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Abstract

Quantum information processing is a rapidly developing area of research that involves
using quantummechanical phenomena to perform computational tasks and solve problems
in fields such as cryptography, machine learning, and chemistry. Universal quantum
computers are expected to be much faster than classical computers for certain types of
calculations, but they also face significant challenges in terms of hardware design, error
correction, and scaling up the size of the systems. Trying to overcome these challenges,
various types of hardware architectures are actively explored. Instead of relying on a
single platform, a promising route can be to combine the advantages of different types
of quantum information hardware. Among these approaches are hybrid architectures
involving superconducting quantum circuits and spin-based systems. However, they
require superconducting circuits which are compatible with relatively large magnetic
fields on the order of hundreds of mT.

The main result of this thesis is the implementation of a fluxonium superconducting
quantum bit entirely made of the high-kinetic-inductance material granular aluminum
(grAl). Owing to the critical field of grAl in the Tesla range, the single-layer grAl fluxonium,
which we nickname gralmonium, is magnetic field compatible by design. This holds true
even for the gralmonium tunnel junction, which is given by a lithographically defined,
self-structured grAl nano-junction with ∼ (20 nm)3 volume. Remarkably, based on the
measured qubit spectrum, which is similar to that of a standard fluxonium, the current-
phase relation (C𝜑R) of the nano-junction is indistinguishable from the purely sinusoidal
form expected for an idealized tunnel Josephson junction (JJ). The coherence times of
the gralmonium are in the microsecond range, which is comparable to superconducting
qubits based on conventional mesoscopic tunnel JJ. Interestingly, we observe spontaneous
jumps of the value of the Josephson energy on timescales from milliseconds to days, which
indicate that the gralmonium is sensitive to the nanometric grAl volume of the junction.

But how does the agreement of the grAl nano-junction with a sinusoidal C𝜑R quantitatively
compare to Al-AlO𝑥 -Al mesoscopic tunnel JJs, commonly employed in superconducting
qubits? In order to address this question, as a second result of the thesis, we analyze the
magnitude of Josephson harmonics in standard tunnel JJs. While the idealized C𝜑R is only
expected to occur in the limit of vanishingly low-transparency channels in the barrier, a
mesoscopic model of tunneling through an inhomogeneous AlO𝑥 barrier predicts percent-
level contributions from higher Josephson harmonics. Indeed, the sin𝜑 approximation
fails to accurately describe the energy spectra of transmon artificial atoms across samples
from various laboratories, and including higher harmonic contributions in the transmon
Hamiltonian leads to orders ofmagnitude better agreement betweenmeasured andmodeled
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spectroscopy. The required relative magnitude of the second harmonic is in the percent
range across the measured samples.

The fact that both coherence and C𝜑R of the grAl nano-junction are compatible with stan-
dard tunnel JJs establishes the gralmonium and similar circuits as a promising platform for
hybrid architectures. Moreover, the susceptibility of the gralmonium to the nano-junction
and its vicinity can be utilized as a detector sensitive to interactions on the nanometer scale.
On the other hand, the observation of Josephson harmonics in standard tunnel JJs opens a
new chapter for the design, measurement and analysis of superconducting circuits. While
this work focuses on the consequences for transmon qubits, the results prompt follow-up
research for other circuits based on tunnel JJs. In the future, Josephson harmonics can not
only serve as a powerful benchmark for tunnel barriers from a material science perspective
but they can also be embraced as a tool for circuit design and for further improvements of
readout and gate fidelities in superconducting quantum hardware.

ii



Acknowledgements

After all this time, I look back and can only consider myself a lucky person. By a series of
coincidental timings, I found myself doing research in one of the most exciting fields of our
time and had the opportunity to work with extraordinary people. My deepest gratitude
goes to everyone involved during these years. Starting with my master’s project and even
more so in my PhD, I had the honor to discover the best of two worlds both in science and
in supervision. Mirroring the hybrid spirit of the project, it was a joy to experience the
duality of perspectives, opinions and styles in navigating the academic landscape.

