KIT | KIT-Bibliothek | Impressum | Datenschutz

Large cliques or cocliques in hypergraphs with forbidden order-size pairs

Axenovich, Maria 1; Bradač, Domagoj; Gishboliner, Lior; Mubayi, Dhruv; Weber, Lea 1
1 Institut für Algebra und Geometrie (IAG), Karlsruher Institut für Technologie (KIT)

Abstract:

The well-known Erdős-Hajnal conjecture states that for any graph $F$, there exists $ϵ>0$ such that every $n$-vertex graph $G$ that contains no induced copy of $F$ has a homogeneous set of size at least $n^ϵ$. We consider a variant of the Erdős-Hajnal problem for hypergraphs where we forbid a family of hypergraphs described by their orders and sizes. For graphs, we observe that if we forbid induced subgraphs on $m$ vertices and $f$ edges for any positive $m$ and $0≤f≤(m2)$, then we obtain large homogeneous sets. For triple systems, in the first nontrivial case $m=4$, for every $S⊆{0,1,2,3,4}$, we give bounds on the minimum size of a homogeneous set in a triple system where the number of edges spanned by every four vertices is not in $S$. In most cases the bounds are essentially tight. We also determine, for all $S$, whether the growth rate is polynomial or polylogarithmic. Some open problems remain.


Verlagsausgabe §
DOI: 10.5445/IR/1000167010
Veröffentlicht am 08.01.2024
Originalveröffentlichung
DOI: 10.1017/S0963548323000433
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 0963-5483, 1469-2163
KITopen-ID: 1000167010
Erschienen in Combinatorics, Probability and Computing
Verlag Cambridge University Press (CUP)
Band 33
Heft 3
Seiten 286-299
Vorab online veröffentlicht am 16.11.2023
Schlagwörter Erdős-Hajnal conjecture, homogeneous sets in hypergraphs
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page