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Abstract— The increasing use of deep learning techniques has
reduced interpretation time and, ideally, reduced interpreter bias
by automatically deriving geological maps from digital outcrop
models. However, accurate validation of these automated map-
ping approaches is a significant challenge due to the subjective
nature of geological mapping and the difficulty in collecting
quantitative validation data. Additionally, many state-of-the-art
deep learning methods are limited to 2-D image data, which
is insufficient for 3-D digital outcrops, such as hyperclouds.
To address these challenges, we present Tinto, a multisensor
benchmark digital outcrop dataset designed to facilitate the
development and validation of deep learning approaches for
geological mapping, especially for nonstructured 3-D data like
point clouds. Tinto comprises two complementary sets: 1) a real
digital outcrop model from Corta Atalaya (Spain), with spectral
attributes and ground-truth data and 2) a synthetic twin that uses
latent features in the original datasets to reconstruct realistic
spectral data (including sensor noise and processing artifacts)
from the ground truth. The point cloud is dense and contains
32 42 964 labeled points. We used these datasets to explore the
abilities of different deep learning approaches for automated
geological mapping. By making Tinto publicly available, we hope
to foster the development and adaptation of new deep learning
tools for 3-D applications in Earth sciences. The dataset can be
accessed through this link: https://doi.org/10.14278/rodare.2256.

Index Terms— Deep learning, digital outcrop, hypercloud,
hyperspectral, point cloud, point cloud segmentation, remote
sensing, synthetic data.

I. INTRODUCTION

THE need for annotated datasets to train and assess
deep learning models has become essential in numerous
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advanced fields of research, including remote sensing and
Earth observation [1]. Although there are several (ongoing)
attempts to promote benchmarking and open science in the
remote sensing field by developing exhaustive lists of available
datasets [1],1 evaluation servers (e.g., DASE2), cloud services
(e.g., Amazon Web Services,3 Microsoft’s Planetary Com-
puter,4 and Radiant Earth’s MLHub5), and benchmark datasets
(e.g., [2], [3], [4], [5]), novel applications within the fields
of geomorphology, and geology remain sparse and unclear.
Also, generally applicable reference data in remote sensing
and geosciences for evaluating machine learning approaches
are still not available in sufficient quantity and quality [6], [7].

Hyperspectral remote sensing has emerged as a powerful
tool for detecting subtle spectral differences in mineralogical
composition. The ability to apply this technology from a
range of platforms, including satellites, airplanes, autonomous
vehicles, and tripods, supports geological mapping at various
scales. Integrating surface spectral data with topographic data
enables the creation of hyperclouds, which are geometrically
and radiometrically accurate point cloud representations of the
target. Depending on the analyzed range of the electromagnetic
spectrum, a variety of minerals can be detected and mapped
in their original 3-D context. The visible and near-infrared
(VNIR) and shortwave infrared range (SWIR) are useful for
detecting spectral features of alteration minerals, such as
oxides and hydroxides. In contrast, the long-wave infrared
region (LWIR) allows for the detection of many rock-forming
minerals, such as quartz and feldspars. Integrating both infor-
mation sources enables comprehensive lithological mapping
and has numerous geological applications, including greenfield
exploration of critical raw materials, geological mapping of
open-pit and underground mines, compositional mapping of
rock wastes and stockpiles, and soil contamination mapping
in postmining landscapes.

Despite the vast potential of deep learning for hyperspectral
mapping [8], it has found limited applicability for geoscientific
applications, primarily due to the challenges associated with
validation and the benchmarking of adapted algorithms [6].
Ground truth is difficult to establish for large-scale datasets,

1https://github.com/satellite-image-deep-learning/datasets
2http://dase.grss-ieee.org/
3https://registry.opendata.aws/
4https://planetarycomputer.microsoft.com/catalog
5https://www.mlhub.earth/
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due to the limited accessibility of geological outcrops, their
inherently complex and heterogeneous mineralogical compo-
sition as well as the traditionally rather subjective definition
of lithological domains by geological experts based on mostly
visual criteria. While simulated datasets have been used in the
past, they do not yet capture the complexity and variability of
real-world geological environments. The rather novel concept
of 3-D digital spectral outcrops (e.g., hyperclouds) is causing
further complications due to the unstructured and complex
nature of spectral point cloud data, which is incompatible with
most state-of-the-art algorithms. Current approaches partially
solve these issues by simplifying the dataset either spatially
(working in the 2-D image space [9]) or spectrally (seg-
mentation based on selected features [10]) before applying
segmentation in 2-D or 3-D, respectively. For both ways, the
potential of the dataset is not fully exploited and important
information might be lost in the process. Geological scenes
are preferred over highly structured scenes for benchmarking
deep learning models in geosciences due to their complex-
ity, variability, and real-world relevance. Geological scenes
exhibit various features like rock formations, mineralogy,
and topography, creating a realistic and challenging testing
environment for deep learning algorithms. Class boundaries
are diffused in the geological scenes and the classes are
highly mixed. Benchmarking geological scenes enhance the
models’ generalization capability and learning new patterns
and features from the training data, allowing them to adapt
to new unseen geological scenarios and making them more
robust and reliable in real-world applications. Additionally,
it enables researchers to understand deep learning models’
performance in capturing geological information and aligns
with the needs of geoscientific applications. Overall, bench-
marking on geological scenes provides a robust evaluation
environment and facilitates tailored deep learning solutions
in geosciences. Lately, few 3-D hyperspectral datasets with
geoscientific application context have been openly published
(see [7], [11]). Nevertheless, none of them offers an adequate
amount of ground truth data to qualify as a benchmark
dataset.

