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Kurzfassung

Aufgrund ihres Leichtbaupotenzials bei relativ geringen Kosten gewinnen glas-
faserverstärkte Polymere in industriellen Anwendungen zunehmend an Bedeu-
tung. Sie verbinden die hohe Festigkeit von Glasfasern mit der Beständigkeit
von z.B. duroplastischen Harzen. Bei der Verarbeitung von faserverstärkten
Duroplasten kommt es zu einer chemischen Reaktion des Harzes. Die chemi-
sche Reaktion geht mit einer chemischen Schrumpfung einher. In Verbindung
mit der thermischen Ausdehnung kann das Material bereits beim Herstellungs-
prozess beschädigt werden. Auch wenn das Komposit nicht vollständig ver-
sagt, kann es zu Mikrorissbildung kommen. Diese Schäden können die Blast-
barkeit des Bauteils und damit seine Lebensdauer beeinträchtigen. Faserver-
stärkte Duroplaste enthalten Strukturen auf verschiedenen Längenskalen, die
das Verhalten des Gesamtbauteils beeinflussen und daher für eine genaue Vor-
hersage der Rissbildung berücksichtigt werden müssen. Das Verständnis der
Mechanismen der Rissbildung auf den verschiedenen Längenskalen ist daher
von großem Interesse. Auf der Grundlage von Molekulardynamiksimulationen
wird ein Harzsystem zusammen mit einer Faseroberfläche und einer Schlichte
auf der Nanoskala betrachtet und ein systematisches Verfahren für die Entwick-
lung eines ausgehärteten Systems vorgestellt. Eine zweistufige Reaktion, eine
Polyurethanreaktion und eine radikale Polymerisation, wird auf der Grundla-
ge eines etablierten Ansatzes modelliert. Anhand des fertig ausgehärteten Sys-
tems werden Auswertungen über gemittelte Größen und entlang der Norma-
lenrichtung der Faseroberfläche durchgeführt, was eine räumliche Analyse der
Faser-Schlichtharz-Grenzfläche erlaubt. Auf der Mikrolängenskala werden die
einzelnen Fasern räumlich aufgelöst. Mit Hilfe der Kontinuumsmechanik und
der Phasenfeldmethode wird das Versagen während des Aushärtungsprozesses
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auf dieser Längenskala untersucht. In der Materialwissenschaft wird die Pha-
senfeldmethode häufig zur Modellierung der Rissausbreitung verwendet. Sie
ist in der Lage, das komplexe Bruchverhalten zu beschreiben und zeigt eine
gute Übereinstimmung mit analytischen Lösungen. Dennoch sind die meis-
ten Modelle auf homogene Systeme beschränkt, und nur wenige Ansätze für
heterogene Systeme existieren. Es werden bestehende Modelle diskutiert und
ein neues Modell für heterogene Systeme abgeleitet, das auf einem etablierten
Phasenfeldansatz zur Rissausbreitung basiert. Das neue Modell mit mehreren
Rissordnungsparametern ist in der Lage, quantitatives Risswachstum vorherzu-
sagen, wo die etablierten Modelle eine analytische Lösung nicht reproduzieren
können. Darüber hinaus wird ein verbessertes Homogenisierungsschema, das
auf der mechanischen Sprungbedingung basiert, auf das neuartige Modell an-
gewandt, was zu einer Verbesserung der Rissvorhersage selbst bei unterschied-
lichen Steifigkeiten und Risswiderständen der betrachteten Materialien führt.
Zudem wird zur Erzeugung digitaler Mikrostrukturen, die für Aushärtungssi-
mulationen im Mikrobereich verwendet werden, ein Generator für gekrümm-
te Faserstrukturen eingeführt. Anschließend wird die Verteilung mechanischer
und thermischer Größen für verschiedene Abstraktionsebenen der realen Mi-
krostruktur sowie für verschiedene Faservolumenanteile verglichen. Schließ-
lich wird das neue Rissausbreitungsmodell mit dem Aushärtungsmodell kom-
biniert, was die Vorhersage der Mikrorissbildung während des Aushärtungspro-
zesses von glasfaserverstärktem UPPH-Harz ermöglicht.
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Abstract

Because of their lightweight potential at relatively low cost, glass-fiber rein-
forced polymers are becoming increasingly important in industrial applications.
They combine the high strength of glass fibers with the durability of, for exam-
ple, thermoset resins. During processing of fiber-reinforced thermosets, the
resin material undergoes a chemical reaction. The chemical reaction is ac-
companied by chemical shrinkage. Combined with thermal expansion, the mi-
crostructure can be damaged during this manufacturing process. Even if the
component does not fail completely, micro-cracking can occur. This damage
can affect the overall performance of the component and therefore its lifetime.
Fiber-reinforced thermosets contain microstructures on different length scales,
which influence the behavior of the overall composite and must therefore be
taken into account for accurate prediction of crack formation. Understanding
the mechanisms of crack initiation at different length scales is therefore of great
importance. To this end, using molecular dynamics simulations, a resin system
is considered together with a fiber surface and a sizing layer at the nanoscale. A
systematic procedure for the development of a final cured system is presented.
A two-stage reaction, a polyurethane reaction and a radical polymerization, is
modeled based on an established molecular dynamics approach. For the fully
cured system, evaluations are carried out in terms of averaged quantities as
well as quantities along the normal direction of the fiber surface, resulting in
spatially varying properties along the fiber-sizing-resin interface. At the micro
scale, the individual fibers are resolved. Based on continuum mechanics and
the phase-field method, the fracture during the curing process is studied in this
work. In materials science, the phase-field method is widely used to model
crack propagation. It is capable of describing complex fracture behavior and
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shows good agreement with analytical solutions. Nevertheless, most models
are introduced for homogeneous systems, and few approaches are available for
heterogeneous systems. Existing models are discussed and a new model for
heterogeneous systems is derived based on an established phase-field approach
to crack propagation. The new multi-crack order parameter model is able to
predict crack growth quantitatively, whereas the established models fail to re-
produce an analytical solution. Furthermore, a more advanced homogenization
scheme based on the mechanical jump condition is applied to the novel model,
leading to an improvement in crack prediction even for a high contrast in stiff-
ness and crack resistance of the considered materials. A curved fiber structure
generator is introduced to generate digital microstructures that are used for cur-
ing simulations at the micro scale. Subsequently, the distributions of mechan-
ical and thermal quantities are compared for different levels of abstraction of
the real microstructure, as well as for different fiber volume fractions. Finally
the novel crack propagation model is combined with the curing model, which
allows the prediction of micro-crack formation during the curing process of
glass fiber reinforced UPPH resin.
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1 Introduction

1.1 Motivation and objectives

Glass fiber-reinforced polymers are increasingly important in industrial appli-
cations due to their lightweight potential at relatively low cost. They combine
the high strength of glass fibers with the durability of, for example, thermosets.
A novel unsaturated polyester polyurethane hybrid (UPPH) resin system al-
lows co-molding of continuous fiber-reinforced polymers in e.g. compression
molding. The relatively low cycle times allow a wide range of uses, such as
in automotive applications [6, 7]. Understanding the behavior of such a com-
posite, including manufacturing and possible damage during this process, is
essential for designing safe and reliable products.

Figure 1.1: The different length scales of fiber-reinforced thermosets and their corresponding dif-
ferent computational methods used in this work. With images reprinted with permis-
sion from [8, 9].
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Fiber-reinforced thermosets (FRTS) contain structures on of different length
scales, cf. Figure 1.1. Starting with the nano length scale where individual
atoms are resolved and the interfaces between fiber, resin and fiber sizing take
place. A well-established method for this scale is molecular dynamics, for
which a approach for investigating the fiber-sizing-resin interface during poly-
merization will be presented in this work. At the micro length scale, the indi-
vidual fibers are resolved. Based on continuum mechanics and the phase-field
method, the fracture during the curing process will be studied. The meso length
scale deals with whole fiber bundles, while the marco length scale represents
the entire FRTS component.

Crack propagation modeling1 Understanding failure and fracture behav-
ior is a challenge in modern engineering and materials science, especially when
considering the growing number of materials with a complex morphology and
heterogeneous material properties, such as fiber-reinforced polymers (FRP).
Predicting the resistance to failure and the complex crack propagation paths of
such materials will improve the ability to determine effective load capacities
and to develop efficient, safe, and predictable products. Linear Elastic Frac-
ture Mechanics (LEFM) has proven to be capable of describing crack propa-
gation in homogeneous materials in 2D [10, 11]. An extension to heteroge-
neous materials is possible [12, 13], but a general approach which describes
complex heterogeneous materials in 3D seems difficult and not feasible. An
alternative approach is cohesive zone modeling (CZM), introduced by Baren-
blatt [14] and Dugdale [15], which can be embedded in the finite element
method (FEM), using cohesive finite elements. An overview of CZM can be
found in Elices et al. [16]. Since these models demand conforming meshes,
more advanced crack paths requires cumbersome remeshing methods. In com-
parison, the generalized/extended finite element method (GFEM/XFEM) en-
riches the solution space of the FEM to handle discontinuous functions [17].

1The content of this section has been taken directly from Schöller et al. [1, 3] with minor
linguistic changes.
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This eliminates the need for conforming meshes and remeshing. However, both
CZM and GFEM/XFEM are limited to describe complex crack propagation be-
havior, including nucleation, branching, or the interaction between cracks. In
a domain with sharp interfaces, different regions, e.g., phases or destroyed and
unbroken material, occurring in the case of fracture, are distinctly separated, cf.
e.g., Prahs and Böhlke [18], in the context of interface conditions on a sharp
interface. This requires explicit tracking of the interface, which has proven
impractical.

Phase-field crack propagation models1 An alternative approach to
fracture utilizes the phase-field method (PFM), introducing order parameters
to allow a smooth transition between various regions. This results in continu-
ous order parameter fields, often referred as phasefields, and allows an implicit
tracking of the interface on nonconforming meshes, and thus an efficient nu-
merical treatment of singularities, such as grain boundaries or cracks. Thus, the
PFM is widely established to describe the evolution of microstructures, such
as solidification or solid-solid phase transitions, including consideration of dif-
ferent types of physical aspects, e.g., thermodynamics, chemistry, or mechan-
ics [19–23]. Phase-field approaches to brittle fracture have been developed in
both the physical [24–26] and the mechanical community [27–29]. The latter
is based on Griffith’s theory [30] and the variational formulation of Francfort
and Marigo [31] and Francfort and Bourdin et al. [32]. Other more advanced
applications, for example, deal with plasticity [33–36] or multiphysics [37–40].
For most of these models, the material is considered homogeneous. This is a
reasonable assumption on macroscopic length scales. Often, however, failure
mechanisms occur at smaller length scales, where many materials are hetero-
geneous. Therefore, models that are able to describe fracture of heterogeneous
systems are highly desirable.

Crack propagation in heterogeneous materials1 Most phase-field
models describing crack propagation in such systems introduce a varying crack

3
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surface energy. This is achieved either by anisotropy [41, 42] or interpolation
of the surface energy [43, 44]. Schneider et al. [45] proposed a model that ex-
tends the multiphase-field model of Nestler et al. [46], so as to describe crack
propagation in polycrystalline systems. The model takes into account damage
due to a phase transition to a common crack phase. This concept has also
been extended to anisotropy [47] and plasticity [48]. A common approach to
consider an interfacial fracture toughness is to lower the crack resistance in the
interfacial region. Hansen-Dörr et al. [49, 50], for instance, model a locally
varying value based on a virtual phase transition. To account for interfacial ef-
fects, CZM have also been introduced into phase-field crack propagation mod-
els [51–54]. Although these models can describe complex crack propagation
in heterogeneous materials, including interfacial effects, and agree with the
LEFM and experiments, they can lead to non-physical behavior as discussed
by Henry [55].

An objective of this work is to introduce a novel multi-crack order parameter
(MCOP) phase-field model for fracture which is able to overcome issues of
the established single-crack order parameter (SCOP) approaches for modeling
crack propagation in heterogeneous systems based on the phase-field method.
Therefore, some issues of the SCOP model are illustrated in simple 1D and
2D simulation setups and several advantages of the novel model are demon-
strated. Moreover, the work at hand is to extend this model by incorporating
a more sophisticated scheme for the underlying homogenization problem [56–
61]. Therefore, the work of Schneider et al. [60] is applied to the MCOP model.
Finally, an exemplary FRP system is used to demonstrate the limitations of the
basic scheme and the advantages of the proposed model, where the homoge-
nization scheme is based on mechanical jump conditions.

The role of fiber sizing2 Besides the matrix material and the fiber, the siz-
ing (fiber coating) plays a crucial role in the manufacturing and performance

2The content of this section has been taken directly from Schöller et al. [2] with minor linguis-
tic changes.
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of FRPs. The fiber size consist of multiple components and fulfills a variety
of tasks, such as protection of the fiber, improvement of the fiber handling, or
enhancement of the adhesive bonding of fiber and matrix [62]. Early investi-
gations considering the sizing were conducted by Plueddemann [63, 64] and
Loewenstein [65]. They mainly focus on the coupling agent, which provides
the functionality of bonding to both the glass fiber and the resin. In the litera-
ture, Thomason [66–68], Gao and Mäder [69] and Liu et al. [70], among others,
examined the sizing of glass fibers with different sizing formulations and using
various approaches. Furthermore, Karger-Kocsi et al. [71] summarize recent
advances in interphase technology for several fibers, and matrix materials, as
well as sizes. Also, Thomason [62] recently gave a detailed overview of glass
fiber sizing. He pointed out that the actual sizing is always a proprietary secret
that leads to a lack of understanding of the fiber sizing, especially since the
knowledge is very fragmented. As the fiber interphase is a common point of
failure in FRPs, through mechanisms such as fiber pull-out and fiber debond-
ing, this lack of knowledge is a severe impediment to improving these materi-
als. Moreover, fiber interphase has been mostly studied in the literature based
on an experimental approach. In contrast, few investigations have been con-
ducted based on simulative approaches. Therefore, modeling of the fiber-resin
interphase, including the sizing, e.g. based on molecular dynamics, is highly
desirable as it provides insights into the interphase and could improve the un-
derstanding of FRP. In particular, regarding their manufacturing, performance,
or failure mechanism, this could lead to an improvement of this whole class of
materials.

Only a few attempts to investigate the interface between fiber and matrix, based
on molecular dynamics (MD), can be found in the literature. While the inter-
phase between carbon fibers was examined [72–74], including the fiber siz-
ing [75], no investigation of the interphase for glass fibers and their sizing have
been conducted so far. Insight into the formation of the network during the
polymerization, in combination with the fiber size, could improve the under-
standing of sizing extensively.
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Curing of FRTSs During the processing of FRTS, e.g. compression mold-
ing, the resin material undergoes a chemical reaction. The formation of the
final polymer structure gives the component its final strength and properties,
such as mechanical stiffness. Accompanying the chemical reaction, the curing
process, is a chemical shrinkage. Together with a thermal expansion due to
the higher temperature, the microstructure can already exhibit stresses during
this manufacturing process. In particular, the high contrast between the ther-
mal, chemical and mechanical material behavior of fiber and matrix can cause
damage at this stage. Even if a complete failure of the component does not
occur, microcracks may occur, e.g. at the fiber-resin interface. This damage
can affect the overall performance of the component and therefore its service
life. Understanding the mechanism of crack formation at the length scale of
individual fibers is therefore of great interest.

In this work, a structure generator for curved fibers is introduced. Using such
volume elements and material properties derived from the study of the resin
system with molecular dynamics simulations [76], curing simulations are per-
formed. Subsequently, the distribution of mechanical and thermal quantities
will be compared for different levels of abstraction of the real microstruc-
ture as well as for different fiber volume fractions. Finally, the combination
of the novel MCOP model with the mechanical jump condition framework,
cf. eg. [60], allows the prediction of microcrack formation during the curing
process of glass fiber-reinforced UPPH resin.

Objectives The main objectives and novelties of this work are listed in the
following:

• The two-stage polymerization process of the UPPH resin is studied by
molecular dynamics simulations. In contrast to Schwab and Dennis-
ton [76], the glass fiber and sizing are also considered, and the evolution
of various quantities during polymerization along the fiber-sizing-resin
interface is examined.
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1.1 Motivation and objectives

• A volume element generator for long curved fibers is developed based
on molecular dynamics and the discrete element method.

• The curing process of UPPH in such glass fiber-reinforced volume el-
ements is studied and stresses due to thermal and chemical strains are
discussed.

• A novel phase-field crack propagation model based on multiple crack
order parameters is developed. It is demonstrated that it provides qual-
itatively and quantitatively better predictions of crack formation in het-
erogeneous materials than established models.

• In the novel MCOP, the mechanical jump condition framework [22] is
incorporated. The advantages of such an extension are shown, e.g., by
crack formation around a single inclusion problem.

• Crack propagation in FRTS is studied. External displacement boundary
conditions are used to demonstrate the advantages of the MCOP as well
as the jump condition framework. Finally, crack initiation during curing
of glass fiber-reinforced UPPH resin is predicted using the novel model.
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1.2 Notation and conventions

In this work, a symbolic notation for tensors is used: Scalar-valued quantities
are denoted by a normal font, e.g. a,b. Furthermore are 1th and 2nd order
tensors, or vectors, denoted by bold symbols, e.g. a,B. In addition, 4th order
tensors are denoted by double-strike symbols, e.g. C. The tensors are restricted
to an orthonormal basis (ONB)

{
ex,ey,ez

}
with the unit vectors ei ∀i = x,y,z.

Greek letters, e.g. α,β , are used to denote phase indices in the context of the
phase-field model.

Operations The scalar product is denoted by a ·b and A ·B for vectors a,b
or 2nd order tensors A,B, respectively. A linear mapping of a 2nd order tensor
A and a vector b is defined by Ab, and for a 2nd order tensor A and a 4th order
tensor C by C [A]. The dyadic product of two vectors follows by a⊗b. The
vector norm can be written with |a|=

√
a ·a, and the tensorial Frobenius norm

analogously with |A|=
√
A ·A. The inverse of a tensor A is denoted by A−1

and the transposed tensor by AT. The trace of a 2nd order tensor A is defined
by tr(A) =A ·1, where the 2nd order identity tensor is 1.

Derivatives Total derivatives are denoted by da
dx a for a vector a with respect

to x, while partial derivatives are denoted by ∂a
∂x . The derivatives respectively

apply to any tensorial order of the numerator or denominator. For the tempo-
ral derivative the abbreviation ϕ̇ = dφ

dt for an arbitrary field φ and time t is
introduced. The spatial gradient ∂φ

∂x with respect to a position vector x can
be written by grad(φ) or using the nabla operator with ∇a. The divergence
of a vector field a is denoted by div(a) = grad(a) · 1 or ∇ ·a and can also
be extended to higher tensorial orders. The Laplacian operator is defined by
∆φ = div(grad(φ)).
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1.3 Outline of the thesis

This dissertation is organized as follows: Selected fundamentals of compos-
ite materials, continuum mechanics, phase-field modeling, fracture mechanics
and molecular dynamics are introduced in Chapter 2. Subsequently, in Chap-
ter 3, the two-stage polymerization of the fiber resin system considered is in-
vestigated using molecular dynamics. In order to study this curing process
at the micro scale, a structure generator for curved fibers in FRPs is estab-
lished in Chapter 4. Based on the generated structures, micro-scale curing
simulations are performed and the corresponding curing model is formulated
in Chapter 5. In order to be able to describe crack propagation in such a het-
erogeneous system, different crack propagation models based on phase-field
modeling are presented in Chapter 6. These are qualitatively and quantitatively
compared, resulting in a novel crack propagation model for heterogeneous sys-
tems, including advanced homogenization schemes. The ability of the model
to predict crack propagation in FRPs is demonstrated and finally applied to the
compression molding process of glass fiber-reinforced UPPH resin in Chap-
ter 7. Thereby, the loading due to thermal expansion and chemical shrinkage
on the micro-length scale is considered. Finally, conclusions and a outlook are
given in Chapter 8.
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2 Selected fundamentals

2.1 Composite materials and compression
molding process

A composite material consists of two or more components. Typically, the com-
ponents have significantly different material properties, such as chemical or
mechanical properties and are often composed of materials of different classes,
such as steel-reinforced concrete, fiber-reinforced ceramics, or fiber-reinforced
polymers. The general idea of a composite material is to combine the con-
stituents to get a composite material with better effective properties. For exam-
ple, for fiber-reinforced polymers (FRP), the matrix materials primarily embed
the fibers, transfer loads and protect the fibers. In contrast, the fibers mainly
provide the strength and stiffness of the composite. The effective strength is
significantly increased compared to the pure matrix materials, while other prop-
erties, e.g. chemical resistance, may be reduced compared to a pure glass.

In this work, FRPs, in particular fiber-reinforced thermosets (FRTS), are con-
sidered in the context of the compression molding process, which is briefly
introduced in the following. The reader is referred to [7, 77] for a more com-
prehensive introduction to FRTS and the compression molding process.
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2 Selected fundamentals

Figure 2.1: Manufacturing process of semi-finished sheet molding compound (SMC). Reprinted
from [78].

Glass fiber-reinforced UPPH1 Fiber-reinforced polymers are increas-
ingly important in industrial applications, including aerospace, automotive,
marine, and construction industries. The majority of these are glass fiber-
reinforced polymers, probably due to the relatively low cost while still offering
good performance. A relatively new thermoset matrix material in this con-
text is the unsaturated polyester polyurethane hybrid (UPPH) resin system. It
combines a polyurethane (PU) polyaddition with a radical polymerization of
unsaturated polyester (UP), resulting in a two-step reaction of the thermoset.
The hybrid networks formed by this copolymerization increase overall prop-
erties such as crack resistance, tensile strength and toughness [6]. There is
therefore increasing interest in using this material in industrial applications
such as the automotive industry [7].

Compression molding process For FRPs, the choice of manufacturing
process is often based on the fiber aspect ratio, i.e., the ratio of fiber length
to diameter. Depending on the ratio, different high shear stresses can occur
during the processes, which prevents a free choice of the manufacturing pro-
cess. In this work, the compression molding process is chosen because it

1The content of this section has been taken directly from Schöller et al. [2] with minor linguis-
tic changes.
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2.1 Composite materials and compression molding process

Figure 2.2: The compression molding process: Placing the SMC initial charge, compression mold-
ing and finally, curing of the resin. Reprinted from [78].

also allows the co-molding of continuous fiber-reinforced polymers as local
reinforcements, leading to continuous-discontinuous FRPs. This class of com-
posites combines the possibility of complex structures of discontinuous fiber-
reinforced polymers with the high strength and stiffness of continuous fiber-
reinforced polymers and offers an immense weight saving potential. In this
context, compression molding allows low cycle time and therefore low cost.

The compression molding process of FRTS uses a prepreg, a sheet molding
compound (SMC). To produce the SMC, the resin is mixed and applied evenly
to two films through doctor boxes. Chopped glass fibers are then dropped
randomly onto the films. The films are then joined and the resin cures during
a polyurethane reaction to a so-called B-stage, cf. Figure 2.1. The finished
SMC can be easily transported and cut to size. After the films are removed, the
charge is placed in the press onto the hot molds. By closing the molds, pressure
and heat are applied and the SMC charge flows into its final shape and radical
polymerization takes place, curing the part to its final strength, cf. Figure 2.2.
After the molds are opened, the part is removed and cooled to room temperature
for further processing. An example of the final microstructure is shown in
Figure 2.3. The chopped fiber roving, consisting of hundreds of individual
fibers, can be identified in the CT scan. Based on the flow direction, the bundles
may have a preferred direction. Thus, a planar distribution is observed in the
CT scan due to the planar geometry of the final component.
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2 Selected fundamentals

Figure 2.3: 3D visualization of the tracked and clustered SMC fiber bundles. Only clustered fiber
bundles with a minimum of 100 sub-bundles are visualized. Reprinted with permission
from [9]. Copyright 2021 Elsevier.
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2.2 Continuum mechanics

2.2 Continuum mechanics

This section gives a brief introduction to continuum mechanics, mainly fol-
lowing Altenbach [79] and Bertram and Glüge [80]. For more detailed funda-
mentals of of continuum mechanics, the reader is referred to e.g. [79–84]. In
continuum mechanics, material bodies are considered which continuously oc-
cupy a region in three-dimensional Euclidean space R3 by an infinite number
of material points. This work is restricted to Cauchy-Boltzmann continua, for
which each material point has three translational degrees of freedom and, for
example, no rotational degrees of freedom.

2.2.1 Kinematics

A material body Ω with a boundary ∂Ω and a unit normal vector n directed
outwards is considered. Any material point within Ω can be described by a
position vector X at a reference time t0 in a reference configuration. The
position vector at a time t > t0 can be described by

x= χ(X, t) (2.1)

in the current configuration by the motion function χ.

Deformation The gradient of the motion χ with respect to the reference
configuration

F =
∂χ(X, t)

∂X
(2.2)

is called the deformation gradient and describes the transformation of a line
element dX of the reference configuration into a line element dx in the current
configuration by

dx= F dX. (2.3)
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2 Selected fundamentals

In addition, the transformation of an area element dA and a volume element
dV of the reference configuration into elements of the current configuration
(da,dv) follows by

da= det(F )
(
F T)−1

dA, (2.4)

dv = |det(F )|dV. (2.5)

The difference between the reference and current position vector yields the
displacement vector

u= χ(X, t)−X, (2.6)

and time derivative of the motion χ the velocity vector

v =
∂χ(X, t)

∂ t
. (2.7)

The gradient of the displacement vector with respect to the reference configu-
ration

H =
∂u
∂X

= F −1 (2.8)

is called the displacement gradient and can also be directly related to the defor-
mation gradient with the identity tensor 1.

Strain measures Based on a polar decomposition of the deformation gra-
dient the symmetric Green’s strain tensor

EG =
1
2
(
F TF −1

)
(2.9)

can be defined, which is independent of of rigid body motion, and therefore is
a common strain measure for finite deformation. The symmetric infinitesimal
strain tensor

ε=
1
2
(
H+HT) , (2.10)
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2.2 Continuum mechanics

is the linearized variant of EG, which is only independent of translational rigid
body motion, not to rotational rigid body motion and is therefore often used in
the context of small deformations.

