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ABSTRACT

We discuss various aspects of nonlocal electrical transport in anisotropic metals. For a metal with circular Fermi surface, the scatter
ing rates entering the local conductivity and viscosity tensors are well defined, corresponding to eigenfrequencies of the linearized
collision operator. For anisotropic metals, we provide generalized formulas for these scattering rates and use a variational approxima
tion to show how they relate to microscopic transition probabilities. We develop a simple model of a collision operator for a metal of
arbitrary Fermi surface with finite number of quasi conserved quantities, and derive expressions for the wavevector dependent conduc
tivity σ(q) and the spatially varying conductivity σ(x) for a long, narrow channel. We apply this to the case of different rates for
momentum conserving and momentum relaxing scattering, deriving closed form expressions for σ(q) and σ(x) beyond generalizing
from circular to arbitrary Fermi surface geometry, this represents an improvement over existing methods which solve the relevant
differential equation numerically rather than in closed form. For the specific case of a diamond Fermi surface, we show that, if trans
port signatures were interpreted via a model for a circular Fermi surface, the diagnosis of the underlying transport regime would
differ based on experimental orientation and based on whether σ(q) or σ(x) was considered. Finally, we discuss the bulk conductivity.
While the common lore is that “momentum” conserving scattering does not affect bulk resistivity, we show that crystal momentum
conserving scattering such as normal electron electron scattering can affect the bulk resistivity for an anisotropic Fermi surface.
We derive a simple formula for this contribution.

1. INTRODUCTION

As is common with outstandingly far sighted science, the pio
neering papers of Gurzhi1,2 on the possibility of viscous electronic
transport in ultra high purity metals were far ahead of their time.
When he wrote them, there were few, if any, suitable material plat
forms on which to test his ideas. The first to arrive, three decades
later, were the high purity semiconductor two dimensional electron
gases (2DEGs) on which Molenkamp and de Jong performed their
intriguing experiments using current heating to raise the electron
temperature and reach the viscous regime.3,4 Over the past decade,
there have been rapid developments in the study of other materials
with extremely low impurity scattering rates, such as graphene,5–10

delafossites such as PdCoO2 and PtCoO2,
11–16 and semimetals such

as WP2 and WTe2.
17–21 Many intriguing signatures of non local

transport have been observed, and perhaps the biggest lesson
learned through the process is that two famous non local regimes,
the “Gurzhi”, “viscous”, or “Poiseuille” regime and the “ballistic” or
“Knudsen” regime, are not nearly as distinct as had previously been
assumed. Since the viscous regime is the newer and more exotic, a
common path has been for a signature claimed to be an unambigu
ous proof of viscous behavior to be subsequently realized to be
either primarily ballistic in origin or at least to be explicable by bal
listic physics in combination with other previously ignored real
world complications.

One aspect of several of the new materials whose importance
has only been fully appreciated in the past few years is Fermi
surface anisotropy, which is particularly relevant to the study of
PdCoO2, PtCoO2, WP2, and WTe2. Indeed, in the delafossites, a
seemingly minor anisotropy in the Fermi surface geometry has



large physical consequences.12–16,22 Analysis of transport properties
using the assumption of isotropic Fermi surfaces has been shown
to be inadequate in such situations, strongly motivating the con
struction of analysis models capable of taking Fermi surface anisot
ropy into account. Although considerable progress has been made
in that regard,12,14,15,22–25 it is desirable to find closed form expres
sions for as many of the relevant quantities as possible, to increase
the efficiency and transparency of the numerical calculations that
must be performed. In this paper, we make two contributions to
that process, with the aim of furthering Gurzhi’s goal of obtaining
a full understanding of non local transport beyond the standard
ohmic regime of metals.

2. CRYSTAL MOMENTUM AND GROUP VELOCITY IN
ANISOTROPIC METALS

In anisotropic metals, care is required to distinguish between
several quantities. We consider Bloch electrons, obeying
Ĥψk ¼ Ekψk , where Ĥ is the single particle Hamiltonian
Ĥ ¼ ( h2/2m)∇2 þ V(r) and V(r) is a lattice periodic potential.
Three related quantities are the crystal momentum k, group veloc
ity vk ¼ (1/h)∇kEk, and the momentum operator p̂ ; (h/i)∇. For
a free electron metal with Ek ¼ (hk)2/2m, these three vector quanti
ties are parallel: p ¼ hk ¼ mv (where the momentum p is the
eigenvalue of p̂ ). For an anisotropic metal, k and v are not in
general parallel, as illustrated in Fig. 1(a), and the Bloch states are
not eigenstates of the momentum operator p̂. However, it can be
shown that the expectation value of the momentum operator is
related to the group velocity: hp̂ik ;

Ð
d3rψ*

k(r)p̂ψk(r) ¼ mvk .
26

Finally, electrical current, often the physically observable quantity,
is given by the total group velocity of all electrons. Throughout this
paper, we will explore how the difference between crystal momen
tum and group velocity leads to novel subtleties and phenomena in
the transport properties of anisotropic metals.

As a measure of the similarity between crystal momentum
and group velocity, we introduce a quantity w which is a
thermally averaged overlap between the two quantities:

w ;
hvxjkxi2

hvxjvxihkxjkxi , (1)

where we have defined the inner product

hbjai ;
X
k

@f0
@Ek

� �
b*kak: (2)

In the degenerate limit T�TF , ( @f0/@Ek) ! δ(Ek EF) so
that the average is restricted to the Fermi surface.

For the purpose of illustration, in Fig. 1(b) we have evaluated
w in the degenerate limit as the Fermi surface geometry evolves as
a function of Fermi energy EF for a nearest neighbor tight binding
model on a square lattice:

Ek ¼ EF 2t[cos(kxa)þ cos(kya)]: (3)

Aside from being a simple average measure of the degree to

which crystal momentum and group velocity differ, later on, we
see that w also takes on a specific physical significance in certain
contexts. However, as is evident in Fig. 1, in which w breaks the
particle hole symmetry of the band structure, k and, thus, w are
not uniquely defined, but rather depend on the choice of primi
tive cell.

3. EXPERIMENTAL QUANTITIES

The fundamental quantity in nonlocal electrical transport is
the nonlocal conductivity σ(r r0), which enters the generalized
version of Ohm’s law:

Ji(r) ¼
ð
{r0}

ddx0σ ij(r r0)Ej(r0): (4)

FIG. 1. (a) Crystal momentum k and group velocity v are not necessarily paral
lel for an anisotropic Fermi surface, as illustrated here for a diamond Fermi
surface. The unit group velocity vector v̂ is always perpendicular to the Fermi
surface. (b) The average overlap of crystal momentum and group velocity on
the Fermi surface as a function of Fermi energy for a tight binding model on a
square lattice. The corresponding Fermi surface is shown for selected values of
EF /t. While this band structure is known to be particle hole symmetric, w, as
defined here, is not an even function of EF /t. This reflects a subtlety arising in
anisotropic metals: while group velocity is uniquely defined, crystal momentum
depends on the choice of primitive cell. Here we have used the common choice
of taking the Γ point as the origin when defining crystal momentum.



The range of integration {r0} depends on the geometry of the
sample and the nature of electronic scattering at the sample’s
boundaries. If the range is taken to be from 1 to 1, i.e , if trans
lational invariance is assumed, Eq. (4) can be Fourier transformed
to give

Ji(q) ¼ σ ij(q)Ej(q): (5)

The wavevector dependent conductivity can also be thought
of as describing the response to a monochromatic electric field
E0eiq�r.