In this contribution, we present a large and geologically
complex but well-understood real-world benchmark dataset,
and a synthetic (reconstructed) equivalent, designed for test-
ing and comparing deep learning methods for hyperspectral
geological mapping. The real-world dataset covers Corta
Atalaya, an abandoned open pit mine within the Minas de
Rio Tinto copper mining district in Andalusia, Spain. The
hyperspectral data have been acquired using plane, drone,
and tripod-based acquisition and cover the VNIR, SWIR,
and LWIR range of the electromagnetic spectrum. Lithology
class labels have been defined for the whole dataset based
on a combination of detailed laboratory analysis and derived
supervised classification [12] and were adjusted based on an
expert interpretation of the geology. However, due to the
complex nature of geological datasets, this labeling cannot be
treated with 100% confidence. To address this shortcoming,
we used the real-world benchmark dataset to derive a realistic
synthetic dataset in which class labels (and associated spectral
endmembers and abundances) are known with certainty. This

approach allows us to develop data for which the class
and abundance properties are known with confidence while
retaining the spatial statistical properties and complexity of a
real dataset.

To facilitate established and emerging deep learning
approaches, we present these datasets both in 2-D raster form
(as is conventional for remote sensing applications) and 3-D
point cloud form (for emerging approaches that are beginning
to move beyond the topological limitations imposed by 2-D
rasters). Challenges and limitations associated with each data
representation, and a selection of tools available for working
with them, are discussed.

The rest of the paper is structured as follows. Section II
reviews some related work and the available datasets for 3-D
point cloud processing. Section III describes the proposed
Tinto benchmark dataset and how it is collected, labeled,
and synthesized in detail. In Section IV, we discuss the
baseline deep learning models that are used to evaluate the
Tinto dataset, the experimental setup, and the experimental
outcomes. Finally, the conclusion and remarks are drawn in
Section V.

II. BACKGROUND AND RELATED WORK

A plethora of sophisticated methodologies has been
advanced to segment 3-D point clouds, often utilizing publicly
available datasets to evaluate their efficacy. These method-
ologies encompass a broad spectrum of techniques, from
traditional methods to cutting-edge machine learning and deep
learning approaches [13]. In Section II-A and II-B, we provide
a very brief overview of the mature field of some diverse point
cloud segmentation approaches by highlighting a few relevant
examples and presenting a comprehensive collection of 3-D
datasets commonly employed for this specific task.

A. Point Cloud Segmentation
Traditional point cloud segmentation methods rely on strict

hand-crafted geometric constraints and rules. The main goal
of the segmentation process is to group 3-D points into
nonoverlapping regions. The generated regions have common
semantic meanings and geometric structures [14]. With the
introduction of machine learning and deep learning models in
solving 2-D tasks and the availability of large-scale labeled
datasets, many researchers proposed machine/deep learning
models to segment point clouds from the object and scene
levels. Generally, deep learning models achieved remarkable
performance compared to traditional and machine learning
methods. Following, we discuss different point cloud segmen-
tation methods.

1) Edge Based: Edge-based methods try to detect points
close to the edge by calculating the rapid changes in the
intensity (the feature associated with the points), normals,
or the gradient. This will create boundaries between two
different regions. Then, the points are grouped inside the
same region where changes are small. These methods perform
segmentation quickly but struggle to achieve accurate results
when dealing with point clouds from large areas due to issues
like noise and uneven point distribution [15], [16].
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2) Region Growing: Region growing-based methods
involve the random selection of seed points and the measure
of geometrical or feature similarity between the seeds and
neighboring points. Points with similar features are merged to
create one region. This process is performed iteratively until
all points are merged into similar regions. These methods
were first applied to 2.5-D LiDAR data, and they were
widely applied for the segmentation of building structures.
Similar points that belong to the same region can be selected
by comparing their features or calculating the Euclidean
similarity. The segmented points are selected for example
by fitting a plane to a number of points in a given volume
and then points with the minimum distance to that plane are
merged [17], [18], [19].

3) Shallow Supervised Machine Learning: Shallow super-
vised machine learning refers to nondeep algorithms that use
labeled data to train a model. These methods allow classify-
ing points in a cloud based on predefined features such as
maximum likelihood based on support vector machine (SVM)
[20], random forests (RFs) [21], and Bayesian discriminant
classifiers [22]. Other groups of methods depend on statistical
contextual models such as conditional random fields (CRFs)
[23] and Markov random fields (MRFs) [24]. These methods
focus on the statistics and the relational information of the
points over different scales. Machine learning models applied
for point cloud segmentation perform a neighborhood point
selection, then feature extraction from the grouped points,
feature selection to reduce the feature dimensionality and then
segment the points semantically.