2.2.2 Balance laws

This section considers sufficiently smooth physical fields without singular sur-
faces. For a discussion of continua with material singular surfaces, the reader
is referred to e.g. Prahs and Böhlke [18].

Balance of linear momentum The balance of linear momentum can be
written by

d
dt

∫
Ω

ρvdv =
∫

Ω
ρbdv+

∫
∂Ω

tda, (2.11)

with the mass density ρ , and implies that the change of linear momentum∫
Ω ρvdv is equal to the forces of a body force vector b and the traction vec-

tor t.

The Theorem of Cauchy states that the traction vector is given by

t= σn, (2.12)

with the normal vector n and the Cauchy stress tensor σ [80]. For the static
case and when no body force is present, the local balance of linear momentum
can be written by

div(σ) = 0. (2.13)

Furthermore, the balance of angular momentum is satisfied with the symmetry
of the stress tensor

σ = σT, (2.14)

as stated by Boltzmann’s axiom [80].
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2 Selected fundamentals

First law of thermodynamics The first law of thermodynamics, or the
balance of total energy, can be defined by

d
dt

∫
Ω

ρ
(

e+
1
2
v ·v

)
dv =

∫
Ω

ρ (b ·v+ r)dv+
∫

∂Ω
(t ·v−q ·n)da, (2.15)

with the specific internal energy e, a specific heat source r and the heat flux
vector q. Therefore, the change in total energy, the sum of internal and kinetic
energy, is equal to the power of a volumetric and surface forces and the heat
supplied by a heat source and flux.

Second law of thermodynamics The first law of thermodynamics pro-
vides a balance of total energy, but it does not state how energy can be con-
verted, nor in what direction. Therefore, the second law of thermodynamics is
given by

d
dt

∫
Ω

ρη dv−
∫

Ω
ρ

r
θ

dv+
∫

∂Ω

q

θ
·nda≥ 0, (2.16)

with the absolute temperature θ , the specific entropy η , and states that the en-
tropy production of a body is never greater than its entropy change due to the
heat flux and the heat source. In combination with the first law of thermody-
namics, the localized Clausius-Duhem inequality (CDI)

σ · ε̇−ρψ̇−ρηθ̇ − q ·g
θ
≥ 0 (2.17)

with the Helmholtz free energy ψ = e−θη and the temperature gradient g =

∂θ/∂X can be formulated. This inequality equation imposes restrictions on
the constitutive equations describing the material response, e.g. by following
the work of Coleman and Noll [85].
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2.2 Continuum mechanics

2.2.3 Infinitesimal deformation

The deformation of a body is infinitesimal, or small, if

|H| ≪ |1| (2.18)

is fulfilled. And therefore, e.g. the strain tensor can be approximated by the
geometrically linearized variant

EG ≈ ε. (2.19)

Furthermore, for the gradient of an arbitrary field ψ with respect to the refer-
ence and current configuration,

∂ψ
∂X
≈ ∂ψ

∂x
, ρ ≈ ρ0 (2.20)

applies.

2.2.4 Material theory

The balance of linear momentum (2.13) contains nine unknown physical fields,
three displacement and six stress components, but only provides three equa-
tions. Therefore, six additional constitutive equations have to be formulated to
relate the material response, hence the stresses, to the kinematic measures. In
addition, some basic principles about the material behavior are postulated in
the following [80].

• Principle of Determinism: The stresses at a material point are defined
only by the displacement field of the body in the past and in the present.

• Principle of Invariance under Superimposed Rigid Body Motions:
The stresses are not directly caused by translations or rotations of the
body.
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• Principle of Local Action: The stresses in a material point are deter-
mined by the motion of only a finite neighborhood of that point.

Hooke’s law The materials in this work are assumed to be elastic, which
describe materials for which the current stresses depend only on the current
deformations [80]. In the context of small deformations, the linear mapping of
strain to stress tensor

σ = C [ε] , (2.21)

with the 4th order stiffness tensor C, is the Hooke’s law in a general anisotropic
form. The strain energy density follows by the quadratic form

fel =
1
2
C [ε] ·ε, (2.22)

and the stress and stiffness can also be described by the potential relations

σ =
∂ fel

∂ε
, C=

∂ 2 fel

∂ε∂ε
=

∂σ
∂ε

. (2.23)

In the isotropic case, Hooke’s law can be simplified to

σ = λ tr(ε)1+2µε, (2.24)

with the Lamé parameters λ and µ , but can also be related to other elastic
moduli, e.g. the Young’s modulus E and the Poisson’s ratio ν , cf. e.g. [80].

Spectral form and principal stresses The symmetric stress tensor can
be rewritten in the spectral form

σ =
3

∑
i

σ ipi⊗pi, (2.25)
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2.2 Continuum mechanics

with the principal stresses σ i ∀i = 1,2,3 and the corresponding principal stress
axes pi. The numbering of the principal stresses usually follows the convention

σ1 ≥ σ2 ≥ σ3. (2.26)

Stress deviator and von Mises stress In addition to the spectral form,
the stress tensor can also be decomposed into a spherical part σ◦ and the stress
deviator σ′ through

σ◦ =
1
3

tr(σ)1, σ′ = σ−σ◦. (2.27)

Note that for a hydrostatic stress state σ=−p1 at a pressure p, the deviator part
vanishes, i.e., σ′ = 0. Based on the stress deviator, the von Mises equivalent
stress

σvM =

√
3
2

∣∣σ′∣∣ (2.28)

can be defined, which relates the three-dimensional stress state to a fictive uni-
axial stress state.
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2.3 Phase-field modeling

The phase-field model (PFM) is a well-established approach for describing mi-
crostructure evolution on the micro and meso length scales. In a PFM a singular
interface is described by a diffuse smooth transition instead of a sharp interface.
This avoids a cumbersome explicit tracking of interfaces, which has proven to
be unfeasible. In recent years, PFM has been widely used to describe the evo-
lution of microstructures, such as solidification or solid-solid phase transitions,
taking into account different types of physical aspects, e.g. thermodynamics,
chemistry or mechanics [20–23]. For a comprehensive overview, the reader is
referred to e.g. [19].

In this section, a basic multiphase-field model is presented based on the work
of Steinbach et al. [86] and Nestler et al. [46]. Many of the extensions to the
models that are state of the art nowadays are omitted, since the focus of this
work is primarily on the phase-field model in the context of crack propagation.
Instead, the model is solely used to parameterize the underlying morphology
in a diffuse context. For an introduction to the PFM for crack propagation, the
reader is referred to Chapter 6.

2.3.1 Free energy

For a material body Ω with a singular interface S, e.g. between two subregions
with different material properties, a free energy functional

F [u] =
∫

Ω
fbulk(u)dv+

∫
S

fintf da (2.29)
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2.3 Phase-field modeling

is introduced. Thus, fbulk describes the energy densities of the bulk regions
which depends e.g. on the displacement vector u. The interfacial energy den-
sity fintf, e.g., consists of the surface energy density of the surface. With the
N-tuple ϕ of order parameters and their corresponding gradients

ϕ=
{

ϕ 1,ϕ 2, . . . ,ϕ N} , ∇ϕ=
{

∇ϕ 1,∇ϕ 2, . . . ,∇ϕ N} , (2.30)

the free energy can be parameterized by these order parameters, yielding

F [ϕ,∇ϕ,u] =
∫

Ω
( fbulk(ϕ,∇ϕ,u)+ fintf(ϕ,∇ϕ))dv =

∫
Ω

f dv. (2.31)

When the order parameters ϕ are associated with an indicator functions, both
functionals can be considered equivalent. In contrast, for a diffuse and smooth
interface, where the order parameter can be considered as the local volume
fraction of each subregion, the free energy (2.31) is an approximation of (2.29).
The interfacial energy density can be further decomposed by

fintf = fpot + fgrad, (2.32)

into a potential contribution fpot and a gradient contribution fgrad. For the latter
various formulation can be found in literature. In the work at hand

fgrad(∇ϕ) =−εϕs

N

∑
α

N

∑
β>α

γαβ ∇ϕ α ·∇ϕ β , (2.33)

from Steinbach and Pezzolla [87] is used. Here, εϕs is a measure of the width of
the diffuse interface and γαβ is the surface energy density between a subregion
of α and β . For fpot, common choices in the literature are multi-well or multi-
obstacle potentials. In this work, the latter is used in the form of

fpot(ϕ) =
16

εϕs π2

N

∑
α

N

∑
β>α

γαβ ϕ α ϕ β , (2.34)
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from Nestler et al. [46]. In addition, the Gibbs simplex

Gϕ =

{
ϕ

∣∣∣∣ N

∑
α

ϕ α = 1,ϕ α ≥ 0 ∀α = 1, . . . ,N

}
(2.35)

must be satisfied. The bulk energy density fbulk in this work is limited to the
effective strain energy density, which can be decomposed into phase-specific
strain densities f α

el by

fbulk(ϕ,∇ϕ,u) = f α
el =

N

∑
α

hα(ϕ) f α
el , (2.36)

with an interpolation function hα(ϕ), which can be chosen arbitrarily with
respect to some restrictions. The most straightforward choice is the order pa-
rameter itself, hα(ϕ) = ϕ α , which will be used in the following work.

2.3.2 Evolution equation

To obtain an evolution equation for the order parameters ϕ, a Ginzburg-Landau
type evolution equation [88] is introduced. In the context of PFM it is often
referred to as the Allen-Cahn evolution equation, cf. Allen and Cahn [89].
Nestler et al. [46] introduced in addition a Lagrange parameter to account for
the sum constraint of (2.35), which yields

ϕ̇ α =
M
εϕs

(
− δF

δϕ α +
1
N

N

∑
β

δF

δϕ β

)
, (2.37)

for the temporal evolution of the order parameter of the subregion α , with a
mobility M . Steinbach and Pezzolla [87] introduced an alternative formulation

ϕ̇ α =
1

Nεϕs

N

∑
β ̸=α

Mαβ
(

δF

δϕ α −
δF

δϕ β

)
, (2.38)
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where dual interactions are considered, allowing for individual mobility Mαβ

for each interaction.

2.3.3 Considering mechanical jump conditions2

The phase-specific strain energy densities f α
el are modeled by hyperelastic po-

tentials. Assuming small deformations

f α
el =

1
2
σα ·εα , σα = Cα [εα ] , (2.39)

follows, with the phase-specific infinitesimal strain tensor εα and the stiffness
tensor Cα . In general, the relation between phase-specific strains and the total
strain tensor

ε= ∑
α

ϕ αεα = sym(grad(u)) , (2.40)

with the displacement vector u, is unknown. Using a Voigt-Taylor homoge-
nization scheme, εα = ε ∀α = 1, . . . ,N is assumed. This results in a linear in-
terpolation of the phase-specific parameters, e.g. stiffness. In contrast, Schnei-
der et al. [60] presented a scheme which accounts for the mechanical jump
conditions

JHKαβ = aαβ ⊗nαβ , JσKαβ nαβ = 0, (2.41)

with JψKαβ = ψα −ψβ ,

which was recently also applied to single-crack order parameter phase-field
models by Prajapati et al. [47] and Hansen-Dörr et al. [90]. Thereby, the first
equation resembles a kinematic compatibility, since the deformation gradient
H can only exhibit a jump aαβ in normal direction of the singular surface. In
contrast, the balance of linear momentum on a material singular surface, c.f.,

2This section is based on the work of Schöller et al. [3]. Minor linguistic changes and additions
have been made.

25



2 Selected fundamentals

−0.5 0.0 0.5
x/L

0.0

0.5

1.0

ϕ

n

n

n

ϕ α ϕ β

Figure 2.4: Schematic representation of a diffuse interface when mechanical jump conditions are
considered. Each point of the interface can be associated with a laminate-like structure
of different volume fractions of both phases and a normal direction n.

e.g., Prahs and Böhlke [18], given by Equation (2.41)b, prohibits a jump of
the stress vector normal to the singular surface. Regarding a multiphase-field
approach, the normal vector nαβ of the singular surface between phase α and
β and the jump of the infinitesimal strain tensor, regarding the diffuse interface
context is given by

JεKαβ = sym
(
aαβ ⊗nαβ

)
, nαβ =

∇ϕ α −∇ϕ β∣∣∇ϕ α −∇ϕ β
∣∣ . (2.42)

In order to solve the governing equations, the unknown jump vectors aαβ have
be to determined. Reformulating the problem as a system of linear equations
allows us to determine an effective stiffness for fixed order parameters [60, 90].
Based on a staggered approach, the governing equations are solved iteratively
with an additional static criterion for crack propagation [1]. A more detailed
introduction to mechanical jump conditions, in the context of a multiphase-
field approach, is given by Schneider et al. [60].

The introduction of order parameters and the interpolation of phase-specific pa-
rameters requires additional assumptions. This is extensively discussed in the
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literature, e.g. by Ammar et al. [58], Durga et al. [56], or Mosler et al. [57],
among others. Basic schemes such as a linear or harmonic interpolation of the
phase-specific stiffnesses represent the upper and lower bounds of the strain
energy in the context of a homogenization theory. Schneider et al. [22] dis-
cussed the ability to reproduce sharp interface properties by a multiphase-field
model when considering mechanical jumps. Figure 2.4 depicts a schematic
representation of such diffuse interface when mechanical jumps are consid-
ered. Therefore, each point of the interface can be thought of as a laminar
structure. Instead of only the local volume fractions, also the normal vector n
of the interface determines the effective elastic material behavior. In addition,
a crack propagation model with multiple crack order parameters is introduced
in this work, cf. Chapter 6. For such a model, the ability to obtain an accurate
approximation of the phase-specific energy densities for sharp interfaces is of
even higher interest.
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2.4 Linear elastic fracture mechanics

This work is limited to crack propagation in the context of linear elastic frac-
ture mechanics (LEFM), i.e., the material exhibits only elastic behavior. In-
stead, the inelastic processes that may be associated with crack growth, such
as microstructural defects, plasticity, or void formation, are considered within
the process zone. This zone, around the crack tip, is assumed to be small com-
pared to the length scale of the body. Note that this zone is not resolved in the
context of LEFM and this work. This section contains only the most necessary
basics of LEFM, for a more comprehensive discussion the reader is referred to
e.g. [91].

Crack opening modes When considering a crack with a crack tip and a
crack surface, three basic crack opening modes can be identified. For mode I,
the crack opening is normal to the crack surface and can be associated with a
tensile stress normal to the crack plane. For both Mode II and Mode III, the
crack opening is tangential to the crack plane. Mode II can be associated with
a sliding mode and with shear stress parallel to the crack plane and perpendic-
ular to the crack front. Mode III can be considered as a tearing mode, with

I II III

Figure 2.5: Different crack modes: Mode I has the crack opening normal to the crack plane. And
Mode II and Mode III with the crack opening tangential to the crack plane in different
directions.
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2.4 Linear elastic fracture mechanics

shear stress parallel to the crack plane and front. These three modes are also
displayed in Figure 2.5. Note that for most real microstructures and loads a
mixed mode, a superposition of the three modes, can be expected.

Stress intensity factors For pure crack opening modes, the fields near the
crack tip, e.g. stresses and strains, can be fully characterized by stress intensity
factors KI,KII or KIII for each corresponding crack mode. These factors depend
on the geometry of the body, the crack geometry and the loading and can be
determined analytically for some cases, cf. eg. [91]. Based on the K-concept,
which assumes that the crack tip and the process zone can be described by the
stress intensity factors, the criterion

KI = KIc, KII = KIIc, KIII = KIIIc, (2.43)

for crack growth of the corresponding pure crack mode can be formulated. The
fracture toughness values Kic ∀i = I, II, III are material-specific properties. In
the case of a mixed mode, an equivalent criterion f (KI,KII,KIII) = 0 can be
formulated with a generalized function f [91].

Energy release rate Based on the energy potential of a material body Π ,
including the potential of external forces, the energy release rate G follows
from

G =−dΠ
dA

, (2.44)

where dA is an infinitesimal crack surface. With the energy release rate, the
criterion

G = Gc (2.45)

can be formulated for crack growth with crack resistance or critical energy
release rate Gc. A more general approach to this criterion is Griffith’s fracture
criterion [30]

dΠ
dA

+
dΓ
dA

= 0, (2.46)
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2 Selected fundamentals

with the fracture energy Γ . From Equation (2.44) it follows that the energy
released by crack growth must be equal to the energy required to create the cor-
responding new crack surface, so that the crack resistance can also be related
to the surface energy density γ of a crack flank by Gc = 2γ .
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2.5 Molecular dynamics

2.5 Molecular dynamics

General idea3 Molecular dynamics (MD) is a simulation method that al-
lows prediction of the temporal evolution and interaction of atoms and mol-
ecules, mostly using numerical integration of Newtons equations. The MD
method has its origins in the work of Alder and Wainwright [92, 93] and Still-
inger and Rahman [94]. An overview of the history of MD and its application
is given by van Gunsteren and Berendsen [95].

2.5.1 Lagrange equations

The structure of the derivation of the equations for MD is based on the La-
grangian formalism, cf. Goldstein [96]. Based on the action functional

S =
∫

L (x1, . . . ,xN ,v1, . . . ,vN)dt (2.47)

with the position vector xi for a particle i and the velocity vector vi = ẋi for N
particles in the system considered. The Lagrangian follows by

L (x1, . . . ,xN ,v1, . . . ,vN) = K(v1, . . . ,vN)−U(x1, . . . ,xN), (2.48)

with the kinetic energy K and the potential energy function U . For a stationary
point of S,

d
dt

(
∂L

∂vi

)
− ∂L

∂xi
= 0 (2.49)

3The content of this section has been taken directly from Schöller et al. [2] with minor linguis-
tic changes.
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2 Selected fundamentals

must hold, which are the Euler-Lagrange equations in the context of molecular
dynamics. The kinetic energy K is given by

K(v1, . . . ,vN) =
1
2

N

∑
i

mivi ·vi, (2.50)

with the mass mi of particle i. The potential energy function U can be associ-
ated with the conservative force vector fi for an particle i with

fi(x1, . . . ,xN) =−
∂

∂xi
U(x1, . . . ,xN). (2.51)

With (2.50) and (2.51) the Equations (2.49) can be rewritten by

miai−fi = 0, (2.52)

with the acceleration vector ai = v̇i = ẍi, which resembles Newton’s second
law of motion and is the basis of the molecular dynamic simulations performed
in this work.

2.5.2 Microcanonical ensemble

A system with N particles, e.g. atoms and additionally a fixed volume of the
system (V ) and a fixed internal energy (E) is considered as a microcanonical
ensemble. This is often referred to as a (constant) NVE ensemble. Applying
a time integration method to the equations of motion (2.52) yields a molecular
dynamics algorithm.

Verlet integration Based on Newton’s equations of motion, a Taylor ex-
pansion of the position coordinates xi can be performed at two different time
steps, t +∆ t and t−∆ t. Combining these expansions yields

xi (t +∆ t) = 2xi (t)−xi (t−∆ t)+
1
2

∆ tai (t)+O
(
∆ t4) , (2.53)
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2.5 Molecular dynamics

Algorithm 1: Velocity Verlet algorithm

t← t0
while t < tend do

xi (t +∆ t) ← xi (t)+∆ tvi (t)+
1
2

∆ t2ai (t)

vi

(
t +

1
2

∆ t
)
← vi (t)+

1
2

∆ tai (t)

ai (t +∆ t) ← fi (t +∆ t)
mi

vi (t +∆ t) ← vi

(
t +

1
2

∆ t
)
+

1
2

∆ tai (t +∆ t)

t← t +∆ t
end

with the time step width ∆ t and an error term of order ∆ t4. This integration
scheme is also referred to as Verlet integration [97].

Velocity Verlet integration The Verlet integration evolves solely the posi-
tion vector. Although the velocity could be constructed at any time, an alterna-
tive integration scheme is given by

xi (t +∆ t) = xi (t)+∆ tvi (t +∆ t)+
1
2

∆ t2ai (t +∆ t) (2.54)

vi (t +∆ t) = vi (t)+
1
2

∆ t (ai (t)+ai (t +∆ t)) , (2.55)

which is known as the Velocity Verlet integration [98] and evolves the position
as well as the velocity vector. Despite the rather simple scheme, this integrator
exhibits some important properties, such as time reversibility, and is therefore
used as the time integration scheme for the molecular dynamics simulations of
this work. A possible implementation of this scheme is shown in Algorithm 1.
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2.5.3 Isobaric-isothermal ensemble

As an alternative to the microcanonical ensemble, also the number of particles
(N), the pressure (P) and temperature (T) can be fixed, resulting in the isobaric-
isothermal or NPT ensemble. One way to archive this ensemble is to use a
Nosé-Hoover thermostat. Instead, in this work a NVE ensemble is used with
a velocity Verlet integration, along with a thermostat and a barostat. For the
latter, a Langevin thermostat [99] and a Berendsen barostat [100] are chosen,
which are briefly introduced below.

Langevin thermostat The basic idea of the Langevin thermostat [99] is to
add a random force f r

i to the particles with

f r
i ∝

√
kBmiθ

∆ tγ
, (2.56)

the Boltzmann constant kB, and a damping factor γ . This force mimics the
force caused by random collisions of solvent atoms with the particles at a given
temperature θ . In addition, a friction force

f f
i =−

mi

γ
vi (2.57)

is added to damp the velocity of the particles. With forces of this nature it can
be shown that the local temperature evolves towards θ .

Berendsen barostat The Berendsen barostat [100] couples the system
weakly to a heat bath of some pressure p0. This adds an additional term

dp
dt

∣∣∣∣
bath

=
p0− p

τp
(2.58)
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2.5 Molecular dynamics

describing the coupling to the heat bath, with the pressure of the system p and
a time constant τp. This can be archived by rescaling the simulation domain by
the factor

µ = 1− κT ∆ t
τp

(p0− p) , (2.59)

at each time step with an isothermal compressibility κT .

2.5.4 Potential energy function

The potential energy function U of a system with N particles can be decom-
posed into

U =U intra +U inter, (2.60)

where U intra represents intramolecular interactions and U inter represents inter-
molecular interactions.

Intramolecular interactions The intramolecular part of potential energy
function U intra can be further decomposed with

U intra = ∑
i> j

U lj
i j +UC

i j (2.61)

in a pairwise interaction contribution U lj
i j and an additional Coulomb potential

UC
i j . Note that the subscripts denotes the particle index, not a tensorial index.

The pairwise interaction is modeled by a standard 9/3 Lennard-Jones potential

U lj
i j = ε lj

(
2
(

σ
ri j

)9

−3
(

σ
ri j

)6
)

ri j < rc, (2.62)

with ri j as the distance between particle i and j. The parameters σ , and ε lj

describes the position and value of the minimum of the potential. Both can be
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ri j

i j

(a)

θi jk
i

j

k(b)

ϕi jkl

i

j

k

l

(c)

χi jkl

i

j

k l
(d)

Figure 2.6: Different contributions to the intramolecular potential energy: (a) Energy due to bonds
stretching between atoms i and j at distance ri j , (b) due to an angle θi jk between three
atoms i, j and k, (c) due to a dihedral angle ϕi jkl of four atoms i, j, k and l, and (d) due
to an improper angle χi jkl of four atoms i, j, k and l.

dependent of the type of particle i and j, but for the sake of clarity indices are
omitted. The Coulomb potential follows by

UC
i j =

Cqiq j

εCri j
ri j < rc, (2.63)

with the charge qi of a particle i, and the dielectric constant εC. The energy-
conversion constant C is dependent of the particle types. U lj

i j as well as UC
i j

are truncated after a cutoff distance rc to reduce the computational cost, with a
negligible error.

Intermolecular interactions The intermolecular interaction contribution
U inter of the potential energy function can be further decomposed by

U inter = ∑
i, j

UB
i j + ∑

i, j,k
UA

i jk + ∑
i, j,k,l

UD
i jkl + ∑

i, j,k,l
U I

i jkl . (2.64)
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2.5 Molecular dynamics

This involves the energy contribution due to bonds stretching between atoms
UB

i j , due to an angle θi jk between three atoms (UA
i jk), due to a dihedral angle ϕi jkl

of four atoms (UD
i jkl), and due to an improper angle χi jkl of four atoms (U I

i jkl).
An illustration of the bond length and the different angles is given in Figure 2.6.
Note that the indices i, j,k, l are chosen from the set of atoms that are actually
bonded with the corresponding topology (see Figure 2.6). The individual terms
are based on the COMPASS force field [101–103] and are completely listed in
Appendix A.1.
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3 Two-stage polymerization using
molecular dynamics1

In the context of thermoset polymers, early studies on epoxy systems were
conducted by Barton et al. [104, 105], and also material property prediction of
thermoset polymers, based on MD simulations, were performed [106–109]. To
be able to model the reaction of thermosets, force-fields like REAXFF [110] or
RMDff [111] were invented. Despite the ability to model reactive processes,
the increase of the computational cost hinders the investigation of bigger sys-
tems with more realistic number of molecules. In contrast to this, custom
scripts were often developed in order to generate systems in a preprocessing
step [112, 113]. Furthermore, empirical modeling of reactive processes in clas-
sical molecular dynamics were introduced [76, 114–118]. These approaches
compare the pre-reaction topology, and if the reaction occurs, the topology is
updated according to a post-reaction template. Recently the REACTER frame-
work [116–118] enabled multiple reactions during a continuously running sim-
ulation, based on, e.g. a distance, orientation, user-specified, or a more ad-
vanced Arrhenius type criterion. This allows massive, parallel simulation of
thermoset polymerization. Schwab and Denniston [76] develop a similar ap-
proach to model the polymerization of a UPPH resin system, using an Arrhe-
nius type criterion. They were able to investigate the resin system during the
copolymerization process with reasonable computational effort, and determine
effective properties.

1This section is based on the work of Schöller et al. [2]. Minor linguistic changes and additions
have been made.
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3 Two-stage polymerization using molecular dynamics

Resin

Sizing

Fiber surface

Urethane chain

Radical chain

Coupling agent

Surface atom

Urethane crosslink

Connection to coupling agent

Connection to urethane

Figure 3.1: Schematic interface between glass fiber surface, fiber size and the resin. The legend
on the right indicates the individual components.