While σ(q) is often the more straightforward quantity to cal
culate, real samples break translational invariance. To connect with
experiments, Eq. (4) should in principle be solved with appropriate
boundary conditions coming from a treatment of
electron boundary scattering. However, in practice, such solutions
have only been found for simple geometries. An approach taken by
some authors23,27 to describe complex geometries, e.g., electron
flow through one or more slits, has been to calculate σ(q) and to
introduce a fictional electrical field to enforce approximate boun
dary conditions.

On the other hand, there are two particularly simple measure
ment geometries for which a solution to the Boltzmann equation is
possible using boundary conditions based on electron boundary
scattering. Incidentally, these are the two geometries originally con
sidered by Gurzhi.2 The first is the flow of dc electrical current
down a long, narrow channel. Accounting for electron boundary
scattering at the two walls, one can calculate the conductivity
σ(x) the current across the channel normalized by the constant
electric field or its spatial average σ(x) as can be measured via
resistivity.

The second experimental scenario for which treating
electron boundary scattering is possible is the surface impedance of
a semi infinite metal.15,22 Despite the broken symmetry due to the
planar boundary of the medium, the surface impedance can none
theless be expressed in terms of the wavevector dependent conduc
tivity.28,29 For a conductivity σ(q)� q�α, the surface impedance
follows Z�ωβexp[ i(π/2)β] with β ¼ (1þ α)/(2þ α) and, to
lowest order, only its prefactor depends on the nature of the boun
dary scattering (see Appendix C for a derivation of this scaling
relation).

Throughout this paper, we will focus on two quantities, moti
vated by the two above mentioned experiments: the wavevector
dependent conductivity σ(q) describing the response to a mono
chromatic electric field, and the conductivity σ(x) of a finite width
channel. Surprisingly, we will find that the conclusions drawn
about the nature of the transport regime from one quantity or the
other do not always match for anisotropic metals.

4. BOLTZMANN EQUATION

To calculate the electrical conductivities of anisotropic metals
covering the ohmic, viscous, and ballistic regimes, we will solve the
Boltzmann equation in conjunction with a phenomenological
model of momentum relaxing and momentum conserving

scattering. Here we introduce the concepts and notation required
for following sections.

The Boltzmann equation describing the time evolution of the
electronic distribution function fk(r, t) under the influence of an
electric field E is

@t fk þ vk � ∇rfk
e
h
E � ∇k fk ¼ Ck[fk], (6)

where k is crystal momentum, vk ¼ (1/h)∇kEk is group velocity,
and Ek is the electronic dispersion. The collision operator Ck[fk]
accounts for changes to fk due to scattering. We are interested in
the linearized Boltzmann equation, which results from expanding
the total distribution function fk about the equilibrium Fermi
Dirac distribution f0(Ek) as

fk ¼ f0(Ek)þ δfk (7)

and keeping terms to linear order in δfk .
The linearized Boltzmann equation can be recast as a system

of linear equations,23,30,31 a setup which we will use here exten
sively. To do so, we introduce the following notation. We re write
the non equilibrium distribution function as

δfk ¼ @f0
@Ek

� �
ψk , (8)

where ψk represents a non equilibrium energy shift. Because of the
singular behavior of @f0/@Ek , ψk is a smoother function of k than
δfk , and it is standard to re write the Boltzmann equation in terms
of ψk .

32 We represent the Bloch states using the ket jki, and,
reflecting the choice in Eq. 8, define the inner product

hkjk0i ; @f0
@Ek

� �
δk,k0 : (9)

For a quantity ak, we define the vector

jai ;
X
k

akjki (10)

and for a quantity Akk0 , we define the operator

Ajk0i ;
X
k

Akk0 jki: (11)

Note that as a result of our inner product definition, hkjai
¼ ( @f0/@Ek)ak and hkjAjk0i ¼ ( @f0/@Ek)Akk0 .

Using these definitions, we can now write the linearized
Boltzmann equation compactly as a system of linear equations:

(Dþ C)jψi ¼ e
X
i

Eijvii, (12)



where we have introduced the operator D with

Dkk0 ; [@t þ vk � ∇r]δkk0 (13)

and the linearized collision operator C with

Ckk0 ;
δCk
δfk0

� �
eq

, (14)

which arises from linearizing the collision operator about equilib
rium and using that Ck[f0] ¼ 0.

While our focus in this paper will mainly be on the use of
phenomenological models for C, microscopically, it can be
expressed as

Ckk0 ¼
1

f0(Ek0 )(1 f0(Ek0 ))
Pkk0 þ

X
k0 0

Pkk0 0δkk0

" #
: (15)

Here, Pkk0 is the equilibrium transition rate from k to k0, which can
be found for a given scattering mechanism using Fermi’s golden
rule.56

The definitions in Eqs. (9) to (11) also allow us to compactly
represent products of the type

hbjai ¼
X
k

@f0
@Ek

� �
b*kak0 (16)

and

hbjFjai ¼
X
kk0

@f0
@Ek

� �
b*kFkk0ak0 (17)

which will often occur throughout this work. An important
example is electrical current, given by

J ¼ ehvjψi: (18)

5. PHENOMENOLOGICAL MODEL FOR CONSERVED
QUANTITIES

5.1. Construction of collision operator

The Boltzmann equation as written in Eq. (12) describes a
system of Nk equations, where Nk is the number of eigenstates of
the single particle Hamiltonian. Instead of using the basis of single
particle eigenstates, one can instead construct a collision operator
directly in its eigenbasis. This provides a pathway for constructing
simple, phenomenological collision operators. The approach is to
single out a subset R of NR eigenmodes for which the relaxation
rates are set explicitly, while all other eigenmodes are assumed to
relax at a shared rate γc. This approach has two advantages: (1) the
solution of the Boltzmann equation in this case involves solving a
set of linear equations of dimension NR rather than Nk ; (2) one can
directly examine the consequences of the (quasi )conservation of
the eigenmodes in R by setting γr,m�γc for m [ R. A similar

approach has been used for isotropic34 and anisotropic22,23,31

metals.
Let {jχmi} be the complete set of eigenmodes of the collision

operator with eigenvalues γm:

Cjχmi ¼ γmjχmi: (19)

The collision operator C is Hermitian, and therefore its eigen
values γm are real. We are interested in a simplified collision opera
tor in which all modes are relaxed at a rate γc, except for a subset R
for which we will specify a distinct relaxation rate γr,m:

γm ¼ γr,m m [ R
γc otherwise

�
: (20)

Using the completeness of the eigenbasis, the collision opera
tor can then be written as

C ¼ γc
X
m[R

(γc γr,m)
jχmihχmj
hχmjχmi

: (21)

Inserting our simplified collision operator into the Boltzmann
equation [Eq. (12)], we obtain

jψi ¼
X
n[R

γc γr,n
hχnjχni

Mjχnihχnjψi e
X
i

Eijvii, (22)

where we have defined M ; (γc þ D)�1. Taking the product of
hχmj with Eq. (22) for each mode in R yields a system of NR linear
equations. Solving this system of equations for the products hχmjψi
and inserting the results into Eq. (22) completes the solution of the
Boltzmann equation.

