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ABSTRACT
We study thermal conductivity in one-dimensional electronic fluids combining kinetic [R. Samanta, I. V. Protopopov, A. D. Mirlin, and D. 
B. Gutman, Thermal transport in one-dimensional electronic fluid, Phys. Rev. Lett. 122, 206801 (2019)] and hydrodynamic [I. V.
Protopopov, R. Samanta, A. D. Mirlin, and D. B. Gutman, Anomalous hydrodynamics in one-dimensional electronic fluid, Phys. Rev. Lett.
126, 256801 (2021)] theories. The kinetic approach is developed by partitioning the Hilbert space into bosonic and fermionic sectors. We
focus on the regime where the long-living thermal excitations are fermions and compute thermal conductivity. From the kinetic theory
standpoint, the fermionic part of thermal conductivity is normal, while the bosonic one is anomalous, that scales as ω–1/3 and thus domi-
nates in the infrared limit. The multi-mode hydrodynamic theory is obtained by projecting the fermionic kinetic equation on the zero
modes of its collision integral. On a bare level, both theories agree and the thermal conductivity computed in hydrodynamic theory matches
the result of the kinetic equation. The interaction between hydrodynamic modes leads to renormalization and consequently to anomalous
scaling of the transport coefficients. In a four-mode regime, all modes are ballistic and the anomaly manifests itself in Kardar-Parisi-Zhang-
like broadening with asymmetric power-law tails. “Heads” and “tails” of the pulses contribute equally to thermal conductivity, leading to ω–
1/3 scaling of heat conductivity. In the three-mode regime, the system is in the universality class of a classical viscous fluid [Herbert Spohn,
Nonlinear fluctuating hydrodynamics for anharmonic chains, J. Stat. Phys. 154, 1191 (2014); O. Narayan and S. Ramaswamy, Anomalous
heat conduction in one-dimensional momentum-conserving systems, Phys. Rev. Lett. 89, 200601 (2002)].



1. INTRODUCTION

The viscous electronic fluids were envisioned in the pioneering
work of Gurzhi1 in the late sixties. Nowadays experiments resur-
rected the field.2–24 From the fundamental perspective the interest
in electron hydrodynamics stems from its universality, that systems
with very different constituents show in the long-range limit.
Besides this emergent similarity in the hydrodynamic limit, there
are important differences. One special feature of low-dimensional
hydrodynamics is a large number of conservation laws.25,26 For
systems that are close to integrable, this number is very large and
becomes infinite at the integrability point.27–31 The combined
effects of non-linearity and fluctuations lead to strong renormaliza-
tion effects32 manifested in anomalous transport, in particular in
thermal conductivity.

For non-interacting electronic systems, there is not much
sense to study thermal conductivity, because it is related to the elec-
tric one via Wiedemann-Franz law. In the interacting system, this
law does not apply and thermal transport reveals information that
is not accessible by measuring charge transport. Due to experimen-
tal and theoretical challenges, thermal transport is far less explored
than charge transport. Recently, the situation has changed, and
energy transport was measured in several experiments. The univer-
sal value of thermal conductance g0 ¼ π2T/3h was observed33–36 in
various devices with ideal point contacts. Heat Coulomb blockade
was observed in Ref. 37, directly demonstrating the energy-charge
separation in a controllable manner. The propagation of heat in the
quantum- Hall-effect regime was studied via quantum-dot38,39 and
shot-noise40 thermometry.

The experimental progress combined with open fundamental
questions prompted us to study thermal transport in a one-
dimensional (1D) electronic fluid. The key step in the transition
from many-body quantum problem to the classical regime is
inelastic scattering between the electrons. For such scattering to
occur one has to break the integrability of the problem. For one-
dimensional electron without disorder, this requires a finite curva-
ture in the single particle spectrum.41–45

The bosonization of electrons with finite spectrum curvature
maps non-interacting fermionic theory onto the interacting
bosonic one.46–49 Adding a generic forward scattering interaction
between electrons, one thus describes interacting electrons by a
non-linear bosonic theory. This bosonic theory can be refermion-
ized,44,50,51 giving rise to the description of the system in terms of a
new fermionic quasiparticles (composite fermions). They are
related to the original electrons via non-linear unitary transforma-
tion. Bosonic and composite fermion approaches are dual. The cur-
vature in the single-particle spectrum of the bosons corresponds to
the interaction of the composite fermions and the other way
around. We call this freedom of description the Fermi−Bose
duality.50

From the mathematical perspective, the duality between fermi-
ons and bosons in 1D relies on an exact mapping between the fer-
mionic and bosonic Hilbert spaces.52,53 The mathematical
equivalence of the two languages does not imply that they are
equally convenient for performing the computations. In particular,
various physical processes are described in these two complemen-
tary pictures with varying levels of complexity. One criterion that
indicates which type of statistics (Fermi or Bose) is preferential is
the longevity of the excitation.50 By comparing the lifetime of
thermal (with energy of the order of temperature) excitation we
determine which type of excitations is more natural. Of course,
such criteria assume that the dominant excitations are thermal.
Moreover, it ignores the fact that different many-body configura-
tions have the same momentum, thus our separation procedure is
only an approximation.

Within this approximation, the transition between the fermi-
onic and bosonic regime is determined by the effective mass of fer-
mionic excitations m* and a length l quantifying the curvature of
the bosonic spectrum and the temperature. One can define a tem-
perature scale TFB ¼ 1/m*l2. At T < TFB the thermal fermions are
long-living excitations; the perturbation theory in their interaction
is well-behaved and controlled by the small parameter T/TFB. At
higher temperatures, T > TFB, the proper thermal excitations are
bosons and the bosonic perturbation theory possesses a small
parameter TFB/T. In this review, we focus on the regime where
T < TFB, such that the thermal excitations are fermionic.
Nevertheless, the existence of a subthermal boson is crucial for
thermal conductance in the infrared limit. Below we discuss and
compare two different ways of addressing the problem of thermal
transport. The first approach54 is to compute the thermal conduc-
tivity by using the kinetic-equation framework within a Bose-Fermi
duality picture. The second approach55 is to start at the Fermi side
of the Bose-Fermi duality, then map the problem onto the classical
fluctuation hydrodynamics, and finally compute the conductivity
within the hydrodynamic formalism by taking into account
renormalization effects.

2. HIERARCHY OF SCALES

We now summarise the significant scales of transport regimes.
The shortest time scale is determined by three-fermion colli-
sions,44,45,50,56 for the details of the derivation see Appendix B 2,
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Here, γ is a dimensionless parameter that describes the strength of
the electron-electron interaction, e.g., Eq. (46). This scattering time
corresponds to the spatial scale L6 ¼ uτF(T/u). For lengths greater
than L6 electrons form a classical fluid. Note that the process of
three-fermion-collision involves two fermions from one chiral
branch and one fermion from another branch. All fermions
involved in the collision typically possess the momentum that is of
the order of the thermal momentum (pT ≃ T/u). If two right-
moving fermions scatter with the assistance of a left-moving



fermion, the change of the momentum for each of the right-
moving fermions is of the order T/u. On the other hand, the
change in momentum of the left fermion (and thus the momentum
exchange between different chiral sectors) δp ≃ T2/εFu � pT .
Thus, for length scales shorter than

L4 ≃ uτF(p)
p
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the energy, momentum, and number of left and right-moving elec-
trons are separately conserved and electrons admit a 6 mode hydro-
dynamic description. In also useful to define the corresponding
frequency scale

ω4 ¼ u
L4

≃ γl4T9
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*u
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This conservation is not exact, and deviations become significant at
the scale L4. At this scale, chiral energies and momenta are no
longer separately conserved. Therefore at this scale, these modes
reduce the total energy and total momentum. However, left and
right particle densities are still well-defined. Therefore the problem
is described by 4 mode hydrodynamics. Finally, there is equilibra-
tion of the particle numbers between different chiral branches. This
process can be visualized as a diffusion of the hole through the
bottom of the conduction band. The inter-branch fermion scatter-
ing rate56–59 reads

LU � u2T 3/2ε1/2F e
εF
T , (4)

and a corresponding time τU ¼ LU /u. In addition to the classifica-
tion based on the conservation laws that we just described, there is
a scale that is determined by the renormalization effects. It was
shown55 that renormalization of the bare parameters by fluctua-
tions and non-linearity become significant for lengths greater than
L* ≃ u13

l12T13. Thus we arrived at the following hierarchy of scales
L6 � L4 � L*�LU . It implies that the renormalization effect
occurs deeply in the 4-mode regime. Because physics in 6 mode
regime, modus mutandis, is quite similar to the 4 mode regime we
will skip from discussing the former. We next describe the heat
transport in one-dimensional electronic fluid from the point of
view of kinetic theory.