Wolfgang, thank you for being my Doktorvater. When I started my PhD, you showed such
an unbelievable presence in the labs that I felt protected from anything that could ever
go wrong. It was a true pleasure to work with such an exceptional figure in science and I
learned so much from you. Without the luxury of your expertise in cryogenics, many of
the results would not have been possible to achieve. Thank you for your guidance and
mentorship throughout the years. You helped with new perspectives whenever needed,
and with trust and patience when the next milestone was clear. I always felt encouraged
and appreciated by you for my work and more than welcome to discuss anything at any
time. How you are at least one step ahead of anyone and anything, will never stop to
impress me!

Ioan, thank you for your supervision in this hybrid PhD journey. It was your first lecture
at KIT that ignited my spark to work in quantum technology and laid the foundations for
my research. Your skill and charisma in interacting with people is absolutely fascinating!
Thank you for all the time spent improving talk slides or polishing papers, and thank you
for your help to not only achieve results but also advertise them to the world. The fun
atmosphere and discussions we had in your office and at (or on our trips to) conferences
and seminars will be lasting memories.

Simon, there is no way I can express enough gratitude to you. We first met when you
joined the group as a bachelor student with Patrick, and it was the start of something
exceptional. Your investment in our joint projects was unlimited and they would in no
way have been so successful without you. Over the years, we have grown from students
to colleagues to friends and we have learned a lot from each other. Thank you and Jasmijn
for making even the most-restricted pandemic times enjoyable with lunch at your place.
The fact that we never really stopped this tradition is very telling. I truly wish for anyone
to experience the level of synergy that we achieved together in sharing the daily workload,
managing the labs, measuring and understanding results, and producing publications. I
feel incredibly fortunate for having you at my side for most of my PhD.

iii



Acknowledgements

Thank you Patrick for growing my initial interest in the field into pure excitement to
pursue a PhD. As if it were yesterday, I still remember the moment in your (and later our)
office when we discussed for the first time about my master’s project on “self-calibrating
noise measurements”. And boy, have we come far since then! Thank you for introducing
me to so many concepts in superconducting circuits, for your support and perspectives,
and for all the fun we had in and out of the lab. The outcome of my efforts was only possible
to build on top of your hard work and I was very proud to follow in your footsteps.

To our students – Markus, Vera and Janic – thank you for your valuable work during your
bachelor’s and master’s projects! I hope you enjoyed our time together as much as I did
and that you learned a few things which help you for your future in science or life in
general. Maybe you can measure how important your contributions were based on my
enthusiasm for your projects. But it was your endurance and patience that lead to plenty
of fruitful results even when the cleanroom was ruthless.

To my fantastic colleagues in Wolfgang’s and Ioan’s group: it is the science that you aim
for but the people who make you keep going every day. Thank you Martin for always
having an intuition and explanation for anything that I could (and sometimes still can) not
wrap my mind around. Thank you Ameya for so many lively, open and heart-warming
discussions. Thank you to the APSMarch Meeting 2023 crew for some legendary memories
in Las Vegas, on the road trip, in the national parks and in LA. Thank you Viktor for plenty
of pythonic discussions and all the fun playing on the rift and on the beach court. Thank
you Kiril and Lukas for setting me up for success in the early days. Thank you Christoph
for your interest in our projects and being the most reliable cornerstone of the group and
institute that we could wish for. Thanks to all our collaborators in the Josephson harmonics
project, especially to Madita and Dennis. To me it felt like an extraordinarily synergistic
and fruitful collaboration, which I can only see continue to deliver in the future.

To all neighboring groups and institute members, thank you for countless stimulating
chats in the coffee rooms, corridors and seminars. All the scientific efforts would not
be possible without support from our administration, the mechanics workshop and the
electronics workshop. Thank you all, especially Steffi, Ms. Alaya, Lars, Mr. Meyer and
Jannis! The same is so true for everyone in the cleanroom and fabrication teams both at
CN and CS. I want to dedicate a special shout-out to Silvia for her unmatched expertise in
e-beam writing and to Lucas for his incredible flexibility in sample dicing. Without you,
we could not have cooled down the record-braking numbers of samples that we did.