4) Deep Learning: Deep learning has become the most
influential and hottest technique in different research fields
such as computer vision, medical imaging, autonomous driv-
ing, and robotics. Deep learning is a special branch of machine
learning where the models are deeper; more complex and
the extracted features generally have higher dimensions than
the ones extracted from traditional machine learning methods.
Applicable methods for applying deep learning on 3-D data
depend on how the data are represented. With multiview data,
a normal 2-D convolutional neural network (CNN) can be
easily applied, such as the MVCNN model [25]. Voxel-based
data can be used with 3-D CNN, where the normal 2-D CNN
can be easily extended to 3-D [26]. The drawback of using
voxel-based representation is the memory and the computation
cost to train a model. To overcome the voxel-based and mul-
tiview methods, models that can be applied directly on point
cloud data were recently proposed as a promising solution.
Models applied directly on point clouds such as the pioneer
model PointNet [27] were followed by the improved version
PointNet++ [28] and the dynamic graph CNN (DGCNN)
[29]. Other approaches of point cloud segmentation in the field
of remote sensing and 3-D laser scanning can be found in [30],
[31], and [32].

The research on point cloud segmentation using deep learn-
ing is a hot research topic. Different models are proposed with
either sophisticated layers [33], [34], [35] to deal with the point
cloud as an unordered set or with a simple architecture using
MLP as a backbone of the model [36] to achieve improved
performance with less computation and memory cost.

B. Available 3-D Datasets

To our knowledge, no 3-D hyperspectral benchmark datasets
have been published for a geoscientific application context yet.
Available benchmark datasets for point cloud segmentation
deal with indoor scenes, such as Stanford large-scale 3-D
indoor spaces (S3DIS) [37] and Semantic3D.Net [38], or urban
scenes, such as Sydney Urban Objects Dataset [39], Toronto-3-
D [40], and SemanticKITTI [41], for semantic segmentation.
Other datasets focus on the objects, for instance segmenta-
tion or object parts segmentation, such as ShapeNet [4] and
ModelNet40-C [42]. In most cases, point cloud attributes are
limited to the 3-D coordinates (X , Y , Z ), intensity, or RGB
color values. The Maarmorilik dataset [7] is an open-source
3-D hyperspectral dataset capturing the complex geology of
the Black Angel Mountain in Maarmorilik, West Greenland,
alongside a detailed and interactive tutorial documenting rel-
evant processing workflows for hypercloud data. It includes
RGB and VNIR-SWIR hyperspectral data but does not provide
ground truth and thus cannot be defined as a benchmark.

In [43] and [44], similar work has been conducted by
generating hyperspectral point clouds, but the datasets are not
available to the public. The MUUFL Gulfport dataset [45]
and GRSS18 dataset [46], on the other hand, provide the
ground truth and are publicly open. They consist of LiDAR
and hyperspectral data. However, the ground truth is in a 2-D
format rather than in a 3-D point format as offered by our
dataset. Some works [10], [47], [48], [49] have also been
done investigating the utilization of hyperspectral data with
LiDAR for classification task but neglecting the use of deep
learning. Moreover, these works [47], [48], [49] performed the
classification in a 2-D style. The work in [50] investigated the
use of smartphone and UAV photogrammetry to assess rock
slope hazards in mountainous regions. Different datasets were
created according to lighting conditions, slope morphologies,
and seasons. They were manually labeled and were classified
using RF into geologically relevant categories. The research
compares 12 different point cloud feature sets, finding that
feature sets focused on geometry, slope, and texture perform
significantly better than those incorporating absolute color
features, which are sensitive to lighting changes and struggle to
distinguish between geological materials. More recent works
[51], [52], [53] use deep learning models for hyperspectral
point cloud segmentation and proved that hyperspectral data
improved the performance of the models. These results moti-
vated us to employ various deep learning models in our work.

To the best of the authors’ knowledge, the Tinto dataset will
be the first-ever dataset that provides the following features: ) a
3-D point cloud of a real outcrop; 2) the corresponding ground
truth; 3) the same scene captured using different sensors
(RGB, VNIR, SWIR, and LWIR); 4) hyperspectral information
attached to each point in the point cloud; 5) two types
of corresponding synthetic data (clean and noisy data); and
6) 2-D views of the scene from three different directions.

III. TINTO DATASET

A. Data Acquisition and Correction
Several steps of the acquisition and processing of the

Corta Atalaya hyperclouds have been previously described
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by Thiele et al. [12] and Kirsch et al. [54]. To summarize
briefly, a tripod-mounted hyperspectral Specim AisaFenix
camera was used to capture oblique VNIR and SWIR imagery
from three locations on the edge of the Corta Atalaya open-
pit. Each of these rasters was then back-projected onto a
dense 3-D point cloud derived from 488 RGB photographs
(captured using a Nikon D850 DSLR camera and Nikkor
85-mm f/1.8G lens) using the structure from motion multiview
stereo method implemented in Agisoft Metashape Professional
v1.6. Atmospheric effects, which result largely from: 1) the
spectral signature of sunlight; 2) interactions between this light
and the atmosphere; and 3) uneven illumination across the
complex surface of the Corta Atalaya mine, were corrected
using the method described by Thiele et al. [55] during the
back-projection step.