3. HEAT CONDUCTIVITY FROM THE KINETIC
EQUATION

In the framework of Bose-Fermi duality, one uses bosonic and
fermionic kinetic equations, each one for the corresponding sector
of the Hilbert space. The two kinetic equations read

@Nα(q)
@t

þ uαq
@Nα(q)
@x

¼ Iα,q[Nα]: (5)

Here, α = F/B specifies the type of the quasi-particles (Fermi/Bose),
Nα is a distribution function and Iα is the collision integral. In
either fermionic or bosonic approach, the energy current can then

be computed as

Jα(ω) ¼
ð
(dq)uαqω

α
qNα(q): (6)

Here, the dispersion relation and the Fermi velocity for fermions
are given by

ωF
q ¼ +uqþ q2/2m*, uFq ¼ +uþ q/m*: (7)

Similarly for the bosons

ωB
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�
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�
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In Eq. (7) the ± sign refers to the right and left movers; (dq) ; dq
2πh

and we set �h ¼ 1 throughout the manuscript.
The total conductivity consists of the ballistic part (that is

carried by “almos” zero modes) σbal and the part that is carried by
the excitation with the finite lifetime σ’(ω)

σ(ω) ¼ σbal(ω)þ σ0(ω): (9)

The finite mode conductivity is carried by two parallel channels
(fermionic and bosonic)

σ0(ω) ¼ σF(ω)þ σB(ω) ≃ max
h
σF(ω), σB(ω)

i
: (10)

The contribution of the (almost) zero mode to the heat con-
ductivity can then be extracted either in fermionic or bosonic
framework60,61
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At ωτU � 1,
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3
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is purely imaginary and does not contribute to the dissipative real
part of the total thermal conductance. In the opposite limit,
ωτU � 1 the contribution of σbal(ω) becomes a (large) frequency-
independent constant, σbal ¼ πτUuT/3.

Let us now turn to the analysis of the relaxing modes in the
kinetic Eq. (5). Employing the relaxation-time approximation for
its solution, we find

ReσF(ω) ≃ T2

m2
*u

2
Re
ðT/u
0

(dq)
τ 1
F (q)� iω

, (13)



for the fermionic and

ReσB(ω) ≃ T4l4
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, (14)

for the bosonic representation of the theory, respectively, see
Appendix B 3 and A 2. In Eqs. (14) and (13) τΒ (q) and τF (q)
denote the relaxation times for the bosons and fermions, respec-
tively. Equations (13) and (14) represent contributions of fermionic
and bosonic quasiparticles to the thermal conductivity.

We now calculate the real part of thermal conductivity as a
function of ω and T, using decay rates Eqs. (A10) and (B12). For
T < TFB, we find
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At sufficiently high frequencies, ω � 1/τU , the ballistic mode asso-
ciated with the conservation of the momentum of bosonic excita-
tions do not contribute to the real part of σ(ω) and σ(ω) � σ0(ω).
At τUω,

�
1 the ballistic channel of the energy propagation becomes

gapped and contributes an exponentially large but frequency-
independent constant σbal ≃ πuTτU /3 to the thermal conductivity.

The computations done in this section were based on the
kinetic theory, which includes both Fermi and Bose channels. The
latter was studied within the self-consistent scattering approxima-
tion. Let us now look at the problem from the hydrodynamic point
of view.

4. HEAT CONDUCTIVITY FROM THE HYDRODYNAMIC
APPROACH

4.1. Conservation laws and multi-mode
hydrodynamics

In the six-mode regime the particle densities, momentum, and
energies of each chiral sector are separately conserved and we
combine them into two chiral vectors qTη ¼ (ρη, πη, εη), η = R,L.
We denote by fT

η ¼ T 1
η (μη, υη, � 1) the vector of the correspond-

ing conjugate variables that are zero modes of the collision integral.
The conserved densities obey the set of continuity equations

@tq
i
η þ @xJ

i
η ¼ 0, (16)

with index i specifying the conserved charge and the corresponding
flux Jη ¼ (Jρη , J

π
η , J

ε
η ). On the linear level, one relates

qη(ω, k) ¼ χretη (ω, k)fη(ω, k), (17)

via the polarization operator

χreti,j;η(x, t) ¼ �iθ(t)h[qi,η(x, t), qi,η(0, 0)]i:

Similarly, currents can be represented in terms of current response
function M,

Jη(ω, k) ¼ Mη(ω, k)fη(ω, k)/ik: (18)

In the ω = 0, small-k limit, the matrix Mη(k) ¼ (ikAþ k2D)χη is
built out of matrices of velocities A, diffusion coefficients D, and
static susceptibilities χη ; χretη (ω ¼ 0, k ! 0). All these quantities
can be computed directly from the kinetic equation written in
terms of the composite fermions Eq. (B5). See Appendix D 2 for
the details.

To incorporate non-linear effects into the hydrodynamic
description, we extend the expressions for hydrodynamic currents
up to second order in the conserved densities:

Jη ¼ (Mη/ik)χ
1

η qη þ 1
2

X
i,j

Hη;i,jq
i
ηq

j
η: (19)

Here, we have taken the static limit ω = 0 and the (vectorvalued)
coefficients Hη;i,j can be computed neglecting the interaction of
composite fermions, see Appendix D 1.

Equations (16), (17), and (19) describe the six-mode hydrody-
namics that exist at scales, L6 < L < L4. At longer scales, the colli-
sions equilibrate the temperatures and boost velocities in the two
chiral sectors. The hydrodynamic theory of the four-mode regime
can be obtained through the reduction of the six-modes equations
by setting TL = TR = T, υL ¼ υR ¼ υ, and working with the total
energy and momentum densities, ε ¼ εR þ εL and π ¼ πR þ πL.

At still larger length scales, L > LU, the system reaches equilib-
rium with respect to particle exchange between the chiral sectors.
The corresponding three-mode hydrodynamics can be obtained
through the reduction of the four-mode theory by setting
μL ¼ μR ¼ μ.

4.2 Linear responses in 1D fluid

We now consider the linear response properties of the elec-
tronic fluid. Generally speaking, an N-component liquid has N
(N-1)/2 independent linear response coefficients, that can be com-
puted via the Kubo formula. To be specific, we focus on thermal
conductivity, a quantity that describes the rate of irreversible heat
propagation. To compute the thermal conductivity, one needs first
to define the heat current. In interacting many-body problems,
expressions for heat currents are in general rather complicated and
spatially non-local. Luckily, the operator of heat current JT for
fluids is local and can be computed by subtracting an advective
contribution from the energy current JE

62

JT ¼ JE � �wJρ, (20)

where �w is the enthalpy of the fluid per one electron and Jρ the par-
ticle current. The Kubo formula for thermal conductivity reads63

σT (ω, k) ¼ 1
�iωT

h
KTT(ω, k)� KTT(0, 0)

i
, (21)

where KTT(ω, k) ¼ �ih[bJT (x, t), bJT (0, 0)]iret(ω, k). The correlation



function indicates that one needs to average the expression over the
fluctuations. To account for such fluctuation we add the Langevin
noise to the hydrodynamic theory, transforming it to fluctuating
hydrodynamics. The effective theory can be cast in terms of the
Keldysh action (also known in the classical limit as
Martin-Siggia-Rose), for the details see Appendix D 1. Since at
hydrodynamic scales the system is locally at equilibrium, the
fluctuation-dissipation theorem holds. Therefore, at the Gaussian
level, the retarded part of the polarization operator χret determines
the Keldysh components and therefore the entire action. The qua-
dratic terms in the hydrodynamic currents correspond to cubic ver-
tices in the action.