3.1 Constituents

A schematic showing how the constituents are arranged in the system is given
in Fig. 3.1. The surface of the glass fiber forms a passive substrate at the
bottom for the sizing layer which is then followed by the bulk UPPH resin at
the top. These constituents are described in more detail below. The goal is
to construct a slightly simplified, but reasonably realistic, chemically bonded
structural model of the full system.

3.1.1 Glass fiber surface

The material class for fibers used in FRPs can vary widely. One of the most
commonly used is silica based glass, which consist in general of a complex
chemical structure [119]. In addition, the composition of a glass surface can
differ greatly from the bulk of the glass fiber [64, 70]. An E-glass is assumed
for this work as it is commonly used in FRPs and is chemically simpler than
other choices [120]. The total composition of all components on such a surface
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3.1 Constituents

Element Atomic composition (%) Atomic weight

Si 22.5 28.086
O 59.5 15.999
Ca 5.5 40.078
Al 6.9 26.982
Mg 1.0 24.304
Na 0.6 22.990
B 4.0 10.806

Table 3.1: Components of the glass fiber surface [70, 121].

has been measured by XPS scans performed by Liu et al. [70], and listed in
Table 3.1.

The connection between the fiber surface and the sizing agents is primarily
established through bonding with silicon atoms. The other surface atoms play
an otherwise passive role in this system. Hence, as a further simplification, the
fiber surface is represented solely by its silicon atoms. Forming essentially a
static substrate for the system, a layer of silicon atoms needs to be generated
that provides a reasonable spacing and configuration to account for the whole
composition of the fiber surface.

3.1.2 Resin system

This section introduces the resin system used in this work. The reader is re-
ferred to the work of Schwab and Denniston [76] and Verleg [122] for a more
extensive discussion of the UPPH resin. In order to provide the resin with
the functionality to perform the copolymerization, it consists of three main
components: Isocyanates, unsaturated polyester, and peroxide molecules. For
the latter TRIGONOX® C is assumed, where only relatively few molecules are
present, since it serves only as an initiator for the radical reaction. The iso-
cyanate LUPRANATE® M 20 R consists of methylene diphenyl thiocyanate
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3 Two-stage polymerization using molecular dynamics

(MDI) and their polymeric variants (P-MDI), with different functionality. Fi-
nally, the unsaturated polyester DARON® AQR 1009 consists of molecules of
different functionality diluted by styrene. For a complete composition with
functionalities and molecular weights the reader is referred to Table 3.2 and
Schwab and Denniston [76]. In the following, the two-stage reaction is de-
scribed as used in a typical sheet molding compound (SMC) process, in which
glass fiber-reinforced UPPH is employed [7].

Polyurethane reaction On a carrier film, the mixed resin is applied. In
addition, chopped glass fibers are added. At room temperature, the hydroxyl
groups of the UP begin to react with the isocyantes groups of (P)-MDI, creating
crosslinks between these components (cf. Figure 3.1). This polyaddition leads
to long polyurethane chains for which the material changes from a fluid to a
highly viscous, more rigid state. This B-staged material can be more easily
transported, stored and cut for the final curing.

Radical polymerization The B-stage material is placed in a press with pre-
heated molds. Due to the increase in temperature and pressure during compres-
sion, the peroxide group begins to cleave, producing radical oxygen atoms. The
free radicals attack the double-bonded carbon of the styrene and polyurethane
molecules. By creating a more stable bond with the carbon, the other carbon of
the double bond itself becomes a radical. Thus, a polymer chain begins to form
and propagates through the material, forming a network of polystyrene that
crosslinks the polyurethane chains formed by the first reaction. This results
in an interpenetrating polymer network (IPN) of polyurethane and polyester
chains, as shown in Figure 3.1, which gives the material its final strength and
properties. In the system investigated in this work, the selected coupling agent
(cf. Section 3.1.3) of the size also takes part in this reaction. This leads to
increased adhesive bonding, as strong covalent bonds ultimately connect all
components, including the fiber surface. The chains are terminated by the com-
bination of radicals at the end of two chains. At the macroscopic level, the
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Si

OH

HO

OH

O
CH2

CH3

O

Figure 3.2: Skeletal formula of the hydrolyzed γ-MPS.

material begins to cure due to heat and pressure as it flows to form the final
component.

3.1.3 Fiber sizing

For the selection of glass fiber sizing there exists a large number of possible
components and compositions. Thomason [62] describes sizing as a black-
box technology, since size formulations are kept secret by suppliers and the
understanding of glass fiber sizing in the literature is quite limited, fragmented,
and usually only discussed generically. Because the size must perform a variety
of tasks, a size used in the industry may consist of ten or more components.
Thus, components such as a coupling agent, film former, lubricant, emulsifier,
and other processing aids, among others could be used [123]. However, most
of them are present only in relatively low concentrations [65].

The main components are therefore the film former and the coupling agent.
The coupling agent improves the adhesion of fiber and polymer matrix. There-
fore, it must react with the fiber surface as well as providing a functional group
that reacts with the resin. The film former is usually a polymer that is mainly
intended to protect the fibers during processing in the FRP production pro-
cess [124]. The film former is usually chosen to be compatible with, if not
identical to, the matrix material used.

In this work, the complex sizing system is simplified using the following as-
sumptions:
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Si OHHO

O H

OH

O

Si

O

CH2

CH3

O

Si

OH

Si C4H5O2

OH

OH

O H

OH

O

Si

OH

C4H5O2OH

Figure 3.3: Hydrogen bonds of the coupling agent γ-MPS at the glass fiber surface (left) and with
other coupling agent molecules (right).

• The sizing components are reduced to film former and coupling agent.

• Partly due to lack of information to the contrary, and the variety of other
formulations possible, it is assumed that the film former is the same poly-
mer as the matrix resin, hence UPPH, cf. Section 3.1.2.

• Only a common coupling agent compatible with the resin is chosen, mak-
ing our sizing somewhat generic. Most actual sizing would consist of a
blend of different coupling agents, but these vary amongst different man-
ufacturers and their identity and concentration are typically proprietary.
Thus, it would be difficult to include these components in a model which
would fit any particular system more realistically.
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3.1.3.1 Coupling agent

Most coupling agent for glass fibers are organofunctional silanes, and their
general structure consists of R1 – Si(OR2)3, where R1 provides the ability to
react with the matrix material, creating mainly strong bonded links between
matrix and the coupling agent, cf. Figure 3.1. R2 is usually a methyl or ethyl
group [62], and their hydrolyzed version is able to bind to the fiber surface.
Together with the bond to the matrix, this improves the overall adhesion of the
polymer matrix and glass fiber.

Thomason [62] extensively studied coupling agents being used based on lit-
erature and patents. From the manifold number of different available silane
molecules, he concludes that the industry appears to have focused mainly on a
few silanes where R1 contains either an amino, epoxy, methacryloxy or vinyl
functional group. The most common silane is γ-aminopropyltriethoxysilane,
which is normally used for thermoplastics and sometimes also for polyester
and epoxy polymers. In contrast, the primary coupling agent for polyester
appears to be γ-methacryloxypropyltrimethoxysilane (γ-MPS). Furthermore,
γ-glycidoxypropyltrimethoxysilane is used for epoxy and multicompatible
polymers [62]. As in this work a UPPH resin is considered (cf. Section 3.1.2),
the unsaturated polyester compatible coupling agent γ-MPS is chosen.

3.1.3.2 Application of the size

In order to apply the size to the glass fibers, it needs to be dissolved, usually
using water as the solvent. In this process, γ-MPS of the size is hydrolyzed
to dissolve the methyl groups and yield methanol and R1 – Si(OH)3, with the
complete formula shown in Figure 3.2. The aqueous size is then applied to
the hot glass fiber by rollers, shortly after the liquid glass has been extruded
through bushings to form the glass fiber [123]. The applied size then dries on
the glass fibers, and the hydrolyzed γ-MPS undergoes a condensation process.
In this process, the hydroxyl groups form hydrogen bonds with other hydroxyl
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3 Two-stage polymerization using molecular dynamics

groups. Potential reaction partners are Si – OH groups on the silicate surface of
the fibers, but also other coupling molecules. In a subsequent step, a covalent
bond forms while they lose a water molecule. Figure 3.3 shows the bonding of
the γ-MPS to the fiber surface and other coupling agents. Ultimately, a small
amount of the coupling agent becomes strongly bonded to the surface, while
others form oligomers.

3.2 Molecular modelling description

The models and subsequent simulations described in this section are all imple-
mented in the open-source molecular dynamics software LAMMPS [125, 126].
The COMPASS force field [101–103] is used to model the molecules and their
interaction. In general, the potential of the force field consists of various con-
tributions that can be grouped into two categories: The inter-molecular interac-
tion is taken into account via individual potentials for bonds, angles, dihedrals,
and impropers. On the other hand, a 9-6 Lennard-Jones potential models the
van der Waals forces, and together with a Coulombic potential represent the
intra-molecular interactions. For a more detailed discussion of the potentials,
the reader is referred to Sun [103].

3.2.1 Fiber surface

During the main simulations, the atoms on the fiber surface will be rigid. How-
ever, to generate the surface and provide the system with the basic layer of
silicon atoms, the use of complex potentials, including force fields, is omitted.
Instead, a standard 12/6 Lennard-Jones potential

E = 4ε
[(σ

r

)12
−
(σ

r

)6
]
, r < rc, (3.1)
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3.2 Molecular modelling description

Domain Component No of mol.

Resin

(P-)MDI
functionality = 2 630
functionality = 3 72
functionality = 4 324

UP
1× basic structure 486
5× basic structure 36

10× basic structure 198
Styrene 4716
Peroxide 72

Size

γ-MPS hydrolyzed 2211

(P-)MDI
functionality = 2 444
functionality = 3 51
functionality = 4 228

UP
1× basic structure 343
5× basic structure 25

10× basic structure 140
Styrene 3324
Peroxide 51

Surface
γ-MPS attached & hydrolyzed 384
Si 4890

Table 3.2: Composition of the different layer of the domain. Note that the number of size mole-
cules are not the final ones, as the size layer is processing during the generation.
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for the Si atoms is introduced, with ε = 1kcalmol−1, and σ = 6
√

2.0r0. Based
on Si – O – Si bond lengths, the equilibrium spacing for the potential is set to
r0 = 3.28Å, and a cutoff length rc = 10Å. Since the main objective of this
work is to show the interaction between sizing and resin, the influence of the
simplification of the E-glass fiber surface is assumed to be negligible.

3.2.2 Reaction algorithms

Three different reaction processes are examined in this work: First, a condensa-
tion reaction in which the hydrolyzed coupling agent forms oligomers. Second,
the polyurethane addition of the resin results in the B-stage material. Further,
the final curing occurs by a radical polymerization, which crosslinks the com-
ponents, including the coupling agent, and thus the fiber surface. Because
different reaction algorithms are used for the condensation and polymerization
reactions, they are introduced separately in the following.

Condensation To generate the condensation reaction, the REACTER frame-
work [116, 117] is used. Based on pre- and post-reaction templates, this frame-
work offers great flexibility in modeling reactions. Although it is possible to
incorporate various conditions, such as an Arrhenius type condition, only a
simple distance criterion is used for the condensation: If the initiator atoms are
within a certain distance, a drawn random number is compared with a given
probability. If the reaction takes place, the topology is updated according to the
specified reaction templates. Since the main goal of this reaction is to model
the formation of coupling agent oligomers from monomers, this approach is
considered sufficient. In addition, REACTER allows the removal of atoms from
the system during the reaction. This allows easy treatment of the water, which
is a product of condensation that would otherwise have to be removed by other
cumbersome techniques (such as via a diffusion-driven drying process).
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3.3 Results

Polymerization Following Schwab and Denniston [76] a more involved
approach is used for both polymerization reactions. Similar to the REAC-
TOR framework, potential reaction sites and post-reaction topology are defined
based upon templates. Instead of only a simple distance criterion, an Arrhenius
type equation

F = exp
(
− ∆E

kBΘ

)
, (3.2)

with an activation energy ∆E, the Boltzmann constant kB and the temperature
Θ , is considered. The activation energy ∆E describes the difference between
the energy of the bond and the energy at which a bond dissociates, or alter-
natively a bond is formed. For bond dissociation, the F must be less than a
number drawn at random between 0 and 1. Conversely, F must be greater than
the random number to form a bond. In addition to this basic algorithm, Schwab
and Denniston adapted the approach to model the polymerization of UPPH in a
more appropriate way: In the polyurethane reaction, a hydrogen atom is trans-
ferred from a hydroxyl group to a nitrogen atom. To avoid instabilities, they
added a transient bond that excluded these atoms from all potentials except the
Coulomb potential, when the main bond between carbon and oxygen atoms
is formed. This leads to a smooth transition of the hydrogen atom towards
the nitrogen atom until the bond changes into a standard one with the full po-
tential. Furthermore, Schwab and Denniston introduced additional Coulomb
forces to the initiator atoms. The existence of an interaction between these
atoms is physically motivated by these sites being electrophile or nucleophile
centers. However, the form of the interaction (Coulomb) is artificial. These
artificial charges accelerate the polymerization and allow it to be simulated on
the timescales that a classical MD simulation can handle, and is therefore also
used in this work. The charges are chosen small enough so that properties of
the resulting bonded network does not appear to be altered by the accelerated
dynamics [76].
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3.3 Results

System Step Time step (fs) No. of steps

Resin
Compression

1.0
200000

Equilibrating 200000

Sizing
Compression

1.0
100000

Equilibrating 200000
Condensation 1000000

Combining
Compression

1.0
100000

Equilibrating 200000

Polyurethane reaction 2–5×10−2 ≈ 5700000

Radical polymerization 5×10−2 ≈ 5140000

Table 3.3: Number of steps and time steps for each simulation step and the different systems. For
the polyurethane reaction, the time step is increased linearly up to a conversion level of
50 %.

3.3 Results

As in the actual system, the manufacturing of the fiber, application of sizing,
and embedding in the resin are all done in separate processes. In the following
sections, the generation of the fiber–resin system is described in successive
steps. The setup and conditions of each step are separately introduced, and
their results are discussed:

• Two rigid glass fiber surfaces, consisting of silicon atoms, representing
the complex structure of a real E-glass fiber, are generated.

• The sizing layer, consisting of UPPH resin and coupling agent, is placed
between these surfaces with some pre-attached γ-MPS and the conden-
sation reaction is conducted.

• Separately, a pure UPPH resin layer is generated and compressed to an
initial configuration.
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3 Two-stage polymerization using molecular dynamics

• The surface-sizing layer and the resin layer are combined: The two sur-
faces bound the domain normal to these surfaces, followed by two sizing
layers and a pure resin layer in the middle of the domain. Such a system
is also schematically shown in the left of Figure 3.4.

• The two-stage curing process, the polyurethane and radical polymeriza-
tion, takes place subsequently.

The PACKMOL [127] software is used for packing of the initial molecules. In
combination with MOLTEMPLATE [128], this allows a flexible setup of complex
MD simulations in LAMMPS [125, 126] using force fields. A velocity-Verlet
integration scheme is used to solve the Newtonian equations of motion [97].
Temperature is adjusted by a Langevin thermostat [99] and the pressure is also
set, as described in the next subsection. The result is that the simulations are
performed in a NPT ensemble: Constant number of atoms, constant pressure,
and constant temperature, although the set pressure and temperature may be
different during the different steps described below, just as they would be in
the actual manufacturing of a real composite system. Furthermore, simulation
parameters, such as the time step and the number of time steps, for each simu-
lation step are summarized in Table 3.3. In the equilibration steps, the pressure,
temperature, and domain length normal to the fiber surface of the correspond-
ing systems were observed to determine a sufficient equilibration time.

3.3.1 Fiber surface

To create the fiber surface, a random initial distribution of Si atoms is placed
in a large periodic domain, and then compressed to E-glass density. This is
performed at 293.15K with interactions based on the Lennard-Jones poten-
tial (3.1). For this purpose, the final density is assumed to be 2.58gcm−3, cf.
Wallenberger and Bingham [120]. In addition, the silicon represents not only
the mass but the entire composition of the E-glass fibers surface, see Table 3.1.
From the final equilibrated system, two layers are extracted with a thickness of
6.56Å, which is about twice the equilibrium bond length of a Si – O – Si bond.
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3.3 Results

Thus, each layer consists of at least two Si atoms in the normal direction. The
final edge length of the (square) fiber surface is 200Å and also determines the
domain sizing of the subsequent steps. In these, the silicon atoms are assumed
to form a rigid layer based on the configuration created in this step. Therefore,
the force on these atoms is averaged for the entire layer and an additional force
representing the ambient pressure is applied. As a consequence, the pressure
can be controlled while enabling the layer to move while maintaining the initial
configuration of the surface atoms.

3.3.2 Sizing layer

The implementation of the reaction algorithms (cf. Section 3.2) would allow
depicting the complete condensation reaction of the coupling agent, including
bonding to the fiber surface as well as to other coupling agent molecules, cf.
Figure 3.3. However, in combination with the fully atomistic approach, realis-
tic surface coverage is not possible due to the lack of a feasible timescale. In-
stead, some silicon atoms of the inner surface layers have pre-attached coupling
molecules before the actual condensation reaction takes place. This simplified
approach seems legitimate, especially since the first chemically absorbed layer
of the sizing appears to be fairly well understood [70, 129–131] and reasonable
assumptions can be made about the spatial distribution of γ-MPS. Based on the
area occupied by a coupling agent molecule on the fiber surface, reported by
Miller and Ishida [129] to be 0.59 nm2, a method for placing these pre-attached
molecules was developed: The occupied area is converted into a mean separa-
tion distance of the γ-MPS molecules. Assuming a uniform distribution and a
circular area πr2, this results in a minimum distance given by the radius r. For
the first pre-attached molecule, a random atom is selected from the generated
surface layer. Thereby, only the silicon atoms in the inner half of the layer are
considered. Next, the Si atom with the least distance to all other pre-attached
molecules is searched, keeping the minimum distance of

√
0.59/π nm. This

atom is converted from a simple silicon atom into one with a pre-attached vari-
ant. This search for atoms with minimal but valid distance is repeated until no
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3 Two-stage polymerization using molecular dynamics

further pre-attached molecule can be placed. This procedure results in a certain
amount of already chemically absorbed γ-MPS on the fiber surface, cf. Figure
3.1.

In contrast, the main sizing layer consists of free hydrolyzed coupling agent
monomers and UPPH resin acting as a film former, as they are considered to
be only physically absorbed initially. The exact composition of the sizing can
vary greatly in industrial applications. In this work, 30wt% hydrolyzed γ-MPS
and 70wt% film former are assumed, which is within the range reported in
the literature [62, 123, 132]. The sizing molecules are placed between the fiber
surface layers with the previously attached coupling agent molecules. The com-
position of the film former corresponds to the pure resin layer, and the detailed
number of individual molecules of the sizing as well as the surface layer are
listed in Table 3.2. Since the process attempts to mimic real-world processing
of FRP, the condensation reaction takes place without the pure resin system,
as the sizing is applied and dried during the manufacture of the glass fiber.
In addition, if it is assumed that the resin is not involved in the condensation
reaction, the computational effort can also be reduced. Finally, these mole-
cules, the hydrolyzed γ-MPS and the film former, with the exception of the
pre-attached γ-MPS, are again randomly positioned in a large domain and sub-
sequently compressed to an approximate density of 1gcm−3. This is followed
by equilibration at 373.15 K with an ambient pressure of 1 atm applied via the
fiber surfaces.

3.3.3 Condensation reaction

In the condensation reaction, the hydrolyzed γ-MPS monomers undergo a pro-
cess to form oligomers. These oligomers can emerge from the physically ab-
sorbed coupling agent molecules of the sizing layer. In addition, the chemi-
cally absorbed sizing on the fiber surface, consisting of the pre-attached cou-
pling agent molecules, also participates in the condensation process: Hydrogen
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Figure 3.5: Distribution of the number of functional groups of the coupling agent after the simula-
tion of the condensation reaction and the temporal evolution in the inset.

bonds between the hydroxyl group and the silicon atoms form covalent bonds
while water is being given of, see right in Figure 3.3.

The reaction is conducted starting with the configuration of the previous step,
at 373.15 K and 1 atm, to take into account the conditions of the glass fiber
manufacturing. Furthermore, the domain is assumed to be periodic tangentially
to the fiber surface. Normal to the surface, the rigid silicon atoms limit the
domain. In addition, the initial reaction probability is artificially reduced and
steadily increased during the course of the condensation process. This is done
to ensure a numerically stable simulation, otherwise the very high reaction
speed at the beginning would lead to instabilities.

Figure 3.5 shows the final distribution of the number of functional groups in
the condensed sizing. Although dimers and trimers are present, the amount of
longer oligomers is relativ low, and most of the coupling agent is still present as
a monomer. The inset in Figure 3.5 illustrates the development of these groups
over time. At the beginning of the simulation, despite the lower probability,
the reaction exhibits a high condensation rate, thereafter the rate decreases un-
til the end of the simulation. Although it was observed that the number of
oligomers increases with time and their functionality also increases, the distri-
bution of the coupling agent does not completely converge to a steady state (i.e.
the lines in the inset of Fig. 3.5 are not perfectly flat at long times). Several
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3 Two-stage polymerization using molecular dynamics

reasons seem plausible for the high proportion of monomers in the final distri-
bution: This can be attributed to the basic reaction algorithm, e.g. the water is
removed instantly, whereas technically the water has to diffuse though the sys-
tem to a free surface. As the condensation is a reversible process, these water
molecules could undergo multiple reactions, influencing the final distribution
of γ-MPS. Moreover, the full atomic approach used in this work does not al-
low for the very long timescale for such a condensation reaction in real life. A
possible solution could be to omit the condensation reaction and instead work
with oligomers from the beginning. However, since detailed information on
the distribution of coupling agent oligomers, especially in realistic sizes, is not
available in the literature, this approach would raise further issues. In contrast,
a study of the condensation stage, e.g., based on a coarse-grained approach
such as a united-atom model, could potentially go to longer time scales and
provide detailed information about such a distribution. However, such a model
would still need to be parameterised based on the fully atomistic model used
here. Although such a study is highly desirable, it would be a non-trivial under-
taking and is beyond the scope of this work. Moreover, it is expected that other
assumptions in the introduction of the model lead to a higher uncertainty in the
results. Therefore, the limitations of the presented approach for the conden-
sation reaction are acknowledged, but the possibility to study the interaction
between surface sizing and resin is nevertheless greatly extended.

3.3.4 Pure resin layer

In order to include a pure UPPH resin layer, a (separate) realistic block of resin
must be created first. Therefore, the UPPH resin molecules, which are multi-
ples of the system introduced by Schwab and Denniston [76], see Table 3.2, are
randomly placed. As in the previous steps, the system is then compressed to an
approximate density of 1.109gcm−3, cf. [76], and subsequently equilibrated at
293.15 K. During this process, the approach of Berendsen et al. [100] is used
to control the ambient pressure of 1 atm, which could be used as the domain is
assumed to be periodic in all directions.
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Figure 3.6: Evolution of the number average molar mass Mn and mass average molar mass Mw
for the polyurethane reaction (a) and radical polymerization (b), over the conversion
degree.

3.3.5 Complete system

In a final step, the complete system is assembled with all three layers: First, the
surface sizing system is partitioned to form the outer layers. The final sizing
layer is chosen to be about 50.0Å thick. Thus, all molecules for which the
distance of their center of geometry to the fiber surfaces is below this value
are extracted and form the final sizing layers. Therefore, the components of
the sizing layer differ from the initial surface-sizing system described in Table
3.2, while approximately maintaining the relative composition. Moreover, the
molecules of the resin layer are unwrapped in the normal direction, since the
assumption of periodicity is no longer valid. Subsequently, the resin layer is
placed between the both surface-sizing layers with a slight initial distance. This
system is again compressed to an approximate density of 1gcm−3, followed by
equilibration at ambient pressure of 1 atm and 293.15 K.

The system consists of two rigid layers of silicon atoms, followed by the sizing
layers, with a ≈ 130Å thick layer of resin in the center. The resulting total
domain has a base area of 200×200Å and a ≈ 243Å large extent in the fiber
normal direction. Based on this system, cf. left of Figure 3.4, the two stage
polymerization reaction is carried out.
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Figure 3.8: (a) Spatial distribution of the crosslinking density of the polyurethane reaction at dif-
ferent conversion degrees based on a smooth representation of the data (KDE). (b)
Spatial distribution of the relative frequency of radical chains at the end of the radical
polymerization.

3.3.6 Polyurethane reaction

During the reaction, the unsaturated polyurethane reacts with the isocyante
groups of the (P)-MDI, resulting in a polyaddition reaction that finally yields
long polyurethane molecules. This reaction is carried out at 353.15 K and ambi-
ent pressure [7]. In order to speed up the simulation,±1.5 charges are added to
the initiator atoms of the reaction. As discussed by Schwab and Denniston [76],
without auxiliary charges, the polymerization reaction would be too slow for
the time scale used in MD simulations. Furthermore, they demonstrated the
negligible influence of the charges on the results.

In the center of Figure 3.4, the whole system is shown at 50 % conversion.
In addition, the cross-links of the isocyanates and the unsaturated polyester
are highlighted, and cutouts illustrate the development over time, i.e. the in-
crease in cross-link density. Furthermore, the reader is referred to the ESI of [2]
for a complete animation of the reaction. The evolution of the molar masses
weighted by the number Mn and the molar mass Mw versus the conversion de-
gree is shown in Figure 3.6a. The detailed temporal evolution of the conversion
degree over the simulation is plotted in Figure 3.7a and, in addition to the av-
erage value, the median and some quantiles are also displayed. The initial fast
reaction rate seems to converge quite quickly. Also, despite the average and
mean values being nearly the same, it could be observed that the lowest 5 % of
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3 Two-stage polymerization using molecular dynamics

the bins had much lower conversion degrees than the average. The domain is
then binned based on the distance to the fiber surface to produce Figure 3.7c
which shows the spatial distribution of the binning of the conversion degree
over the distance to the glass fiber surface. In addition, the average value and
a Kernel Density Estimator (KDE) are displayed. The KDE is an estimate for
the underlying probability density function of a random variable, and therefore
provides a smooth function estimate of the distribution. The figure exhibits the
highest conversion degree in the resin layer, far away from the surface. And it
decreases steadily towards the glass fiber surface. Since the conversion degree
refers to the relative number of reactions that took place in each bin, it is not
possible to discuss the spatial distribution of the total number of reactions that
occurred based on such a quantity. Therefore, Figure 3.8a shows the spatial
distribution of cross-link density, i.e. a smooth representation of the number of
cross-links per volume in each bin during the reaction.