The long-wave infrared hyperspectral data were collected in
August 2020 during a larger hyperspectral airborne mapping
campaign [54]. A Hyper-Cam FTIR hyperspectral camera
from Telops was deployed, covering the electromagnetic spec-
trum between 7.7 and 11.8 mm. The collected raw data were
processed using a standard workflow: The individual data
cubes were orthorectified using a 2.5-m resolution Lidar-based
terrain model, acquired within the same campaign, and sub-
sequently stitched to a mosaic (average ground sampling
distance of 1.2 m) using Telops’ Reveal Airborne geolocation
tool (version 2). Initial radiometric correction to at-sensor
radiance was performed using the Telops Reveal Calibrate
Software Version 5.2.8. Atmospheric correction was done
by an In-Scene Atmospheric Compensation algorithm, while
the separation of temperature and emissivity was performed
based on emissivity normalization from the radiance data
[54]. The resulting calibrated emissivity mosaic was then
sampled onto the same dense 3-D point cloud that was used
with the VNIR-SWIR data to create an LWIR hypercloud
to be included in this benchmark dataset. Fig. 1 visualizes
an overview of the Tinto benchmark dataset with the various
datasets it contains [56]. The 3-D visualization of the Tinto
point clouds on Potree [57] can be accessed through this link:
https://www.hzdr.de/FWG/FWGE/Hyperclouds/Tinto.html

B. Data Labeling and Synthetic Twin

Geological maps, i.e., classifications that show the spatial
distribution of rock types, are generally subjective interpre-
tations of the map author due to: 1) cover by vegetation or
soil; 2) ambiguous rock type definitions; and 3) the thematic
or purpose the author has in mind when creating the map.
For example, a map intended to constrain geotechnical aspects
of a mine would often differ significantly from one made
to quantify the composition and distribution of ore, due
to subjective choices made when defining and classifying
different rock units. While this ambiguity is an important
justification for automated methods offered by, e.g., machine
learning approaches, which can improve objectivity while
simultaneously allowing for data to be reprocessed for various
purposes, it presents significant challenges when developing
meaningful and reliable benchmarks. In this contribution,
we have mitigated these challenges using two radically dif-
ferent approaches: 1) deriving a manually vetted but largely

Fig. 1. Overview of the Tinto benchmark structure and the various datasets
it contains.

data-driven classification for ground-truthing purposes and
2) back-calculating a realistic dataset (synthetic twin) from
this classification result to derive a hyperspectral dataset for
which the original rock composition is known for each pixel.
These two approaches are described in the following sections.

1) Geological Ground Truth: In the first approach, which
aims at a meaningful ground-truth classification for the real
hyperspectral data, we have integrated and synthesized hyper-
spectral information, sample mineralogy, field mapping, and
published geological understanding of Corta Atalaya. The
spectral classification results of [12] were used as a base for the
ground truth and manually corrected where field data, ground
sampling and expert interpretation of the high-resolution pho-
togrammetric model showed clear mislabeling. These results
(Fig. 2) were subsequently checked by mine geologists on-
site, resulting in a labeled dataset that we consider to be as
accurate as practically possible for geological applications.

Several classes in this classification are spectrally and
geologically related (e.g., classes defined by the presence of
different but related alteration minerals [12]). Lumping these
together, we derive a simplified classification containing six
rock types. While we encourage people to use the full label
set, this simplified version could be useful for evaluating
approaches that perform poorly with a large number of classes
(e.g., unsupervised methods).

We have also defined a suggested training subset (Fig. 2)
to ensure consistent results between studies. This has been
selected such that: 1) it covers all classes in the dataset and
2) matches with what could be realistically achieved in prac-
tice, with training data distributed along three bench-traverses
that are typical for geological mapping in open-pit environ-
ments. Note that this geometry results in a highly imbalanced
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Fig. 2. (Top) Simplified and (Bottom) complete ground-truth labels provided for this benchmark dataset. The suggested training subset is outlined in black
and follows traverses that match roughly with how a field geologist would collect data: (a) basic (six-lithology) segmentation and (b) complete (ten-lithology)
segmentation.

TABLE I
NUMBER OF POINTS PER CLASS IN THE TRAINING/TESTING SPLIT

FOR THE BASIC-LABEL GROUND TRUTH. VEGETATION CLASS IS
EXCLUDED DURING TRAINING AND TESTING

TABLE II
NUMBER OF POINTS PER CLASS IN THE TRAINING/TESTING SPLIT FOR

THE COMPLETE-LABEL GROUND TRUTH. VEGETATION CLASS IS
EXCLUDED DURING TRAINING AND TESTING

training set, a common challenge for hyperspectral classifica-
tion problems. Tables I and II present the number of points
per class in the basic and complete ground truth, respectively.