5.2. Solution for channel geometry

We start by considering the general case of an electric field
along y, which is spatially varying along x: E ¼ Ey(x)ŷ. The general
solution of Eq. (22) is

jψi ¼ jψci þ jψpi (23)

with the complementary solution

jψci ¼ jAe�xγc/vx i, (24)

where the as yet unspecified constant Ak is determined by the
boundary conditions, and the particular solution is

jψpi ¼
ð
{x0}

dx0je�(x�x0)γc/vx p(x0)i (25)



with

j p(x0)i ;
X
n[R

γc γr,n
hχnjχni

jχn/vxi χnjψh i eEy(x
0)jvy/vxi (26)

and where {x0} depends on the sample’s boundaries.
The case of a monochromatic electric field Ey(x) ¼ E0eiqx , as

considered in Ref. 22, corresponds to

M(q, ω) ¼ 1
γc iωþ ivxq

, (27)

which follows from Eqs. (23) to (26) by taking the range of integra
tion {x0} to be ( 1, 1). This could correspond to a theoretical sce
nario with complete translational invariance, or a semi infinite
sample with specular boundary scattering. The latter is because
specular scattering in a sample occupying the domain x . 0 can be
described equivalently over the domain ( 1, 1) by taking the
current for x , 0 as the reflection of that for x . 0.28

Conveniently, the electrodynamics of a semi infinite sample with
diffuse boundary scattering can also be related to σ(q, ω).29

Here we are interested in finding M for the case of a channel
carrying a dc current and with a finite width W. We take the
current to be along y and the channel to extend from x ¼ W/2 to
x ¼ W/2. In this case, D ¼ vx@x . For simplicity, we specialize to
the case of a Fermi surface orientation relative to the channel,
which has mirror symmetry about x ¼ 0. As has been demon
strated experimentally in PdCoO2,

14 if this mirror symmetry is
broken this can give rise to a transverse electric field along x.
Under these assumptions, the electric field is spatially uniform:
E ¼ E0ŷ. The complementary solution is as in Eq. (24), while the
particular solution in Eq. (25) is simplified because the electric
field is independent of x:

ψp ¼
X
n[R

1 γr,n/γc
hχnjχni

χnihχnjψj i eE0
γc

+ �����vy
�����

+
: (28)

Next we must apply boundary conditions to determine Ak . We
assume diffuse scattering of electrons from the boundaries

jψ+(x ¼ +W/2)i ¼ 0, (29)

where jψþ(�)i corresponds to the distribution function for electrons
with vkx . 0 (vkx , 0). Note that in the absence of mirror symme
try, the right hand side of Eq. (29) should be replaced by a constant
determined by the condition that Jx(x ¼ +W/2) ¼ 0. Applying
Eq. (29) gives

jAi ¼ ψp exp
W/2
jvxj/γc

� �����
�
, (30)

so that

M(x) ¼ 1
γc

1 exp
x

vx/γc

W/2
jvxj/γc

� �� �
: (31)

Finally, we define a spatial average over the width of the
channel as

A(x) ¼ 1
W

ðW/2

�W/2

dxA(x), (32)

which we use to compute the channel averaged conductivity σyy(x).
We generalize Eq. (31) to include specular scattering in
Appendix D, but note that for completely specular scattering the
current in the channel is spatially uniform, and the conductivity is
always equal to the bulk conductivity.

5.3. Choice of conserved quantities

Scattering in metals must conserve non equilibrium particle
number, so that R must always contain the mode jχni ¼ j1i with
associated eigenvalue γr,n ¼ 0. A common minimal model for com
paring ohmic, hydrodynamic, and ballistic regimes is the Callaway
dual relaxation time approximation (dRTA). In the Callaway
dRTA, R additionally includes each of the Cartesian components of
“momentum”, which are relaxed at a rate γr . While one can in
principle include further modes in R, the Callaway dRTA will be
our focus throughout much of the remainder of this paper. While
the Callaway dRTA was originally proposed in the context of the
phonon Boltzmann equation,35 it has recently been used exten
sively in the field of non local electrical transport as applied to
isotropic, two dimensional metals both in theoretical work (e.g.,
Refs. 30, 34, and 36) and in the analysis of experimental data (e.g.,
Refs. 3, 4, 11, and 21). It is motivated by a situation in which there
are two scattering sources, one with a rate γA which only conserves
particle number (often taken to be electron impurity scattering)
and with a rate γB that conserves particle number and “momen
tum” (often taken to be normal electron electron scattering). Then
γr ¼ γA and γc ¼ γA þ γB. (The rate γA contributes to both γr and
γc because scattering mechanism A relaxes all eigenmodes of the
collision operator other than particle number see Appendix A
for a derivation and discussion of this relationship.)

Recently, Refs. 22 and 24 have applied the Callaway dRTA to
anisotropic metals. While some authors have chosen crystal
momentum as the conserved quantity,23 others have chosen
momentum (or, equivalently, group velocity, since
hp̂ik ¼ mvk).

22,25 While both choices have merits, it is important
to recognize the distinction between the two. A microscopic moti
vation for considering the crystal momentum based scenario is that
there are two scattering mechanisms for which crystal momentum
is completely conserved: normal (i.e , non Umklapp)
electron electron scattering and normal electron phonon scattering
under complete phonon drag. The resulting hydrodynamic equa
tions in this case are conservation laws for number density and
crystal momentum density. It is worth remembering that the vis
cosity entering these equations characterizes the transport of crystal



momentum, whereas momentum is typically the quantity more
directly accessible by experiment. The hydrodynamic equations in
this scenario contain an additional “incoherent conductivity” term
owing to the distinction between crystal momentum and group
velocity,23,31 which would not be present in the corresponding
equations for the momentum based scenario. One way to motivate
the momentum based scenario is purely phenomenological: it pro
vides a minimal model for scattering beyond that observable by
local transport. Because γr,v , the relaxation rate of group velocity, is
exactly the scattering rate determining the local conductivity, γc
can be viewed as a single phenomenological parameter accounting

for the additional scattering processes observable within non local
transport.

5.4. Solution to boltzmann equation in dual
relaxation-time approximation

Here we apply the above model to the case that either crystal
momentum or momentum is relaxed at a different rate than other
non equilibrium quantities. In this case, we must solve the follow
ing set of linear equations [which arise from taking the product of
hχmj with Eq. (22) for each of our three chosen eigenmodes]:

1
γc

h1j1i h1jMj1i γc γr,ξx
hξxjξxi

h1jMjξxi
γc γr,ξy
hξyjξyi

h1jMjξyi
γc

h1j1i hξxjMj1i 1
γc γr,ξx
hξxjξxi

hξxjMjξxi
γc γr,ξy
hξyjξyi

hξxjMjξyi
γc

h1j1i hξyjMj1i γc γr,ξx
hξxjξxi

hξyjMjξxi 1
γc γr,ξy
hξyjξyi

hξyjMjξyi

0
BBBBBBB@

1
CCCCCCCA

h1jψi
hξxjψi
hξyjψi

0
@

1
A ¼ eEy

h1jMjvyi
hξxjMjvyi
hξyjMjvyi

0
@

1
A, (33)

where we have used a general variable ξ which may be taken to be either k for the crystal momentum case or v for the momentum case. If
we assume two mirror planes, the system simplifies to