Finally, I express my sincerest gratefulness to my family, to Mom and Dad, my sister, and
to the love of my life Rebekka for your support and understanding. I know that these
PhD years claimed a lot of time and patience from you when I was trying to triumph
over setbacks and testing the limits of my capabilities. At the end of the day, a PhD is a
demanding journey not only for the student but also for the ones close to them. From a
small village in the black forest to the frontier of quantum physics — what are the odds?

iv



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

I Overview & Main Results 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Motivation & Manuscript Overview . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Superconducting Quantum Circuits . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Josephson Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Superconducting Quantum Bits . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Circuit Quantum Electrodynamics (cQED) . . . . . . . . . . . . . . . 11

1.3 Spin-cQED Hybrid Architectures . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Granular Aluminum Circuits in Magnetic Field . . . . . . . . . . . . . . . . 13

2 Gralmonium: Granular Aluminum Nano-Junction Fluxonium Qubit . . . . . . . . 19
2.1 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Nonlinearity of Granular Aluminum Circuit Elements . . . . . . . . 19
2.1.2 From GrAl Transmon to GrAl Fluxonium . . . . . . . . . . . . . . . . 21

2.2 GrAl Nano-Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Gralmonium Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Time Domain Characterization . . . . . . . . . . . . . . . . . . . . . 28

2.4 Josephson Harmonics in the GrAl Nano-Junction . . . . . . . . . . . . . . . 31

3 Josephson Harmonics in Tunnel Junctions . . . . . . . . . . . . . . . . . . . . . 35
3.1 Setting an Expectation for Josephson Harmonics . . . . . . . . . . . . . . . 35

3.1.1 C𝜑R in Different Types of Weak Links . . . . . . . . . . . . . . . . . 35
3.1.2 Single Conduction Channel Current-Phase Relation . . . . . . . . . . 37
3.1.3 Mesoscopic Model of a Tunnel Junction . . . . . . . . . . . . . . . . 38

v



Contents

3.2 Transmon as a Testbed for the Energy-Phase Relation . . . . . . . . . . . . 41
3.3 Magnitude of Harmonics in Tunnel Junctions . . . . . . . . . . . . . . . . . 44
3.4 Impact on Transmon Charge Dispersion . . . . . . . . . . . . . . . . . . . . 46

4 Conclusion & Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

II Detailed Information 53

A Cylindrical Waveguide Sample Holder . . . . . . . . . . . . . . . . . . . . . . . . 55

B Details on the Gralmonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.1 Fabrication Recipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.2 Flux Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
B.3 Decoherence Budget at Half-Flux . . . . . . . . . . . . . . . . . . . . . . . 62
B.4 Zero-Flux Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.5 Quantum Jumps Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
B.6 Evidence of EJ-Toggling in Spectroscopy . . . . . . . . . . . . . . . . . . . 66
B.7 Additional Gralmonium Spectra . . . . . . . . . . . . . . . . . . . . . . . . 67

C Details on Josephson Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C.1 Transmon Samples Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C.2 Transmon Spectroscopy in the Literature . . . . . . . . . . . . . . . . . . . 73
C.3 Fitting methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
C.4 Additional Hamiltonian Contributions . . . . . . . . . . . . . . . . . . . . . 77
C.5 Engineering Josephson Harmonics . . . . . . . . . . . . . . . . . . . . . . . 80
C.6 Evidence for AlO𝑥 Barrier Inhomogeneity . . . . . . . . . . . . . . . . . . . 81

C.6.1 Molecular Dynamics Simulation . . . . . . . . . . . . . . . . . . . . . 82
C.6.2 Scanning Transmission Electron Microscopy . . . . . . . . . . . . . . 83

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vi



List of Publications

Authors marked with † have contributed equally.

[1] D. Rieger†, S. Günzler†, M. Spiecker, P. Paluch, P. Winkel, L. Hahn, J. K. Hohmann,
A. Bacher, W. Wernsdorfer, and I. M. Pop, “Granular aluminium nanojunction
fluxonium qubit”, Nat. Mater. 22, 194–199 (2023).

