KIT | KIT-Bibliothek | Impressum | Datenschutz

Artificial neural network surrogate modeling for uncertainty quantification and structural optimization of reinforced concrete structures

Freitag, Steffen ; Edler, Philipp; Schoen, Stefanie; Meschke, Günther

Abstract:

Optimization approaches are important to design sustainable structures. In structural mechanics, different design objectives can be defined, for example, to minimize the required construction material or to maximize the structural durability. In this paper, the durability of a reinforced concrete (RC) structure is assessed by advanced finite element (FE) models to simulate the cracking behavior and the chloride transport process. The corrosion initiation time is used as durability measure to be maximized within an optimization approach, where the concrete cover is defined as design variable. The variability of structural loads and material parameters and unavoidable construction imprecision leads to a probabilistic reliability and durability assessment, where aleatory as well as epistemic uncertainties are quantified by random variables, intervals and probability-boxes. The FE simulation models cannot directly be applied to structural analyses and optimizations with polymorphic uncertain parameters and design variables because of the high computational demand of the multi-loop algorithm (Monte Carlo simulation, interval analysis, global optimization). ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000167122
Veröffentlicht am 09.01.2024
Originalveröffentlichung
DOI: 10.1002/pamm.202300286
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Baustatik (IBS)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2023
Sprache Englisch
Identifikator ISSN: 1617-7061
KITopen-ID: 1000167122
Erschienen in PAMM
Verlag Wiley-VCH Verlag
Band 23
Heft 4
Seiten e202300286
Vorab online veröffentlicht am 12.12.2023
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page