KIT | KIT-Bibliothek | Impressum | Datenschutz

Freeform terahertz structures fabricated by multi-photon lithography and metal coating

Maier, Pascal ORCID iD icon 1,2; Kotz, Alexander 1; Hebeler, Joachim 3; Zhang, Qiaoshuang ORCID iD icon 4; Benz, Christian 1,2; Quint, Alexander 3; Kretschmann, Marius ORCID iD icon 3; Harter, Tobias 1; Randel, Sebastian 1; Lemmer, Uli 4; Freude, Wolfgang 1; Zwick, Thomas 3; Koos, Christian 1,2
1 Institut für Photonik und Quantenelektronik (IPQ), Karlsruher Institut für Technologie (KIT)
2 Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)
3 Institut für Hochfrequenztechnik und Elektronik (IHE), Karlsruher Institut für Technologie (KIT)
4 Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)

Abstract:

Direct-write multi-photon laser lithography (MPL) combines highest resolution on the nanoscale with essentially unlimited 3D design freedom. Over the previous years, the groundbreaking potential of this technique has been demonstrated in various application fields, including micromechanics, material sciences, microfluidics, life sciences as well as photonics, where in-situ printed optical coupling elements offer new perspectives for package-level system integration. However, millimeter-wave (mmW) and terahertz (THz) devices could not yet leverage the unique strengths of MPL, even though the underlying devices and structures could also greatly benefit from 3D freeform microfabrication. One of the key challenges in this context is the fact that functional mmW and THz structures require materials with high electrical conductivity and low dielectric losses, which are not amenable to structuring by multi-photon polymerization. In this work, we introduce and experimentally demonstrate a novel approach that allows to leverage MPL for fabricating high-performance mmW and THz structures with hitherto unachieved functionalities. Our concept exploits in-situ printed polymer templates that are selectively coated through highly directive metal deposition techniques in combination with precisely aligned 3D-printed shadowing structures. ... mehr


Volltext §
DOI: 10.5445/IR/1000167125
Veröffentlicht am 09.01.2024
Cover der Publikation
Zugehörige Institution(en) am KIT 3D Matter Made to Order (3DMM2O)
Institut für Hochfrequenztechnik und Elektronik (IHE)
Institut für Mikrostrukturtechnik (IMT)
Institut für Photonik und Quantenelektronik (IPQ)
Karlsruhe School of Optics & Photonics (KSOP)
Lichttechnisches Institut (LTI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000167125
HGF-Programm 38.01.02 (POF IV, LK 01) Materials and Interfaces
Verlag arxiv
Schlagwörter Optics (physics.optics), Applied Physics (physics.app-ph)
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page