[2] D. Willsch†, D. Rieger†, P. Winkel, M. Willsch, C. Dickel, J. Krause, Y. Ando,
R. Lescanne, Z. Leghtas, N. T. Bronn, P. Deb, O. Lanes, Z. K. Minev, B. Dennig,
S. Geisert, S. Günzler, S. Ihssen, P. Paluch, T. Reisinger, R. Hanna, J. H. Bae, P.
Schüffelgen, D. Grützmacher, L. Buimaga-Iarinca, C. Morari, W. Wernsdorfer, D. P.
DiVincenzo, K. Michielsen, G. Catelani, and I. M. Pop, “Observation of Josephson
Harmonics in Tunnel Junctions”, arXiv, 10.48550/arXiv.2302.09192 (2023).

[3] D. Rieger†, S. Günzler†, M. Spiecker, A. Nambisan, W. Wernsdorfer, and I. M. Pop,
“Fano Interference in Microwave Resonator Measurements”, Phys. Rev. Appl. 20,
014059 (2023).

[4] K. Borisov, D. Rieger, P. Winkel, F. Henriques, F. Valenti, A. Ionita, M. Wessbecher,
M. Spiecker, D. Gusenkova, I. M. Pop, and W. Wernsdorfer, “Superconducting
granular aluminum resonators resilient to magnetic fields up to 1 Tesla”, Appl.
Phys. Lett. 117, 120502 (2020).

[5] P. Winkel, K. Borisov, L. Grünhaupt, D. Rieger, M. Spiecker, F. Valenti, A. V.
Ustinov, W. Wernsdorfer, and I. M. Pop, “Implementation of a Transmon Qubit
Using Superconducting Granular Aluminum”, Phys. Rev. X 10, 031032 (2020).

[6] P. Winkel†, I. Takmakov†, D. Rieger, L. Planat, W. Hasch-Guichard, L. Grünhaupt,
N. Maleeva, F. Foroughi, F. Henriques, K. Borisov, J. Ferrero, A. V. Ustinov, W.
Wernsdorfer, N. Roch, and I. M. Pop, “Nondegenerate Parametric Amplifiers Based
on Dispersion-Engineered Josephson-Junction Arrays”, Phys. Rev. Appl. 13, 024015
(2020).

[7] M. Spiecker, P. Paluch, N. Gosling, N. Drucker, S. Matityahu, D. Gusenkova, S.
Günzler, D. Rieger, I. Takmakov, F. Valenti, P. Winkel, R. Gebauer, O. Sander, G.
Catelani, A. Shnirman, A. V. Ustinov, W. Wernsdorfer, Y. Cohen, and I. M. Pop,
“Two-level system hyperpolarization using a quantum Szilard engine”, Nat. Phys.
19, 1–6 (2023).

vii

https://doi.org/10.1038/s41563-022-01417-9
https://doi.org/10.48550/arXiv.2302.09192
https://doi.org/10.48550/arXiv.2302.09192
https://doi.org/10.1103/PhysRevApplied.20.014059
https://doi.org/10.1103/PhysRevApplied.20.014059
https://doi.org/10.1063/5.0018012
https://doi.org/10.1063/5.0018012
https://doi.org/10.1103/PhysRevX.10.031032
https://doi.org/10.1103/PhysRevApplied.13.024015
https://doi.org/10.1103/PhysRevApplied.13.024015
https://doi.org/10.1038/s41567-023-02082-8
https://doi.org/10.1038/s41567-023-02082-8


List of Publications

[8] D. Gusenkova, F. Valenti, M. Spiecker, S. Günzler, P. Paluch, D. Rieger, L.-M.
Pioraş-Ţimbolmaş, L. P. Zârbo, N. Casali, I. Colantoni, A. Cruciani, S. Pirro, L.
Cardani, A. Petrescu, W. Wernsdorfer, P. Winkel, and I. M. Pop, “Operating in a
deep underground facility improves the locking of gradiometric fluxonium qubits
at the sweet spots”, Appl. Phys. Lett. 120, 054001 (2022).