In the technical SMC process, the B-stage material represents only a semi-
finished product, which can also be assumed to be not fully cured. In this work,
a conversion degree of 50 % of the PU reaction is assumed as the starting point
for the radical reaction. Especially since the definition of the conversion degree
can vary: In this work, the number of actual reactions relative to the theoretical
number of possible reactions is used. In contrast, an experimentally determined
degree of conversion may differ, since the total number of possible reactions is
generally unknown. In Figure 3.6a a drastic increase of Mw at around 30–40 %
conversion can be observed. This jump over orders of magnitude indicates the
phase-like transition from liquid resin to rubbery B-stage material. As the ma-
turing of B-stage is optional [7], the assumed conversion degree of 50 % as a
basis for radical polymerization is in the range of higher Mw and is considered
a reasonable choice. A variation of this choice in combination with the inves-
tigation of the influence on final properties is high desirable, but beyond the
scope of this work.

Regarding the crosslinking density, cf. Figure 3.8a, clearly different regimes
can be identified for the sizing and resin layers during polymerization. This
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Figure 3.9: Spatial distribution of the radical chains length between PU crosslinks at different
conversion degrees based on a smooth representation of the data (KDE) during the
radical polymerization.

is most likely due to the fact that the coupling agent in the sizing layer dilutes
the UPPH resin of the sizing and thus, the final density of (P-)MDI is reduced.
Moreover, near the fiber, the amount of γ-MPS is high due to the pre-attached
coupling agent, therefore the conversion degree is the lowest, which leads also
to the low conversion degree in the 5 % quantile in Figure 3.7a.

The spatial distribution of the benzene on the (P-)MDI and the unsaturated
polyester during the polyurethane reaction is shown in the appendix A.2. While
the distribution of the unsaturated polyester is quite smooth, the distribution of
(P-)MDI is uneven. This behavior is less pronounced in the resulting crosslink
density. Finally, an almost smooth transition from the resin layer to the surface
and to the fiber of the conversion degree can be observed in Figure 3.7c. Since
the (P-)MDI consist of the largest molecules in the system, the uneven distribu-
tion most likely results from the generation of the system in combination with
the limited system size. A reason why a smooth conversion degree neverthe-
less occurs is not evident to the authors, but could be the subject of subsequent
work. However, an experimental investigation of this very thin boundary layer
would be very desirable as it would allow a comparison.
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3 Two-stage polymerization using molecular dynamics

3.3.7 Radical polymerization

The B-staged material of the previous step is further processed in the radi-
cal polymerization: Under high temperature and pressure, the fiber-reinforced
UPPH resin flows in the molds and cures completely. Therefore, a tempera-
ture of 418 K, and a pressure of 50bar in addition to the ambient pressure is
assumed to account for the conditions in the SMC process [7]. Moreover, the
reaction is conducted starting with the 50 % conversion configuration of the PU
reaction.

In the right of Figure 3.4, the final system after the reaction is shown. The
resulting radical chains are highlighted, and the cutouts show the evolution of
these chains over time. As before, for a complete animation of the reaction, the
reader is referred to appendix A.2. In addition, the evolution of the molecular
weights are shown in Figure 3.6b. For the molecular weight Mw there is no
sharp increase during the reaction, since there is no phase transition, compared
to the PU reaction. Rather a smooth transition from rubbery to solid during the
flow in the mold can be observed. In contrast, Mn exhibits a strongly nonlinear
increase when styrene monomers, initially high in number but low in molecular
weight, forms chains during polymerization.

For the visualization of the temporal evolution of the conversion degree over
the simulation in Figure 3.7b, the same approach as before is used. In addition,
the vertical dotted lines mark an increase in the additional charges to accelerate
the reaction and avoid excessive computational effort. For the start, charges of
±1.0 were chosen, which are increased by ±0.25 for each increment. Since
the value of these charges has no direct physical effect other than hastening the
reaction, no influence of the increase is expected if they are chosen within an
acceptable range, cf. [76], which is not exceeded in this work. Furthermore,
the spatial distribution of the conversion degree is shown in Figure 3.7d along
with the average and a KDE, with the latter providing a smooth interpolation.
Moreover, Figure 3.8b displays the relative frequency of radical chains in rela-
tion to the distance to the fiber surface. Finally, the length of the radical chains
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and the spatial dependency, is plotted in Figure 3.9 during the polymerization.
The length of a chain is measured by the number of carbon atoms between
crosslinks of the radical chains with the PU. In the resin layer, the average
length of the radical chains is about the same. In contrast, these chains are
longer in the sizing, as the reduced amount of PU in this layer provides less
possibilities for crosslinking. Moreover, at low conversion degrees, the chain
length is almost uniform and only becomes longer towards the surface at the
end of the reaction. In contrast, the resin layer reaches its final chain length
rather early in the simulation. The γ-MPS, which may be part of the radical
chain, allows these larger gaps between the PU to be bridged, but is less mo-
bile compared to the small styrene molecules. Therefore, building these longer
chains between the less present PU requires more time.

It can be observed that some parts of the system have a much lower conver-
sion degree, which distorts the displayed quantiles and also causes the differ-
ence between the average and median, in Figure 3.7b. This also indicates that
even with a longer simulation time, a complete conversion seem not feasible.
Schwab and Denniston [76] were able to archive a higher final conversion de-
gree and could avoid the need to raise the additional charges repeatedly. How-
ever, in this work, the fiber surfaces restrict the movement of the molecules.
This reduced diffusivity in the normal direction to the surface results in lower
overall reactivity and thus lower conversion. Also, the typical styrene odor of
the final component indicates that complete conversion is not achieved in in-
dustrial applications. In addition, as before in the UP reaction, the definition
of the conversion degree may differ: The conversion degree used in this work,
based on the theoretical possible reactions, may overestimate an experimental
determined degree of conversion. From this reduced mobility, the result is that
the lowest conversion is near to the surface, and is highest in the resin layer
(see Figure 3.7d).

In Figure 3.10, the benzene of styrene is plotted during the radical polymeriza-
tion. The benzenes are distinguished into monomeric (left) and reacted variants
(right). While the unreacted benzene increases abruptly at the surface and at the
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Figure 3.10: Spatial distribution of the benzene of styrene during radical polymerization. A
distinction is made between monomeric, not yet reacted styrene (left) and reacted
styrene in radical chains (right).

interface between the size and the resin layer, the reacted styrene shows a more
even distribution, increasing from the surface to the pure resin layer. Figures
for the distribution of all styrene benzenes, as well as for the benzenes of other
constituents and the silicon of the γ-MPS, can be found in appendix A.2. To-
gether with the conversion degree (Figure 3.7d) and the frequency of the radical
chains (Figure 3.8b), they indicate that molecules, especially small molecules
such as styrene, are able to compensate for the different composition of the
sizing and resin layers. So the conversion degree does not suddenly drop at
the interface, rather the highly agile styrene appears to partially diffuse into the
various layers, resulting in a smooth distribution of conversion.

In the distribution of the radical chains, cf. Figure 3.8b, two things can be
noted: Firstly, directly at the fiber surface there are almost no chains, but a
high peak of chains near to the fiber can be observed. Secondly, there is an
almost uniform distribution of the radical chains in the rest of the domain. The
latter indicates that the presented system is able to generate a highly linked
system via radical chains. This occurs despite the presence of coupling agent
in the physically absorbed layer of the sizing, as the γ-MPS can take part in
the radical polymerization. While the peak close to the surface results from
a layering effect of the pre-attached γ-MPS: The functionality to react with
the radicals have all approximately the same distance to the fiber surface. A
more detailed spatial distribution of silicon atoms of the γ-MPS during the
polymerization reactions is provided in appendix A.2. In addition, the quality
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of the crosslinking may vary locally and is moreover quite anisotropic near to
the fiber surface. To illustrate these behaviors, a second animation of the racial
reaction is provided in appendix A.2. In this, two detail views of sections at
the surface are plotted: One for which radicals create a strong connected layer
at the surface, with some connection normal to the surface. In the other, no
radicals diffuse near to this chemical absorbed γ-MPS layer, resulting in only
a few radical chains and therefore an only loosely cross-linked surface.

3.4 Interim conclusion

Based on molecular dynamics simulations, a UPPH resin system was extended
by adding a fiber surface and sizing layer. From a number of possible coupling
agents for the sizing, γ-MPS was selected and a rigid silicon layer was cre-
ated to mimic the glass fiber surface. Furthermore, the coupling agents were
placed as monomers in the domain and a condensation reaction was modeled
yielding dimers and higher oligomers in the sizing layer prior to the final two-
stage polymerization. In an additional preliminary step, the three generated
layers – resin, sizing, and fiber surface – were placed in the final system and
equilibrated. Based on the work of Schwab and Denniston [76], the two-stage
polymerization of the UPPH resin was conducted on this system. Subsequent
evaluations of the quantities during the reactions were carried out. In addition,
the system was also evaluated along the normal of the fiber surface, allowing
a spatial analysis of the fiber-size-resin system. Due to a lack of information
in the literature, a direct comparison of the results was not practicable. Nev-
ertheless, the method provides an alternative approach to the characterization
of the resin-glass interface. For further work, collaboration with experimental
investigations would be highly desirable. Especially since the results show an
almost smooth transition of the degree of conversion between the different lay-
ers. This seems counterintuitive, since the different layers differ greatly in their
composition. Moreover, anisotropic radical polymerization could be observed
near the fiber surface, emphasizing the importance of the choice of constituents
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3 Two-stage polymerization using molecular dynamics

of the sizing, especially the coupling agent. Based on the final cured system,
further investigation of the generated system could be performed. An evalua-
tion of the material properties of the system, such as the crack resistance of the
fiber-sizing resin interface, would be of great interest, but is beyond the scope
of this work. Instead, the curing and possible crack formation during the curing
on higher length scales, considering multiple fibers, will be considered in the
following chapters.
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4 Structure generator for FRPs

Fiber-reinforced polymers (FRPs) consist of fibers and resin in which the fibers
are embedded. The final microstructure can vary depending on the manufactur-
ing process and materials used. In particular, the ratio of fiber length to diame-
ter has a strong influence on the structure. The compression molding process,
which is under consideration in this work, results in long, curved fibers, which
form fiber bundles from many individual fibers, cf. Figure 2.3.

The generation of microstructures of straight fibers up to a certain aspect ratio
is e.g. described by Schneider [133]. This approach was recently extended to
curved fibers by Schneider [134], allowing for higher aspect ratio and more
complex structures. These approaches are based on the Sequential Addition
and Migration (SAM) algorithm. Fibers are added to the system in multiple
steps and iteratively migrated to reduce fiber overlap and fulfill other con-
straints, such as a desired effective fiber orientation.

In contrast, in this work an approach is presented that is based on molecu-
lar dynamics and the Discrete Element Method (DEM). The idea of DEM,
which is closely related to molecular dynamics, was proposed by Cundall and
Strack [135] for the simulation of the motion of granular media and is a well-
established method for describing motion of rigid bodies and an overview is
given e.g. by Kafashan et al. [136]. The approach of the present work is re-
stricted to transitional degrees of freedom of the particles and thus differs from
the classical DEM. The latter often also considers rotational degrees of free-
dom, and therefore also has to account for angular velocities and torques. In
addition, the presented method uses a basic contact model of the DEM. How-
ever, friction is neglected and potentials for bonds and angles between fiber
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4 Structure generator for FRPs

D l

L

µ

Ko

di j j

i

Ka

ri j
Kb

θi jki

j k

Figure 4.1: Interaction of segments in a single curved fiber. Center: A curved fiber with diameter
D, length L consisting of N connected segments with length l. Top: Harmonic bond
between consecutive segments with connection vector ri j and stiffness Kb as well as
bond angle θi jk and bending stiffness Ka. Bottom: Contribution due to a mismatch in
orientation with a stiffness Ko and damping by a viscosity µ .

segments are introduced. The ability to prescribe a fiber orientation through a
fiber orientation tensor has also been implemented in the model, based on the
work of Schneider [133].

4.1 Fiber description

A system with multiple curved fibers is considered. Each fiber is described by
the diameter D, the length L and consists of N connected segments, each with
a length l = L/N, cf. Figure 4.1. Note that the orientation of a fiber segment is
not a degree of freedom, but is implicitly given by the position of the segments.
For inner segments, the final orientation follows from the normalized average
of the neighborhood connection vector, while the orientation of outer segments
follows directly from the normalized connection vector, cf. Figure 4.2.
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4.1 Fiber description

i

j

k

ĩ
j̃

dĩ

d jr jk

ri j

p jĩ

Figure 4.2: Connection and orientation vectors, in a fiber and between segments of different fibers.
The vectors ri j,r jk describe the connection between the centers of the individual seg-
ments, while the unit direction vectors d j,dĩ are averaged from them. The connection
vector p jĩ describes the shortest vector between the axis of segments of different fi-
bers.

Potential energy function Analogous to classical molecular dynamics, cf.
Section 2.5, the potential energy function U can be introduced by

U = ∑
i,ĩ

Uover
i j̃ +∑

i> j
Ubond

i j + ∑
i> j>k

Uangle
i jk +∑

i> j
Uori

i j , (4.1)

with a term Uover
iĩ due to overlapping segments, due to energy stored in the bond

of sequential connected segments (Ubond
i j ), and due to bending of segments an-

gle (Uangle
i jk ). In addition, an energy associated with a mismatch in fiber orien-

tation with respect to a prescribed orientation is added via Uori
i j . Note that the

subscript indices iĩ denote the interaction between segment i of one fiber seg-
ment and segment ĩ of another fiber, cf. Figure 4.2, while the indices i j and i jk
denote two or three consecutive segments of a fiber. The corresponding sums
are performed over sets so that all possible interactions of different fibers as
well as interactions between individual fibers are considered.
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4 Structure generator for FRPs

A basic contact model for the potential of overlapping fiber segments is given
by

Uover
iĩ =

1
2

K

{
(|piĩ|−D)2 , |piĩ|< D

0, else,
(4.2)

with the shortest connection vector piĩ between the axis of segments of different
fibers i and ĩ, the norm of a vector |·|, and a stiffness K, cf. Figure 4.1 and
Figure 4.2. For the computation of the shortest connection vector the algorithm
of Pournin et al. [137] is used. The potential for energy in connected fiber
segments is given by

Ub
i j =

1
2

Kb
(∣∣ri j

∣∣− l
)2
, (4.3)

with the connection vector ri j and stiffness Kb, see Figure 4.1. This formula-
tion penalizes any deviation from l of the length of a fiber segment. For an
angle θi jk between three fiber segments i, j and k, the energy follows by

Ua
i jk =

1
2

Kaθ 2
i jk, (4.4)

with a bending stiffness Ka that accounts for the energy stored in the fiber due
to curvature. Furthermore, the energy for the orientation of a fiber segment is
given by

Uori
i j =

1
2

Ko
(
A− Ã

)
· (ri j⊗ri j) , (4.5)

with a parameter Ko and the prescribed 2nd order fiber orientation tensor A.
The actual fiber orientation of the system follows with

Ã=
1
Ñ ∑

i> j
di j⊗di j, (4.6)

which consists of a sum over the number of defined orientation vectors Ñ with
with the corresponding indices i and j.
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4.2 Results

D Dc

Kc

K

∥piĩ∥

F

Figure 4.3: Implemented force due to overlapping fiber segments. In contrast to the potential
Uover

iĩ , a second stiffness Kc is introduced. While Kc is applied from a distance Dc, the
contribution of K is added below the distance D.

Viscous damping Based on classical molecular dynamics, the equations
of motion can be derived from Equations (2.49) and (2.51). Together with a
velocity Verlet integration, cf. Section 2.5.2, an NVE ensemble follows. To
remove energy from the system, a viscous damping force with a viscosity µ is
added and the final force follows by

fi =−
(

∂U
∂xi

+µvi

)
. (4.7)

4.2 Results

The velocity Verlet integration requires an evaluation of the forces. In addi-
tion to the force derived from Equation 4.7, an additional force has been added.
The force due to the overlapping of the segments, cf. Uover

iĩ , was extended by a
second term with reduced stiffness but increased distance, cf. Figure 4.3. This
additional force should mimic the repulsive force of e.g. a classical Lennard-
Jones potential in order to accelerate the generation of non-overlapping struc-
tures.
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4 Structure generator for FRPs
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Figure 4.4: Left: Evolution of the energies due to overlapping particles Uover, the kinetic energy

Kkin and the fiber volume fraction vf during the iterations of the generation procedure.
Right: Generated square 2D microstructure with unidirectional fibers and a size of
200 µm and 50 % fiber volume fraction.

Description Symbol Value

Fiber diameter
D 10 µm
Dc 15 µm

Stiffness
K 1 kg

s2

Kc 1×10−2 kg
s2

Viscosity µ 0.5 kg
s

Time step ∆ t 1 s

Table 4.1: Parameters for the generation fiber structures.

In this work, three different simplifications of a real fiber-reinforced micro-
structure are considered and described in the following sections. Furthermore,
all domain boundaries are considered to be periodic in all directions during the
generation.

72



4.2 Results

Two-dimensional unidirectional fibers Assuming a matrix reinforced
by straight unidirectional fibers with a high aspect ratio, the fiber descrip-
tion can be reduced to the cross sections of the fibers. The generally three-
dimensional problem can be reduced in two dimensions. Furthermore, the fiber
description does not need to consider multiple fiber segments, angles or orienta-
tions. Ultimately, the problem of generating non-overlapping fibers is reduced
to placing non-overlapping circles. Therefore, the introduced potentials and
forces are simplified accordingly. To avoid inappropriate initial placement of
the fibers, the fibers are randomly placed in a much larger domain. In the first
step a compression of the domain is performed. In a subsequent step, the sys-
tem is equilibrated in the sense of a classical MD simulation, which leads to the
final microstructures. For a complete list of parameters, the reader is referred
to Table 4.1.

Figure 4.4 shows an example of a generated microstructure. The right part
of the figure shows the final cross section of such a two-dimensional unidirec-
tional fiber structure with a volume fraction of 50 %. The left panel depicts the
evolution of the energies due to overlapping particles Uover, the kinetic energy
Kkin and the fiber volume fraction vf during the iterations of the generation pro-
cedure. The final value of Uover indicates that the fibers do not overlap and the
remaining energy can be associated with the force due to the low stiffness Kc,
cf. Figure 4.3, leading to a non-zero kinetic energy even for long simulation
times.

Two-dimensional curved fibers As an alternative to unidirectional fi-
bers, the fibers can be assumed to be placed in one plane. This allows account-
ing for curved fibers, along with energies in bonds, angles, as well as different
fiber orientations. Still it allows a reduction of the general system to a 2D sys-
tem. Therefore, the number of possible interactions is greatly reduced and the
individual calculation can also be simplified. The parameters for generating
the structures are listed in Table 4.1 and Table 4.2. In addition, an orientation
is chosen with 90 % probability in the preferred direction.
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Figure 4.5: Evolution of the different energies and the fiber volume fraction vf during the iterations
of the generation procedure.

Description Symbol Value

Fiber length L 200 µm
No. segments N 20 (2D), 10 (3D)

Stiffness
Kb 1.0 kg

s2

Ka 1.0×101 kgµm2

s2

Ko 1.0×101 kg
s2

Table 4.2: Additional parameters for the generation of curved fiber structures. The remaining
parameters are listed in Table 4.1.
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4.2 Results

a

b

c d

Figure 4.6: Generated quadratic 2D microstructures with curved fiber. Smaller 200 µm systems
with 25 % (a), 35 % (b), and 50 % (c) fiber volume fraction. And a larger 600 µm
system with 25 % fiber volume fraction (d).

Figure 4.6 depicts generated two-dimensional curved fiber structures for dif-
ferent domain sizes and volume fractions. Figure 4.5 shows the evolution of
the energy contributions as well as the volume fraction over the simulation
time. The generation procedure consists of three steps. The fibers are ran-
domly placed in a large system to avoid overlapping fibers, which can lead to
unstable behavior. After compressing the domain, the system is equilibrated to
obtain the final microstructure. Although the two-dimensional final structures
represent fibers with a circular cross section, they are treated differently in this
work. The reduction to the two-dimensional case is chosen mainly to reduce
the computational effort in subsequent steps. As a disadvantage, the proper-
ties of round fibers are lost and instead an infinitely thick structure is depicted
based on the generated structures.
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4 Structure generator for FRPs

Figure 4.7: Generated 3D microstructures with curved fiber and a system size of 360 × 120 ×
120 µm and 25 % fiber volume fraction.

Three-dimensional curved fibers Finally, the introduced fiber descrip-
tion can be considered in the general three-dimensional case. For the latter
case, the parameters for generating the structures are listed in Table 4.1 and
Table 4.2. Note that the number of segments is reduced to 10 to limit the
number of degrees of freedom compared to the last section. Moreover, the
orientation in the preferred direction is chosen to 80 % and 10 % in both other
directions. In addition, the size of the simulation domain is modified accord-
ing to the preferred direction and the aspect ratio of the fiber. An exemplary
final three-dimensional fiber-reinforced structure with curved fibers is shown
in Figure 4.7.
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5 Curing simulations of FRTS on
a micro scale

After considering the curing of UPPH resin in combination with a glass fiber
based on molecular dynamics simulation in Chapter 3 at the nanoscale, the cur-
ing simulations are performed at the microscopic length scale. First, based on
continuum mechanics, the heat equation is derived and a curing model, along
with curing shrinkage and thermal expansion strain, is introduced. Finally, var-
ious fiber-reinforced volume elements (see Chapter 4) are generated to study
the curing degree, temperature, and stress distribution during a compression
molding process.

5.1 Model

The curing model of this work is based on the work of Schwab [138]. However,
instead of introducing the phasefield and the degree of cure as separate degrees
of freedom, a derivation based on a thermomechanically weakly coupled theory
is chosen, cf. e.g. Prahs et al. [139]. Based on such a model, a source term
based on the curing model and a strain decomposition are introduced to account
for thermal strains and curing shrinkage.
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5 Curing simulations of FRTS on a micro scale

Clausius-Duhem inequality In the following, following the small de-
formation theory, a constant mass density ρ is assumed. Furthermore, the
Helmholtz free energy is decomposed by

ψ = ψel +ψθ , ψel ̸= ψel(θ), ψθ ̸= ψθ (ε), (5.1)

into a purely elastic and a purely thermal contribution. The CDI, cf. Sec-
tion 2.2.2, follows by

σ · ε̇−ρψ̇−ρηθ̇ − q ·g
θ
≥ 0 (5.2)

and, taking into account equation Equation (5.1) it can be rewritten as(
σ−ρ

∂ψ
∂ε

)
· ε̇−ρ

(
η +

∂ψ
∂θ

)
θ̇ − q ·g

θ
≥ 0. (5.3)

This results in the potential relations

σ = ρ
∂ψ
∂ε

, η =−∂ψ
∂θ

, (5.4)

cf. eg. [85].

Heat conduction The localized balance of internal energy, cf. Equa-
tion (2.15), is given by

ρ ė = ρr+σ · ε̇−div(q). (5.5)

With ė = ψ̇ + η̇θ +ηθ̇ and using the derived potential relations, the balance
can be rewritten as

ρ
∂ψ
∂ε
· ε̇+ρ

∂ψ
∂θ

θ̇ −ρ
∂ 2ψ

∂θ∂θ
θ̇ −ρ

∂ψ
∂θ

θ̇ = ρr+ρ
∂ψ
∂ε
· ε̇−div(q). (5.6)
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5.1 Model

This can be further simplified, leading to

−ρ
∂ 2ψ

∂θ∂θ
θ̇ = ρr−div(q), (5.7)

and with the definition of the specific heat capacity at constant volume cV =

−ρ ∂ 2ψ
∂θ∂θ , the heat equation is given by

cvθ̇ = ρr−div(q). (5.8)

Thermal jump conditions Analogous to the mechanical jump conditions,
cf. Section 2.3.3, jump conditions can also be formulated accounting for ther-
mal measures. The effective temperature gradient g and the effective heat flux
q are decomposed by a linear interpolation with the order parameters given by

q =
N

∑
α

ϕ αqα , g =
N

∑
α

ϕ αgα , (5.9)

with the phase-specific fields qα ,gα for each phase. In addition, the Fourier
law

qα =−κα 1gα , (5.10)

with isotropic thermal conductivity κα is introduced for each phase. This is
followed by the thermal jump conditions

JqKαβ nαβ = 0, JgKαβ
= ãαβnαβ , (5.11)

which limit the heat flux in the normal direction and a scalar jump in the
temperature gradient ãαβ . Based on this assumption, an effective, generally
anisotropic, thermal conductivity can be determined as a function of the order
parameters, their orientation, and the individual thermal conductivities of the
phases.
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5 Curing simulations of FRTS on a micro scale

Strain decomposition The effective strain is decomposed into phase-
specific strains εα , and these are further decomposed by

ε=
N

∑
α

ϕ αεα , εα = εα
el +εα

θ +εα
χ , (5.12)

with an elastic contribution εα
el, a thermal strain εα

θ , and a strain εα
χ due to

curing shrinkage. The latter can be formulated by

εα
θ = αα 1(θ −θ α

ref) , εα
χ =

χα
r

3
1ζ α , (5.13)

with a reference temperature θ α
ref at which the thermal strain disappears, a ther-

mal expansion coefficient αα , the total curing shrinkage χα
r and the curing

degree ζ α for a phase α denoted by the superscript. In addition, the phase-
specific stresses and strain energy densities are reformulated in terms of the
elastic strain, yielding

σα = Cα
[
εα −εα

θ −εα
χ

]
, (5.14)

f α =
1
2

(
εα −εα

θ −εα
χ

)
·Cα

[
εα −εα

θ −εα
χ

]
. (5.15)

Reaction enthalpy With the specific enthalpy h, the degree of cure ζ α of
a phase α can be defined by

ζ α(t) =
hα(t)
hα,tot , (5.16)

with the total reaction enthalpy hα,tot ≤ 0. Further the rate of curing degree is
constrained by ζ̇ α ≥ 0 to satisfy the second law of thermodynamics. An ansatz
for the source term of the heat equation (5.8) is introduced by

ρr =−
N

∑
α

ϕ α ζ̇ α hα,tot. (5.17)
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5.1 Model

Kamal-Sourour model The model for predicting the curing process of
UPPH is based on the Kamal-Sourour kinetic model [140, 141]. This approach
was recently applied to an epoxy resin by Bernath et al. [142]. The degree of
cure ζ α ∈ [0,1] describes the degree of conversion of the underlying polymer-
ization from uncured state ζ α = 0 to the fully cured state ζ α = 1 of one phase
or subregion α . It can also be phenomenologically related to the amount of
enthalpy provided by the polymerization, cf. Equation (5.16). The rate of cure
follows by the ordinary differential equation

ζ̇ α(ζ α ,θ) =
(
kα,1(θ)+ kα,2(θ)(ζ α)m)(1−ζ α)n , (5.18)

with the exponents m,n and the kinetic functions kα,1, kα,2. The latter can be
described by the Arrhenius equations

kα,1(θ) = Aα,1 exp
(
−Eα,1

Rθ

)
, kα,2(θ) = Aα,2 exp

(
−Eα,2

Rθ

)
, (5.19)

with the prefactors Aα,1,Aα,2, the activation energies Eα,1,Eα,2 and the univer-
sal gas constant R.