1
γc

h1j1i h1jMj1i γc γr,ξx
hξxjξxi

h1jMjξxi 0

γc
h1j1i hξxjMj1i 1

γc γr,ξx
hξxjξxi

hξxjMjξxi 0

0 0 1
γc γr,ξy
hξyjξyi

hξyjMjξyi

0
BBBBBB@

1
CCCCCCA

h1jψi
hξxjψi
hξyjψi

0
@

1
A ¼ eEy

0
0

hξyjMjvyi

0
@

1
A (34)

which gives h1jψi ¼ hξxjψi ¼ 0 and

hξyjψi ¼
eEyhξyjMjvyi

1
γc γr,ξy
hξyjξyi

hξyjMjξyi
: (35)

Then, using the definition of current in Eq. (18), the conductivity
for the crystal momentum case is

σyy ¼ hvyjMjvyi þ
γc γr,ky
hkyjkyi hvyjMjkyi2 1

γc γr,ky
hkyjkyi hkyjMjkyi

� ��1

(36)

and for the momentum case is

σyy ¼ hvyjMjvyi 1
γc γr,vy
hvyjvyi hvyjMjvyi

� ��1

, (37)

where in Eqs. (36) and (37), M is given by Eq. (27) for a mono
chromatic electric field or by Eq. (31) for the channel geometry.

In general, the spatial average Eq. (32) of the conductivity in
the channel geometry must be taken over the entire expression in
Eq. (36) or Eq. (37). However, the case of a single relaxation time
approximation (sRTA) i.e., γr ¼ γc allows for a particularly
simple result:

σsRTA
yy (x) ¼ e2hvyjM(x)jvyi ¼ e2hvyjM(x)jvyi (38)

with

M(x) ¼ 1
γc

1
jvxj/γc
W

1 exp
W

jvxj/γc

� �� �� 	
: (39)

We take the opportunity here to review our results so far and
their relation to the existing literature. We have derived closed form
solutions to the Callaway dRTA, valid for arbitrary Fermi surface
geometry. Equations (36) and (37) give the solutions for quasi
conserved crystal momentum and momentum, respectively, and
apply to either a monochromatic electric field or the channel geom
etry depending on whether Eq. (27) or Eq. (31) is substituted for
M.



Existing methods to solve the Callaway dRTA for the channel
geometry, either for anisotropic24,25 or isotropic metals,3,4,11,21

involved numerically solving the Boltzmann differential equation
itself here we have closed form expressions, which only involve
numerically evaluating at most three integrals over the Fermi
surface. Refs. 22 and 23, whose derivations we followed closely,
solved the Callaway dRTA for anisotropic metals only for the case
of a monochromatic electric field, either for quasi conserved
momentum22 or crystal momentum.23

6. COMPARISON OF CIRCULAR AND DIAMOND FERMI
SURFACES

We apply our model to examine the behavior of a nearest
neighbor tight binding model on a square lattice at half filling, in
the “diamond” and “square” Fermi surface orientations shown in
Fig. 2. Before doing so, we briefly summarize the known results for
the hydrodynamic prediction for an isotropic, viscous fluid, and
the kinetic prediction from the Callaway dRTA for a circular Fermi
surface.

We define the ohmic, viscous, and ballistic regimes in Table I
by the hierarchy of scales. To facilitate a comparison of length
scales, we define the mean free paths λi for i [ {r, c} in terms of
the corresponding scattering rates as λi ; vF/γ i, where vF is a
thermally averaged velocity magnitude: vF ;

P
k ( @f0/@Ek)jvkj

/
P

k ( @f0/@Ek).
Throughout this section, we will make a distinction between

the regime as defined purely by the hierarchy of scales and the
actual behavior of the conductivity. While these two classifications
of transport are aligned for an isotropic Fermi surface, we shall
see that the same is not always true for an anisotropic Fermi
surface.

While here we limit our discussion to defining the regimes by
frequency or length scale, in an experimental setting the scattering

rates γr and γc are tuned by temperature. Our model is agnostic
regarding the microscopic scattering mechanism, treating γr and γc
as phenomenological parameters. However, in Appendix B we
discuss the role of temperature in tuning between transport regimes
if we associate γr and γc with various relevant scattering
mechanisms.

Throughout the remainder of this section, we will assume the
degenerate limit T�TF such that ( @f0/@Ek) ! δ(Ek EF) and
all sums of the type

P
k ( @f0/@Ek) � �� are restricted to the Fermi

surface. For simplicity, when considering the wavevector dependent
conductivity, we will take ω ¼ 0.

6.1. Viscous fluid

As considered by Gurzhi,1,2 the hydrodynamic equation of
motion for the velocity field u of an isotropic, viscous, charged
fluid is

(ν@2
x γr)u ¼ e

m
Ey: (40)

Then the channel averaged conductivity for no slip boundary con
ditions [u(+W/2) ¼ 0] is,57

σ(x)¼ D
γr

1
lG

W/2
tanh

W/2
lG

� �
¼

D
γr

, lG�W

D(W/2)2

3ν
, lG�W

8>><
>>: (41)

and the wavevector dependent conductivity is39

σ(q) ¼ D
γr þ νq2

¼
D
γr

, lGq�1,

D
νq2

, lGq�1,

8>><
>>: (42)

where lG ; ν/γr
p

and D ; ne2/m, where n is the electron number
density.

FIG. 2. Channel orientations: (a) circular Fermi surface, (b) “diamond” orienta
tion, and (c) “square” orientation.

TABLE I. Definition of transport regimes by hierarchy of scales.

Regime By frequencies By lengths

Ohmic γrγc
p �vFq λrλc

p �W
Viscous γrγc

p �vFq�γc λc�W� λrλc
p

Ballistic vFq≫ γc W≪ λc



6.2. Circular Fermi surface

For a circular Fermi surface, the Callaway dRTA model
gives,58

σ(x) ¼

D
γr

ohmic regime

DγcW
2

3v2F
viscous regime

2D
πvF

W ln (λc/W) ballistic regime

8>>>>>><
>>>>>>:

(43)

and

σ(q) ¼

D
γr

ohmic regime

D

(vFq)
2/(4γc)

viscous regime

D
vFq/2

ballistic regime:

8>>>>>><
>>>>>>:

(44)

For convenience, we have introduced the Drude weight
Dii ; hvijvii. For the three Fermi surface geometries considered
here, Dxx ¼ Dyy ; D.

By comparing Eqs. (41) and (42) with Eqs. (43) and (44), we
see that the Callaway dRTA result in the viscous regime matches
the hydrodynamic result with the identification that the viscosity is
given [by Refs. 42 and 43],59

ν(ω) ¼ v2F
(2þ d)(γc iω)

1
1þ FS

1/d
,

where FS
1 is the first Landau parameter. However, in our model,

including Eq. (45), γc is a phenomenological parameter, which
includes contributions from any scattering source that relaxes the
eigenmodes of the collision operator that are orthogonal to
momentum. This includes even electron impurity scattering, as has
been discussed by Ref. 42. See also the discussion in Sec. 7.2 and
Appendix A.)

ν ¼ v2F
4γc

: (45)

6.3. Diamond Fermi surface

Here we consider a nearest neighbor tight binding model on a
square lattice at half filling, which gives rise to a diamond Fermi
surface. Analysis of the non local transport associated with this
simple Fermi surface serves as an excellent illustration of the subtle
ties introduced by the non equivalence of crystal momentum and
momentum.