Employing Eq. (21) and using the linearized hydrodynamic
theory, see Appendix D 2, we find that in the 4mode regime

σT (ω, k ¼ 0) ¼ � π2uT
3iω

þ u5

l4T4
: (22)

The Drude peak corresponds to the ballistic propagation of
heat,60,61 while the real part of conductivity is due to heat diffusion.
This reproduces the results we have previously derived with the
kinetic equation approach, for the imaginary [Eq. (12)] and the real
[Eq. (15)] parts. The consistency between kinetic and fluctuating
hydrodynamic approaches was guaranteed, because we have
described the same problem using different languages. Indeed, by
disregarding the non-linear part of the hydrodynamic action
[Eq. (D6)] we neglected the renormalization processes that we have
also ignored in the kinetic equation approach. This is justified only
up to scales smaller than L*.

In the four-mode regime, the propagation of all modes is bal-
listic, and therefore unaffected by renormalization. Hence the imag-
inary part of the heat conductivity is given by
Im σT (ω) ¼ π2uT/3ω. The real part of the heat conductivity, on the
other hand, is renormalized for L* < L. Taking the renormalization
of the heat conductivity into account, see Appendix D 5.1 for the
details, one finds

ReσT (ω)simuT1/3ω 1/3: (23)

Finally, we discuss the three-mode regime. In this case, the heat
conductivity is determined solely by the static mode. Therefore, the
ballistic contribution is suppressed, giving rise to an exponentially
large constant: i/ω ↦ τU . The real part of the thermal conductivity
thus scales as, see Appendix D 5.2 for the details,

ReσT (ω) � uTτU þ T7/3

m2u3
ω 1/3: (24)

To derive Eqs. (23) and (24) and to perform classical renormaliza-
tion group (RG) in the fluid, it is elucidating to connect the
problem of thermal conductivity with the problem of pulse propa-
gation. We now elaborate on this and explain the connection
between these two problems.

4.3 Pulse propagation in the 1D fluid

Let us consider a generic disturbance created in a confined
region of the 1D fluid at a given time, while the rest of the fluid is
at thermal equilibrium. One can think of it as a narrow peak of
particle and/or energy density that was created by the action of an
external force and/or by heating. Due to the collisions for the time
scales longer than τF. a disturbance is projected onto eigenmodes of
the collision integral. Because different eigenmodes propagate
through the fluid with different velocities a disturbance splits into a
finite number of peaks.64

To find the eigenmodes one needs to diagonalize the
hydrodynamic theory on the Gaussian level, i.e. to diagonalize
the velocity matrix A. We pass to a new basis Ψ = Rq, that consists
of different combinations of energy, momentum, and particle
densities that on the linear level propagate independently,
RAR 1 ¼ diag(υ1, . . . , υN ). In the 4-mode regime, there are two
right and two left propagating modes, shown in Fig. (1), left panel.
The degree to which the modes are excited depends on the overlap
of the disturbance with Ψj.

Because of the mode separation caused by different mode
velocities, only the diagonal correlations

fj(x, t) ¼ hΨj(x, t)Ψj(0, 0)i (25)

play a role in the long-time limit. To account for the effects of the
renormalization in the fluid one can treat the interaction between
the modes by solving self-consistent Dyson equations. In the
current context, this equation is also known as a mode coupling
equation.64,65 While the agreement between the self-consistent
Dyson equation and RG theory that flows into a strong coupling
limit is by no means guaranteed, it is known that for the
Kardar-Parisi-Zhang (KPZ) problem such an approximation has an
excellent agreement with a numerical simulation of an exact solu-
tion of KPZ theory. Because our problem is very similar to the
KPZ, it is natural to expect this approximation to hold as well.
Similar agreement was also observed in dynamical structure factor
in Bose gas modeled by Gross-Pitaevskii hydrodynamics.66 It is
worth mentioning that KPZ scaling was theoretically predicted67–69

and experimentally observed in Heisenberg spin chains.70–72

Applied to our problem, the mode-coupling equation reads

�
@t þ vj@x � ~Dj@

2
x

�
fj(x, t) ¼

ð1
1
dy
ðt
0

ds� fj(x � y, t � s)@2
y Rj(y, s):

(26)

Here,

Rj(y, s) ¼ 1
T5

XN
l,m¼1

λ2jlmfl(y, s)fm(y, s), (27)

~Dj are diagonal elements of the effective diffusion matrix �D describ-
ing broadening of eigenmodes, and coupling constants λjlm account
for the mode interaction. These constants are computed from
microscopic parameters of the original fermionic model.55



We now employ this theory to study pulse propagation in an
electronic fluid and reinterpret the shape of the pulses as a renorm-
alization of the corresponding transport coefficients. The spatial
separation between the peaks grows linearly with time Lij ¼ Δuijt,
where the relative velocity Δuij ; ui � uj. The width of each peak is
broadened, within the linear hydrodynamics, by the corresponding
diffusion process as (~Djt)

1/2
. This is in line with a usual relation

between the diffusive broadening of the peak and the diffusion
coefficient that is independent of the system length.

The non-linear couplings further broaden the shape of the
pulses and modify their shape. Comparing the linear and non-
linear terms, one can show that non-linear broadening dominates
over the normal diffusion at scales beyond L*¼u13/l12T13 � L4.
Therefore, when fluid enters the four-mode regime, it is still gov-
erned by essentially linear theory, with conventional diffusive
scaling. Therefore, the evolution in earlier stages of the four-mode
regime is well approximated by the linearized hydrodynamic
theory. But for L > L* the non-linear terms start to dominate and
the normal diffusion process is replaced by the anomalous one.
Essentially, at this stage, one can drop the bare diffusion terms in
Eq. (26). In the four-mode regime, all non-linear coupling con-
stants are of the same order, λijk � λ ; Tu3/2. However, only the
interaction between modes propagating in the same direction is sig-
nificant. Therefore, Eq. (26) splits into two sets of chiral equations.
Near the maximum of any given mode, the coupling to other
modes is exponentially small and can be neglected. Note that
Eq. (26) in this limit is mathematically equivalent to the mode cou-
pling equation for velocity correlation function in stochastic
Burgers equation and corresponding KPZ problem.73 Therefore
near the maximum the pulse is described by the same solution

fi(x, t) � T2

(λt)2/3
fKPZ

T(x � uit)

(λt)2/3

� �
: (28)

Here, fKPZ (x) is the universal dimensionless KPZ function, with
fKPZ (x) ∼ 1 for jxj � 1 and fKPZ(x) � e 0:3jxj3 for jxj � 1 74,75

Away from the maximum the interaction between modes plays a
role and builds non-symmetric power-law tails Appendix D 4.1,
Eq. (D54), see also Fig. 1. The fast-moving mode interacts with the
slow-moving mode and thus grows power-law rear tails. The slow
mode interacts with the fast-moving mode in front of it and the
oppositely moving slow mode, thus growing power-law front and

rear tails

fi(x, t) �
X3
j¼1

θ[(x � uit)sgn(Δu ji)]u
2 T

jΔu jij
� �1/3

� tjx � uitj 8/3for jx � uitj � ut2/3

T1/3
: (29)

In Eqs. (28) and (29) and below we omit numerical coefficients of
order unity, as emphasized by the sign ∼ replacing the equality
sign.

At distances larger than LU, the fluid is described by three
hydrodynamic modes. This is a universal regime representing the
infrared fixed point of any non-integrable one-dimensional model.
It is characterized by two ballistically propagating sound modes
(index j = 2, 3) and one static heat mode ( j = 1). The pulse propa-
gation in such a regime was studied in the context of classical fluids
in Refs. 64, 65, 76, and 77. The fate of the ballistic sound mode in
the 3-mode regime is very similar to the one we just discussed for
the 4-mode regime. Due to the self-interaction, the sound modes
acquire the KPZ shape, Eq. (28) with a power law rear tail,
Appendix D 4.2, Eq. (D57). The value of the self-coupling constant
for the sound modes in our model can be estimated as
λ ; λ222 � T4/m3u9/2.

The evolution of the static mode is qualitatively different. The
time-reversal symmetry forbids the self-coupling of the heat mode.
The non-linear interaction between the heat and sound mode,
which is characterized by a coupling λ222 � T3/m2u5/2, leads to the
formation of power-law tails for the heat and sound modes, see
Appendix D 4.2. It transforms the heat mode into symmetric Levy
flight distribution with α = 5/3,

f1(x, t) � T
δx(t)

fLevy,α¼ 5/3
x

δx(t)

� �
: (30)

The heat mode has a maximum at x = 0 and the width
δx(t) � t3/5T4/5m 6/5u 7/5. The t3/5 scaling of the width was also
obtained in the context of classical anharmonic chains.78,79 The
value at the maximum is f1(0, t) � T/δx. Away from the maximum
(for x � δx) the heat mode has power law tails80 that scale [see
Appendix D 4.2, Eq. (D56)] as f1(x, t) ¼ T7/3

m2u7/3 tx
8/3, implying

anomalous heat diffusion.