Glass transition temperature The glass transition temperature θ α,g de-
scribes a change of state of polymers. Below θ α,g the material is often char-
acterized by brittle material behavior, while above the glass transition tem-
perature it often exhibits viscous behavior, which can be associated with a
rubbery state. In the context of the curing process, there is no expected
evolution of the degree of cure below the transition temperature. Since the
Kamal-Sourour model does not account for such a transition, the approach
of DiBenedetto [143] is used to describe the glass transition temperature as a
function of the degree of cure, yielding

θ α,g(ζ α)−θ α,g0

θ α,g∞−θ α,g0 =
λ α ζ α

1− (1−λ α)ζ α , (5.20)
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5 Curing simulations of FRTS on a micro scale

Description Symbol Value

Mass density ρ 2575 kg
m3

Specific heat capacity cv 802.4 J
kgK

Thermal conductivity κ 1.275 W
mK

Bulk modulus K 46.5 GPa
Shear modulus G 33 GPa
Thermal expansion coefficient α 1×10−6 1

K

Table 5.1: Material parameters for the glass fiber. Values are taken from Schwab [138] (Table
4.12), besides the thermal expansion coefficient.

with the glass transition temperature θ α,g0 for no cure and fully cured θ α,g∞,
respectively, and the parameter λ α , which can be determined e.g. experimen-
tally [142] or by molecular dynamics simulations [76].

5.2 Results

Although the model was introduced with a degree of cure for all phases, i.e.
materials, in the following only the resin undergoes a curing process and solely
exhibits curing shrinkage. Therefore, in the following, the superscript is omit-
ted for quantities related to cure, but always denotes the quantity of the resin
material.

The material properties used for the glass fiber are listed in Table 5.1 and are
assumed to be constant over the considered temperatures. For both resin and
glass fiber, the reference temperature θ α

ref is assumed to be 293 K. In contrast,
the references to the material properties of the UPPH resin used, including cur-
ing parameters, are listed in Table 5.2. Many of the parameters are temperature
and/or cure dependent. This dependence is modeled by linear or bilinear inter-
polation between the tabular data provided in the corresponding references.
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5 Curing simulations of FRTS on a micro scale

The maximum absolute principal stress is defined by

σ⋆ = max
i=1,2,3

∣∣σ i∣∣ , (5.21)

which is used to visualize the stress states of the microstructures during curing.
In addition, the volume average is defined by

⟨ψ⟩= 1
V

∫
Ω

ψ dv (5.22)

for a arbitrary field ψ .

Boundary and inital conditions The initial temperature of the simula-
tion domain is defined as room temperature with 293 K. While the initial cur-
ing degree is set to 1×10−3 to avoid numerical difficulties due to the singular
point of the model at zero curing degree. The boundaries are all considered
periodic, except in one direction, which is associated with two sides of the
molds, denoted by ∂ΩM. Therefore, the normal displacement are restricted in
this direction with

u ·n= 0, on ∂ΩM, (5.23)

with the outer normal n of the boundary. For the heat equation, a Robin-type
boundary condition is chosen on these boundaries. The heat flux is given by

q ·n= h(θ −θ∞) , on ∂ΩM, (5.24)

with a heat transfer coefficient h and the environmental temperature θ∞. In the
following, a variation of the domain size is investigated. The total thickness
of the component is assumed to be 2 mm and the heat transfer coefficient is
chosen as h = C/∆ l, with the length difference ∆ l between the simulation
domain and the total thickness of the component, and the coefficient C =

1×10−2 Wm−1 K−1. This approach takes into account the thermal damping
of the component not modeled and avoids overly high heat fluxes for smaller
simulation domains.
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Figure 5.1: Temporal evolution of effective curing degree ⟨ζ ⟩ (solid line) and effective tempera-
ture ⟨θ⟩ (dashed line) during the cure process for pure resin and different system sizes
in µm.

To model the compound molding process, the simulation is divided into two
steps:

• Closing the molds and heating the SMC prepeg to initialize the curing
process. This is accomplished by setting θ∞ to 373 K.

• The molds are opened and the final component is cooled to room temper-
ature. Therefore, θ∞ is reset to 273 K after 3 minutes.

5.2.1 Pure resin

In the first step, a homogeneous domain with pure UPPH resin is considered
to see the influence of the reinforcement by the glass fibers in the subsequently
sections. Figure 5.1 shows the effective curing degree ⟨ζ ⟩ and the effective
temperature ⟨θ⟩ during the curing simulation. After reaching the initial glass
transition temperature of 323 K, the curing starts and due to the exothermic
reaction, the temperature increases and reaches temperatures above θ∞. The
curing degree reaches the final value quite early, before the cured resin slowly
cools down to room temperature. The different domain sizes have different
thermal inertia and heat transfer coefficients, resulting in different heating and
cooling kinetics due to the boundary conditions. In contrast, the evolution of
the curing degree is only slightly affected, except for a time shift.
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5 Curing simulations of FRTS on a micro scale
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Figure 5.2: Top: Temporal evolution of effective curing degree ⟨ζ ⟩ (solid line) and effective tem-
perature ⟨θ⟩ (dashed line). Bottom: Temporal evolution of effective maximum princi-
pal stress ⟨σ⋆⟩ (solid line) and local maximum principal stress (dashed line). These are
plotted during the curing process for unidirectional fiber-reinforced domains with a
fiber volume fraction of 25 % and different system sizes in µm.

5.2.2 Unidirectional fiber-reinforced

In the next step, simulation studies with unidirectionally fiber-reinforced do-
mains, cf. Section 4.2, are investigated. Figure 5.2 displays the effective cur-
ing degree, the effective temperature and the maximum principal stress ⟨σ⋆⟩
during the curing simulation of a domain with a volume fraction of 25 %. In
contrast to the pure resin, the high conductivity and relatively low heat capacity
of the glass fiber increase the rate of the effective temperature. This leads to an
earlier start of the cure process and the final room temperature is also reached
earlier. The maximum principal stress is caused by the interaction of strains
due to thermal expansion, curing shrinkage and the different stiffness of both
materials, which changes during the curing process. The highest effective and
local values were observed at room temperature after curing. This indicates
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Figure 5.3: Distribution of maximum principal stress σ⋆ for a square domain of 400 µm length
with a fiber volume fraction of 25 % for a unidirectional fiber-reinforced system (left)
and a two-dimensional curved fiber-reinforced system (right) after curing simulation.

that the final curing shrinkage is the main cause of these stresses. Figure 5.3
shows an example of the final distribution of the maximum principal stress for
a 25 % volume fraction domain. In the resin-rich areas, the stress is mostly ho-
mogeneous, while the fiber cross section introduces local stress concentrations.

5.2.3 Two-dimensional curved fibers

Figure 5.3 illustrates the final distribution of the maximum principal stress for
a 25 % volume fraction domain with a curved fiber in two dimensions, cf. Sec-
tion 4.2. In contrast to the unidirectional fiber-reinforced system, the distri-
bution is more homogeneous because the curved fiber domains contain larger
resin-rich areas for a given fiber volume fraction. However, the sharp corner
of the curved fibers introduces locally higher stresses. Figure 5.4 shows the
temperature, curing degree, and maximum principal stress over time. While
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Figure 5.4: Top: Temporal evolution of effective curing degree ⟨ζ ⟩ (solid line) and effective tem-
perature ⟨θ⟩ (dashed line). Bottom: Temporal evolution of effective maximum princi-
pal stress ⟨σ⋆⟩ (solid line) and local maximum principal stress (dashed line). These
are plotted during the curing process for two-dimensional curved fiber-reinforced
domains with 25 % fiber volume fraction and different system sizes in µm.

the temperature and curing degree are similar to the unidirectionally fiber-
reinforced variant, higher principal stress can be observed. In particular, some
ensembles show a peak of the local maximum stress at the beginning of the
cure.

5.2.4 Three-dimensional curved fibers

Finally curing simulations of three-dimensional curved fiber, cf. Section 4.2,
are conducted. Figure 5.5 shows the temperature, curing degree, and maximum
principal stress over time. While the curing and temperature evolution is simi-
lar to the two-dimensional cases the simulation demonstrate higher maximum
principal stresses, since the full three-dimensional feature of the curved fibers
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Figure 5.5: Top: Temporal evolution of effective curing degree ⟨ζ ⟩ (solid line) and effective tem-
perature ⟨θ⟩ (dashed line). Bottom: Temporal evolution of effective maximum prin-
cipal stress ⟨σ⋆⟩ (solid line) and local maximum principal stress (dashed line). The
is plotted during the curing process for three-dimensional curved fiber-reinforced
domains and different and different system sizes in µm.

Figure 5.6: Distribution of maximum principal stress σ⋆ of a three-dimensional curved fiber-
reinforced system with 25 % fiber volume fraction after curing simulation. Red high-
lights maximum values, while lower values have reduced opacity to ensure clarity.
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Figure 5.7: Maximum principal stress σ⋆ over fiber volume fraction for unidirectional, 2D curved
and 3D curved fibers. The effective value as well as the maximum value are plotted.
Based on different ensembles, a confidence interval is also provided.

can be depicted correctly. The maximum principal stresses are visualized in
Figure 5.6, whereas regions with lower values are omitted and only the regions
of high stresses are highlighted in color.

5.2.5 Comparison

During curing, the material parameters of UPPH materials change significantly.
However, when different volume fractions are considered, the change in e.g.
effective conductivity and thermal inertia is dominated by the glass fiber. The
difference in the evolution of cure degree and temperature for different abstrac-
tion levels of the volume element or selected ensemble seems to be small. In
contrast, the mechanical behavior seems to be different for the three levels of
abstraction. Therefore, a study with varying fiber volume fraction is performed
for all three variants of the fiber-reinforced system. For each type and volume
fraction, simulations were performed on 5 different ensembles with a size of
400×400µm (2D) and 240×80×80µm (3D), respectively. Figure 5.7 shows
the maximum principal stress over the fiber volume fraction for these cases.
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Therefore, both the effective value and the maximum value are plotted and con-
fidence intervals are provided. Almost no scatter for the effective maximum
principal stress can be observed despite the use of different ensembles. Only
a larger difference between the two-dimensional and three-dimensional cases
is present. This indicates that the different geometry of the two-dimensional
cases does not cause any difference in the effective behavior, only the change
to a three-dimensional strain state leads to higher stresses. In addition, the
value decreases for higher volume fractions because the a higher fraction of
the domain do not exhibit curing shrinkage.

The local maximum principal stress increases with the complexity of the mi-
crostructure. The unidirectional fiber-reinforced systems have the lowest value
and the three-dimensional curved fiber case the highest value. The ability to
generate complex three-dimensional stress states increases with the complex-
ity of the represented fiber shape. Also, with higher fiber volume fractions, the
likelihood of unfavorable fiber positions, and thus areas of stress concentration
increases. In particular, a strong increase in stress of the three-dimensional
system from 20 % to 40 % volume fraction can be observed.

It can be concluded that while simplifying the real microstructure of FRTS to
two-dimensional structures does introduce an error in predicting stresses, it nev-
ertheless allows investigating the basic qualitative mechanism of the mechan-
ical behavior of glass fiber-reinforced UPPH resin at reduced computational
costs.
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6 Phase-field modeling of crack
propagation in heterogeneous
materials

In this chapter, phase-field models for crack propagation are introduced and
their application especially to heterogeneous systems such as FRPs is dis-
cussed. First, a crack propagation model for a homogeneous system is pre-
sented, which is based on simple but well-established models from the litera-
ture. Subsequently, two models for heterogeneous systems follow by general-
ization of the homogeneous model. The single-crack order parameter (SCOP)
model describes fracture by a single parameter for all phases, i.e. materials.
In contrast, multiple parameters are introduced for the multi-crack order pa-
rameters (MCOP). Along with some numerical remarks and an extension to
a single-obstacle potential, numerical results are discussed. A qualitative and
quantitative comparison of the SCOP and MCOP is performed. Furthermore,
the basic Voigt-Taylor scheme is compared to the mechanical jump condition
framework, cf. Section 2.3 and Schneider et al. [60]. Finally, the application
of these models to FRPs will be demonstrated, restricted to systems with ex-
ternal loads, excluding the curing process. This chapter is mainly based on the
work of Schöller et al. [1, 3], denoted by footnotes, but also includes several
extensions of these works.
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Figure 6.1: Schematic homogeneous domain with a sharp crack interface (a) and a diffuse crack
interface in yellow (b).

6.1 Phase-field crack propagation models1

6.1.1 Classical homogeneous model

For a material body Ω ∈ Rn n ∈ {1,2,3}, in an Euclidean space, the displace-
ment vector u relates the position vector of a material point in the current
configuration relative to the reference configuration. The boundary of the body
∂Ω ∈Rn−1 consists of a subset ∂ΩD, on which a Dirichlet boundary condition
is applied, by prescribing the displacement vector u = u, while a Neumann
boundary condition is imposed on ∂ΩN, for which the stress vector t = t is
specified. For both boundaries, ∂ΩD∪∂ΩN = ∂Ω and ∂ΩD∩∂ΩN = /0 must
apply. In addition, the body contains a sharp crack surface Sc.

Free energy functional For a homogeneous domain containing a sharp
crack, cf. Figure 6.1a, the free energy functional is proposed by

F [u] =
∫

Ω
fel(u)dv+

∫
Sc

Gc da, (6.1)

1The content of this section has been taken directly from Schöller et al. [1] with minor linguis-
tic changes.
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6.1 Phase-field crack propagation models

with a strain energy density fel(u) and a critical energy release rate Gc, which
describes the surface energy density γ for the sharp crack surface by Gc =

2γ . The introduction of the crack order parameter ϕc ∈ [0,1] enables a smooth
transition of the material state. For ϕc = 1, the material is fully broken, for
ϕc = 0, it remains undamaged. Following Kuhn and Müller [28], this allows
the free energy (6.1) to be rewritten by a volume integral

F [u,ϕc,∇ϕc] =
∫

Ω
h(ϕc) fel(u)+

1
2

Gc

(
εϕc |∇ϕc|2 +

1
εϕc

ϕc
2
)

︸ ︷︷ ︸
f (u,ϕc,∇ϕc)

dv, (6.2)

cf. Figure 6.1b. The strain energy density is degraded by the function h(ϕc) =

(1−ϕc)
2. For a general discussion of degradation functions, the reader is re-

ferred to Kuhn et al. [144]. The energy of the crack is parameterized by ϕc
2

and a gradient term with the spatial gradient ∇ϕc = grad(ϕc) and its norm
|∇ϕc| =

√
∇ϕc ·∇ϕc. In addition, the length parameter εϕc defines the width

of the diffuse interface.

Strain energy density The elastic term of the free energy functional (6.2)
is modeled by an elastic potential, assuming small deformations. Thus, the
strain energy density reads

fel(u) =
1
2
σ ·ε, (6.3)

with the strain tensor ε= sym(grad(u)), where sym(·) denotes the symmetric
part of a second order tensor. In addition, Hooke’s law

σ = C [ε] , (6.4)

is assumed, with the symmetric Cauchy stress tensor σ, and the 4th order stiff-
ness tensor C. Moreover, body forces are neglected and a quasi-static behavior
is subsequently considered. For an isotropic case, this constitutive equation
simplifies to σ = λ tr(ε)1 + 2µε, with the Lamé parameters λ and µ , the
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6 Phase-field modeling of crack propagation in heterogeneous materials

second-order identity tensor 1, and the trace operator tr(·). The Lamé parame-
ters can also be expressed by Young’s modulus E and Poisson’s ratio ν , using

λ =
Eν

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

. (6.5)

As cracks typically do not evolve under compression loads, several approaches
exist to split the strain energy density into a tension and compression part. By
only degrading the tension part, this results in a more physical crack propaga-
tion behavior. Early tension-compression splits were introduced by Amor et al.
[145], Miehe et al. [146] and Henry and Levine [26]. More recent variants were
proposed by Ambati et. al [34], Strobl and Seelig [147] and Storm et al. [148].
Despite their significance, none of these variants is considered here, in order
to reduce the complexity of the proposed model. However, an extension to
most of the established tension-compression splits could be applied straightfor-
wardly. Applying Equation (6.3) and (6.4) to the functional (6.2), yields

F [u,ϕc,∇ϕc] =
∫

Ω

1
2

h(ϕc)(C [ε]) ·ε+ 1
2

Gc

(
εϕc |∇ϕc|2 +

1
εϕc

ϕc
2
)

dv. (6.6)

Balance of linear momentum Following the approach of Kuhn et al. [28],
the minimization of the free energy functional (6.6), with respect to the dis-
placement yields the balance of linear momentum

div(h(ϕc)σ) = 0. (6.7)

Evolution equation The evolution equation of the order parameter ϕc can
be described by an Allen-Cahn equation [89]

εϕc ϕ̇c =−M
δF

δϕc
=−M

(
∂ f (u,ϕc,∇ϕc)

∂ϕc
−div

(
∂ f (u,ϕc,∇ϕc)

∂∇ϕc

))
, (6.8)
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Figure 6.2: Analytical order parameter profile for crack (a) and solid (b), for a corresponding sharp
crack and a solid-solid interface at x = 0, respectively.

with a mobility parameter M ≥ 0, ∇ϕc ·n = 0 on ∂Ω and the outer normal
vector n on the boundary.

Analytical crack profile For a one-dimensional stationary crack without
mechanical loads, and thus with vanishing mechanical driving force, the evolu-
tion equation according to (6.8) is able to reproduce the correct surface energies
of a sharp interface and leads to the analytical profile [29]

ϕc(x) = exp
(
− |x|

εϕc

)
, (6.9)

which is displayed in Figure 6.2a.

Irreversibility condition Various approaches for the realization of an ir-
reversibility condition for the evolution equation are listed in the literature:
Bourdin et al. [27] used a Dirichlet boundary condition. In contrast, Miehe et
al. [29] introduced a strain history function to realize the irreversibility of
crack order parameter. More recent approaches use the augmented Lagrangian
method [149], a primal-dual-active set [150], a complementarity system [151],
or the interior point method [152]. The model introduced above reproduces the
correct sharp interface energy in the case of the analytical profile (6.9). Since
mechanical loads are considered here, the strain energy density contributes to
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6 Phase-field modeling of crack propagation in heterogeneous materials

the evolution equation of the order parameter (6.8). This leads to a distorted
profile, if crack healing is prevented completely, and therefore to an error in the
represented energy, if the applied load is removed completely. As the objective
of this work is to investigate the possibility of different models to reproduce the
sharp interface energies, the irreversibility is realized by a Dirichlet boundary
condition, where the evolution equation is not restricted in general, but all fully
damaged points remain damaged, using a boundary condition ϕc = 1, where a
point is assumed to be fully damaged by ϕc ≥ 0.99 using a numerical threshold.
This improves the numerical behavior and has a negligible effect on the results.
Nevertheless, the models presented in the present work could also be realized
with other approaches to the irreversibility condition, which are listed above.

6.1.2 Heterogeneous single-crack order parameter
(SCOP) phase-field model

Solid order parameters To distinguish different regions of a heteroge-
neous body, the order parameters ϕ α ∈ [0,1], ∀α = 1, . . . ,N are introduced for
N different regions, which can be arranged in the tuple

ϕ=
{

ϕ 1,ϕ 2, . . . ,ϕ N} . (6.10)

A bulk region of phase α is represented by ϕ α = 1, while a diffuse interface is
represented by 0 < ϕ α < 1. As the order parameters can be interpreted as the
volume fraction of the corresponding regions, the condition

N

∑
α=1

ϕ α = 1 (6.11)

has to be fulfilled. By extending the free energy functional (6.1) with interfa-
cial terms between the regions, a multiphase-field model can be formulated as
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Figure 6.3: Schematic heterogeneous domain for the SCOP and MCOP models: The initial do-
main is schematically drawn on the top left. The subdomains are visualized separately
in the center, with a sharp crack interface. In the lower left, the SCOP model is shown
with its diffuse crack interfaces in yellow, whereas in the lower right, the MCOP model
is displayed with several diffuse crack interfaces in the subdomains Ω α and Ω β in red
and yellow. The diffuse solid interface ϕ α (x)ϕ β (x) is indicated in green.

proposed by Nestler et al. [46]. Using a double obstacle phase-field potential
results in an analytical one-dimensional profile for a binary interface:

ϕ α(x) =
1
2

(
1+ sin

(
π
ls

x
))

, − ls
2
≤x≤ ls

2
, (6.12)

as shown by Steinbach et al. [153], which is presented in Figure 6.2b. It is char-
acterized by the interface width ls or, analogous to the crack profile, by a length
parameter εϕs = 4/π2ls. Since no changes of ϕ α are examined in this work, an
extension of the free energy and a derivation of a classical multiphase-field is
omitted. Instead, the analytical profile (6.12) is utilized to parameterize the
domain, resulting in diffuse and smooth volumetric interfaces, cf. Figure 6.3.
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6 Phase-field modeling of crack propagation in heterogeneous materials

Free energy functional To account for heterogeneous materials, the do-
main Ω can be decomposed into subdomains Ω α with constant material prop-
erties, cf. Figure 6.3. Thus, the energy functional for sharp interfaces follows
by

F [u] =
N

∑
α

∫
Ω α

f α
el (u)dv+

N

∑
α

∫
Sα

c

Gα
c da. (6.13)

In the context of the SCOP model, and thus, in contrast to the functional (6.1),
the strain energy densities f α

el as well as the critical energy release rates Gα
c are

phase-specific, denoted by the phase index α . The energy of each subdomain
is given by an integral of energy densities over Ω α , which can be parameter-
ized using an indicator function and expanded to Ω . Subsequently, the order
parameters of the solid phase field can be used as a smooth approximation to
the indicator function [154, 155]. This leads to a linear interpolation of the
energy densities with the solid order parameters ϕ, cf. for example Nestler et
al. [46], yielding

F [u] =
∫

Ω

N

∑
α

ϕ α f α
el (u)dv+

∫
Sc

N

∑
α

ϕ α Gα
c da. (6.14)

As for the classic homogeneous model, a crack order parameter ϕc is intro-
duced to describe the damage of the domain smoothly, and the free energy of a
heterogeneous body is given by

F [u,ϕc,∇ϕc] =
∫

Ω
h(ϕc)

N

∑
α

ϕ α f α
el (6.15)

+
1
2

N

∑
α

ϕ α Gα
c

(
εϕc |∇ϕc|2 +

1
εϕc

ϕc
2
)

dv,

f α
el =

1
2
σα ·εα , σα = Cα [εα ] . (6.16)
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6.1 Phase-field crack propagation models

In general, the phase-inherent stresses and strains are unknown. To determine
an overall material behavior, further assumptions have to be made. This is
widely investigated in the context of phase-field modeling [56–59, 61]. Re-
cently, Prajapati et al. [47] introduced a model that applies the homogenization
scheme proposed by Schneider et al. [61] in the context of a phase-field fracture
model. Nevertheless, for simplicity, a Voigt-Taylor homogenization scheme is
used in this work, assuming equal strains in each phase

εα = ε ∀α = 1, . . . ,N, (6.17)

acknowledging the limited capabilities of this scheme [22, 58]. By apply-
ing (6.17) and (6.16) to the functional (6.15) this yields

F [u,ϕc,∇ϕc] =
∫

Ω

1
2

h(ϕc)
N

∑
α

ϕ α(Cα [ε]) ·ε (6.18)

+
1
2

N

∑
α

ϕ α Gα
c

(
εϕc |∇ϕc|2 +

1
εϕc

ϕc
2
)

dv.

Note that the procedure to obtain the evolution equations of the crack order
parameter and the balance of linear momentum is the same as for the classical
phase-field crack propagation model in Section 6.1.1, but now including inter-
polations of the phase-specific stiffnesses and critical energy release rates with
the order parameters ϕ α .