We use the tight binding dispersion in Eq. (3) not only to
derive the Fermi surface geometry, but also to obtain the variation
in magnitude and direction of the group velocity along the Fermi
surface. In general, the conductivities must be evaluated numeri
cally, with analytic results only available in certain limiting cases.

6.3.1. “diamond” orientation

Consider the case when the channel is aligned with the crys
tallographic axes, as shown in Fig. 2(b). We find that in the ballistic
regime

σ(x) � DW

2
p

vF
(46)

and

σ(q) � D

(vFq)
2/(2γc)

: (47)

These results hold independently of whether crystal momen
tum or group velocity is slowly relaxed, and in fact independently
of the existence of a slowly relaxed quantity i.e., they hold for a
single relaxation time approximation, where γc ¼ γr ; γ. These
results are surprising in two ways.

The first surprise is that the behavior of σ(q) in the ballistic
regime is qualitatively different from that for a circular Fermi
surface. Here, in a region defined as ballistic based on the relative
magnitudes of the scales involved, the apparent behavior is viscous
[ Fig. 3(d)] even in the absence of momentum conserving scat
tering. Comparing Eq. (47) with the isotropic hydrodynamic result
[Eq. (42)] yields an apparent viscosity of

ν ¼ v2F
2γc

: (48)

This apparent viscosity in the ballistic regime for the diamond
Fermi surface is twice as large as the viscosity in the viscous regime
for the circular Fermi surface [cf. Equation (45)]. The effect of this
behavior would be experimentally observable via surface impedance
measurements.22 (Appendix C discusses the relevant parameter
range for detecting the behavior of σ(q) via the frequency
dependent surface impedance.)

The second surprise is that the behaviors of σ(q) and σ(x) do
not match one another. Unlike σ(q), the behavior of σ(x) is only
slightly modified relative to that of a circular Fermi surface �W
versus �W log (λc/W) [Fig. 3(a)]. Therefore, σ(q) would appear
“viscous” while σ(x) would appear “ballistic”.

6.3.2. “square” orientation

Consider the case in which the channel is rotated by 45° rela
tive to the crystallographic axes, as shown in Fig. 2(c). We find that
in the ballistic regime, both σ(x) and σ(q) are constant. In a
single relaxation time approximation or for slow relaxation of total
group velocity,

σ(x)(W) ¼ σ(q) ¼ D
γr,v

(49)

for all values of W or q, respectively [Figs. 3(a), 3(d), 3(c),
and 3(f)]. Meanwhile, for slow relaxation of total crystal momen
tum, the constant values of σ(x) and σ(q) in the ballistic regime are



lower than those in the ohmic regime and depend on the value of
γc [Figs. 3(b) and 3(e)]. Once again, qualitatively new behavior
relative to a circular Fermi surface emerges. The ballistic regime is
suppressed because those electrons that contribute to the conduc
tivity propagate down the length of the channel without colliding
with the boundaries, even when the channel is narrower than the
magnitude of the mean free path. The fact that scale dependent
behavior in the viscous regime remains while ballistic behavior is
suppressed [Figs. 3(b) and 3(e)], is an interesting demonstration
of the different physics of these regimes, as well as the difference
between crystal momentum and group velocity in anisotropic
metals. It is perhaps counterintuitive at first that the viscous
regime should exist in this geometry how can the flow in adja
cent layers be coupled if the group velocity indicates that electrons
in adjacent layers propagate parallel to one another? This is a

manifestation of the fact that we have enforced a slower rate of
crystal momentum relaxation, and the crystal momentum does
vary between adjacent layers. If we instead enforce a slower rate of
momentum relaxation, the viscous regime is suppressed as well
[Figs. 3(c) and 3(f )].

7. SINGLE-PARTICLE, TRANSPORT, AND VISCOUS
SCATTERING RATES

Here we wish to address the question of what scattering pro
cesses determine the local conductivity and viscosity tensors. In
this section, we are interested in bulk properties, independent of a
specific geometry. For isotropic metals, the answer is known. It has
been used to great advantage34,43,48 that the eigenfunctions of the
collision operator for an isotropic, two dimensional metal are the

FIG. 3. Effect of Fermi surface geometry, choice of quasi conserved quantity, and experimental quantity. The top row shows average channel conductivity and the
bottom shows wavevector dependent conductivity, both normalized by the bulk (ohmic) conductivity σ0. The left column corresponds to a single relaxation rate, the
middle column to slow relaxation of total crystal momentum, and the right column to slow relaxation of total group velocity. The circular Fermi surface is in blue,
“diamond” Fermi surface in red, and “square” Fermi surface in green, corresponding to the coloring in Fig. 2. The vertical dashed lines represent the crossovers
between the ohmic, viscous, and ballistic regimes, as defined in Table I. First, consider the “diamond” Fermi surface. (d) Shows that the “diamond” Fermi surface
exhibits σ(q)�q�2 in region B as opposed to the σ(q)�q�1 for a circular Fermi surface. This power law is typically associated with viscous behavior [see region V in
(b), (c), (e), and (f )], even though in panel (d) no (crystal) momentum conserving scattering has been introduced. Meanwhile, (a) shows that the channel averaged
conductivity of the “diamond” Fermi surface only deviates moderately from that of the circular Fermi surface. In all plots, the behavior of the “diamond” Fermi surface
in region B shows a breakdown in the correspondence between σ(q) and σ(x). Next, consider the “square” Fermi surface. In all panels, we see that the conductivity of
the “square” is constant in region B. This behavior is typically associated with the ohmic regime, despite the hierarchy of length scales implying a ballistic regime. In
(b), (c), (e), and (f ), we see that in both σ(x) and σ(q), whether crystal momentum or momentum, is being slowly relaxed leads to different behavior for the “square”
Fermi surface. For slow crystal momentum relaxation [(b) and (e)], the conductivity shows scale dependence in region V, while for slow momentum relaxation [(c) and
(f )], this behavior is suppressed. In all cases, the conductivity has a constant asymptote in region B, while in (b) and (e) this constant value is lower than the bulk
conductivity.



angular harmonics χm�eimf. In this case, the scattering rate enter
ing the local resistivity is the eigen rate γ1 for the m ¼ +1 har
monics and that entering the local viscosity is the eigen rate γ2 for
the m ¼ +2 harmonics. In other words, the local resistivity and vis
cosity are related to the relaxation of m ¼ +1 and m ¼ +2 defor
mations of the Fermi surface. However, in anisotropic metals, these
quantities do not necessarily correspond to eigenfunctions of the col
lision operator. Nor are the eigenfunctions of the collision operator
angular harmonics, or in fact known at all. In Sec. 7.1, we seek to
define precisely the scattering rates that determine the local conduc
tivity and viscosity tensors in anisotropic metals, and their relations
to microscopic transition probabilities. We use a variational principle
to find approximations to these scattering rates that are valid for arbi
trary collision operator. The variational expression for the conductiv
ity is known;33 we obtain that for the viscosity via generalization. In
Sec. 7.2, we examine these scattering rates in the specific context of
the Callaway dRTA model for the collision operator and discuss the
implications. In particular, we show that while crystal momentum
conserving does not influence the local conductivity in isotropic
metals, the same is not true of anisotropic metals. We present a
simple model for the contribution of normal electron electron scat
tering to the transport scattering rate for anisotropic metals.