5. SUMMARY

We studied thermal transport in one-dimensional electronic
fluid combining kinetic and hydrodynamic theories. The kinetic
analysis was based on the Fermi-Bose duality picture that enables us
to describe the problem in terms of both (fermionic and bosonic)
degrees of freedom. To be specific, we focused on the temperature
below the Bose-Fermi duality transition temperature (T < TFB). In
this limit, the thermal fermionic excitations are well-resolved quasi-
particles, as opposed to the thermal bosonic excitation.

We derived the viscous multi-mode hydrodynamic theory, by
projecting the fermionic kinetic equation on the eigenmodes of its
collision integral. Depending on the length scale it may have six,

FIG. 1. Schematic shape of pulse evolution through four and three mode
regimes. The scaling of the “heads” and “tails” of the peaks with time is
depicted, see text for details. From Ref. 55.



four, and three modes. On a bare level, the kinetic and hydrody-
namic theories yield same results for thermal conductivity.

We use the fluctuating hydrodynamic approach to compute
the effects of renormalization that arise due to fluctuations com-
bined with non-linearity. This renormalization leads to anomalous
heat transport that diverges with the system size. To study the
effects of the renormalization we consider a problem of pulse evo-
lution that enables us to effectively compute all transport coeffi-
cients. We solve the pulse evolution problem by applying the
self-consistent mode coupling approximation. In the six and four-
mode regimes, the pulses propagate ballistically. The “head” of every
pulse is controlled by self-interaction and has a KPZ scaling with
time. The width of the pulse growths as t2/3 and its amplitude
decreases as t–2/3. Interaction between the modes propagating with
different velocities results in power-law tails scaling as x–8/3 with dis-
tance x from the center of the first mode and directed towards the
second mode. Therefore the faster-moving modes grow the rear tails,
while slower-moving modes grow both the front and rear tails.

In a three-mode regime, there are one static heat and two ballis-
tic sound peaks. The width of the ballistic modes has KPZ scaling
with time. The interaction between the sound waves and the heat
mode gives rise to power-law tails for all peaks. Each sound mode
acquires a rear tail. The static heat mode is a Levy flight function
with α = 5/3, with symmetric tails. The anomaly in peak shapes leads
to anomalous kinetic coefficients, in particular, thermal conductivity.

As expected, the results computed within the kinetic and hydro-
dynamic theories agree for scales smaller than L*, where renormaliza-
tion effects became important. At this scale, the prediction of a bare
kinetic theory deviates from the RG analysis we performed within the
hydrodynamic framework. However in the infrared limit thermal con-
ductivity computed within the kinetic equation approach is determined
by subthermal bosons, even for T <TFB case. Therefore the kinetic
approach that contains self-consistent boson scattering yields thermal
conductivity with correct ω–1/3 scaling, see, e.g, Eqs. (23) and (24).
Such agreement in scaling resulting from self-consistent kinetic32,81,82

and classical renormalization-group83 approaches has been known for
a long time, but is not fully understood up to this point. By performing
d = 1 + ε expansion one can show that this agreement holds beyond
the d= 1 case, and thus is not a mere coincidence of numbers. One
therefore needs to explain, why this agreement exists in the first place
and, at the same time, why it only holds for the scaling and does not
reproduce the prefactors.

We now propose a plausible explanation for this puzzle. At
the scale L4 where we constructed the hydrodynamic theory, typical
excitations that matter for the thermal transport is indeed thermal,
and therefore the problem is equally well accounted for by the fer-
mionic kinetic equation and the hydrodynamic model derived from
it. In the infrared limit, this is no longer true and sub-thermal
bosons dominate the heat conductivity. From the hydrodynamic
perspective, the collective hydrodynamic modes strongly interact.
In both theories, the interaction of low bosonic modes is described
by three boson vertices and results in the same scaling. It is there-
fore plausible that both pictures describe the same process, seen
from two different viewpoints. What is seen as an effect of renorm-
alization in the classical fluid represents a self-consistent scattering
in terms of the bosons. Therefore the agreement of the results is
another manifestation of the Fermi-Bose duality. The disagreement

regarding the prefactors is probably limited by the accuracy of our
procedure. It remains to be seen if a more accurate partition of the
Hilbert space can lead to a full agreement.
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APPENDIX A: KINETIC THEORY FOR BOSONS

1. Bosonization

In this section, we briefly recap the bosonization approach for
electrons with a finite curvature.50,52,53,84,85 The system of interact-
ing electrons in one dimension is described by the microscopic
Hamiltonian

H ¼
X
η¼R/L

ð
dxψþ

η (x) �iηυF@x � 1
2m

@2
x

� �
ψη(x)

þ 1
2

ð
dxdx0g(x � x0)ρ(x)ρ(x0): (A1)

After the bosonization procedure, the Hamiltonian can be repre-
sented in terms of the density field

H ¼
X
η

ð
dx: πυFρ

2
η(x)þ

2π2

3m
ρ3η(x)

� �
:B

þ 1
2

ð
dxdx0g(x � x0):ρ(x)ρ(x0):B: (A2)

Here, ::B stands for normal ordering with respect to the bosonic
modes. The coupling between left and right chiral sectors can be
eliminated up to a cubic level by performing unitary transforma-
tions, R ¼ UρRU

þ, L ¼ UρLU
þ, see Ref. 50 for the details.

After the rotation, the bosonic Hamiltonian reads

H ¼:
π

L

X
q

uqRqR q þ 1
L2
X
q

ΓB,RRR
q Rq1Rq2Rq3

þ 1
L3
X
q

ΓB,RRRL
q Rq1Rq2Rq3Lq4 :B þ (R $ L): (A3)

The bosonic vertices Γq in Eq. (33) in the low momentum limit
(ql � 1) are

ΓB,RRR
q ¼ 2π2

3m*
1� αl2

2
(q21 þ q22 þ q23)

� �
,

ΓB,RRR
q ¼ 2π2α

3m2
*u

1� 3α
2
þ 15

4
l2
q1q2q3
q4

� �
: (A4)

Here, m*¼ 4
ffiffiffiffi
K0

p
3þK2

0
m is renormalised mass of the electron, α ¼ 1 K2

0
3þK2

0
is

dimensionless interaction strength, and K0 is LL parameter. One
can define another dimensionless parameter that quantifies the
strength of electron interaction

γ ¼ α2(1þ α)2: (A5)



Next, we employ the Hamiltonian (A2) to derive a kinetic equation
for the bosonic distribution function.

2. Kinetic equation

The Fourier components of the densities R(x) and L(x) can be
identified with bosonic creation and annihilation operators via

Rq ¼
ffiffiffiffiffiffiffiffiffiffi
Lnqn
2π

r
Θ(q)bq þ Θ(�q)bþq

� �
,

Lq ¼
ffiffiffiffiffiffiffiffiffiffi
Lnqn
2π

r
Θ(q)bq þ Θ(q)bþq

� �
:

(A6)

The bosonic distribution NB(q, x, t) is defined as

NB(q, x, t) ¼ 1
2π

ð1
1
d(q1 � q2)e

i(q1 q2)xhbþq1 (t)bþq2 (t)i, (A7)

where q = (q1 + q2)/2 and the operators bq and bþq are defined
in Eq. (A6). Using a standard Keldysh formalism86,87 one derives the
kinetic equation for bosons

@Nq

@t
þ uq

@Nq

@x
¼ I[Nq]: (A8)

There are various scattering processes that involve bosons. On the
level of the usual golden rule there is a scattering of one boson mode
into three. This involves three bosons of the same chirality (e.g.,
right) and one boson of the opposite chirality.50,88 Because we focus
on the regime T < TFB this processes play no role. We therefore focus
on a subtle process controlled by three boson interaction. These pro-
cesses are described by the vertices ΓB,RRR

q and ΓB,LLL
q , Eq. (A4). The

inclusion of this term into self-consistent scattering leads to the fol-
lowing collision integral:

I[Nq] ¼ 128π
9m2

ðq
0

(dp)
pq(q� p)
γp þ γq p

� NpNq p � Nq � NqNp � NqNq p
� �

þ 256π
9m2

ðqthr
q

pq(q� p)
γp þ γq p

NP þ NpNq � NqNp q þ NpNp q
� �

,

(A9)

Here, the self-consistent Bose decay rate

γq ≃
1

τB(q)
¼ q3/2

ffiffiffiffiffiffiffiffi
T/u

p

m
, q , qthr,

0, q . qthr

8<: (A10)

is rate of a self-consistent boson decay.32,82 The value of the thresh-
old momentum qthr ¼ T1/3

um2/3 l4/3 is determined by the condition that
the energy level broadening (A10) exceeds the nonlinear correction
ul2q3 to the bosonic dispersion relation at momentum q. This repro-
duces the result found in Refs. 32, 81, and 82.