6.1.3 Heterogeneous multi-crack order parameter
(MCOP) phase-field model

Order parameters As in the previous section, a tuple of order parameters,

ϕ=
{

ϕ 1,ϕ 2, . . . ,ϕ N} , N

∑
α=1

ϕ α = 1, (6.19)
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6 Phase-field modeling of crack propagation in heterogeneous materials

is introduced to parameterize different regions of a heterogeneous body. In
addition, a tuple consisting of separate crack order parameters ϕ α

c ∈ [0,1], for
each solid phase,

ϕc =
{

ϕ 1
c ,ϕ 2

c , . . . ,ϕ N
c
}
, (6.20)

is introduced. Each crack order parameter ϕ α
c tracks the damage of the cor-

responding solid region α . For ϕ α
c = 1, for instance, the complete volume

fraction ϕ α is damaged, while other solid regions are not affected by ϕ α
c , cf.

Figure 6.3.

Free energy functional The MCOP model combines the functional given
by Equation (6.14), used as the basis for the SCOP model, with the individual
degradation of the strain energy densities f α

el by means of multiple crack order
parameters according to Equation (6.20). In addition, the critical energy release
rates Gα

c are also parameterized by the individual crack order parameters. This
results in the free energy functional

F [u,ϕc,∇ϕc] =
∫

Ω

N

∑
α

ϕ α h(ϕ α
c ) f α

el (6.21)

+
1
2

N

∑
α

ϕ α Gα
c

(
εϕc |∇ϕ α

c |
2 +

1
εϕc

(ϕ α
c )2
)

dv,

with ∇ϕc =
{

∇ϕ 1
c ,∇ϕ 2

c , . . . ,∇ϕ N
c
}

. The free energy functional for each subdo-
main Ω α can be identified by

F α [u,ϕ α
c ,∇ϕ α

c ] =
∫

Ω
ϕ α f α(u,ϕ α

c ,∇ϕ α
c )dv (6.22)

=
∫

Ω α
h(ϕ α

c ) f α
el +

1
2

Gα
c

(
εϕc |∇ϕ α

c |
2 +

1
εϕc

(ϕ α
c )2
)

︸ ︷︷ ︸
f α (u,ϕα

c ,∇ϕα
c )

dv.
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6.1 Phase-field crack propagation models

With Equation (6.16) and, as in the previous model, the assumption of the Voigt-
Taylor scheme (6.17), the functional for the whole domain and each subdomain
is obtained by

F α [u,ϕ α
c ,∇ϕ α

c ] =
∫

Ω α

1
2

h(ϕ α
c )(Cα [ε]) ·ε (6.23)

+
1
2

Gα
c

(
εϕc |∇ϕ α

c |
2 +

1
εϕc

(ϕ α
c )2
)

dv,

F [u,ϕc,∇ϕc] =
∫

Ω

1
2

N

∑
α=1

ϕ α h(ϕ α
c )(Cα [ε]) ·ε (6.24)

+
1
2

N

∑
α=1

ϕ α Gα
c

(
εϕc |∇ϕ α

c |
2 +

1
εϕc

(ϕ α
c )2
)

dv.

As in the previous models, minimizing the latter functional with respect to the
displacements yields the balance of linear momentum and is therefore omitted
here.

Evolution equation For each crack order parameter an Allen-Cahn equa-
tion,

εϕc ϕ̇ α
c =−Mα δF α

δϕ α
c

(6.25)

=−Mα
(

∂ f α(u,ϕ α
c ,∇ϕ α

c )

∂ϕ α
c

−div
(

∂ f α(u,ϕ α
c ,∇ϕ α

c )

∂∇ϕ α
c

))
,

with a mobility Mα ≥ 0 is postulated. These evolution equations are defined on
the subdomains Ω α , whereas on the boundary ∂Ω α a homogeneous Neumann
boundary condition with ∇ϕ α

c ·n = 0 applies. In contrast, the boundary G α ,
resulting from the smooth transition of G (cf. Figure 6.3), has to be treated
separately. Neither a classical Neumann nor a Dirichlet boundary condition is
a reasonable choice. A Neumann boundary condition would enforce a certain
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6 Phase-field modeling of crack propagation in heterogeneous materials

flux across the boundary. For example, a zero flux would result in a crack propa-
gation direction perpendicular to the boundary. A Dirichlet boundary condition,
on the other hand, would constrain the order parameter ϕ α

c and thus the crack
propagation. More complex boundary conditions, such as absorbing boundary
conditions, or Robin type boundary conditions, could constitute more physical
boundary conditions. Since these are neither widely used nor trivial to imple-
ment, an alternative approach is proposed: The evolution equation is extended
to the whole domain Ω , but the elastic driving force is restricted to Ω α , and
considered to vanish anywhere else. This results in a continuous calculation
of the crack order parameters, not restricted to the inner boundary, each with
similar terms, as in the homogeneous model, but with phase-specific quantities.
Outside the subdomain Ω α , the phasefield is continued in the sense of the expo-
nential profile (6.9), reproducing the correct sharp interface energy in a diffuse
context. The coupling of these different equations takes place solely through
the interpolation of the strain energy density. In addition, an irreversibility
condition for each evolution equation is used: As in Section 6.1.1, each crack
order parameter is kept damaged by means of the additional constraint ϕ α

c = 1,
if ϕ α

c ≥ 0.99.

6.1.4 Comparison

Classic homogeneous model Section 6.1.1 introduced a crack propaga-
tion model based on established models from the literature. Many extensions
and modifications to such a model can be found in the literature, which can im-
prove the model for many applications [48, 50, 148]. Nevertheless, such exten-
sions are avoided intentionally, reducing the complexity, as the model is used
as the basis for the introduced heterogeneous SCOP and MCOP models. In
the scope of this work, no implementation of the classical model is conducted.
While the limitations of the classical model are acknowledged, many of the es-
tablished modifications might also be applied to the novel MCOP model, while
retaining the advantages of this approach. Nevertheless, the classical model
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6.1 Phase-field crack propagation models

SCOP : 0 = div

(
h(ϕc)

N

∑
α

ϕ ασα

)
,

ϕ̇c
1
M

=
N

∑
α

ϕ α Gα
c

(
∆ϕc−

1
ε2

ϕc

ϕc

)
+

N

∑
α

Gα
c ∇ϕ α ·∇ϕc−

1
εϕc

∂h(ϕc)

∂ϕc

N

∑
α

ϕ α f α
el

MCOP : 0 = div

(
N

∑
α

h(ϕ α
c )ϕ ασα

)
,

ϕ̇ α
c

1
Mα = Gα

c

(
∆ϕ α

c −
1

ε2
ϕc

ϕ α
c

)
− 1

εϕc

∂h(ϕ α
c )

∂ϕ α
c

f α
el , ∀α = 1, . . . ,N

Table 6.1: Comparison of the terms in the balance of linear momentum and the evolution equation
of the SCOP and MCOP model2. ∆ · denotes the Laplacian operator.

could be extended to heterogeneous systems, e.g. based on element-wise con-
stant material properties in the context of the FEM. On the other hand, the
SCOP model with the limit of a sharp interface would yield the same results.

Single-crack order parameter (SCOP) models The SCOP model, in-
troduced in Section 6.1.2, is similar to models from the literature [22, 47, 48].
However, there are some differences:

• Schneider et al. [22] introduced the order parameters ϕ α and the crack
order parameter ϕc in the same tuple ϕ. Therefore, ϕc also contributes to
the summation condition (6.11). This results in a model where the phases
show transitions to a common crack phase. In addition, the interpolation
function h(ϕc) must then normalize with respect to ∑N

α ϕ α , while the
crack energy is also considered in the evaluation equation of the phases,
and vice versa.

2An error in the derivation from Schöller et al. [1] has been corrected in this work.
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6 Phase-field modeling of crack propagation in heterogeneous materials

• Prajapati et al. [47] and Späth et al. [48] used a similar approach as
Schneider et al. [22], but the crack evolution equation is assumed to be
independent of the order parameters ϕ α , and is solely used to determine
effective material properties.

• In this work, the order parameters ϕ α and the crack order parameter ϕc

are introduced separately, and the damage of all phases is represented
by ϕc, but without any phase transitions from these to the crack phase.
This results in a model similar to Prajapati et al. [47] or Späth et al. [48],
but without requiring a normalization of the interpolation function.

• Due to the similarities to established models, the SCOP model is used as
a reference model in the following 2D examples.

SCOP vs MCOP model Both models introduce a tuple of order parameters
for the parametrization of the domain, thereby accounting for the heterogene-
ity of the body. The differences between both models are summarized in the
following.

• SCOP model: Only a single crack order parameter is considered. Thus,
all regions are equally damaged. Both, the balance of linear momen-
tum as well as the evolution equation of the crack order parameter are
obtained by minimization of the functional F with respect to the total
domain Ω .

• MCOP model: A tuple of crack order parameters is introduced. Thus, the
damage of a region is described by its own order parameter, which allows
a more advanced degradation of the strain energy. Moreover, function-
als F α are introduced on subdomains Ω α . As for the SCOP model, the
balance of linear momentum is obtained by the minimization of the total
functional with respect to the total domain. However, the evolution equa-
tions of the crack order parameter are obtained by the minimization of
the functionals F α with respect to the domain Ω α of the corresponding
crack order parameter. Each evolution equation also recovers the classic
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6.2 Numerical treatment

model, while maintaining a constant crack surface energy and many of
the advantages of this model.

Furthermore, the differences in the evolution equations and linear momentum
balances are summarized in Table 6.1.

6.2 Numerical treatment3

Influence of the crack length parameter εϕc Regarding phase-field
crack models for simulations, it has been repeatedly shown that the length pa-
rameter used to determining the width of the diffuse transition between dam-
aged material points and undamaged material points has an effect on the sim-
ulation results, see [28, 29, 48], for example. This is especially true when
considering crack initiation processes, for which often εϕc is treated as mate-
rial property, cf., e.g. Tanné et al. [156]. Recently, Kumar et al. [157] dis-
cussed crack nucleation in the context of phase-field modeling and promoted
an alternative approach for nucleation treatment. If initial cracks exist and the
transition width is compatible with the discretization grid and the domain size,
the influence of εϕc is not significant [156, 158–160]. This difficulty was exten-
sively studied in [161], and it was concluded that the length parameter should
be considered as a material property that depends on the tensile strength of a
material. Tanné et al. [156] derived a possible solution for the correct determi-
nation of the length parameter. However, if the length parameter is considered
as a material property, especially on small length scales, this often leads to dif-
ficulties, as the compatibility between the length parameter, the discretization
grid, and the domain size is no longer guaranteed. To eliminate this sensitivity,
Wu et al. [162] introduced an approach for brittle materials. Since the presented
model is a completely new interpretation of the regularized crack problem, the
approach by Wu et al.’s is not considered, to reduce complexity. For a clear

3The content of this section has been taken directly from Schöller et al. [1] with minor linguis-
tic changes.
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6 Phase-field modeling of crack propagation in heterogeneous materials

Algorithm 2: Staggered scheme for SCOP

initialize ϕc
initialize boundary condition
t← t0
while t < tend do

loop
solve lin. momentum balance

// cf. Table 6.1

solve evolution eq. for ϕc // cf.
Table 6.1

ϕc← ϕc +∆ tϕ̇c

adapt mesh
static←

∣∣ϕ̇c
∣∣
∞ < εϕc

if static then
t← t +∆ t
increment boundary

condition
break

end
end

end

Algorithm 3: Staggered scheme for MCOP

initialize ϕc ∀α = 1, . . . ,N
initialize boundary condition
t← t0
while t < tend do

loop
solve lin. momentum balance

// cf. Table 6.1
for α = 1 to N do

solve evolution eq. for ϕ α
c

// cf. Table 6.1
ϕ α

c ← ϕ α
c +∆ tϕ̇ α

c
end
adapt mesh
static← max

α=1,...,N

∣∣ϕ̇ α
c
∣∣
∞ < εϕc

if static then
t← t +∆ t
increment boundary

condition
break

end
end

end

presentation of the new model, the disadvantages and the problem of the de-
pendence of the simulation results on the length parameter are acknowledged
but not taken into account. However, improving the model towards parame-
ter insensitivity is nevertheless straight forward with the approach published in
Wu et al. [162].

Numerical discretization The proposed models result in a system of par-
tial differential equations, consisting of the balance of linear momentum and
multiple evolution equations for the crack order parameters. In this work the
staggered approach of Miehe et al. [29] is used, which is based on a operator
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6.2 Numerical treatment

split. Each partial differential equation is solved by assuming the other fields
constant. Together with a time stepping scheme

ϕ n+1
c =ϕ n

c +∆ tϕ̇c, ϕ α,n+1
c =ϕ α,n

c +∆ tϕ̇ α
c , (6.26)

and a time step ∆ t, this results in linear partial differential equations. The
index n denotes the order parameters for an old time step, while n+1 denotes
the order parameter for a new time step.

In order to ensure a quasi-static crack propagation, the steady state conditions∣∣ϕ̇c
∣∣
∞ < eϕc ,

∣∣ϕ̇ α
c
∣∣
∞ < eϕc (6.27)

are introduced, with the infinity norm |·|∞ and a tolerance parameter eϕc = 10−4.
After solving the individual equations in each iteration, the condition is eval-
uated. Only if the condition is fulfilled, the system will progress further in
time. As a consequence there is an inner iteration loop, which solves each
equation subsequently, until a steady state is reached, and an outer loop, which
can be associated with a physical time and a time-dependent load, using bound-
ary conditions. The procedure corresponding to this approach is illustrated as
pseudocode in Algorithm 2 for the SCOP model and compared to the MCOP
model (Algorithm 3). The mobilities M and Mα also reduce to numerical pa-
rameters and will not influence the results within a certain reasonable numeri-
cal range. In addition, an exemplary study of the evolution of these staggered
systems and their iterations is conducted in A.3. In order to solve the partial
differential equations, a FEM approach, based on the C++ finite element library
DEAL.II [163], is used4. In this work, first-order Lagrange finite elements and
a second-order Gauss-Legendre quadrature rule for numerical integration are
used. The evolution equations are solved using an implicit time stepping pro-
cedure (cf. Equation (6.26)), except for the elastic driving force term, which is

4Results taken from Schöller et al. [1, 3] were conducted based on DEAL.II, and all additional
phase-field simulation studies used an implementation in the PACE3D framework [164].
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6 Phase-field modeling of crack propagation in heterogeneous materials

considered explicitly in time. Adaptive mesh refinement (AMR) is used to re-
duce the computational effort. Especially for the setup chosen in section 6.4.2,
big domains are required which are computationally unfeasible on a uniform
mesh. In this work a basic AMR strategy is used, and the reader is referred
to, for example, Heister el al. [150] for a more state-of-the-art AMR approach.
The strategy of our current approach uses different criteria for refinement or
coarsening for the evolution equation and the equilibrium of the linear momen-
tum. Based on the gradient of the order parameter or strain energy density and
the extent of the elements, discrete changes are calculated for each element. If
certain values are exceeded or undershot, the element is refined, or coarsened,
respectively. In addition, this procedure is explicitly evaluated in time. De-
spite limitations of the strategy acknowledged, it enables the computation of
bigger domains. Combined with a very conservative refinement controlled by
the values for refinement and coarsening, and frequent execution, the strategy
has proven its robustness. However, this has the disadvantage of low compu-
tational optimization compared to more advanced approaches such as those of
Heister el al. [150]. Nevertheless, it provides huge improvements over a uni-
form mesh.

Residual stiffness For a FEM approach, an interpolation function h(ϕs),
which will be zero for a fully broken state, will result in a singular stiffness
and an ill-posed problem. This can be avoided by replacing the degradation
function by

h̃(ϕc) =

{
h(ϕc) 1−ϕc > ϕ th

s ,

h
(
ϕ th

c
)

else,
(6.28)

with a threshold value ϕ th
s = 10−4. This function will preserve a certain value

and even ensures a residual stiffness even for completely damaged regions.
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6.3 Extension to a single-obstacle potential

6.3 Extension to a single-obstacle potential

So far, only a phase-field crack propagation models based on a quadratic po-
tential term have been introduced. In the context of the classical phase-field
models, this is often referred to as the single-well potential, or in the context
of the mechanical community as the AT2 model, cf. e.g [156]. An alternative
formulation used the single-obstacle potential, leading to the AT1 model. The
free energy for the SCOP model follows with

F [u,ϕc,∇ϕc] =
∫

Ω
h(ϕc)

N

∑
α

ϕ α f α
el (6.29)

+
1
2

N

∑
α

ϕ α Gα
c

(
εϕc |∇ϕc|2 +

9
16εϕc

ϕc

)
dv,

where the prefactor 9/16 ensures the representation of the corrected surface
energy of a corresponding sharp crack surface. Analogously, the free energy
for the MCOP model can be rewritten as

F α [u,ϕ α
c ,∇ϕ α

c ] =
∫

Ω α
h(ϕ α

c ) f α
el (6.30)

+
1
2

Gα
c

(
εϕc |∇ϕ α

c |
2 +

9
16εϕc

ϕ α
c

)
dv.

Note that the use of a single-obstacle potential leads to a constant term in the
evolution equation. To ensure that ϕc,ϕ α

c ∈ [0,1] ∀α = 1, . . . ,N, further tech-
niques such as the active set method or the augmented Lagrangian method,
cf. e.g [149, 150], have to be used. However, the single-obstacle variant has
some advantages. Since the derivation of the potential term does not vanish
for zero damage, the analytical profile has a finite width. Together with the
well-defined obstacle against initial crack growth, this leads to more localized
crack growth and avoids damaged materials even far away from the from the
crack tip.
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6 Phase-field modeling of crack propagation in heterogeneous materials

In the following work, both the single-well and the single-obstacle variants
will be used. Since the single-well potential is well established in the liter-
ature, most of the basic investigations will be performed based on it, if not
stated otherwise. Subsequently, e.g., some applications to FRPs will also be
performed with both models or, due to the numerical advantages, only with the
single-obstacle model.

6.4 Results

Effective crack order parameters5 In order to be able to compare the
results of the SCOP and MCOP model, additional effective order parameters
are introduced. An order parameter ϕ α can be decomposed into an effectively
damaged part ϕ̃ α

c and an effectively undamaged part ϕ̃ α
s :

ϕ α = ϕ̃ α
c + ϕ̃ α

s . (6.31)

Each of these parts is defined using the individual crack order parameters of
the MCOP model

ϕ̃ α
c = ϕ α ϕ α

c , ϕ̃ α
s = ϕ α (1−ϕ α

c ) . (6.32)

Also a totally effective crack order parameter is formulated:

ϕ̃c =
N

∑
α=1

ϕ̃ α
c . (6.33)

Note that these effective quantities describe the damaged and the undamaged
fraction with respect to ∑N

α ϕ α = 1, which is in contrast to ϕ α
c , which only

describes the ratio of damage with respect to ϕ α .
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Figure 6.4: Steady state profiles for a diffuse interface at x = 0, with G2
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c = 100 and εϕc = εϕs .
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Figure 6.5: (a) Error of the total crack energies eGc . (b) Maximum of the local error of the energy
density e f (b) and a diffuse interface with varying model parameters.

6.4.1 Steady-state profiles in 1D5

To illustrate the difficulties of the heterogeneous SCOP model, steady-state
profiles are examined for different model parameters and compared to the an-
alytical solution. For the sake of simplicity, the system is assumed as binary
and one-dimensional, while no mechanical loads are considered. Instead, a

5The content of this section has been taken directly from Schöller et al. [1] with minor linguis-
tic changes.
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6 Phase-field modeling of crack propagation in heterogeneous materials

completely damaged point, in the middle of the domain, is placed and imposed
via the boundary condition ϕc = 1 or ϕ α

c = 1, respectively. In addition, an
interface with different critical energy release rates for both materials is also
placed in the middle of the domain. In Figure 6.4, exemplary steady-state pro-
files ϕc, for the SCOP model, and ϕ α

c , for the MCOP model, are shown along
with the imposed interface. Note that a high contrast of the crack surface ener-
gies G2

c/G1
c = 100 and the same length parameters εϕc = εϕs are chosen. This

results in a highly distorted profile for the SCOP model, compared to the ana-
lytical profile, due to the additional spatial gradient in ∑N

α ϕ α Gα
c . In contrast,

the evolution equations of the MCOP model are independent, as the coupling
is modeled purely by the degradation of the strain energy density, which is not
present here. Together with the constant Gα

c , this will avoid any distortions,
and the analytical profile is reproduced.

The distorted profiles result in different energy densities and do not yield the
analytically desired crack surface energy G∗c = 1/2

(
G1

c +G2
c
)

when integrated
over the domain. For the investigation of these deviations in the total energy,
the error estimator deviation

eGc =

∣∣∣∣F −G∗c
G∗c

∣∣∣∣ (6.34)

is introduced. For varying ratios of the critical energy release rates and inter-
face widths, the deviations are displayed in Figure 6.5a. Due to the higher
spatial gradient in the critical energy release rate, an increasing deviation for
a higher contrast G2

c/G1
c , can be observed. For εϕs ≫ εϕc , the change of the

critical energy release rate is distributed over a larger physical width, leading
to lower spatial gradients and lower deviations. If the case εϕs ≪ εϕc is consid-
ered, the spatial gradient increases, but its influence is limited to only a part of
the crack interface, resulting in a relatively low deviation for the total energy
of the system. From a numerical point of view, εϕs ≈ εϕc is desired to reduce
the effort of resolving both interfaces. In this case, however the deviation is
rather high. The deviations shown here do not exceed ≈ 7.8%, which seems
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tolerable. Nevertheless, the maximum local deviation of the energy density can
be defined by

e f =
| f − f ∗|

f

∣∣∣∣∣
x=xmax

, (6.35)

with the analytical energy density f ∗, defined by the analytical profile, and
is evaluated at xmax, for which the absolute difference of the density is highest.
For the various parameters, this local deviations is shown in Figure 6.5b, which
also shows an increasing deviation with higher G2

c/G1
c . With increasing εϕs/εϕc ,

the spatial gradient in ∑N
α ϕ α Gα

c becomes more local, which also increase the
deviations. For the MCOP model, the error quantities eGc and e f will vanish,
as the profiles are identical to the analytical ones and will reproduce the correct
crack surface energy G∗c .

Although a high contrast in the surface energies only produces moderate devia-
tions in the total energy, the local deviations of the energy density is an order of
magnitude higher. So far, no crack propagation behavior has been considered.
However, it is expected that the inability of the SCOP model to reproduce the
energy density and total crack surface energy will also influence the evolution
of the crack, which will be investigated in the subsequent sections.

6.4.2 Sloped binary interface6

This section follows the investigations by Henry [55]. Along with a binary
interface, an initial crack is placed in a two-dimensional rectangular domain,
with an angle φ between them, cf. Figure 6.6. Note that the real size of the
domain is large, compared to the interface widths, to avoid any influence from
the boundaries.

6The content of this section has been taken directly from Schöller et al. [1] with minor linguis-
tic changes.
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Figure 6.6: Exemplary structure of an inclined interface, with an angle φ between the binary in-
terface and the initial crack. A time-dependent stress is applied on the left and right
boundary.

In order to reduce complexity and avoid any influence of the chosen homog-
enization scheme, the elastic material behavior of both regions is assumed to
be equal and isotropic with λ 1 = λ 2, µ1 = µ2. In his work, Henry imposed
displacement boundary conditions, but in order to use the LEFM theory in the
present work, stress boundary conditions are employed to apply an initial mode
I crack opening. For a straight crack the stress intensity factor results from

KI = Aσ
√

a, (6.36)

with the generally unknown prefactor A, the crack length a, and the stress σ ,
far away from the crack, which hence is associated with the stress vector t of
the boundary condition, cf. Figure 6.6. If the stress is increased monotonously,
this results in crack propagation above a critical stress, followed by an unstable
crack growth. To be able to investigate the behavior of the crack propagation
models, a quasi static crack growth with KI = KIc is desirable for a constant
critical value KIc. To obtain such a stable crack growth, the applied stress
will be increased after each time step. If the crack propagates, measured by an
enlargement of the domain, ϕc = 1 holds, the stress at the boundaries is reduced
below an estimated new critical value, which is based on the crack growth ∆a.
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(a) (b) (c)

Figure 6.7: Simulation domain with an initial crack and a marked and enlarged artificial interface
region (a). The crack order parameter ϕc for the SCOP model (b) and ϕ̃c for the MCOP
model (c), with contour lines for ϕ̃ 1

c and ϕ̃ 2
c . In addition, the solid boundaries of the

interface are shown.

Furthermore, the stress increment for each time step is also reduced. This
approach aims to achieve linear crack growth over time and avoid unstable
crack growth.

Artificial interface Firstly, the interface between the region is considered
as artificial. Hence, the crack resistance is assumed to be equal, G1

c = G2
c , to-

gether with the same stiffness, both regions can be considered to consist of the
same material. The ratio of the interface width parameter of the solid and the
crack is εϕc/ls = 2/5, and for the interface angle, φ = 50° is chosen. The results
after simulating a mode I crack propagation of such a system are shown in Fig-
ure 6.7: It could be observed that the initial crack propagated straight through
the domain, despite the presence of the interface. For the MCOP model, con-
tour lines of the effective parts ϕ̃ 1

c and ϕ̃ 2
c are displayed, additionally. In the

solid interface, the crack is transferred from one region to another, continuing
the total effective crack, consisting of the sum of ϕ̃ α

c . The resulting effective
crack ϕ̃c of the MCOP model is comparable to ϕc of the SCOP model. In Fig-
ure 6.8a, the temporal evolution of the crack length a, normalized by the initial
crack length a0, is plotted against the normalized simulation time. Here, both
models also showed the same effective behavior, and the transfer of the crack
propagation, from one crack order parameter ϕ α

c to the other, can be observed.
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Figure 6.8: Normalized temporal evolution of the crack length (a), and the stress at the boundary,
applied against the crack length (b), for the SCOP and MCOP model with θ = 50°.

The evolution of the applied stress σ , normalized by the critical stress to prop-
agate the initial crack σ0, is displayed in Figure 6.8b. Because of the way the
boundary condition is applied, it should be noted that only the time step is
shown in which the crack grows, while the other steps are omitted. The mod-
els show similar profiles and coincide with the expected profile from LEFM,
cf. Equation (6.36). Regardless of the use of multiple crack order parameters,
the novel MCOP model is able to reproduce the crack path and kinetics of the
SCOP model. Furthermore, the presented approach ensures quasi-static crack
growth and produces an almost linear crack growth over time, as well as the
desired relation between applied stress and crack length.