2) Synthetic Twin: Potential issues associated with remain-
ing biases or inconsistencies in the ground-truth labels have
been addressed by generating an entirely synthetic suite of
spectral data by forward modeling. These share the same labels
as the real dataset, as well as several latent variables and spatial

relationships, but are derived using a spectral mixing model
and a spatial distribution of mineral abundances simulated
using spectral proxies and sample measurements for each class
from [12]. We suggest that these synthetic spectra are suited
for comparing learning approaches, as the ground truth is
known with certainty, while the real spectra can be used to
evaluate performance on realistic data. The procedure followed
to generate this synthetic twin is outlined below.

First, three latent features known to correlate with specific
mineral abundances (spectral proxies) were extracted from the
real dataset using established minimum wavelength mapping
and band-ratio techniques [12]. These were normalized to
have a mean of zero and standard deviation of one and
assembled into a vector L containing the latent feature at every
point, ensuring that spatial associations present in the real
dataset (and potentially informative for deep machine learning
methods) are preserved in the synthetic one.

Next, mineral abundances from X-ray diffraction measure-
ments on the ground-truth samples [12] were used to define
a mean composition for each class. To ensure the synthetic
abundances sum to one, the so-called additive log ratio (ALR)
transformation [58] was used. As reference phase, an abundant
phase was chosen, generally quartz. Sulfide was used for the
massive sulfide class. Hence, the ALR transformed abundance
α of the remaining phases was computed for each point x by

αi, j (x) = log
(

Âi, j

Â0, j

)
+ σMT

i · 3 j (x), i = 1, 2, . . . , n

(1)

where Âi, j denotes the average abundance of mineral i ∈

{0, 1, . . . , n} in class j— Â0, j being then the abundance of
the reference mineral for class j—, the vector 3 j (x) contains
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Fig. 3. Example of a simulated mineral abundance map (chlorite in this case). These were used to derive synthetic reflectance spectra with realistic spatial
variations.

the values of the three latent variables described previously
for class j at location x , and Mi contains a manually defined
mapping vector that determines the contribution of each latent
variable to the log-abundance of the i th mineral. Finally, σ

scales the log standard deviation of the mineral abundances
within each class, and was kept at a constant value of 0.3 after
some experimentation.

A vector of closed abundances A(x) was then calculated for
each point x by inverting the additive log transform [58]

A j (x) =
exp

[
0 α1, j (x) . . . αn, j (x)

]∥∥exp
[
0 α1, j (x) . . . αn, j (x)

]∥∥
1

(2)

with exp(·) the componentwise exponential function, resulting
in a set of realistic mineral abundance maps (Fig. 3). Following
the real geology exposed in Corta Atalaya, a degree of
endmember variability was then introduced by splitting the
abundance of three mineral groups (muscovite, chlorite, and
clay) into compositional endmembers, based on the position
of the 2200-, 2250-, and 2160-nm absorption features, respec-
tively. This extended the number of phases in A from seven to
ten, a realistic degree of complexity for geological outcrops.
A pure endmember spectral library E assembled using spectra
from the USGS [59] was then used to derive a synthetic
reflectance spectra S for each data point, assuming linear
mixing

S = E · A. (3)

These synthetic reflectance spectra, and the mineral abun-
dances used to derive them, are also included in the benchmark
dataset, and could be used for testing, e.g., endmember iden-
tification and unmixing methods.

3) Degraded Twin: In reality, sensor noise and other
unwanted effects (e.g., atmospheric and topographic distor-
tions, coating, vegetation) mean that no dataset will contain
perfect reflectance spectra. Hence, as a final step, the syn-
thetic reflectance spectra were degraded to simulate realistic
measurement, preprocessing and data-correction procedures.
First, the reflectance spectra were converted to at-target radi-
ance estimates using the two-light-source atmospheric model
described by Thiele et al. [55] and the Oren-Nayar BRDF [60].
Simulating the real acquisition procedure, these radiance data

were projected onto 2-D rasters using three different camera
poses, and path-radiance added to the corresponding spectra
proportional to the target-sensor distance, resulting in three
at-sensor radiance rasters. For the LWIR dataset, light emitted
by the target (and by air between the target and the sensor)
was also calculated, noting that emissivity = 1 − reflectance
following Kirchhoff’s law, and added to the at-sensor radiance.

Each raster was then transformed according to the inverse
of the sensor-specific lens calibration and converted to digital
numbers by dividing by the lab-determined spectral calibra-
tion values. Sensor noise was added using dark-current data
acquired during the acquisition of the real hyperspectral data,
resulting in a set of three simulated raw rasters with realistic
noise.

A degraded synthetic reflectance dataset (Fig. 1) was then
derived by correcting the simulated raw data using the same
routine as was applied to the real data (cf., Section III-A).

C. Accompanying 2-D Data

Although this manuscript focuses on 3-D point cloud data
attributed with reflectance spectra to create hyperclouds, it is
worth noting that we have included a set of 2-D rasters derived
by projecting the class labels, real, synthetic, and degraded
spectra onto nadir, oblique perspective and oblique panoramic
views (Fig. 4). These will not be discussed further here, but
could serve as a useful benchmark for image segmentation or
unmixing methods.