The linearization of this integral yields

I ¼ 32
9m2

ðq
0

dp
pq(q� p)
γp þ γq p

	
Np coth

u(q� p)
2T

� coth
uq
2T

� �

�Nq coth
up
2T

þ coth
u(q� p)

2T

� �
þ Nq p coth

up
2T

� coth
uq
2T

� �


þ 64
9m2

ðqthr
q

dp
pq(p� q)
γp þ γp q

	
Np coth

u(p� q)
2T

� coth
uq
2T

� �

þNp q coth
up
2T

� coth
uq
2T

� �
þ Nq coth

up
2T

� coth
u(p� q)

2T

� �

:

For the subthermal bosons (q � qT ) one can simplify it further

I½Nq� ≃ 64
3m

ffiffiffiffiffiffiffiffiffi
T=u

p
�q3=2Nq þ q

2

ðqthr
q

qpp 1=2Np

264
375: (A11)

Now we turn to the computation of the thermal conductivity. The
real part of thermal conductivity carried by the bosonic excitations
in the low-frequency regime is controlled by self-consistent Boson
scattering55

Re σBðωÞ ≃ T4l4

u2
Re

ðT=u
0

ðdqÞ
τ 1
B ðqÞ � iω

264
375: (A12)

The momentum integration in Eq. (42) is cut by the value of the
thermal momentum T/u, because beyond it, the integrand is expo-
nentially suppressed. By comparing the self-consistent
one-into-two boson decay rate with the one-into-three boson decay
rate one observes that the first one is faster, for q < qthr, i.e. in the
regime we are interested in the current paper. Thus, the bosonic
contribution to the thermal conductivity is given by

ReσB(ω) ¼ T
11
3 l4u

5
3m

2
3
*

ω
1
3

, ω ,
T2

m*u2
: (A13)

APPENDIX B: KINETIC THEORY FOR FERMIONS

1. Refermionization

The bosonized Hamiltonian (A3) can be recast in terms of fer-
mionic operators as

Rq ¼
X
k

cyR,kcR,kþq, Lq ¼
X
k

cyL,kcL,kþq: (B1)



This results in a refermionised Hamiltonian89

H ¼
X
k

εR,k:c
y
R,kcR,k:Fþ

1
L

X
k

ΓF,RR
k :cyR,k1c

y
R,k2

cR,k02 cR,k01 :F

þ 1
L

X
k

ΓF,RL
k :cyR,k1 c

y
L,k2

cL,k02 cR,k01 :F

þ 1
L2
X
k

ΓF,RRR
k :cyR,k1 c

y
R,k2

cyR,k3cR,k03 cR,k02 cR,k01 :F

þ 1
L2
X
k

ΓF,RRL
k :cyR,k1 c

y
R,k2

cyL,k3 cL,k03 cR,k02cR,k01 :F þ (R $ L): (B2)

We denote by k in each of vertices ΓF,...
k the full set of all

momenta of the fermionic operators involved. As shown in Ref. 50
the dominant vertex for energy relaxation is ΓF,RRL

k . In the bosonic
description, it corresponds to 1 boson going into 3 bosons scatter-
ing process, e.g. Equation (A4).

ΓF,RRL
k ¼ 5αl2π2(k1 � k2)(k01 � k02)

16m*2u(k3 � k03)
� (k1 � k2)

2 � (k01 � k02)
2

h i
:

(B3)

2. Kinetic Equation

Using the Keldysh formalism, one can derive a kinetic equa-
tion for the fermionic distribution Nk(x, t)

N(k, x, t) ¼
ð1
1

d(k1 � k2)
2π

ei(k1 k2)xhcþk1 (t)ck2 (t)i, (B4)

where k ¼ k1þk2
2 and the operators ck andc

þ
k are defined in Eq. (45).

By repeating the standard steps of Keldysh formalism with the
Hamiltonian (45) one derives the kinetic equation for composite
fermions

@Nk

@t
þ υk

@Nk

@x
¼ I[Nk]: (B5)

Here, υk ¼ @kεk is a velocity of fermions, εk ¼ k2
2m*

� k2F
2m*

, and
kF =m*u. The fermionic collision integral I[N] is given by

I[N] ¼ Iout[N]þ Iin[N]: (B6)

Here,

Iout[N]k ¼ �
X

k2,k3,k0 ,k02,k
0
3

W
k0 ,k02,k

0
3

kk2k3
NkNk2Nk3 (1� Nk)(1� Nk02 )(1� Nk03 )

is outgoing

Iin[N]k

¼
X

k2,k3,k0 ,k02,k
0
3

W
k0 ,k02,k

0
3

kk2k3
(1� Nk)(1� Nk2 )(1� Nk3 )NkNk02Nk03

and incoming parts. The matrix element of three fermion colli-
sion50 is given by

W
k0 ,k02,k

0
3

kk2k3

¼ γl4

m2
*u

(k2 � k)2(k02-k
0)2δ(k2 þ k� k02 � k0)δ(k3 � k03):

Near the equilibrium, one can linearize the collision integral
using the ansatz

N ¼ nþ gf : (B7)

Here, n denotes the local equilibrium Fermi-Dirac distribution
nk ¼ 1

eεk /Tþ1
and gk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk(1� nk)

p ¼ 1
2coshεk/2T

After Fourier transforming it in time, the linearized
Boltzmann equation reads

�iωfk þ BF
k
∇T
T2

¼ J [f ]k, (B8)

where

BF
k ¼ υkεkgk: (B9)

and the linearized collision integral J is

J [f ]k ¼
γTl4

m2
*u

2

�
ð1
1
dk2

ð1
1
dk0

ð1
1
dk02(k� k2)

2(k0 � k02)
2δ(kþ k2 � k0 � k02)

� g(k2)g(k
0)g(k02)

f (k)
g(k)

þ f (k2)
g(k2)

� f (k0)
g(k0)

� f (k
0
2)

g(k0
2)

� �
:

(B10)

On the level of diagonal approximation, we find the decay rate

τ 1
F (k) ¼ γTl4

g(k)m2
*u

2

ð1
1
dk2

ð1
1
dk0

ð1
1
dk02(k� k2)

2(k0 � k02)
2

� δ(kþ k2 � k0 � k02)g(k2)g(k
0)g(k02): (B11)



This yields a fermionic lifetime

1
τF(q)

¼
γl4Tk6

m2
*u

2
, k .

T
u
,

γl4T7

m2
*u

8
, k ,

T
u

8>>><>>>: (B12)

reproducing the results of Refs. 44, 45, 50, and 56.

3. Thermal conductivity via kinetic equation

Next, we compute the thermal conductivity in the fermionic
channel. Since fermions are massive particles, one should impose a
zero momentum transfer condition.90 It is achieved by subjecting
the system to the gradient of the chemical potential Δμ. After this
procedure, we are left with BF that is a part of BF orthogonal to the
momentum zero modefp ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

2m*TkF
p kgk.