Infinitely tough region The other limiting case of crack propagation with
a binary interface is an infinitely tough interface, which can be obtained when
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Figure 6.10: Cross-section with the underlying solid interface, along the binary interface of the
SCOP and MCOP model, shown in figure 6.9, for a sharp (a) and diffuse interface
(b).

G2
c = ∞, which ensures that the upper region cannot be damaged at all and

enforces the crack to grow along the interface. For both regions, the same stiff-
ness parameters are used, while the boundary condition is applied as before.

In Figure 6.9, the crack path for both heterogeneous models and φ = 50° are
shown, considering both a sharp solid interface (a-c) and a diffuse solid inter-
face (d-f). The marked cross section is also drawn in Figure 6.10 along with
the solid interface. The SCOP model shows a non-physical behavior in some
aspects:

• Due to the interpolation of the individual critical energy release rates Gα
c

and the infinitely tough upper region, no crack can occur there or in the
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interface region. This constrains the crack propagation in such a way
that the crack is deflected before it reaches the solid interface.

• This interpolation also causes problems as to how the crack grows along
the interface. Because the order parameter in the interface must be zero,
this leads to a certain distance of the crack from the interface.

• For the diffuse interface, the high gradients of ϕc towards the interface
combined with the nonconforming mesh cause numerical issues, lead-
ing to numerical artifacts, as shown in the magnification of Figure 6.9b.
Regarding the sharp interface, which requires a conforming mesh, these
artifacts are not present.

In contrast, the MCOP model exhibits fewer of these difficulties: For the dif-
fuse interface, the crack grows straight up to the interface, where it performs
distinct deflection. The deflection is less pronounced for the sharp interface
due to the loss of the driving force immediately beyond the interface. However,
for both the diffuse and sharp interfaces, the crack continues directly at the
edge of the interface, and the crack exhibits the desired analytical profile of the
diffuse interface, as illustrated in Figure 6.10.

For a quantitative comparison of the models, the approach of Henry [55] and
the analytical analysis of Amestoy and Leblond [13] are used and briefly intro-
duced, in the following. The stress intensity factors for the crack modes I and
II of the straight crack, i.e., before the deflection of the crack at the interface,
results from

KI = Aσ0
√

a, KII = 0. (6.37)

In contrast, the stress intensity factors can be described by

K̂I = f (φ)KI0, K̂II = g(φ)KI0, (6.38)
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Figure 6.11: Exemplary visualization of the evaluation of the crack propagation (a) and compar-
ison with an analytical solution for the SCOP and MCOP model (b), for a crack
propagating along an infinitely tough interface, with a different angle θ . Various
solid length parameters εϕs as well as a sharp interface (SI) are examined.

directly after the kink of the crack path, where f (φ) and g(φ) are given by
Amestoy and Leblond [13]. KI0 is the stress intensity factor right before the
kink of the mode I crack. The energy release rates after the kink Ĝ results from

Ĝ =
K̂2

I + K̂2
II

E ′
, (6.39)

while the ratio of Ĝ and the energy release rates before the kink G0 can be
expressed using the analytical solution

Ĝ
G0

= f (φ)2 +g(φ)2, (6.40)
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with E ′ = E/(1−ν2). With Equation (6.37), this ratio can also be given by

Ĝ
G0

=

(
σ̂
σ0

)2

, (6.41)

using the applied stress at the interface after the kink σ̂ , and a reference stress
σ0, representing the stress of a straight crack with the same crack length in the
y-direction. In Figure 6.11a, an exemplary illustration of the evaluation proce-
dure is given. When the crack hits the interface, the critical stress for propaga-
tion increases, which can be observed by a peak in the graph. By determining
the maximum value of this peak for which ax > ax0 holds, and comparing it
with the reference stress σ̂ of a simulation without a solid interface but with
the same crack length in the y-direction ay, a comparison with the analytical
solution is possible. In Figure 6.11b, this procedure was conducted for both
models, several angles, sharp and diffuse interfaces. For small angles, both ap-
proaches show a fairly good agreement with the analytical solution. For higher
angles, however, the SCOP model strongly differs from the solution, while the
MCOP model still agrees with the analytical solution from the LEFM. Note
that a variation of the width of the solid interface was also conducted, where
the sharp interface can be considered as a limiting case. Neither increasing nor
decreasing of the interface width has any significant effect on the results. For
a mesh convergence study of this setup the reader is referred to Section A.3.

In conclusion, regarding the SCOP model, neither the crack grows to the in-
terface, nor is the model able to reproduce the stress increase at which crack
propagation occurs along the inclined interface. In contrast, the MCOP model
propagates to the interface, develops more significant deflection, and predicts
the increase in stress according to theory. Regarding the comparison with
sharp solid interfaces, no significant differences could be found. This limits the
novel MCOP model not only to the application at diffuse interfaces, but also
allows for the application to sharp interfaces. Concerning the diffuse bound-
ary approach, both SCOP and MCOP avoid the need for conforming meshes.
However, the MCOP model offers the possibility to extend the homogenization
scheme, e.g., by considering jump conditions [22, 90].

123



6 Phase-field modeling of crack propagation in heterogeneous materials
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Figure 6.12: Schematic of a single inclusion problem. A square plate with side length L, a spheri-
cal glass fiber (GF) inclusion with radius R, is embedded in a thermoset (TS) matrix.
In some studies, an initial crack is placed at the boundary.

6.4.3 Single inclusion problem

To motivate the use of mechanical jump conditions, cf. Section 2.3.3, a sin-
gle inclusion problem (SIP) is considered. Therefore, a square plate with a
spherical glass fiber (GF) inclusion is embedded in a thermoset (TS) matrix,
cf. Figure 6.12. The fiber is represented in the context of a phase-field method,
i.e. a diffuse interface describes a smooth transition from the matrix to the in-
clusion, cf. Section 2.3. The strain energy densities of such a system under
different loads and different homogenization schemes are then investigated. Fi-
nally, an crack propagation simulation with an initial crack is performed with
the single-obstacle and single-well and both homogenization schemes.

6.4.3.1 Strain energy densities

First, the effective strain energy density fel and the phase-specific strain en-
ergy densities of both phases are discussed. Therefore, the SIP without initial
cracks is considered, cf. Figure 6.12. All following evaluations of the quanti-
ties are performed from the center of the inclusion along the diagonal of the
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Figure 6.13: The effective and the phase-specific strain energy densities of a single inclusion prob-
lem with displacement boundary conditions for the Voigt-Taylor scheme (a) and con-
sidering jump conditions (b). The diffuse interface is highlighted in gray.

square domain. The elastic material parameters for both materials are listed in
Table 6.2.

Displacement boundary conditions In the two-dimensional domain, a
plane strain state is assumed. In addition, the orthogonal displacement com-
ponents at the boundary are constrained to yield 1 % macroscopic strain. Fig-
ure 6.13 shows the strain energy densities for the Voigt-Taylor scheme and
when considering jump conditions. In both cases, the effective value is lower
in the inclusion due to the higher stiffness of the inclusion, and a smooth dif-
fusion to the higher value of the matrix can be observed. When considering
jump conditions, the phase-specific strain energy density of the inclusion is
lower than the effective value, as well as the value of the matrix, throughout
the diffuse whole interface. In contrast, the Voigt-Taylor scheme leads to a
large increase in the strain energy density of the inclusion towards the outer
boundary of the diffuse interface. The values of the matrix is also in the or-
der of magnitude lower than that of the inclusion. Since the phase-specific
strain energy densities are part of the driving force for crack propagation in the
context of the MCOP model, the use of the jump condition is preferable. In
this case, for example, assuming the same crack resistance, crack nucleation
of the inclusion would be favorable for the Voigt-Taylor scheme. For the jump
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Figure 6.14: The total effective and the phase-specific strain energy densities of a single inclusion
problem with eigenstrains in the matrix for the Voigt-Taylor scheme (a) and consid-
ering jump conditions (b). The diffuse interface is highlighted in gray.

condition a crack nucleation of the matrix occurs only for a significant higher
load.

Eigenstrains in the matrix In addition to the external load due to a dis-
placement boundary condition, the system is extended to include an eigenstrain
in the matrix material, e.g., to mimic curing shrinkage. Therefore, the orthog-
onal displacement components at the boundary are set to zero and an inelastic
strain of −2 % of the matrix is assumed. As before, Figure 6.13 shows the
strain energy densities for the Voigt-Taylor scheme and if jump conditions are
considered. In both cases, the qualitative behavior is similar. Towards the outer
boundary of the interface, the energy density of the inclusion exceeds that of the
matrix. Also, the highest effective value is at a similar distance from the center.
A quantitative comparison reveals that in particular the strain energy density
of the glass fiber is predicted to be more than 20 times higher compared to the
jump condition framework. In the context of the MCOP model, this would lead
to vastly different eigenstrains required to initiate crack growth.
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6.4.3.2 Crack propagation

Next, the setup is extended to crack growth, so an initial crack is placed in the
domain, cf. Figure 6.12. In addition, the eigenstrain, which mimics the shrink-
age during curing, is applied linearly in time, allowing the single-obstacle and
single-well potentials, as well as the Voigt-Taylor and jump condition schemes,
to be compared. The elastic material parameters for both materials are listed in
Table 6.2 and the crack resistances are assumed with GTS

c = GGF
c = 50Jm−2.

Boundary and initial conditions A decomposition of the strain of the
matrix, the thermoset (TS), is defined by

εTS = εTS
el +εTS

χ , (6.42)

cf. Section 5. Therefore, εTS
χ accounts for a volume change due to curing and

is prescribed in this section by

εTS
χ =

χTS(t)
3

1, (6.43)

where χTS is initially zero (χTS(t=0) = 0) and decreases linearly with time to
mimic curing shrinkage. In addition, an effective plane strain state and periodic
boundaries are assumed and thermal effects are neglected.

Results Figure 6.15 shows the effective maximum principal stress, cf. Sec-
tion 5.21 and Equation (5), versus the shrinkage of the thermoset. The evo-
lution is depicted for the single-well and single-obstacle potentials, as well
as for the Voigt-Taylor scheme and considering mechanical jump conditions
in both cases. The single-well potential shows the typical stress degradation
associated with such a model. Even without propagation of the completely
broken state, a strong degradation of the effective behavior occurs. In contrast,
a sharp decrease in stress is observed for the single-obstacle potential. Unsta-
ble crack growth is characterized by an almost stepwise decrease in the stress
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Figure 6.15: Effective maximum principal stress versus the curing shrinkage of the thermoset,
cf. Equation 6.43 for the single-well and single-obstacle potential, using the Voigt-
Taylor scheme and considering mechanical jump conditions. In addition, individual
time steps are annotated with numbers and displayed in Figure 6.16.

of the corresponding curve and some time steps are labeled with individual
numbers. For the latter, the effective crack order parameters are shown in Fig-
ure 6.16, although the discussion is restricted to the single-obstacle simulation
cases. After the initial crack has grown straight, the interfacial crack stops at
the stiffer inclusion, which is an obstacle to direct crack propagation (1,2). In
both cases, the Voigt-Taylor scheme and the mechanical jump condition, the
crack grows around the inclusion and merge (3,4). However, the Voigt-Taylor
scheme exhibits crack growth inside the inclusion, leading to a more triangular
crack path, while considering the jump condition leads to a round path outside
the inclusion. Subsequently, with the Voigt-Taylor scheme, the cracks grow
perpendicular to the initial crack along the cross section with the least matrix,
crossing the periodic boundary and finally stopping again at the inclusion (5).
For the jump conditions, the same curing shrinkage χTS is not sufficient to ob-
serve any crack growth perpendicular to the initial crack beyond the merging
of the crack tips (6).

Figure 6.17 summarizes the final effective crack path ϕ̃c for χTS =−1.75%, as
well as the crack order parameters for both materials ϕ TS,ϕ GF. As discussed
previously, the use of a single-well potential also leads to an increase in the
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Figure 6.16: Effective crack path for single-obstacle potential, using the Voigt-Taylor scheme, and
considering mechanical jump conditions at different time steps, see Figure 6.15. The
sharp representation of the inclusion is shown as white contour lines.

crack order parameter far away from the fully broken crack, resulting in a re-
duced effective stiffness, cf. Figure 6.15. Apart from this characteristic, the
final crack paths are similar. Much more noticeable is the influence of the ho-
mogenization scheme used, since in addition to Figure 6.16, the contributions
to the effective crack order parameter can also be discussed. In all cases where
the mechanical jump condition is considered, only the thermoset is damaged,
resulting in a circular crack path around the inclusion. The use of the Voigt-
Taylor scheme results in a partially completely damaged interface. Since the
crack resistances are the same but the Young’s moduli differ substantially, such
behavior is unexpected in the context of the K concept, cf. Section 2.4. Finally,
the crack path is growing perpendicular to the initial crack in the Voigt-Taylor
cases, while the magnitude of the curing shrinkage is not high enough for such
a change in crack growth for the jump conditions cases.
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Figure 6.17: Final crack paths for single-obstacle potential, using the Voigt-Taylor scheme and
considering mechanical jump conditions. The effective order parameter ϕ̃c as well
the phase-specific variants for thermoset ϕ TS and glass fiber ϕ GF is displayed.
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Elasticity Fracture
Material E ν Reference Gc

Thermoset 3.45 GPa 0.38 [165] 100.0 Jm−2

Glass fiber 73.0 GPa 0.22 [166] 200.0 Jm−2

(a)

Parameter Value

ls 1µm
εϕc 1.25µm

(b)

Table 6.2: Material properties (a) and interface width parameters (b) for simulating the fracture of
FRP volume elements.

6.4.4 Application to FRPs7

In Section 6.4.2, the same elastic material behavior has been assumed for both
regions. But realistic systems with a high contrast in crack resistance will
most likely also have a high contrast in their elastic parameters. In this section,
a fiber-reinforced polymer (FRP) is chosen to schematically demonstrate the
ability of the novel MCOP model to illustrate crack propagation behavior in
the context of a material with hetergeneous elastic properties. A quantitative
analysis of the results is omitted, as this would most likely require an extension
of the model, e.g., a state-of-the-art tension-compression splitting, or account-
ing for interfacial crack propagation, which is beyond the scope of this work.

The matrix consists of a UPPH resin system [167], reinforced by glass fibers.
The material parameters for both materials are given in Table 6.2a, while the in-
terfacial widths used are shown in Table 6.2b. FRPs exhibit a complex fracture
behavior: Either the matrix may fail, the fibers may break, or the material may
fail due to the debonding of the interface. To investigate crack propagation in
such a material, volume elements with a certain fiber volume content, orien-
tation, and periodicity are considered. Boundary conditions, such as normal
Neumann or Dirichlet types, do not account for the periodicity of the domain.
Hence a periodic type is chosen: In addition to the periodic order parameters

7The content of this section has been taken directly from Schöller et al. [1, 3] with minor
linguistic changes.
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and displacement fields, a superimposed periodic displacement boundary con-
dition [168] is applied in such a way that the macroscopic strain of the volume
element follows by

ε= ε(t)ex⊗ex, (6.44)

where the normal strain in the x-direction, ε(t), will be increased linearly with
time, until the volume element exhibits a complete failure.

Unidirectional 2D volume elements Firstly, unidirectional fiber rein-
forced volume elements are be investigated. This makes it possible to reduce
the system to a 2D system, so as to reduce the computational effort. The square
volume elements with a side length of 100µm contains fibers with a radius of
4µm. For different fiber volume fractions v f , various realizations will be con-
sidered in the following. In Figure 6.18, the effective crack ϕ̃c and the contour
lines of the fibers are presented in a fully broken state. All realizations show
an overall crack direction, perpendicular to the applied load. Thus, the desired
and dominant crack opening mode I is reproduced, and the crack paths tend to
become more complex, when using a higher fiber volume fraction, as the fibers
become an obstacle for the crack, which results in an elongation and contortion
of the crack path. This is primarily caused by the lower crack resistance of the
matrix. Thus, the crack also often propagates through matrix-dominated re-
gions, but also between fibers caused by stress concentration. Since the MCOP
model does not account for the failure mechanism of interfacial debonding,
this failure mechanism cannot be observed when the crack propagates in fiber
dominated regions. Due to the periodic boundaries, the complete failure of the
volume element forces the crack tips to merge. After the merge, partly ‘dead
ends’ can thus be observed in some realizations presented in this work.

Isotropic 3D volume element In the case of a 3D volume element, the
fiber volume content v f = 25% is chosen with an isotropic orientation distribu-
tion. The latter implies that there is no preferential direction in the fiber distri-
bution. As before, the volume element has a side length of 100µm, consisting
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vf Different realizations

20%
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0 0.2 0.4 0.6 0.8 1
ϕ̃c

Figure 6.18: Different realizations of randomly generated periodic 2D volume elements with uni-
directional fibers for varying fiber volume fractions vf. Additionally, the effective
crack ϕ̃c, after uniaxial strain and failure is shown.

133



6 Phase-field modeling of crack propagation in heterogeneous materials

(a) (b)

Figure 6.19: A randomly generated periodic 3D volume element with isotropic fiber distribution
(a) and the fractured volume element after applying an uniaxial strain, highlighted by
a red crack surface (b).

of fibers with a radius of 4µm and a length of 80µm. The volume element
was generated using the approach of Schneider et al. [133] and is shown in Fig-
ure 6.19a. As in the 2D case, a macroscopic strain is applied in one direction,
in addition to the periodicity, and is increased linearly over time. The failed
domain with the red crack surface is shown in Figure 6.19b. As for the 2D
simulations, the crack surface is mainly perpendicular to the load direction and
occurs solely in the matrix, but still shows a quite complex crack path, due to
the fiber distribution and the stress concentration that arise from it.

Considering mechanical jump conditions In this section, a glass fiber-
reinforced polymer is chosen to schematically demonstrate the advantage of
considering mechanical jump condition compared to the application of the
Voigt-Taylor scheme in the context of MCOP. This material system is moti-
vated by the high contrast regarding the elastic properties of the matrix mate-
rial, a thermoset, and the glass fiber: A Young’s modulus of ETS = 3.45GPa,
and EGF = 73.0GPa is assumed for the glass fiber, respectively the thermoset.
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a) ϕ̃c b) ϕ TS
c c) ϕ GF

c

0 0.2 0.4 0.6 0.8 1
ϕc

Figure 6.21: Detail of the crack path from Figure 6.20f (Voigt-Taylor, GGF
c /GTS

c = 1/2) for the
effective crack order parameter ϕ̃c (a), the thermoset crack order parameter ϕ TS

c (b),
and the glass fiber ϕ GF

c (c).

The Poisson’s ratio of fiber and thermoset are νTS = 0.38 and νGF = 0.22 ac-
cording to [165, 166]. For simplicity, unidirectional fiber-reinforced volume
elements are used. This allows a reduction to a 2D system. A square with a
side length of 100 µm and a volume fraction of 40 %, with a fiber radius of
4 µm is chosen. As boundary conditions, the macroscopic strain tensor

ε(t) = ε̄xx(t)ex⊗ex, (6.45)

is applied. The function ε̄xx(t) will be increased linearly with time, until the
volume element fails completely. While the crack resistance of the thermoset is
kept constant with GTS

c = 100.0Jm−2, the crack resistance of the glass fiber is
varied. Despite a failure of the fiber being possible under certain circumstances,
a failure of the matrix is expected for all ratios used in this work. With the
assumption that the crack surface energy will be minimized and GTS

c > GGF
c ,

failure of the fiber seems preferential. But even for such a case, the matrix can
exhibit a lower crack resistance in the sense of stress intensity factors. So not
only the crack surface energy, but also the capability to provide this energy,
e.g., by a higher Young’s modulus, determines which material component fails.
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Figure 6.22: Macroscopic stress-strain curves of 2D unidirectional fiber-reinforced volume ele-
ments for a Voigt-Taylor scheme and if jump condition are considered, with ⟨ψ⟩ =
1
V
∫

Ω ψdv. In addition, the ratio of the crack resistances GGF
c /GTS

c is varied.

In Figure 6.20 the final crack paths, with the effective crack order parameter
field

ϕ̃c = ϕ TSϕ TS
c +ϕ GFϕ GF

c , (6.46)

are displayed. Regarding the simulations that account for the jump conditions
(a-c), the system exhibits the same crack path for all variants. From a nucle-
ation of the crack between close fibers due to stress concentration, a matrix-
dominated path is predicted. For the Voigt-Taylor scheme, the two higher ra-
tios (d,e) show the same crack path, even if more fiber damage is present. For
the lowest ratio (f) a completely different path is predicted, with damaged fiber,
even far away from the final failure crack path. In addition, the crack propa-
gates at the inner side of the fiber interfaces, which is in contrast to the expected
behavior. In Figure 6.21 a detailed section of the Figure 6.20f is displayed. In
addition to the effective crack order parameter field (a), also the crack order
parameters fields of the thermoset (b) and glass fiber (b) are provided. In the
latter, it can be observed that in addition to the matrix material also the fiber
exhibit completely failure, which is in contrast to the expected behavior.

The macroscopic stress-strain curves are displayed in Figure 6.22. Already in
the linear regime of the curves, a difference can be observed: As the Voigt-
Taylor scheme describes an upper limit for the elastic energy, it seems reason-
able that it exhibits higher stresses. Since it is only accurate for specific cases,
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such as a parallel material chain, the difference in stress is in accordance to
theory [60]. As the failure is dominated by the matrix behavior, the influence
of the varied crack resistance of the glass fiber is negligible. However, a small
influence during the crack nucleation between two fibers due to the diffuse
interface remains. On the contrary, the failures for the Voigt-Taylor scheme
occurs at quite different strains. The assumption of same strains for fiber and
matrix leads to high driving forces and therefore an earlier failure of fiber and
matrix, compared to the case where jump conditions are considered.

6.5 Interim conclusion

In this chapter, different phase-field models for crack propagation in heteroge-
neous systems have been presented. The SCOP model, which uses a single
crack order parameter to account for damage and is based on established ap-
proaches, and the novel MCOP model, which uses multiple order parameters
to account for damage in each region separately. In combination with the jump
condition approach of e.g. Schneider et al. [61], the novel model is able to
provide a more accurate representation of the driving forces for crack propa-
gation in heterogeneous materials compared to established crack propagation
phase-field models. It has been shown that the MCOP model is able to repro-
duce the surface energy of the sharp interface for an interfacial crack, while
the SCOP has a high error in the local energy density distribution over the
diffuse interface. In addition, a study of crack propagation along an sloped
interface indicates a higher qualitative and quantitative accuracy of predicting
the crack growth than established models when compared to an analytical so-
lution. Based on a single inclusion problem, the advantages of considering the
mechanical jump condition in the MCOP were demonstrated and the single-
well and single-obstacle potentials were compared. Moreover, the application
of the MCOP model to FRTS was subsequently shown, demonstrating the ad-
vantages of the model for such systems, but not limited to this material class.
These simulations primarily use boundary conditions to apply the loading, such
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as a uniaxial tensile test. In contrast, in the following chapter, the curing model
from Chapter 5 will induce inelastic strains that cause damage to the FRTS
during curing.
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7 Crack formation during curing
of FRTS

In this chapter, the curing simulations of Chapter 5 are combined with the
MCOP crack propagation model of Chapter 6 to predict crack formation dur-
ing the manufacturing process. Therefore, similar to previous simulation stud-
ies, crack formation in different levels of abstraction of real microstructures of
FRTS are considered and compared. In addition, a modified approach for the
choice of an optimal mobility to reduce the computational effort is introduced.

7.1 Optimal choice of mobility

The introduced phase-field crack propagation models are solved on the basis
of an Allen-Chan type equation, cf. Section 6.1.1, which yields evolution equa-
tions for each crack order parameter. Together with the staggered approach,
these evolution equations and the linear momentum balance are solved. For
the implementation in the context of DEAL.II [163] , these PDEs are solved us-
ing a time implicit FEM approach. In contrast, the PACE3D frameworks [164]
relies on an explicit time integration scheme for the order parameters. In the
context of the multiphase-field method, this allows fast execution even for a
large number of phases using e.g. local reduced order parameter techniques. A
disadvantage of the scheme is the limited numerical stability of the time inte-
gration. For crack propagation models, a fixed but otherwise arbitrary mobility
is usually chosen and a time step width ∆ t within the stability region is used.
This approach ensures a stable time integration, but can lead to a large number
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7 Crack formation during curing of FRTS

of inner iterations necessary to satisfy the static crack propagation criterion, cf.
Section 6.2. Therefore, an optimal choice of mobility is desirable to reduce the
computational cost, and will be derived in the following.

A generic evolution equation for a crack order parameter ϕ α
c can be written by

ϕ̇ α
c = A∆ϕ α

c +Bϕ α
c +C, (7.1)

with a prefactors A for the diffuse term, B for the linear term and an independent
term C. In this section the investigation are restricted to the MCOP model with
the single-obstacle potential, whereby these prefactors can be identified with

A = Mα Gα
c , B =−2Mα

εϕc

f α
el , C =

Mα

εϕc

(
2 f α

el −
9

32εϕc

Gα
c

)
. (7.2)

For the implementation in PACE3D a finite volume approach is chosen. To-
gether with an equidistant grid this leads to a central difference scheme for the
second derivatives with

∂ 2ϕ
∂x∂x

≈ ϕi+1−ϕi +ϕi−1

∆x2 (7.3)

for a derivative in the spatial direction x with a cell size ∆x in this direction.
Based on this, the CFL condition [169, 170]

∆ t ≤
3

∑
i

∆xi

|B|∆xi +2 A
∆xi

, (7.4)

can be formulated, with i = 1,2,3 for the corresponding direction. With Equa-
tion (7.2), and accounting for all spatial direction

Mα ∆ t ≤
3

∑
i

∆xi

2
(

∆xi f α
el

εϕc
+ Gα

c
∆xi

) (7.5)

follows. This condition is usually used to determine a stable time step width
∆ t. Instead, the time step width can be kept constant, to e.g. enable a stable
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coupling of other equations such the heat equation, and a stable mobility Mα

could be chosen.