IV. EVALUATION

A. Baseline Models

Many deep learning models designed for processing raw
point clouds are primarily focused on classification and seg-
mentation tasks. Point coordinates are typically the most
common input to the network, and in some cases, normals and
RGB values can also be incorporated. Some models proposed
sophisticated layers to effectively process point clouds directly
[33], [34], [35]. They learn the geometrical features of the
points to perform the classification and segmentation tasks.
Tinto dataset includes multiple sources of information, but
the emphasis is on learning hyperspectral information for
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Fig. 4. False-color visualizations of the (Top left) real LWIR, (Top right) VNIR, and (Bottom) SWIR hyperspectral datasets from the three viewpoints used
to derive the Tinto2D benchmark images: (a) View1: nadir orthoimage (LWIR: 10114.0, 9181.0, 8545.0 nm); (b) View2: oblique perspective (VNIR: 850.0,
650.0, 525.0 nm); and (c) View3: oblique panorama (SWIR: 2200.0, 2250.0, 2350.0 nm).

point cloud segmentation. To evaluate the Tinto dataset on
deep learning models, different deep learning models designed
for point cloud processing were selected and trained from
scratch. They are categorized into three different architectures
according to the main building layers. The first category is
the multilayer perceptron (MLP)-based models [61] where
the MLPs are the main building layers in the models. The
second category is the convolutional-based models where
convolutional-like layers are used to process the point clouds.
The third category is the transformer-based models where the
natural language processing (NLP) Transformer models are
adopted and modified to process raw point clouds for different
tasks. Following, we will discuss each category and explain
the models related to the category.

1) MLP-Based Models: MLP-based models for point cloud
processing refer to architectures that utilize MLPs as their
fundamental building blocks for analyzing and extracting
information from 3-D point cloud data. The first baseline
model is a ten-layer MLP. The model was implemented
to classify the point cloud according to its hyperspectral
information. The output layer is equal to the number of
classes. Our network consists of ten hidden layers between
the input and the output layers to extract useful features and
help in the classification process. The hidden layers have to
extract features of different sizes. The input layer takes the
hyperspectral information of the point as input information.
The output layer has the same size as the number of classes

in the ground truth. Another MLP-based model is the PointNet
model [27]. It is the first pioneering deep learning model for
direct point cloud processing. As the points are unordered
in the point cloud data, it processes each point in isolation
through a shared MLP to extract local features. Specifically,
PointNet applies point-wise operations using several MLP
layers to extract independent features separately and uses
max-pooling operation to capture the global features of the
point cloud. The aggregated global feature extracted from the
point cloud can be used for various tasks such as classification
and segmentation. The drawback of the PointNet model is
that features are learned independently and then the global
feature is aggregated. So, the local structure of the point cloud
between points is not captured. To overcome this limitation,
PointNet++ [28] was proposed as a hierarchical network.
PointNet++ consists of three main layers: the sampling layer,
the grouping layer, and the PointNet-based learning layer. The
sampling layer uses the farthest point sampling algorithm to
select centroids. The grouping layer uses the selected centroids
to find the nearest neighbor points of each centroid. The
PointNet layer is then applied on the local region to learn
and extract the feature vector. This process is repeated in a
hierarchical form and the points’ resolution is reduced as the
network goes deeper. In the last layer, the global feature is
produced. However, the calculated KNN is not updated as
the input goes deeper into the network. The DGCNN [29]
creates dynamic graphs that capture the relationships between
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TABLE III
PERFORMANCE OF THE BASELINE MODELS ON THE TINTO DATASET

points. It utilizes EdgeConv layers to extract the characteristics
of individual points while employing nonlinear MLPs on
neighboring points. Subsequently, the edges are iteratively
adjusted in subsequent layers based on the input from prior
layers, creating a dynamic workflow.

2) Convolutional-Based Models: The success of CNNs for
image classification inspired researchers to use a custom
convolutional-like operation for point clouds. PointCNN [34]
is designed to process the point cloud with the ability to
efficiently learn and capture patterns from point clouds without
relying on predefined grids or structures. It achieves this by
introducing a unique convolution operation called X-Conv that
adapts to the local geometry of the points by learning the
weights of the input features and then permuting the points
into canonical order, making it highly effective for tasks like
3-D object classification and segmentation. ConvPoint [62] is
another model where a customized continuous convolution
operation was introduced to process the unordered point
clouds. This operation can be extended easily to build a CNN
model to process the point clouds similar to 2-D CNNs. The
convolution operation separates the kernel into spatial and
feature parts. A unit sphere is used to select the location of
the spacial parts randomly and the weighted function of the
layers is learned by a simple MLP.

These proposed approaches and others underscore the
adaptability and effectiveness of custom convolutional-like
operations in extracting meaningful features from point cloud
data, further expanding the horizons of 3-D data analysis.