7.1. General definitions

Following Ref. 33, we define a generalized weighted scattering
rate as

Γ[wkk0 ] ¼ N(0)

1
kBT

X
kk0

Pkk0wkk0P
kk0

wkk0 ( @f0/@Ek)( @f0/@Ek0 )
, (50)

where N(0) ;
P

k ( @f0/@Ek). The scattering rates corresponding
to various physical quantities can be expressed using Eq. (50) given
a corresponding weighting function wkk0 . Physically, this describes
how different quantities are more or less sensitive to different scat
tering events.

7.1.1. Single-particle scattering rate

The single particle scattering rate for state k is given by

γsp(k) ¼
1

f 0k (1 f 0k )

X
k0

Pkk0 , (51)

where f 0k is the Fermi Dirac function and Pkk0 is the equilibrium
transition rate. In order to compare with other scattering rates, it is
useful to define a thermally averaged single particle scattering rate:

γsp ¼
1

N(0)

X
k

γsp(k)
@f0
@Ek

� �
: (52)

This rate corresponds to the generalized rate with weighting
function 1:

γsp ¼ Γ[wkk0 ¼ 1]: (53)

7.1.2. Transport scattering rate

The bulk, dc conductivity is given by

σ ij ¼ hvijC�1jvji: (54)

This may be written in the Drude form

σ ij ¼
Dσ,ij

γσ,ij
(55)

if we define the Drude weight by

Dσ,ij ; hvijvji (56)

and the transport scattering rate by

1
γσ,ij

;
hvijC�1jvji
hvijvji : (57)

In terms of the eigenvalues γm of the collision operator, it is
given by

1
γσ,ij

¼
X
m

1
γm

hvijχmi hχmjvji
hvijvji hχmjχmi

: (58)

For a circular Fermi surface, the only non zero overlaps are with
the angular harmonic eigenfunctions with m ¼ +1 and the
viscous scattering rate is exactly the eigenvalue γ1. The lowest order
variational approximation for γσ,ij is given by

γ(0)σ,ij ¼ Γ
h
wkk0 ¼ (vi v0i)(vj v0j)

i
: (59)

For an isotropic Fermi surface (in either 2 or 3 dimensions)
and for the diagonal elements of the conductivity, this weighting
factor reduces to wkk0�1 cos θ, where θ is the scattering angle,
and we recover the oft cited weighting factor differentiating the
single particle and transport scattering rates.33 However, we
emphasize that, contrary to the practice of using wkk0�1 cos θ
for any Fermi surface,24 the correct weighting factor for an aniso
tropic Fermi surface is instead (vi v0i)

2.

7.1.3. Viscous scattering rate

The local crystal viscosity named as such, because it charac
terizes the flow of crystal momentum rather than momentum
can be written as

ηijkl ¼ hvikjjC�1jvkkli: (60)

In analogy with the conductivity, we write this as

ηijkl ¼
Dη,ijkl

γη,ijkl
(61)



with

Dη,ijkl ; hvikjjvkkli (62)

and

γη,ijkl ;
hvikjjC�1jvkkli
hvikjjvkkli : (63)

In terms of the eigenvalues γm of the collision operator, the
viscous scattering rate

1
γη,ijkl

¼
X
m

1
γm

hvikjjχmi hχmjvkkli
hvikjjvkkli hχmjχmi

: (64)

For a circular Fermi surface, the only non zero overlaps are with
the angular harmonic eigenfunctions with m ¼ +2 and the
viscous scattering rate is exactly the eigenvalue γ2: The lowest order
variational approximation for γη,ijkl is given by

γ(0)η,ijkl ¼ Γ
h
wkk0 ¼ (vikj v0ik

0
j)(vkkl v0kk

0
l)
i
: (65)

The above analysis may be repeated replacing ki by vi to evalu
ate the viscosity (rather than crystal viscosity) and its associated
scattering rate.

7.2. Callaway model

Within the Callaway dRTA model with rate γr,k for crystal
momentum and γc otherwise, we have

γsp ¼ γc (66)

and

1
γσ

¼ w
1
γr,k

þ (1 w)
1
γc

, (67)

where

w ;
hvyjkyi2

hvyjvyi hkyjkyi (68)

and

γη ¼ γc: (69)

It is worth explicitly reflecting on the meaning of these results.
It is often stated that “momentum” conserving scattering does not
contribute to resistivity. However, this statement is not true for
crystal momentum conserving scattering (such as normal
electron electron scattering) and an anisotropic Fermi surface.
While this (often underappreciated) fact has already been
reported,49 the above results allow for a particularly transparent
demonstration.

These simple expressions state that, at the level of the
Callaway dRTA, the bulk conductivity can be written in the regular
Drude form σyy ¼ Dσ,yy/γσ,yy , except that the transport scattering
rate γσ,yy must be interpreted as a weighted average of the crystal
momentum relaxing and crystal momentum conserving scattering
rates [Eq. (67)]. The weighting function w [Eq. (68)] is a measure
of the similarity of momentum and crystal momentum. For a cir
cular Fermi surface w ¼ 1, and the transport (momentum
relaxing) scattering rate is exactly the crystal momentum relaxing
scattering rate. The quantity w is exactly that plotted in Fig. 1 for
a tight binding model on a square lattice as a function of Fermi
energy.

Consider a simple model of electron impurity scattering and
electron electron scattering. We take the electron impurity scatter
ing to be characterized by only a single rate γei. We take
electron electron scattering to be characterized by two rates:
normal electron electron scattering which conserves crystal
momentum, at a rate γNee ¼ (1 U)γee, and Umklapp
electron electron scattering which does not conserve crystal
momentum, at a rate γUee ¼ Uγee, where U is the Umklapp
efficiency. Then we may apply the Callaway dRTA with
γr ¼ γei þ Uγee (assuming Matthiessen’s rule) and γc ¼ (1 U)γee.
Then the transport scattering rate is given by

1
γσ

¼ 1
γei þ Uγee

þ (1 w)
1

(1 U)γee
: (70)

This formula gives a simple estimate for the contribution of normal
electron electron scattering to the transport scattering rate. We have
shown how w can change as a function of Fermi surface geometry in
the context of a square lattice; Eq. (70) shows that for any deviation of
w from unity, normal electron electron scattering contributes to the
transport scattering rate. A fuller model would also include how the
Umklapp efficiency U evolves with Fermi surface geometry and filling
Nonetheless, another point becomes obvious from Eq. (70): if the
Umklapp efficiency is sufficiently high, then no level of
electron electron scattering can give rise to a large imbalance between
the momentum relaxing and momentum conserving rates. This
means that it is simply incorrect to attribute viscous behavior seen in
any large Fermi surface metal to electron electron scattering.

8. CONCLUSIONS AND OUTLOOK

Here we have examined a generalization of the Callaway
dual relaxation time approximation (dRTA) model to anisotropic
metals. We have expanded on previous work22–25 to solve the
Callaway dRTA in closed form for both the wavevector dependent
conductivity as well as for the conductivity of a channel with
diffuse boundary scattering, and for slow relaxation of either crystal
momentum or momentum. Furthermore, we have called attention
to various conceptual issues unique to anisotropic metals. We have
shown examples of how Fermi surface anisotropy and boundary
conditions can lead to qualitatively different behaviors that con
found the diagnosis of the underlying transport regime. Therefore,
it is vital these factors are included in any analysis being used to
interpret experimental data.