However, instead of choosing a global value for the mobility in this chapter, the
value is determined locally for each cell in the grid. Ultimately, this approach
results in spatially varying mobilities Mα = Mα(x), which is are longer a nu-
merical parameters to chose freely, but are determined by the equality case of
Equation (7.5) with a certain safety factor. Note that the finite volume method
used usually preserves fluxes. With varying mobilities this characteristic is
no longer valid, but since this is not a necessary restriction for the numerical
scheme in this work, the chosen approach can be considered as legitimate.

7.2 Results

Material parameters The elasticity, thermal, curing and fracture material
parameters for the UPPH resin and glass fiber are chosen according to the pre-
vious simulation studies, cf. Chapter 5. Therefore, most of the resin properties
are taken from Schwab and Denniston [76]. A complete list of references for
each property is given in Table 5.2. In addition, the material parameters for
the glass fiber are listed in Table 5.1. Additionally to these already introduced
material parameters, crack resistances Gα

c are also required and are assumed to
be the same as in the previous crack propagation studies in FRPs and are listed
in Table 6.2a.

Boundary and initial conditions For the boundary and initial conditions
for the displacement and temperature field, the same approach is used as in
Chapter 5. Therefore, the compression molding process is represented by two
steps, a heating from room temperature to 373 K for 3 minutes and a subsequent
cooling to room temperature, whereas the curing process takes place during
the first phase. The volume elements are considered to be periodic, except
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7 Crack formation during curing of FRTS

for one direction which is associated with the molds through special boundary
conditions, cf. Section 5.2.

For the crack order parameters, an initial crack is placed to avoid cumbersome
techniques to consider crack nucleation in a quantitative manner, cf. Sec-
tion 6.2. Therefore, a crack with 25 µm length is placed in a resin-rich re-
gion. Although this approach lacks sophistication, it is considered valid in the
context of this work. The results presented are based on generated volume
elements and a general statement is possible only based on many of such en-
sembles. Although several samples are used in this work, they are not enough
to be statistically significant. Nevertheless could a manual placed initial crack
still give insights to the basic fracture behavior of FRTS. Moreover, such an
initial crack can also be associated with imperfections such as voids or a not
completely closed flow front resulting from an uneven flow of the initial charge
through the geometry of the final component. In this sense a manual placement
of an initial crack seems admissible.

Unidirectional fiber-reinforced thermoset First, unidirectional fiber-
reinforced volume elements in a 2D system are considered. Figure 7.1 shows
the final crack path for 10 %, 30 % and 50 % fiber volume content for three
different samples. In addition, the initial crack is shown in red contour lines
and the corresponding sharp fiber-resin interface is displayed in white contour
lines.

Although there is no preferred crack growth direction in the microstructure, the
direction of the initial crack also determines the preferred direction of crack
growth during cure. Thus, a straight final crack from the initial crack is ex-
pected for a pure resin system. For 10 % fiber volume content, only a small
deviation from such a straight crack path can be observed. This occurs because
the fiber represents an obstacle to straight crack propagation. Some ensemble
members, such as Figure 7.1d, show a complete failure of the volume element
in one direction, where the fibers only slightly alter the straight crack path. For
30 % fiber volume content, the crack paths are more deflected by the fibers.
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Figure 7.1: Final effective crack order parameter field after curing for different fiber volume frac-
tions and ensembles for the unidirectional fiber-reinforced volume elements. In ad-
dition, contour lines represent the corresponding sharp fiber-matrix interface and red
contour lines represent the initial crack.
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7 Crack formation during curing of FRTS

For example, Figure 7.1e shows a strong deflection from the initial crack ori-
entation during crack growth due to the fibers. Overall, the final crack path is
less spread over the volume elements and no complete failure occurs. For the
50 % ensembles, there is no crack growth other than the initial growth. This is
mainly due to the stiffer fibers, which exhibit no chemical shrinkage and lower
thermal expansion. In higher amounts, they strongly reinforce the system and
transfer the main load so that the initial crack is almost stress free. This is also
illustrated by the maximum principal stress shown on the left in Figure 7.2.
There exist a circular peak in stress in the fibers surrounding the initial crack,
while the crack itself has almost no stress and therefore lacks the necessary
driving force to propagate the crack further.

Note that the unidirectional fiber-reinforced sample does not accurately depict
the real microstructure of a compound molded glass fiber-reinforced UPPH
system. Thus, the fiber cross sections presents a relatively low obstacle to crack
growth and the effective crack behavior seems to be mainly dominated by the
volume fraction. Therefore, an extension to a more realistic microstructure
seems reasonable and is carried out in the following.

Two-dimensional curved fiber-reinforced thermoset In the next step,
the microstructure is represented by curved long fibers. In order to reduce
the computational effort, the simplification to 2D is maintained. As before,
Figure 7.3 shows the final crack path for 10 %, 30 % and 50 % fiber volume
content for three different samples, along with the initial crack and the corre-
sponding sharp fiber-resin interface illustrated by red and white contour lines,
respectively. In contrast to the unidirectional fiber-reinforced elements, none
of the 10 % ensemble members exhibits a crack across the entire domain, nor
are they straight. Instead, the cracks follow the curved fibers either directly at
the interface or a deflections before reaching the interface. The latter is likely
due to the complex stress state and different eigenstrains of the materials. As
the volume fraction of the fiber increases, the crack path becomes more con-
strained, resulting in shorter crack paths and more pronounced deflections and
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Figure 7.2: Distribution of maximum principal stress σ⋆ for volume elements with a fiber vol-
ume fraction of 50 % for a unidirectional fiber-reinforced system (left) and a two-
dimensional curved fiber-reinforced system (right) after curing simulation with a crack
(red).

kinks in the crack path. As before, the 50 % ensemble shows no crack growth
other than the initial growth as the high amount of stiffer fibers transfers the
load. This is again evident from the maximum principal stress displayed on the
right side of Figure 7.2, where the peaks are in the fibers surrounding the initial
crack, which experience only low stresses.

Three-dimensional curved fiber-reinforced thermoset Figure 7.4
shows a volume element with 10 % fiber volume content. In addition to the
curved fibers, the crack is shown in color, with the different colors representing
the crack growth at different time steps, starting from the initial disc-shaped
crack. Due to the volumetric nature of the crack and the three-dimensional
strain state, a direct comparison with results from 2D simulations is problem-
atic. The final size of the crack appears small compared to the 2D results. This
may be due to the smaller domain size, which tends to restrict crack growth
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Figure 7.3: Final effective crack order parameter field after curing for different fiber volume frac-
tions and ensembles for the curved fiber-reinforced volume elements in 2D. In addition,
contour lines represent the corresponding sharp fiber-matrix interface and red contour
lines represent the initial crack.
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Figure 7.4: Volume element with 10 % fiber volume content and the final crack in color. The
different colors depicts the crack growth from the initial state to the finial crack.

due to the boundary conditions. Nevertheless, the volume elements are more
representative of a real microstructure of the FRTS. Moreover, a complete fail-
ure or severely damaged microstructure is not expected since the composite
molding process is capable of producing fully functional components of glass
fiber reinforced UPPH resin. Therefore, the three-dimensional result supports
the assumption that microcrack formation during the curing process is limited
to local areas of high stress concatenation and does not propagate through a
larger area of the component.
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Figure 7.5: The crack length factor, the integral of the effective crack order parameter of individual
simulations normalized by the initial crack in pure resin, against the fiber volume
fraction. Distinguished by the level of abstraction of the microstructure (case), and
confidence intervals are provided.

Comparison To compare the previous results, the integral of the effective
crack order parameter of individual simulations, normalized by the initial crack
in pure resin is plotted against the fiber volume fraction in Figure 7.5. In ad-
dition, two more volume fractions are considered, and confidence intervals are
given. Note that a higher crack length factor indicates a longer crack, but does
not specify the path of the crack, i.e., whether the crack is straight or more com-
plex, e.g., deflected by fibers. For the for 10 % unidirectional fibers, the crack
length is high, due to the mainly straight cracks. While with higher fiber vol-
ume fraction, the crack length decreases as the cracks do not propagate through
the whole domain. For the curved fibers, the crack length for 20 % volume frac-
tion is even increased because the curved fiber allows more crack propagation,
as the path is deflected along the fibers resulting in longer crack paths. This
behavior can be observed up to 40 % volume fraction. While these curved fiber
volume elements still exhibit significant cracks, the crack length decreases dras-
tically for the relatively evenly spaced unidirectional fiber volume elements.
Note that the reduction to 2D is expected to introduce a systematic error. To-
gether with other sources of error such as material parameters, the quantitative
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Figure 7.6: Cross-sectional SEM image capturing the fracture within unidirectional glass fiber-
reinforced thermoplastic. Reprinted from [171].

aspect of these results should be treated with caution. However, the qualitative
behavior and the underlying crack formation mechanism are still considered to
be representative.

In Figure 7.6, an SEM image of a fractured cross section of a unidirectional
glass-reinforced thermoplastic is shown. In the absence of directly compa-
rable experimental results in literature, a comparison based on this image is
discussed in the following. Note that a different matrix material as well as a
different loading, i.e. boundary conditions, are considered. Nevertheless, a
qualitative comparison of the crack mechanism is possible. The unidirectional
fiber-reinforced simulations shows a matrix dominated failure. In contrast, the
SEM image shows a pronounced fiber-matrix interface failure. The crack prop-
agation model used in the present work does not include a special mechanism
to account for interfacial crack propagation. Thus, it does not take into ac-
count the surface energy in such interfaces, which would be released for crack
growth at these interfaces and affect the Griffith fracture criterion [30]. Such a
mechanism could lead to a different crack behavior, as a crack at the interface
could be favorable. Also the initial crack is placed in the matrix due to the
feasibility of this approach. In real volume elements, a crack is expected to
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7 Crack formation during curing of FRTS

nucleate at the fiber-matrix interface. However, after the initial straight crack
in the resin, the crack propagates along the fiber-matrix interfaces of the curved
fibers. This indicated that for larger systems with the possible longer cracks,
the crack could propagate along the interface similar to the experimental image
taken from an already highly damaged specimen. A direct comparison of of
this behavior with experimental results is not possible due to the lack of images
perpendicular to the fiber cross section. Despite a deficit in the comparability
of simulations and experiments, a similar crack propagation could be observed.
Nevertheless, an extension of the model used to include crack nucleation and
interfacial failure could improve the prediction of crack formation during the
curing process.
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8 Conclusion and outlook

This work deals with the modeling of curing and crack propagation during the
compression molding process of FRTS on the nano and micro length scale. In
the following, the results of the different aspects of this work are summarized
and final conclusions are drawn. In addition possible extension of the models
and overall approach is presented.

Two-stage polymerization using molecular dynamics1 Based on
molecular dynamics simulations, a simplified but industrially used resin sys-
tem was extended by adding a fiber surface and sizing layers. The approach of
Schwab and Denniston [76] was used to model the two-stage polymerization
of the UPPH resin. In addition, γ-MPS was chosen for the coupling agent, and
further assumptions were made about the structure of the sizing. A systematic
procedure for the development of a final cured system was presented. Based
on this approach, evaluations of average quantities during the reactions were
performed. Moreover, the system was also evaluated along the normal of the
fiber surface, which provides a spatial analysis of the fiber-sizing-resin system.

Based on the established REACTER framework, coupling agent monomers un-
dergo a condensation reaction yielding a distribution of monomers, dimer and
higher oligomers. Due to a lack of information in the literature, validation of
this distribution did not seem feasible. Nevertheless, this offers an alternative
approach to an arbitrarily prescribed distribution. In both the UP as well the

1The content of this section has been taken directly from Schöller et al. [2] with minor linguis-
tic changes.
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radical reaction, a similar distribution of the final conversion degree could be
observed: Highest in the pure resin layer and decreasing towards the fiber, with
the lowest value directly at the fiber surface. Notwithstanding, it was found that
the transition between the different layers was almost smooth. This is most
likely due to the diffusion of some molecules, compensating for the change in
the composition of sizing and resin layers.

The introduction of the fiber surfaces reduced the diffusivity in the normal di-
rection to the surface. This leads to a reduced overall conversion degree of the
radical reaction of the final system, compared to a pure resin system. Moreover,
this also results in locally varying conversion degrees and anisotropic radical
polymerization at the fiber surface. A comparison of the results of this work to
experiments would be highly desirable. Although various investigations of the
fiber interface were conducted [68, 172, 173] a comparison of the results is not
possible. These experiments are mainly focused on a mechanical characteriza-
tion of the interphase based on micromechanical tests. This results in effective
quantities for the whole fiber-sizing-resin interface. Furthermore, these exper-
iments clearly show that a significant part of the failure of FRP is due to the
interface between fiber and resin, including the sizing. Therefore, a better un-
derstanding of the detailed processes during polymerization could also improve
the design of such experiments. Nevertheless, any experiments investigating,
for example, the diffusion of the sizing component during the reaction would
allow a direct validation of the presented results. Moreover, this work now
makes it feasible to include the mechanical testing of the final system within
the MD. This is a non-trivial task, but it allows a direct comparison with the
existing literature and could be the focus of a subsequent work.

In other subsequent works, the complexity of the fiber sizing can be increased:
Instead of only one coupling agent, several coupling agents or a different film
former could be used. In addition, other additives of the sizing could be consid-
ered. Also, the basic modeling of the condensation reaction could be extended.
For example, a coarse-grained approach could provide detailed insight into the
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behavior of the sizing during condensation, which could enhance the full atom-
istic studies of the proposed approach. The assumption of the rigidity of the
fiber surface could also be dropped, requiring the complex atomic structure
of the fiber surface to be modeled. This could potentially improve the results,
but would significantly increase the complexity. Last but not least, a further
investigation of the generated system can be conducted. For example, an evalu-
ation of the material properties of the system, e.g. the thermal or (visco-)elastic
parameters, would be of great interest. In particular, an evaluation dependent
on the distance to the fiber surface, as proposed in this work, would allow a
deeper understanding of the sizing-resin interface. And eventually, complex
properties such as a realistic interfacial fracture energy could be derived from
such a system.

Phase-field models for crack propagation in heterogeneous sys-
tems2 In this work, two different phase-field models for crack propagation
in heterogeneous systems were introduced and compared:

• A SCOP model, based on established approaches, which uses a single
crack order parameter to account for damage.

• A novel MCOP model, that introduces multiple order parameters in or-
der to distribute the effective damage to the individual regions, modeled
by its own set of order parameters. This results in multiple evolution
equations, each of which has a constant crack surface energy.

It was shown that the SCOP model is not able to reproduce the surface en-
ergy of the sharp interface for an interfacial crack, especially when the same
length parameters are chosen for the solid and crack problem. In comparison,
the novel MCOP formulation avoids any errors in that case. Furthermore, the
model demonstrated the same kinetics and crack profiles during the propaga-
tion though an artificial interface, which confirms that multiple crack order

2The content of this section has been taken directly from Schöller et al. [1] with minor linguis-
tic changes.
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parameters can generate a continuously effective crack. An extension to an in-
finitely tough interface indicated further problems with the SCOP model, as the
crack is deflected from the interface before it hits the interface itself, and main-
tains a certain distance from it. In contrast, the novel MCOP model demon-
strates a more pronounced kink of the crack path at the interface and grows
directly along the interface, for both sharp and diffuse interfaces. A quantita-
tive comparison between the models for different angles of the interface and an
analytical solution also showed a huge improvement in the modeling of crack
propagation in heterogeneous materials: In particular, for high angles of the
interface the SCOP model cannot replicate the analytical solution, where the
MCOP model still shows very good agreement with it.

The application of the novel model to FRP for unidirectional fibers in 2D and
the extension to a 3D domain with isotropic fiber orientation distribution shows
that the model is able to depict crack evolution in such a complex system, in-
cluding crack nucleation and merging. Notwithstanding the fact that the crack
phase-field model avoids established extensions, such as a tension-compression
splitting or the removal of the interface parameter dependence, the many re-
maining advantages of using multiple crack order parameters could be demon-
strated. In future work, a tension-compression split, for example based on the
work of Storm et al. [148], could further improve the model. In addition, a
combination with a solid-solid phasefield transition model and plasticity could
allow the study of other material systems, e.g., crack evolution during marten-
sitic phase transformation [174]. The inclusion of an interfacial crack resis-
tance could also allow for a more sophisticated simulation of FRP failure, by
enabling realistic fiber debonding.

Considering mechanical jump conditions in the MCOP model3 In
this work a novel MCOP model is proposed for fracture in heterogeneous ma-
terials. Despite the improvement in the qualitative and quantitative prediction

3This section is based on the work of Schöller et al. [3]. Minor linguistic changes and additions
have been made.
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of crack paths for such systems, the model has some limitations. Therefore, an
extension of this model was proposed in this work and investigated: Instead
of a basic Voigt-Taylor homogenization scheme, the approach is extended to
consider mechanical jump conditions based on Schneider et al. [61]. First, the
single inclusion problem was introduced to demonstrate the difference in elas-
tic driving forces of the two schemes. In addition, the final crack paths due to
eigenstrains mimicking chemical shrinkage were discussed for the single inclu-
sion problem for both schemes as well as the single-well and single-obstacle
schemes. In this context, the jump condition scheme resulted in a better agree-
ment with the expected fracture behaviour.

An exemplary FRP system was introduced to investigate the behavior of both
schemes. Therefore, the crack resistance of the glass fiber was varied. The
Voigt-Taylor homogenization scheme failed to predict reasonable crack paths
for contrary contrasts of elastic modulus and crack resistance. Instead, the
fiber failed as well, resulting in different paths. In contrast, when mechanical
jump conditions are considered, the model yields the same final crack path for
all crack resistances presented, since the mechanical driving force for crack
propagation is modeled more independently of the elastic properties of other
physical domains. Moreover, this behavior could also observe in the stress-
strain curves. While the Voigt-Taylor scheme fails at different loading points,
the novel scheme shows a negligible scatter.

Based on this work, more extensive simulation studies on the failure mecha-
nism of FRP materials, as well as other complex systems such as polycrys-
talline materials, e.g., in hydrothermal environments [175], solid oxide fuel
cells among others, can be conducted. Combined with experimentation, this
offers the opportunity to improve a broad range of engineering applications.

Crack propagation during curing in fiber-reinforced thermosets
In order to predict the crack formation of FRTS during curing, a method to
generate virtual fiber-reinforced volume elements was introduced in Chapter 4.
For this purpose, an approach based on MD was used to consider not only
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straight fibers, but also long curved fibers. In the following Chapter 5, the
curing process, which was previously modeled on the atomic length scale, was
simulated on the micro length scale using continuum mechanics. Incorporat-
ing thermal and chemical strains, the resulting residual stresses were discussed
for different levels of abstraction of the microstructure of FRTS. Finally, in
Chapter 7, the various aspects of this work were brought together. Based on
the novel crack propagation model for heterogeneous systems and the curing
model for FRTS, crack formation during manufacturing was simulated. De-
spite the lack of possibility to compare the results with experiments and the
difficulty to assess the quantitative results, the cracking mechanisms of this
material class could be observed. It was demonstrated that the presented ap-
proach is able to show crack formation during curing of glass fiber-reinforced
UPPH resin. For further work, such a model could benefit from incorporating
the viscoelastic material behavior of the resin, despite the increase in compu-
tational cost and lack of material properties during the various stages of the
curing process. Based on further experimental investigation and incorpora-
tion of crack nucleation and interfacial crack propagation, a more quantitative
prediction of crack formation during the curing process seems feasible and
would be highly desirable for understanding this material class and its failure
mechanism.
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A Appendix

A.1 Intermolecular interaction potentials

The intermolecular interaction potential energy function U inter, cf. (2.64), con-
sists of several contributions introduced below and are based on the COMPASS

force field [101–103]. Note that the individual parameters in these contribu-
tions are usually dependent on the atom types, but for the sake of clarity addi-
tional sub or superscripts are omitted.

Bonds The bonds contribution consist of a potential with harmonic and an-
harmomic terms

UB
i j = Kb

2 (ri j− r0)
2 +Kb

3 (ri j− r0)
3 +Kb

4 (ri j− r0)
4 (A.1)

with the parameters Kb
2 ,K

b
3 ,K

b
2 and the equilibrium bond distance r0.

Angles The angle contribution can further decomposed in

UA
i jk =Ua

i jk +Ubb
i jk +Uba

i jk, (A.2)

with a angle potential, again with harmonic and anharmomic terms
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with the parameters Ka
2 ,K

a
3 ,K

a
2 and the equilibrium angle θ0. The bond-bond

term follows by
Ubb

i jk = Mbb
(

ri j− rbb
1

)(
r jk− rbb

2

)
, (A.4)

with the parameters Mbb and the distances r1 and rbb
2 . In addition, bond-angle

term
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with the parameters Nba
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2 and the distances rba
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2 .

Dihedrals The dihedrals contribution can further decomposed in
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with a dihedral potential
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with the parameters A1,A2,A3 and the distance rmbt

2 . Moreover the end-bond-
torsion term
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with the parameters B1,B2,B3,C1,C2,C3 and the distance rebt
1 ,rebt

3 and the
angle-angle-torsion term
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with the parameters D1,D2,D3,E1,E2,E3 and the angles θ aat
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2 . In addition,
the angle-torsion follows by
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with the parameters Mat and the angles θ at
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2 and the bond-bond-13 term
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with the parameters Nbb13 and the distances rbb13
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Impropers The impropers contribution can further decomposed in
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with the improper term
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with the parameters Ki and the equilibrium angle χ0. The angle-angle term
follows by
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with the parameters Maa
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A.2 Two-stage polymerization1

Benzene distribution In order to be able to investigate the spatial distri-
bution of the various constituents, a reasonable approach must be chosen. Es-
pecially molecules like (P-)MDI or the unsaturated polyester consist of numer-
ous atoms, which can be distributed widely over the system. Reducing them to
their center of mass would not result in a useful distribution. Instead, specific
functional groups are chosen. For example, all molecules (except the coupling
agent) contain benzene rings. In addition, they can be distinguished by their
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Figure A.1: Spatial distribution of the benzene of styrene during radical polymerization.

1The content of this section has been taken directly from Schöller et al. [2] with minor linguis-
tic changes.
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Figure A.2: Spatial distribution of benzene of (P)-MDI during polyurethane reaction (left) and
radical polymerization (right) for different conversion degrees.
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Figure A.3: Spatial distribution of benzene of the unsaturated polyester during polyurethane reac-
tion (left) and radical polymerization (right) for different conversion degrees.

uniquely bonded atoms. This allows easy tracking of all benzene rings across
the system and during polymerization reactions.

Figure A.1 shows the styrene benzene during radical polymerization. During
the reaction, the small styrene molecules level out the initial uneven distribu-
tion due to diffusion. The benzene distribution of the larger molecules such
as (P-)MDI and the unsaturated polyester is shown in Figure A.2 and Fig-
ure A.3, respectively. Despite the fact that they also exhibit some additional
artificial charges during the polyurethane reaction, significant diffusion is not
observed. In contrast, they show diffusion during the radical polymerization,
as they smooth the initial uneven distribution.
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Figure A.4: Spatial distribution of silicon atoms of γ-MPS molecules during polyurethane reaction
(left) and radical polymerization (right) for different conversion degrees.

Silicon distribution of coupling agent For the distribution of the cou-
pling agent, hence γ-MPS, the silicon atom of the molecules is used to rep-
resent the position of the free hydrolyzed as well as the coupling agent pre-
attached to the fiber surface. Figure A.4 shows this distribution during the
polymerization reactions. As before, no significant diffusion can be observed
during the polyurethane reaction. Nevertheless, the pre-attached layer with the
very high peak at the fiber surface as well as the absence of γ-MPS in the pure
resin layer can be observed. During the free radical polymerization, as with the
other constituents, diffusion takes place, smoothing out the initial distribution.

A.3 Phase-field modeling of crack
propagation2

Staggered iterations study For a numerical investigation of the number
of staggered iterations during a crack propagation simulation, the setup of an
artificial sloped interface, cf. Section 6.4.2, is chosen. For this purpose, the
number of iterations is depicted in Figure A.5. The cumulative iterations over
the crack growth are shown in Figure A.5a. For this purpose, all inner staggered

2The content of this section has been taken directly from Schöller et al. [1] with minor linguis-
tic changes.
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Figure A.5: Behavior of the staggered scheme for the artificial sloped interface: (a) Cumulative
iterations during the crack growth for the SCOP and MCOP models. (b) Amount of
inner iterations for an exemplary discrete crack propagation step.

iterations are summed up until a discrete crack propagation occurs. Thereby,
the SCOP and MCOP models show similar behavior. The number of iterations
is approximately equal. Only near the solid interface the MCOP requires more
iterations. This is most likely due to the implicit transition of the crack from
one order parameter to the other. The overall trend towards fewer iterations,
like the change in slope, is likely due to the way the stress boundary condtion
is imposed. In addition, Figure A.5b plots the number of staggered iterations
against temporal iterations for a discrete crack propagation step. Also here,
SCOP and MCOP show the similar behavior: After a discrete crack propaga-
tion, the first iterations consist of an increased number of staggered iterations,
while subsequently, the iterations are lower, but increase slightly again to the
next discrete crack propagation.

Mesh convergence study For an investigation of mesh convergence for
the artificial sloped interface example (cf. Section 6.4.2), the SCOP model and
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Figure A.6: Mesh convergence study of the SCOP model for the artificial sloped interface: The
mesh sizes at the crack tip ∆x are varied. In addition, the background was also refined
and the adaptive mesh refinement parameters were chosen more cautiously (†).

the infinitely hard upper region are chosen. As in this case the highest gradients
occur in the solution fields and can therefore be assumed to be the most chal-
lenging problem to discretize. Figure A.6 shows the results of the SCOP model
of Section 6.4.2. In addition, the mesh size ∆x at the crack tip is varied, where
∆x0 is the size in of the previous results. Furthermore, the underlying coarse
mesh is significantly refined, and the adaptive mesh refinement parameters are
changed to increase the area where ∆x applies, denoted by † in Figure A.6.
Thereby, none of the results yields large variance, therefore the discretization
chosen in this work can be assumed to be representative.
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