3) Transformer-Based Models: Inspired by the popularity
of the transformer models in NLP, researchers proposed dif-
ferent Transformer models to process the point clouds. It is
under the assumption that the point cloud format suits the
self-attention operator due to invariance to permutation and
cardinality. Point transformer (PT) [63] proposed a transformer
model with self-attention layers as a set operator that can
process the point clouds for various tasks. The attention layers
learn the relationship between selected central points and the
corresponding neighboring points. Those attention layers serve
as the backbone for the feature encoder block, which gradually
downsamples the number of points in each consecutive layer.
Point cloud transformer (PCT) [64] is permutation invariant
and it enhances the input embedding by applying the farthest
point sampling for centroids selecting and nearest neighbors
calculating. PCT proposed an attention mechanism where the
final output features from the attention layer are the offset

features that are the difference between the input and the
original attention features.

In summary, transformer-based models tailored for point
clouds leverage the self-attention mechanism to exploit the
unique characteristics of point cloud data, demonstrating
promising potential for a wide range of applications in 3-D
perception and analysis.

B. Implementation Details
We implemented, trained, and evaluated the MLP model

on TensorFlow [65]. The weights of the model were ini-
tialized using the Xavier initialization method [66]. For the
remaining models, we used the original implementation codes
from the GitHub repositories, all with Adam optimizer [67],
except DGCNN and PCT used stochastic gradient descent
(SGD) [68] with the momentum of 0.9. The dataset contains
31 87 785 points (excluding the vegetation class). For the
complete label scenario, the dataset is split into a training
set (2 97 968 points) and a testing set (28 89 817 points) with
the ratio of 10% and 90%, respectively. The inputs were the
hyperspectral information of the points. The input size depends
on the sensor used to acquire the data (VNIR = 51 bands,
SWIR = 141 bands, and LWIR = 126 bands). The learning
rate was set to 0.001, except PCT used 0.1. All models used a
batch size of 16, except PointNet and PointNet++ used 24 and
DGCNN used 32. The models were implemented in PyTorch
[69], and only PointCNN was applied in TensorFlow.

C. Experimental Results
We conducted experiments on the testing split of the Tinto

dataset to assess the performance of the baseline models. All
hyperspectral point clouds of the VNIR, SWIR, and LWIR (the
real, clean synthetic, and noisy synthetic) are utilized for the
quantitative and qualitative evaluation. The baseline models
trained and tested on the Tinto dataset are MLP, PointNet [27],
PointNet++ [28], DGCNN [29], PointCNN [34], ConvPoint
[62], PT [63], and PCT [64].

First, we trained the baseline models separately on each
sensor data using the training set of real data with complete
labels. The trained models were then evaluated on the testing
set and their accuracies were computed. Table III (real data)
reports the overall accuracy of the baseline models on the
real data for the complete labels. The results indicated that
the PointCNN model achieved the highest accuracy on the
LWIR data, the PCT model achieved the highest accuracy on
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Fig. 5. Segmentation results of the baseline models on the LWIR test in various scenarios: (a) LWIR; (b) ground truth; (c) LWIR MLP real; (d) LWIR MLP
clean; (e) LWIR MLP noisy; (f) LWIR PointNet real; (g) LWIR PointNet clean; (h) LWIR PointNet noisy; (i) LWIR PointNet2 real; (j) LWIR PointNet2
clean; (k) LWIR PointNet2 noisy; (l) LWIR PointCNN real; (m) LWIR PointCNN clean; (n) LWIR PointCNN noisy; (o) LWIR ConvPoint real; (p) LWIR
ConvPoint clean; (q) LWIR ConvPoint noisy; (r) LWIR DGCNN real; (s) LWIR DGCNN clean; (t) LWIR DGCNN noisy; (u) LWIR PT real; (v) LWIR PT
clean; (w) LWIR PT noisy; (x) LWIR PCT real; (y) LWIR PCT clean; and (z) LWIR PCT noisy.

the SWIR data, and the PointNet model achieved the highest
accuracy on the VNIR data. Most baseline models were
proposed and designed to capture the geometric information

from 3-D point clouds of shapes and performed well with
objects and scenes that can be segmented into grids. These
models mainly trained on the coordinates of the points and
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Fig. 6. Segmentation results of the baseline models on the SWIR test in various scenarios: (a) SWIR; (b) ground truth; (c) SWIR MLP real; (d) SWIR MLP
clean; (e) SWIR MLP noisy; (f) SWIR PointNet real; (g) SWIR PointNet clean; (h) SWIR PointNet noisy; (i) SWIR PointNet2 real; (j) SWIR PointNet2
clean; (k) SWIR PointNet2 noisy; (l) SWIR PointCNN real; (m) SWIR PointCNN clean; (n) SWIR PointCNN noisy; (o) SWIR ConvPoint real; (p) SWIR
ConvPoint clean; (q) SWIR ConvPoint noisy; (r) SWIR DGCNN real; (s) SWIR DGCNN clean; (t) SWIR DGCNN noisy; (u) SWIR PT real; (v) SWIR PT
clean; (w) SWIR PT noisy; (x) SWIR PCT real; (y) SWIR PCT clean; and (z) SWIR PCT noisy.