In the orthogonal subspace, we now further decompose it into
parts parallel and perpendicular to the number zero mode

fn ¼
ffiffiffiffiffiffiffiffi
kF

2m*T

q
sgn(k)gk. This results in the decomposition

BF ¼ BF
k þ BF

?. To leading order in T,

BF
k ¼

ffiffiffi
2

p
k
5
2
FT

1
2

m
3
2
*

(fp � fn),

BF
? ¼ BF �

ffiffiffiffiffiffiffiffi
2m*

p
π2T

5
2

3k
3
2
F

fp � BF
k :

(B13)

We now substitute this decomposition into Eq. (B8) and compute
the thermal conductivity. Within the diagonal approximation, one
can solve the Boltzmann equation Eq. (B8)

fbal ¼
BF
k

�iω
∇T
T2

, f? ¼ ∇T
T2

BF
?

τ 1
F � iω

: (B14)

Thus, the ballistic part of the thermal current is given by

Jbal ¼ π

3
Tu
iω

∇T:

The ballistic part of the thermal current matches the one found
within the bosonic approach. This happens because in both
descriptions it is fully controlled by a corresponding (bosonic and
fermionic) momentum zero modes.

The real part of thermal conductivity is thus given by

ReσF(ω) ≃ T2

m2
*u

2
Re
ðTu
0

(dq)

τF(q)
1 � iω

: (B15)

Employing Eq. (B12) for the fermionic lifetime, one finds

ReσF(ω) ¼ u5

γT4l4
, ω , ω4: (B16)

APPENDIX C: TOTAL THERMAL CONDUCTIVITY VIA
THE KINETIC EQUATION: BOSONS AND FERMIONS

As we showed above, there are two channels of energy trans-
port in 1D electronic fluid: fermionic and bosonic. The resulting
contribution to thermal conductivity is given by a sum of bosonic
and fermionic parts. For the imaginary part of the thermal conduc-
tivity, both fermionic and bosonic channels yield identical results,
and therefore one may use either description. For the real part of
the thermal conductivity, this is not the case. However, since
Re σ ∼ τ, it is automatically determined by the long-living species.
Therefore, up to a numerical prefactor, the result can be obtained
by summing both contributions.

In the high-frequency limit, fermions dominate the thermal
conductivity. Below a critical frequency, ω*¼γ3T23m2

* l
24u 20

bosons dominate it. At the crossover frequency τB (ω*) > τF (ω*),
which implies that the bosons are good quasi-particles and the
dominant contribution was found correctly. The inequality remains
true even at lower frequencies as the bosonic excitations become
more long-lived at low frequencies while the fermionic lifetime
remains constant. The result is

Reσ0(ω) ¼
T

11
3 l4u

5
3m

2
3
*

ω
1
3

, ω ,
γ3T23m2

* l
24

u20

u5

γT4l4
,

γ3T23m2
* l
24

u20
, ω , ω4:

8>>><>>>: (C1)

APPENDIX D: FLUCTUATING HYDRODYNAMICS

1. Action

In this section, we formulate the Martin-Siggian-Rose action
for fluctuating hydrodynamics. Our goal is to derive an effective
action such that the correlation functions are computed as

hi ¼
ð
DqD�qeiS[q,q]: (D1)

We start with the Gaussian part of the action

S0 ¼ qT , qT
� �

ω, kTbχ 1
ω,k

q
q

� �
ω,k

, (D2)

here, we denote

bχ 1
ω,k ¼

0 bχa 1

ω,kbχr 1

ω,k bχr 1

ω,k � bχa 1

ω,k

� �
Bω

0@ 1A, (D3)



where Bω ¼ coth ω
2T

� �
. The action is encoded by

χ 1
η (ω, k) ¼ iωM 1

η j(k)þ χ 1
0,η(k): (D4)

In the limit ω→0 the expansion

Mη(k)χ
1

0,η(k) ¼ ikAη þ k2Dη: (D5)

Yield the generalized velocity A and diffusion D matrices. Their
size is equal to the number of conserved modes. Because the
system is in local equilibrium, analytic properties, and fluctuation-
dissipation theorem allow to restore advance and Keldysh compo-
nents, χK (ω, k) ¼ [χret(ω, k)� χadv(ω, k)]coth ω

2T. The term in the
action involving the Keldysh component χ describes thermal
fluctuations.

The interaction part of the action

Sint ¼ �iT
X
p,l,m

�qpΓ p,l,mq
lqm, (D6)

and the interaction vertex

Γ p,l,m(k) ¼ k
X
p1

M p,p1
1(k)H p1

l,m(k): (D7)

Here,

Hp
l,m(k) ¼

@2Jp(k)

@q1@qm
: (D8)

Because matrices M and χ are symmetric, the Keldysh action (D2)
can be diagonalized as a quadratic form by the linear transforma-
tion

q ¼ R 1Ψ, �q ¼ R 1Ψ: (D9)

Since the compressibility matrix has positive eigenvalues, one can
choose

1
T
Rχ0R

T ¼ b1 (D10)

and

RAR 1 ¼ bυ: (D11)

Here, bυ ¼ diag (υ1, υ2, . . . ) is the diagonal velocity matrix.
This implies an identity

1
T
RMRT ¼ ikbυþ ~Dk2, (D12)

Where ~D ¼ RDR 1 is the diffusuion matrix in the eigen-mode
basis. After the rotation (D9), the retarded part of the Gaussian

action takes the form

Sret0 [Ψ] ¼
X
m,n

ΨT
m(�ω, �k) iω(ibυkþ k2 ~D)

1 þ b1h i
m,n

Ψn(ω, k):

(D13)

The corresponding retarded propagator reads

Grðω; kÞ ¼ ihΨmΨniω;k ¼
�
iωðibυk� ~Dk2

� 1
þ 1Þ 1

m;n: (D14)

The advanced propagator is related to the retarded one via

Ga(ω, k) ¼ ihΨmΨniω,k ¼ �ihΨmΨni*ω,k: (D15)

The Keldysh part of the propagator f1ollows from FDT
theorem90

f (ω, k) ; hΨmΨni(ω, k)

¼ [hΨmΨni(ω, k)� hΨmΨni(ω, k)]m,ncoth
ω

2T
:

(D16)

In the coordinate-time representation (D14) and (D16) read

Gr(x, t) ¼ �iθ(t)@t

exp � (x þ υt)2

4Dt

� �
ffiffiffiffiffi
Dt

p : (D17)

Using the classical limit of FDT (T � ω)

f (ω, k) ≃
h
Gr(ω, k)� Ga(ω, k)

i 2T
iω

(D18)

one finds

f (x, t) ¼ T
exp � (x þ υt)2

4Djtj
� �

ffiffiffiffiffiffiffiffi
Djtjp : (D19)

From here one infers an equal time correlation function in x –1
representation f (x,0) = Tδ(x).

Next, we discuss the non-linear part of the action. In terms of
eigenmodes Ψ

Sint ¼
X
k,l,m

ð
dx1dx2γk,l,m(x1 � x2)�Ψ

T
k (x1)Ψl(x2)Ψm(x2)

¼
X
k,l,m

X
p,p1

γk,l,m(p)�Ψ
T
k (p)Ψl(p1 � p)Ψm(�p1): (D20)

Here, the vertex of the interaction

γk,l,m(p) ¼ T
X

k1,l1,m1

R 1T
k,k1 Γk1,l1,m1 (p)R

1
l1,l R

1
m1,m: (D21)

and we denote fn(x, t) ¼ hΨn(x, t)Ψj(0, 0)i for n = j.



In this part of SM, we derive the response coefficients that
appear in Eqs. (7) and (8) of the main text for the 4- and 3-mode
regimes. To keep the presentation concise we skip the discussion of
the six-mode regime. For details of the 6-mode regime see Refs. 55
and 91. We also construct the eigenmodes Ψ of linearised hydrody-
namics in all the regimes, defined in the main text, compute their
velocities υj and diffusion matrices �D, and coupling constants λijk
needed for Eq. (10) in the main text.