More broadly, we suggest a careful examination of the current
paradigm in the field of non local transport in ultra pure metals, in
which the focus is to classify transport as ohmic, hydrodynamic, or
ballistic. A central feature of non local transport is the coupling of
different modes. In this way, a non local transport measurement
contains more information about microscopic scattering processes
than a local one. While it is common practice to make a
single relaxation time approximation (sRTA) when analyzing local
transport properties (with the acknowledgment that the scattering
rates for different quantities will differ), an sRTA cannot describe a
non local transport measurement unless the lifetimes of all coupled
modes happen to be identical (e.g , if the only scattering source is
point like defects). There is already considerable interest in con
densed matter physics at the information that can be gleaned by
comparing different scattering rates e.g., those from electrical
and thermal conductivities and the single particle rate. In non
local transport, a single measurement is already sensitive to multi
ple lifetimes. While a Callaway dRTA can give rise to ohmic,
hydrodynamic, and ballistic regimes, full collision operators may
give rise to a more rich landscape in between the ohmic and ballis
tic limits. The appeal of studying hydrodynamics likely comes from
(1) the advantage of a simple, universal description of transport
and (2) analogies with other fields of physics. However, the use of
the dRTA may have risks: theoretically, other physics may be over
looked; experimentally, a Callaway dRTA may describe data better
than an sRTA, because it better approximates the structure of the
full collision operator, even when scattering does not give rise to
any conservation law. Where calculations using a full collision
operator are possible, it will be interesting to compare with the
Callaway dRTA. Some results are already available: results from
randomly generated collision operators suggest that the Callaway
dRTA often performs well;25 calculations for electron phonon scat
tering in isotropic metals reveal a hierarchy of lifetimes;37,50 it has
been shown that two distinct rates arise from electron electron scat
tering on polygonal Fermi surfaces, leading to a failure of the
Callaway dRTA at the ballistic to hydrodynamic crossover;31

perhaps most strikingly, calculations for normal electron electron
scattering in 2DEGs the scattering mechanism which originally
inspired the use of the Callaway dRTA show that the eigenfre
quencies of the collision operator in fact display a rich structure,51

so that the Callaway dRTA fails to correctly predict transport prop
erties in this context.48 Further analysis of full collision operators
for different scattering mechanisms and Fermi surface geometries
will be interesting, and may lead to the prediction of novel and test
able phenomena. Gurzhi’s famous work should therefore be
regarded as the foundation of a much larger field than “simple”
electron hydrodynamics.
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APPENDIX A: COMPARISON OF SCATTERING RATE
CONVENTIONS: BY MECHANISM VS. BY EIGENMODE

In the existing literature, two slightly different conventions for
the definition of scattering rates in the dRTA have been used. One
groups scattering by the eigenmodes of the collision operator, the
other groups scattering by the mechanism. Here we clarify the rela
tionship between the two conventions. The former convention was
used in the present work and also in Ref. 22. To the best of our
knowledge, the latter convention was first used in the context of
the electronic Boltzmann equation by DeJong and Molenkamp,4

and so we will refer to it as the “deJM” convention. It has also been
used, e.g., by Refs. 11 and 36.

Consider Eq. 9 of Ref. 4, which describes the contribution of a
momentum relaxing (MR) scattering mechanism to the collision
integral for a 2DEG:

@ψ(f)
@t

����
MR

¼ γdJMMR ψ(f)þ γdJMMR

ð2π
0

df0

2π
ψ(f0): (A1)

Using our bra ket notation, this can be written for arbitrary elec
tronic dispersion as

CMRjψi ¼ γdJMMR 1
j1ih1j
h1j1i

� �
jψi: (A2)

(Note that the factor of 1/2π appearing in Eq. (A1) arises
from applying Eq. (A2) to a 2DEG, but is not the most general
case.)

Consider Eq. 11 from Ref. 4, which describes the contribution
of a momentum conserving (MC) scattering mechanism to the col
lision integral for a 2DEG:

@χ(f)
@t

����
MC

¼ γdJMMC χ(f)þ γdJMMC

ð2π
0

df0

2π
χ(f0)[1þ 2v0 � v]: (A3)

Using our bra ket notation, this can be written for arbitrary elec
tronic dispersion as

CMCjψi ¼ γdJMMC 1
j1ih1j
h1j1i

X
i x,y

jξiihξij
hξijξii

 !
jψi: (A4)

Here we have generalized to a variable ξ, which can be taken
to be either crystal momentum or group velocity the distinction
is moot in the 2DEG case considered in Ref. 4. (Note that the
factors of 1/2π and 2 appearing in Eq. (A3) arise from applying
Eq. (A4) to a 2DEG, but are not the most general case.)

With the total collision operator as C ¼ CMR þ CMC, we have
that

C ¼ γdJMMR þ γdJMMC

�
γdJMMR þ γdJMMC

� j1ih1j
h1j1i

X
i

γdJMMC
jviihvij
hvijvii :

(A5)



Upon comparison of Eqs. (21) and (A5), we see that the two
conventions are equivalent with the identification that

γr,ξ ¼ γdJMMR (A6)

and

γc ¼ γdJMMR þ γdJMMC : (A7)

An intuitive understanding of the correspondence comes from
considering how the scattering is grouped in the two conventions.
Equation (A2) shows that the dJM MR mechanism relaxes all
eigenmodes at the rate γdJMMR (except for particle number), and
Eq. (A4) shows that the dJM MC mechanism relaxes all eigen
modes at the rate γdJMMC except for momentum (and particle

number). It then follows that momentum relaxes at a rate γdJMMR

[Eq. (A6)] and that all other modes relax at a rate γdJMMR þ γdJMMC
[Eq. (A7)] (excluding particle number, which does not relax).

APPENDIX B: THE ROLE OF TEMPERATURE

As seen in Table I, the viscous regime is an intermediate scale
phenomenon. Given that the mean free paths/scattering rates used
to define the regimes in Table I are almost always monotonic func
tions of temperature, the viscous regime is expected to typically
occur within an intermediate temperature window. However, the
detailed definition of this temperature window is not universal, but
rather depends on the magnitudes and temperature dependences of
the scattering rates specific to a given material. One of the motiva
tions for the phenomenological model of the collision operator
employed in this work is that it is agnostic to a particular scattering
mechanism. Nonetheless, we will comment briefly here on a few of
the most relevant scenarios.

In Gurzhi’s earliest work on electron hydrodynamics,1 he con
sidered the temperature dependent resistivity of a channel of width
W for which γc is dominated by electron electron scattering
(γc(T) ¼ Ac,2T2). In this case, the ballistic viscous crossover occurs
at a temperature Tb$v ¼ vF/WAc,2

p
. For γr(T) ¼ Ar,nTn, the

viscous ohmic crossover occurs at a temperature

Tv$c ¼ 1
Ar,n

v2F
W2Ac,2

� �1/n

:

The two scenarios considered by Gurzhi were n ¼ 0, as occurs for
electron impurity scattering, and n ¼ 5, as conventionally occurs
for electron phonon scattering in three dimensional metals over
the relevant temperature range. The relevant exponent for
electron phonon scattering is instead n ¼ 1 in (Al,Ga)As based
2DEGs52 and mono and bi layer graphene.53

It is also possible that γc is itself dominated by
electron phonon scattering if the total momentum of the combined
electron phonon system is conserved. In this case, one would
expect γc(T) ¼ Ac,5T5 in a conventional three dimensional metal.
This possibility was raised by Gurzhi2 and has been explored more
recently by other authors.37,50

A scenario which deserves special consideration here is when
γc is dominated by temperature independent elastic scattering,
because it represents an exception to the rule that the viscous
regime occurs in an intermediate temperature window. The possi
bility that γc can be dominated by elastic scattering has recently
been put forward in the context of small angle boundary scatter
ing in flakes of WTe2.