other information (e.g., normals and RGB values) as input
features to extract geometric information from the point cloud.
However, we modified the baseline models and trained them

on the hyperspectral data only. Their performance is lower on
this dataset compared to the models’ performance on other
datasets. Moreover, it’s worth mentioning that the accuracy of
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Fig. 7. Segmentation results of the baseline models on the VNIR test in various scenarios: (a) VNIR; (b) ground truth; (c) VNIR MLP real; (d) VNIR MLP
clean; (e) VNIR MLP noisy; (f) VNIR PointNet real; (g) VNIR PointNet clean; (h) VNIR PointNet noisy; (i) VNIR PointNet2 real; (j) VNIR PointNet2
clean; (k) VNIR PointNet2 noisy; (l) VNIR PointCNN real; (m) VNIR PointCNN clean; (n) VNIR PointCNN noisy; (o) VNIR ConvPoint real; (p) VNIR
ConvPoint clean; (q) VNIR ConvPoint noisy; (r) VNIR DGCNN real; (s) VNIR DGCNN clean; (t) VNIR DGCNN noisy; (u) VNIR PT real; (v) VNIR PT
clean; (w) VNIR PT noisy; (x) VNIR PCT real; (y) VNIR PCT clean; and (z) VNIR PCT noisy.

the labels associated with the real data is not guaranteed to
be 100%, which can impact the models’ performance to some
extent. This is because of the nature of the dataset as there
are no sharp boundaries between the classes as the rocks are
highly overlapped in reality.

To address the issue of inaccurate ground truth labels, the
dataset has a synthetic part where each point in the point
cloud has a synthetic hyperspectral feature and is associated
with a correct class label. We trained the baseline models
on the training set and evaluated them on the testing set of
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various sensors. Table III (clean synthetic data) reports the
overall accuracy of the baseline models on the clean synthetic
data for the complete labels. We found that the performance
of all models on the clean synthetic data scored higher
accuracies compared to the performance on the real data with
a large margin. Interestingly, the majority of models performed
similarly on clean synthetic data from different hyperspectral
sensors. Our observation is that precise ground truth data
can greatly enhance model performance and enable accurate
segmentation of the point cloud. Also, Table III shows that the
models that consider the neighboring points when extracting
the features scored the best accuracies. The DGCNN model,
which relies on the local neighboring points to create and
update the graph for learning the point features, outperforms
other models on all sensors data. Then, it is followed by
PCT and PointNet++ models. Both models learn the local
features by considering the neighboring points and merge them
with the global features computed by the self-attention layer
for PCT and the max-pooling layer for PointNet++. Our
experiment demonstrated that those models are better suited
for our synthetic dataset.

In order to increase the realism of the synthetic data and
challenge the models further, we added real noise information
(sensor noise and processing artifacts) to the synthetic point
cloud. We evaluated the baseline models on the noisy synthetic
data and found that their accuracy decreased compared to
those trained on clean synthetic data. Table III (noisy synthetic
data) reports the overall accuracy of the baseline models on
the noisy synthetic data for the basic and complete labels.
While all models achieved higher performance compared to
the models trained on the real data, DGCNN and PointNet++

models are consistently the leading models on the synthetic
data. The DGCNN model achieved the highest accuracy on
the SWIR and VNIR data while PointNet++ achieved the
highest accuracy on the LWIR data.

In conclusion, the baseline models proved that they can
be adapted to learn hyperspectral information and perform
the point cloud segmentation task on the geological data.
This opens a new direction of applying deep learning models
to generate segmented maps on the geological data using
hyperspectral information and propose new models that can
fuse information from different sources.

Figs. 5–7 showcase the qualitative outcomes of segmented
point clouds generated by the trained baseline models using
the testing split of the dataset on the LWIR, SWIR, and
VNIR data, respectively, in different scenarios (real data, clean
synthetic data, and noisy synthetic data). These illustrations
highlight the baseline models’ ability to produce segmented
point clouds with a reasonably high degree of accuracy.
When applied to clean synthetic data, most models excel in
accurately segmenting the point cloud. However, it’s crucial
to acknowledge that real-world data typically contains noise,
and our models exhibit decreased performance when noise is
introduced into the synthetic data. Furthermore, the presence
of imbalanced data can lead to misclassifications, particularly
in instances where certain classes have a disproportionately
smaller number of training samples compared to others. This
issue becomes particularly noticeable in the case of the

purple shale class, both in real data and noisy synthetic data
scenarios.

V. CONCLUSION

This article introduces the first-ever fully labeled multisen-
sor hyperspectral benchmark dataset and we expect it to be
a valuable resource for researchers working on point cloud
segmentation in geosciences. The dataset is comprehensive
and diverse, covering real and synthetic data with different
levels of labeling for the classes. The Tinto dataset is a suitable
benchmark for developing and evaluating point cloud segmen-
tation algorithms for geological applications. We believe that
the Tinto dataset will serve as a benchmark for future studies
and contribute to the development of innovative solutions
for point cloud segmentation in Earth sciences. Interestingly,
deep models that leverage information from neighboring points
demonstrate superior performance, thanks to their ability to
extract both local and global features for point cloud segmenta-
tion. The strength of this dataset is that it is versatile and allows
testing architecture robustness under different conditions (e.g.,
noise and data quality). Overall, the Tinto benchmark dataset
represents a significant contribution to the field and holds
promise for a broad range of applications in Earth sciences
such as mineral exploration, geological mapping, and natural
resources management.
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