2. Response functions in 4-mode regime

In this section, we derive the hydrodynamic model from the
kinetics for the 4-mode regime. We start with the susceptibility
matrix, that connects q and w variables on the linear level. In this
case, the set of zero modes of the collision integral is described by

fT ¼ T 1(μR, μL, υ, � 1): (D22)

Multiplying the distribution function by 1, p, εp and integrating
over momentum, we find that for the right-moving electrons

χ4 ¼
T
2π

49π4T4

24m4u9
þ π2T2

2m2u5
þ 1
u

0

m

7π4T4

6m3u7
þ π2T2

3mu3

0

49π4T4

24m4u9
þ π2T2

2m2u5
þ 1
u

�m

7π4T4

6m3u7
� π2T2

3mu3

m

�m

� 7π4T4

12m2u7
þ 2m2u� π2T2

3u3

0

� 7π4T4

6m3u7
� π2T2

3mu3

7π4T4

6m3u7
� π2T2

3mu3

0

7π4T4

5m2u5
þ 2π2T2

3u

0BBBBBBBBBBB@

1CCCCCCCCCCCA
(D23)

and the matrix of currents

M4 ¼ ik
T
2π

1

0

� 7π4T4

24m3u7
� π2T2

6mu3
þmu

0

0

�1

� 7π4T4

24m3u7
� π2T2

6mu3
þmu

0

� 7π4T4

24m3u7
� π2T2

6mu3
þmu

� 7π4T4

24m3u7
� π2T2

6mu3
þmu

0
7π4T4

15m2u5
þ 2π2T2

3u

0

0
7π4T4

15m2u5
þ 2π2T2

3u

0

0BBBBBBBBB@

1CCCCCCCCCA
: (D24)

The rotating matrix

R4 ≃
ffiffiffiffiffi
3u

p

2π3/2T

mu2

�mu2

mu2

�mu2

�mu2

mu2

�mu2

mu2

�u
u
�u
u

1
1
1
1

0BB@
1CCA: (D25)

The velocities in this regime split linearly with temperature, in
agreement with a general argument given in Ref. 92:

u1 ¼ �uþ πTffiffiffi
3

p
mu

, (D26)

u2 ¼ u� πTffiffiffi
3

p
mu

, (D27)

u3 ¼ �u� πTffiffiffi
3

p
mu

, (D28)

u4 ¼ uþ πTffiffiffi
3

p
mu

(D29)

We next compute the diffusion matrix

D4 ≃ Dε

0 0 0 0
0 0 0 0
0 0 0 0

mu2 mu2 0 1

0BB@
1CCA: (D30)

Here, we have defined the energy diffusion constant Dε ¼ u6/l4T5.
After the rotation into an eigenmode basis ~D4 ¼ R4D4R 1

4 , one finds

~D4 ≃ 3
8π2

Dε

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

0BB@
1CCA: (D31)

The density of the heat mode in the 4-mode regime is expressed in
terms of hydrodynamic eigenmodes as

ε� �w(ρR � ρL) ¼
T
2

ffiffiffiffiffi
π

3u

r
(Ψ1 þΨ2 þΨ3 þΨ4): (D32)



All the coupling constants in this regime are of the same order

λ1 ¼ iTu3/2
ffiffiffiffiffiffiffi
3/π

p

4

5 �1 1 �1
�1 �3 1 �1
1 1 1 1
�1 �1 1 �3

0BB@
1CCA, (D33)

λ2 ¼ iTu3/2
ffiffiffiffiffiffiffi
3/π

p

4

3 1 1 �1
1 �5 1 �1
1 1 3 �1
�1 �1 �1 �1

0BB@
1CCA, (D34)

λ3 ¼ iTu3/2
ffiffiffiffiffiffiffi
3/π

p

4

1 1 1 1
1 �3 �1 �1
1 �1 5 �1
1 �1 �1 �3

0BB@
1CCA, (D35)

λ4 ¼ iTu3/2
ffiffiffiffiffiffiffi
3/π

p

4

3 �1 1 1
�1 �1 �1 �1
1 �1 3 1
1 �1 1 �5

0BB@
1CCA: (D36)

3. Response functions in 3-mode regime

In the three-mode regime, zero modes of the collision integral
are given by

fT ¼ T 1(μ, υ, � 1): (D37)

The response function

χ3 ¼
T
πu

49π4T4

24m4u8
þ π2T2

2m2u4
þ 1 0 � 7π4T4

6m3u6
� π2T2

3mu2

0 � 7π4T4

24m2u6
þm2u2 � π2T2

6u2
0

� π2T2

3mu2
0

π2T2

3

0BBBBBB@

1CCCCCCA: (D38)

The dissipationless part of the current matrix is given by

M3 ¼ ikT
π

0 � 7π4T4

24m3u7
� π2T2

6mu3
þmu 0

� 7π4T4

24m3u7
� π2T2

6mu3
þmu 0

7π4T4

30m2u5
þ π2T2

3u

0
7π4T4

30m2u5
þ π2T2

3u
0

0BBBBBB@

1CCCCCCA (D39)

The rotating matrix

R3 ≃

� π3/2Tffiffiffi
3

p
mu3/2

0

ffiffiffi
3
π

r ffiffiffi
u

p

T
�

ffiffiffi
3

p
π3/2T

2m2u7/2

ffiffiffi
π

2

r ffiffiffi
u

p �

ffiffiffi
π

2

r
m

ffiffiffi
u

p
ffiffiffiffiffi
2π

p

mu3/2

ffiffiffi
π

2

r ffiffiffi
u

p
ffiffiffi
π

2

r
m

ffiffiffi
u

p
ffiffiffiffiffi
2π

p

mu3/2

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
: (D40)

The velocities of the eigenmodes in the 3-mode regime are

u1 ¼ 0, u2 ≃ �u� π2T2

3m2u3
, u3 ≃ uþ π2T2

3m2u3
: (D41)

The heat current

ε� �wρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

3u
TΨ1:

r
(D42)



The coupling constants

λ1 ¼

0
3i

ffiffiffi
π

2

r
T2

m
ffiffiffi
u

p �
3i

ffiffiffi
π

2

r
T2

m
ffiffiffi
u

p

3i

ffiffiffi
π

2

r
T2

m
ffiffiffi
u

p i
ffiffiffi
3

p
π3/2T3

m2u5/2
0

�
3i

ffiffiffi
π

2

r
T2

m
ffiffiffi
u

p 0 � i
ffiffiffi
3

p
π3/2T3

m2u5/2

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
, (D43)

λ2 ¼

21i
ffiffiffi
2

p
π5/2T4

5m3u9/2
7iπ3/2T3

2
ffiffiffi
3

p
m2u5/2

� 7iπ3/2T3

2
ffiffiffi
3

p
m2u5/2

7iπ3/2T3

2
ffiffiffi
3

p
m2u5/2

7iπ5/2T4

30
ffiffiffi
2

p
m3u9/2

21iπ5/2T4

10
ffiffiffi
2

p
m3u9/2

� 7iπ3/2T3

2
ffiffiffi
3

p
m2u5/2

21iπ5/2T4

10
ffiffiffi
2

p
m3u9/2

� 133iπ5/2T4

30
ffiffiffi
2

p
m3u9/2

0BBBBBBB@

1CCCCCCCA, (D44)

λ3 ¼

� 21i
ffiffiffi
2

p
π5/2T4

5m3u9/2
7iπ3/2T3

2
ffiffiffi
3

p
m2u5/2

� 7iπ3/2T3

2
ffiffiffi
3

p
m2u5/2

7iπ3/2T3

2
ffiffiffi
3

p
m2u5/2

133iπ5/2T4

30
ffiffiffi
2

p
m3u9/2

� 21iπ5/2T4

10
ffiffiffi
2

p
m3u9/2

� 7iπ3/2T3

2
ffiffiffi
3

p
m2u5/2

� 21iπ5/2T4

10
ffiffiffi
2

p
m3u9/2

� 7iπ5/2T4

30
ffiffiffi
2

p
m3u9/2

0BBBBBBB@

1CCCCCCCA:

(D45)

Note that self-coupling of the heat mode vanishes

λ1,1,1 ¼ 0: (D46)

4. Pulses and their tails in fluctuating hydrodynamics

In this section we study the asymptotic form of the pulses in
different regimes, analyzing the self-consistent mode-coupling
equation. The results of this section are used in Eqs. (28), (29), and
(30) of the main text. We start with the 4-mode regime.

4.1. 4-mode regime

To compute the asymptotic, we first analyze the impact of the
interaction between the two modes. The “slow” mode propagates
with velocities uk and the “fast” mode moves a velocity ul in the
same direction. To be concrete, let us focus on the right (front) tail
of the mode k. In the reference frame that moves with velocity uk,
the tail of this mode controlled by the coupling to the mode l is
governed by the equation

@t fk(x, t) ≃ λ2kll
T5

ð1
1
dy
ðt
0

dsfk(x � y, t � s)@2
y f

2
l (y, s): (D47)

Here, we omit the self-coupling and diffusion terms, which play no
role far from the maximum. Due to the scale separation, this

equation can be further simplified as follows:

@t fk(x, t) ≃ λ2kll
T2λ2/3lll

@2
x

ðt
0

ds
s2/3

fk(x � Δukls, t � s): (D48)

Here, we used the fact that the integration over spatial coordinates
is limited to a region much smaller than the separation between the
peaks, yielding

Ð
dyf 2l (y, s) ¼ T3

λ2/3lll s
2/3.