54,55 Suppose that γc ¼ Ac,0 and Ac,0�Ar,0.
In this case, the ballistic viscous crossover is not a function of
temperature, but is instead defined by W ¼ λc,0 ¼ vF/γc,0. This
means that only one temperature dependent crossover will occur:
at high temperature, the sample will be in an ohmic regime; at
low temperature, the sample will either enter a viscous regime if
its width satisfies W�λc,0 or a ballistic regime for W�λc,0. In the
former case, the viscous regime would have no lower temperature
limit.

The discussion up until this point has focused on the
temperature dependent occurrence of the different regimes, defin
ing those regimes by the hierarchy of length/frequency scales.
However, as discussed in Sec. 6, the behavior of the conductivity of
a metal with anisotropic Fermi surface does not always match that
associated with the regime as identified by the hierarchy of scales.
To predict the full temperature dependent behavior in these cases,
expressions for the temperature dependences of γr and γc can be
inserted into the conductivities given in Sec. 6.

APPENDIX C: USING Z (ω) To Measure σ(q, 0)

Surface impedance for specular boundary scattering is given
by28

Zs
i ¼ iμ0ω

2
π

ð1
0

dqAii(q, ω) (C1)

and for diffuse boundary scattering by29

Zd
i ¼ iμ0ω

ð1
0

dq log
1

q2Aii(q, ω)

� �2
4

3
5
�1

, (C2)

where Aii(q, ω) is the photon propagator:

Aii(q, ω) ¼ 1
iμ0ωσ ii(q, ω)þ ω2/c2 q2

: (C3)

For ω�γr , Zi[ω, σ ii(q, ω)] � Zi[ω, σ ii(q, 0)]. In this case, the rele
vant transport regime can be determined as per Table I, taking q to
be

q*;
ωγc
λ2Lv

2
F

� �1/4

, (C4)



where

λL ;
1

μ0e2hvijvii
p : (C5)

If the asymptotic behavior of the conductivity in this regime
follows

σ ii(q, 0)� q�α (C6)

then the asymptotic behavior of the surface impedance follows

Zi �ωη exp [ i(π/2)η] (C7)

with

η ;
1þ α

2þ α
: (C8)

Equations (C7) and (C8) follow directly from substituting
Eq. (C6) into Eq. (C1) or Eq. (C2).

APPENDIX D: GENERALIZATION OF BOUNDARY
CONDITION FOR CHANNEL GEOMETRY

We define f þ(�)
k as the distribution function for electrons with

vkx . 0 (vkx , 0). We assume that the distribution function at the
boundaries of the channel follows

f0 þ δf þk ( W/2) ¼ p
h
f0 þ δf �k ( W/2)

i
þ (1 p)f0 (D1)

and

f0 þ δf �k (þW/2) ¼ p[f0 þ δf þk (þW/2)]þ (1 p)f0: (D2)

This follows the common treatment applied to isotropic
metals,41 where p [ [0, 1] is interpreted as a specularity parameter
with p ¼ 1 corresponding to completely specular boundary scatter
ing and p ¼ 0 to completely diffuse boundary scattering. Note that
for an anisotropic Fermi surface, mirror symmetry in the channel
is required to ensure that a specular boundary scattering event is
possible. In this case we find that

M(x) ¼ 1
γc

1 m(p) exp
x

vx/γc

W/2
jvxj/γc

� �� �
(D3)

with

m(p) ;
1 p

1 pexp( Wγc/jvxj)
(D4)

We see that for p ¼ 0, m(p) ¼ 1 and we recover Eq. (31). For
p ¼ 1, m(p) ¼ 0 and M(x) ¼ 1/γc.
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Existing methods to solve the Callaway dRTA for the channel
geometry, either for anisotropic24,25 or isotropic metals,3,4,11,21

involved numerically solving the Boltzmann differential equation
itself here we have closed form expressions, which only involve
numerically evaluating at most three integrals over the Fermi
surface. Refs. 22 and 23, whose derivations we followed closely,
solved the Callaway dRTA for anisotropic metals only for the case
of a monochromatic electric field, either for quasi conserved
momentum22 or crystal momentum.23

6. COMPARISON OF CIRCULAR AND DIAMOND FERMI
SURFACES

We apply our model to examine the behavior of a nearest
neighbor tight binding model on a square lattice at half filling, in
the “diamond” and “square” Fermi surface orientations shown in
Fig. 2. Before doing so, we briefly summarize the known results for
the hydrodynamic prediction for an isotropic, viscous fluid, and
the kinetic prediction from the Callaway dRTA for a circular Fermi
surface.

We define the ohmic, viscous, and ballistic regimes in Table I
by the hierarchy of scales. To facilitate a comparison of length
scales, we define the mean free paths λi for i [ {r, c} in terms of
the corresponding scattering rates as λi ; vF/γ i, where vF is a
thermally averaged velocity magnitude: vF ;

P
k ( @f0/@Ek)jvkj

/
P

k ( @f0/@Ek).
Throughout this section, we will make a distinction between

the regime as defined purely by the hierarchy of scales and the
actual behavior of the conductivity. While these two classifications
of transport are aligned for an isotropic Fermi surface, we shall
see that the same is not always true for an anisotropic Fermi
surface.

While here we limit our discussion to defining the regimes by
frequency or length scale, in an experimental setting the scattering

rates γr and γc are tuned by temperature. Our model is agnostic
regarding the microscopic scattering mechanism, treating γr and γc
as phenomenological parameters. However, in Appendix B we
discuss the role of temperature in tuning between transport regimes
if we associate γr and γc with various relevant scattering
mechanisms.

Throughout the remainder of this section, we will assume the
degenerate limit T�TF such that ( @f0/@Ek) ! δ(Ek EF) and
all sums of the type

P
k ( @f0/@Ek) � �� are restricted to the Fermi

surface. For simplicity, when considering the wavevector dependent
conductivity, we will take ω ¼ 0.

6.1. Viscous fluid

As considered by Gurzhi,1,2 the hydrodynamic equation of
motion for the velocity field u of an isotropic, viscous, charged
fluid is

(ν@2
x γr)u ¼ e

m
Ey: (40)

Then the channel averaged conductivity for no slip boundary con
ditions [u(+W/2) ¼ 0] is,57

σ(x)¼ D
γr

1
lG

W/2
tanh

W/2
lG

� �
¼

D
γr

, lG�W

D(W/2)2

3ν
, lG�W

8>><
>>: (41)

and the wavevector dependent conductivity is39

σ(q) ¼ D
γr þ νq2

¼
D
γr

, lGq�1,

D
νq2

, lGq�1,

8>><
>>: (42)

where lG ; ν/γr
p

and D ; ne2/m, where n is the electron number
density.

FIG. 2. Channel orientations: (a) circular Fermi surface, (b) “diamond” orienta
tion, and (c) “square” orientation.

TABLE I. Definition of transport regimes by hierarchy of scales.

Regime By frequencies By lengths

Ohmic γrγc
p �vFq λrλc

p �W
Viscous γrγc

p �vFq�γc λc�W� λrλc
p

Ballistic vFq≫ γc W≪ λc




