably subject to increased uncertainty. This needs to be acknowledged

by users, and uncertainty needs to be quantified and communicated appropriately. We believe

that analyses of temporal coherence as presented in our work can be a useful tool to this end.

In our between-methods comparison of estimates, we found that in particular the assumed

generation time distribution and the choice of estimation window sizes drove differences

between estimates published by different research teams. These decisions and their potential

impact should thus be communicated transparently. The approach taken by globalrt, where

users can vary the mean generation time, is promising, though some contextualization on

which values are well-supported by the state of research may be helpful. Temporal shifts arising

from different assumptions on incubation periods and reporting delays proved relevant, too,

as they shift Rt estimates in time. This is of particular importance when linking the latter to

intervention measures. The respective delay distributions should thus be chosen with care. We

expect that careful deconvolution of incidence data may yield a clearer picture than simpler

shifting or smoothing approaches especially when Rt changes abruptly; this, however, would

need to be assessed in simulation studies where the true Rt values are known.

Given the important role of epidemiological parameterizations, we recommend to assess

their plausibility carefully when selecting among different sets of Rt estimates. The parameteri-

zations should be backed by recent and solid evidence from the literature. In practice, many Rt
estimates for COVID-19 continued to be based on rather uncertain evidence from the early

phases of the pandemic, without updates in the light of new evidence or virus properties. The

ETH team retrospectively updated their generation time distribution to a new estimate for the

Omicron variant [41] in October 2022; a similar change was made e.g., by the Dutch National

Institute for Public Health and the Environment (RIVM). Such revisions may be helpful to

ensure methods stay up-to-date.

It has been argued that to reduce the dependence on specific assumptions, different esti-

mates could be combined into a consensus Rt value or range. While in the United Kingdom

meta-analysis techniques have been applied to this end [42], this is not without pitfalls. Unlike

in classical meta-analysis, different estimates are typically obtained from the same data and

thus inherently dependent. As pointed out by [43], this leads to estimators with unclear statisti-

cal properties. Moreover, when merging estimates based on different assumptions, the esti-

mand becomes unclear, as do the assumptions underlying the consensus estimate. To combine

estimates of the basic reproductive number R0, an appealing approach where information is

pooled separately for the generation time distribution and the epidemic growth rate has been

suggested by [44]. This could likely be translated to Rt estimation.

In the present work, we focused exclusively on estimates based on national-level case inci-

dence data. We did not take into account regional or age stratification, which can be
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incorporated e.g., in compartmental epidemiological models to estimate Rt [4]. Reproductive

numbers can also be estimated from other data streams including hospitalizations, deaths [16,

34], wastewater surveillance [37] and PCR cycle threshold data [45]. While these may resolve

some of the issues of case incidences, e.g., their sensitivity to testing strategies, the dependence

of estimates on analytical choices remains largely the same. Nonetheless, considering estimates

based on various data streams may yield a more comprehensive picture. More generally, we

underscore that the Rt value should not be interpreted in isolation, but in conjunction with

other epidemiological indicators like the overall case and hospitalization numbers or genetic

data on the prevalence of different variants.
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