The slow mode can be approximated by its tail estimated at
the peak of the fast mode. The latter is located at the point
y � Δukls. As distance x is smaller than the separation between the
pulses sΔukl , one may neglect s � x/(Δukl) compared with t.
Therefore, Eq. (D48) can be further simplified, yielding

@t fk(x, t) ≃ λ2kll
λ2/3lll T

2
@2
x

ðt
0

ds
s2/3

fk(x � Δukls, t � s): (D49)

In the Fourier space, this reads

@t fk(q, t) ¼ � λ2kll
λ2/3lll T

2
q2
ðt
0

ds
s2/3

e ikΔukl sfk(q, s): (D50)

Therefore one can look for a solution to the form

fk(q, t) ¼ Th(qγt): (D51)

Plugging this anzats into Eq. (D50), one finds

h(z) ≃ exp � λ2kllz

λ2/3lll T
2(Δukl)

1/3

!
: (D52)

Fourier transforming back, we get the result for the tail of the mode fk:

fk(x, t) ≃ λ2klltx
(γþ1)

Tλ2/3lll (Δukl)
1/3 : (D53)

Substituting γ = 5/3 and the values mode velocities and coupling cons-
tant, we finally find that modes propagating in the same direction mutu-
ally induce a tail that scales as

fk(x, t) � (mu7)
1/3
tx 8/3, (D54)

where x is the distance from the center of the peak. For each of the
modes, the tail is on the side directed to the other mode. A similar anal-
ysis yields the tail between oppositely moving modes:

fk(x, t) � (Tu7)
1/3
tx 8/3: (D55)

4.2. 3-mode regime

We now apply similar arguments for the 3-mode regime. In
this case, the tails of the static heat mode ( j = 1) are governed by



Eq. (D53). Substituting the coupling constant for this regime, we
find

f1(x, t) ≃ T7/3

m2u7/3
tx 8/3for x � T4t3

m6u7

� �1/5

: (D56)

The rear tails of sound modes ( j = 2, 3) in this regime are formed
due to interaction between sound modes, with the result

f2/3(x, t) � T13/3

m4u19/3
tx 8/3: (D57)

5. Kubo formula in the hydrodynamic regime

Here, we review the Kubo formula approach for multicompo-
nent fluid, focusing in more detail on the thermal conductivity.
The starting point is that the fluid state assumes a local equilib-
rium, therefore the response function to external forces can be pre-
sented in the linear response formalism.93,94 For multi-component
fluid, this refers to the equilibration of the corresponding modes.
For the brevity of notation, we suppress the chirality indexes and
restore them when needed. In the presence of the external time-
dependent perturbation bV the Hamiltonian of the fluid is given by

bH(t) ¼ bH0 þ bV(t) (D58)

The perturbation can be expressed as time and space-dependent
thermodynamic potentials

bV(t) ¼ �
ð
dx



δT(x, t)

T

	bε(x, t)� μbρ(x, t)

þ δμðx; tÞbρðx; tÞ þ υðx; tÞĝðx; tÞ:

�
(D59)

The expectation value of a generic operator Ji at a time t is
given as an average with respect to the equilibrium density matrix:

hĴiiðtÞ ¼ i
�h

ðt
1
dt0Tr bρ0½V̂Iðt0Þ; Ĵ Ii ðtÞ�

n o
: (D60)

We now define the retarded current-current correlation function

Kij(ω, k) ¼ i
�h

ð1
1
dx
ð1
0

dte ikxþiωt h[bJi(x, t), bJj(0, 0)]i: (D61)

By using (D60) one can show that linear-response coefficients
Lij can be expressed as

Lij(k) ¼ 1
�iω

h
Kij(ω, k)� Kij(ω ¼ 0, k ! 0)

i
: (D62)

The Kubo framework can be used for computing any linear
response coefficients, and in particular thermal conductivity. To do
it, one needs to define a thermal current. In a general many-body

problem it can be computed by coupling the system to the gravita-
tional field. For the fluid, this reduces to a much simpler expres-
sion62

bJT ¼ bJE � �wbJρ: (D63)

Here, JE and Jρ are energy current and particle currents that
are determined by energy conservation and particle conservation,
�w ≃ π2T2/4mu2 is the enthalpy of the fluid per one electron
(without the Fermi energy part). The Kubo formula for thermal
conductivity reads

σT (ω, k) ¼ 1
iωT

ðL
0

dx
ð1
0

dte ikxþiωt h[bJT(x, t), bJT (0, 0)]i: (D64)

Using the continuity equation for energy,

@ε

@t
¼ �div JE , (D65)

and particle number,

@ρ

@t
¼ �div Jρ, (D66)

one can express the heat-conductivity as

σT (ω, k) ¼ 1
T
ω

k2
h[bε� �wbρ, bε� �wbρiretω,k: (D67)

This can be cast in terms of the response function

χreti,j (x, t) ¼ �iθ(t)h[bqi(x, t), bqj(0, 0)]i: (D68)

Specifically, for the four and three-mode regimes

σT (ω, k) ¼ iω
k2T2

h
χret33 (ω, k)þ �w2χret33 (ω, k)� 2�wχret33 (ω, k)

i
: (D69)

5.1. Thermal conductivity in 4-mode regime

In this regime, the bare thermal conductivity is given by

σT (ω ¼ 0, k) � π2T
3ik

þ u5

l4T4
: (D70)

The imaginary (ballistic) part is protected by momentum conserva-
tion and therefore is unchanged, compared to the bare value com-
puted within the kinetic theory (B16). The real part of the thermal
conductivity is parametrically bigger. We now cast the Kubo
formula in terms of Keldysh correlation functions, i.e. eigenmodes.

σT (ω, k) ¼ π2ω2

12uk2
X4
j1,j2¼1

f j1,j2 (ω, k): (D71)



This brings us back to the problem of pulse propagation we
have extensively studied. Computed on the Gaussian level, this
yields

Resigma(ω ¼ 0, k) ¼ π2T
6u

X4
j1,j2¼1

~Dj1,j2 �
u5

l4T4
(D72)

in agreement with Eq. (D70).
We now take into account the self-renormalization effects, by

employing Eq. (D71) with the pulse shape found from the self-
consistent Eq. (8). Both the heads and tails of pulses are modified
by interaction, and contribute to the thermal conductivity.
The head of each pulse is governed by KPZ function

f (x, t) ≃ T2

(λt)2/3
fKPZ

T(x ut)
(λt)2/3

� �
.

This yields the contribution to thermal conductivity that
scales with frequency as

Resigma(ω, k ¼ 0) � λ4/3

Tu
ω 1/3 ≃ uT1/3ω 1/3: (D73)

In addition, the tails of the distribution function (114) contribute

Resigma(ω, k) � (mu4)
1/3
k 1/3: (D74)

Substituting k = ω/Δu one gets

Resigma(ω, k ¼ 0) � uT1/3ω 1/3: (D75)

Thus, we see that the contribution to the thermal conductivity
from the head (D73) and the tails (D50) in the fourmode regime
have the same order.

5.2 3-mode regime

The value of the thermal conductivity in the entire 3-mode
regime is strongly renormalized by the interaction between the
modes, so that its bare value has no significance. We thus express
the conductivity via the pulse correlation functions

σT (ω, k) ¼ π2ω2

12uk2
f1(ω, k): (D76)

Due to the lack of self-interaction, there is no anomalous peak
broadening in the head of heat mode in the three-mode regime,
and the thermal conductivity is determined solely by the tails of
the pulse. Substitution of the asymptotics Eq. (D56) into Eq. (D76)
yields

Resigma(ω, k) � T2

u10/3m2
k 1/3: (D77)

Substituting k = ω/u, we find

Resigma(ω, k ¼ 0) � T7/3

u3m2
ω 1/3: (D78)
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