[9] D. Gusenkova, M. Spiecker, R. Gebauer, M. Willsch, D. Willsch, F. Valenti, N.
Karcher, L. Grünhaupt, I. Takmakov, P. Winkel, D. Rieger, A. V. Ustinov, N. Roch,
W. Wernsdorfer, K. Michielsen, O. Sander, and I. M. Pop, “Quantum Nondemolition
Dispersive Readout of a Superconducting Artificial Atom Using Large Photon
Numbers”, Phys. Rev. Appl. 15, 064030 (2021).

[10] I. Takmakov†, P. Winkel†, F. Foroughi, L. Planat, D. Gusenkova, M. Spiecker, D.
Rieger, L. Grünhaupt, A. V. Ustinov, W. Wernsdorfer, I. M. Pop, and N. Roch,
“Minimizing the Discrimination Time for Quantum States of an Artificial Atom”,
Phys. Rev. Appl. 15, 064029 (2021).

viii

https://doi.org/10.1063/5.0075909
https://doi.org/10.1103/PhysRevApplied.15.064030
https://doi.org/10.1103/PhysRevApplied.15.064029


List of Figures

1.1 Two common superconducting qubits: transmon and fluxonium . . . . . . . 9
1.2 Resilience of grAl resonators up to 1 T . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Sensitivity of grAl resonators to out-of-plane field . . . . . . . . . . . . . . . 16

2.1 Nonlinearity of granular aluminum (grAl) circuit elements . . . . . . . . . . 20
2.2 Fabrication of the grAl nano-junction . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Microscope images and circuit schematics of the gralmonium sample . . . . 25
2.4 Gralmonium spectroscopy vs. external flux𝛷ext . . . . . . . . . . . . . . . . 27
2.5 Energy relaxation and coherence of the gralmonium at half-flux bias . . . . . 29
2.6 Fluctuations of the gralmonium frequency on different timescales . . . . . . 30
2.7 Testing for harmonics in the grAl nano-junction . . . . . . . . . . . . . . . . 32

3.1 Current-phase-relation of single conduction channels . . . . . . . . . . . . . 38
3.2 Mesoscopic model of harmonics in a tunnel junction . . . . . . . . . . . . . . 40
3.3 Transmon as a testbed for the energy-phase relation . . . . . . . . . . . . . . 43
3.4 Observed magnitude of Josephson harmonics in tunnel junctions . . . . . . . 45
3.5 Impact of Josephson harmonics on transmon charge dispersion . . . . . . . . 47

A.1 Schematics and simulations of cylindrical waveguide sample holder . . . . . 56
A.2 Pictures of the sample holder and vector magnet . . . . . . . . . . . . . . . . 57

B.1 Periodic avoided level crossings between gralmonium and resonator . . . . . 60
B.2 GrAl nano-junction regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.3 Gralmonium decoherence budget analysis around half-flux . . . . . . . . . . 62
B.4 Gralmonium time domain characterization at zero-flux . . . . . . . . . . . . 63
B.5 Gralmonium potential energy landscape and wavefunctions . . . . . . . . . 64
B.6 Dispersive readout of the gralmonium . . . . . . . . . . . . . . . . . . . . . . 65
B.7 Gralmonium quantum jumps analysis . . . . . . . . . . . . . . . . . . . . . . 65
B.8 Evidence of Josephson energy toggling in gralmonium spectrum . . . . . . . 66
B.9 Gralmonium spectra in successive cooldowns . . . . . . . . . . . . . . . . . . 68
B.10 Spectra of additional gralmonium samples . . . . . . . . . . . . . . . . . . . 68

C.1 Influence of additional contributions to the transmon Hamiltonian . . . . . . 79
C.2 Engineering Josephson harmonics for transmons . . . . . . . . . . . . . . . . 81
C.3 Stages of molecular dynamics model for AlO𝑥 barrier growth . . . . . . . . . 82
C.4 Additional STEM images of AlO𝑥 JJ barriers . . . . . . . . . . . . . . . . . . 84

ix





List of Tables

2.1 Overview of gralmonium circuit parameters . . . . . . . . . . . . . . . . . . 28

B.1 Gralmonium fabrication recipe . . . . . . . . . . . . . . . . . . . . . . . . . . 59

C.1 Overview of transmon devices for Josephson harmonics analysis . . . . . . . 71
C.2 Transmon spectroscopy data for Josephson harmonics analysis . . . . . . . . 72
C.3 Parameters of standard transmon and Josephson harmonics models . . . . . 75

xi





Part I

Overview & Main Results





1 Introduction

This chapter introduces the key concepts of the manuscript. We start by motivating
the idea of hybrid hardware implementations for quantum information process-
ing. The next section focuses in more detail on superconducting circuits with the
Josephson effect enabling the implementation of quantum bits such as transmon
and fluxonium. After presenting the main advantages and limitations of super-
conducting hardware, the appeal of spin-based hybrid architectures is discussed.
Finally, superconducting granular aluminum is introduced as a promising material
to implement quantum circuits for hybrid applications involving magnetic field.

1.1 Motivation & Manuscript Overview

Quantum information processing has emerged as an exciting frontier in the field of in-
formation technology with the potential to revolutionize various industries and scientific
disciplines [11–16]. In particular, the realization of universal quantum computing promises
to exponentially speed up specific algorithms compared to classical computing meth-
ods [17–21]. Since fulfilling this promise can be considered the holy grail of quantum
computing research, we should motivate briefly where the potential speed-up comes from.
Interestingly, by doing so, it is possible to grasp both why quantum computing is powerful
in theory and why realizing it in practice is a significant challenge.

How strongly particular quantum protocols and algorithms — such as Shor’s factoriza-
tion [22, 23] or Grover’s search algorithm [24] — harness a quantum advantage over
classical methods can be an intricate discussion even among tech giants [19, 25] and
experts [26, 27]. Unarguably though, the fundamental ingredients at the heart of quantum
information are superposition and entanglement. The first concept, superposition, is what
is typically also discussed in popular media and refers to the fact that, in contrast to a
classical bit, a quantum bit (qubit) can be in a superposition of its basis states,

|𝛹⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ , with |𝛼 |2 + |𝛽 |2 = 1 . (1.1)

The second ingredient, entanglement, contributes to the exponential scaling of the compu-
tational space. This can be seen by considering the state of a multi-qubit register with 𝑁
qubits,

|𝛹⟩ = 𝛼0 |00 . . . 00⟩ + 𝛼1 |00 . . . 01⟩ + . . . + 𝛼 (2𝑁−1) |11 . . . 11⟩ , with
∑︁
𝑖

|𝛼𝑖 |2 = 1 , (1.2)
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which is given by the superposition of all possible 2𝑁 basis states. In this context, en-
tanglement refers to the striking observation that the superposition state Eq. (1.2) of a
quantum register contains states which are impossible to write as a product of the in-
dividual qubits composing the register: the qubits can be entangled, as for example in
the state |𝛹⟩ = ( |00 . . . 00⟩ + |11 . . . 11⟩)/√2. With the possibility of superposition and
entangled states, quantum computing offers a paradigm shift in computing and starts to
be impossible to replicate on classical hardware when the number of qubits involved is
sufficiently large.

Despite their simplicity, Eqs. (1.1) and (1.2) can be used to illustrate many of the challenges
facedwhen trying to implement these fundamental concepts of quantum computing in prac-
tice. First of all, the individual qubits should be able to store their quantum state, Eq. (1.1),
for as long as possible without suffering from decoherence. Moreover, high-fidelity tech-
niques are required to initialize the state of the qubit, manipulate it with gates (similar
to logic gates in classical computing) and measure the final state of interest. Finally, the
number of qubits should be scaled up sufficiently to profit from the exponentially growing
computational space indicated by Eq. (1.2). Scaling up the size of the register is particularly
difficult as the performance of and control over individual qubits must be maintained
while allowing to couple (and, therefore, entangle) different qubits. The challenge of
implementing scalable quantum computing hardware has already been discussed and
formalized more than 20 years ago in the DiVincenzo criteria [28].

“While they are typically among the first concepts in quantum
computing to learn about, one can appreciate the relevance of
DiVincenzo’s criteria even more after a few years working in the
field.”

The difficulty of scaling up and connecting many qubits while maintaining their individual
performance makes evident that building quantum computation hardware implies to find a
compromise in fulfilling the different requirements. For this reason, a variety of innovative
approaches are pursued to implement reliable and scalable quantum computing hardware,
for example based on trapped ions [29, 30], optics [31, 32], superconducting [19, 21] or
semiconducting electronics [33, 34], and magnetic molecules [35–37]. Interestingly, many
of DiVincenco’s criteria can be fulfilled individually in each of the different approaches. For
example, superconducting qubits are amongst the most promising platforms for quantum
computing because they are typically well-controlled, macroscopic circuits with gate
and readout fidelities approaching the thresholds for quantum error correction [38–42].
However, as macroscopic solid-state objects, they can suffer more easily from various
sources of decoherence than atomic-scale systems, which are typically well isolated [43].

Beyond optimizing individual quantum hardware platforms, a promising avenue is the de-
velopment of hybrid implementations that combine different types of quantum information
hardware in order to exploit their unique strengths while mitigating their respective weak-
nesses. In this way, the compromise of balancing different requirements can be distributed
across the subsystems instead of sacrificing advantages of one of the systems. Examples of
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hybrid quantum systems include semiconductor quantum dots coupled to superconducting
circuits [44] and nanomechanical resonators coupled to nitrogen-vacancy centers [45] or
superconducting qubits [46]. In particular, hybrid architectures involving spin-based qubits
and superconducting circuits have gained increasing research interest [37, 47–50]. The
main idea behind this approach is to combine the long-coherence time offered by single
spins, for example in magnetic molecules, with the fast and well-controlled readout and
manipulation available with superconducting hardware. Naturally, there are two caveats
inherent to the idea of coupling spins and superconducting circuits: the superconductor
should be compatible with magnetic fields required to control the spin constituent and
one has to bridge the gap from the macroscopic circuit to the nanoscopic scale on which
individual spins operate.

“ The motivation to build a hybrid architecture
is based on the hope that the combined
advantages of the two constituents outweigh
the combined disadvantages.”

The first main result of this manuscript is the implementation of a circuit with the potential
to address both of these concerns, a granular aluminum nano-junction fluxonium qubit
which we nickname gralmonium [1]. By fabricating the full circuit from a single layer of
the high kinetic inductance supercondutor granular aluminum (grAl), the gralmonium
is designed to utilize the magnetic field resilience inherent to grAl for a fluxonium qubit.
Moreover, the tunnel junction of the fluxonium is replaced by a lithographically defined
volume of grAl on the order of (20 nm)3, the grAl nano-junction, which besides implement-
ing a field-resilient nonlinearity also offers an increased local sensitivity to the junction
and its vicinity. Remarkably, both the spectrum and coherence of the gralmonium are
measured to be comparable with conventional fluxonium qubits. However, frequency
fluctuations in the gralmonium spectrum imply the presence of unexpected fluctuations
of the grAl nano-junction parameters, indeed indicating a high susceptibility of the circuit
to the small grAl volume.

Prompted by the surprisingly standard current-phase relation (C𝜑R) extracted for the
grAl nano-junction, the second main result of the thesis is the observation of Josephson
harmonics in standard Al-AlO𝑥 -Al tunnel junctions [2]. This result is based on measure-
ments on various transmon devices from different laboratories. Contrary to the common
expectation of a purely sinusoidal C𝜑R, both a mesosocopic model of tunneling through
an inhomogeneous AlO𝑥 barrier and the measured transmon spectroscopy reveal higher
harmonic contributions on the percent level. As a consequence of Josephson harmonics,
the transmon charge dispersion can significantly deviate from the expectation based on
standard transmon modeling, which considers only a sinusoidal C𝜑R. The applicability of
these results to other superconducting circuits involving tunnel JJ evidences the relevance
of Josephson harmonics to refine the understanding for superconducting circuit models
and experiments.

This manuscript is delivered in two parts. The first part presents the main results of the
thesis and the second part includes more detailed information similar to the supplementary
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material of the corresponding publications. The main part is structured as follows: After
the remaining introductory sections, Chapter 2 presents the most relevant features and
measurements of the gralmonium qubit. Chapter 3 gives context for interpreting the
nano-junction current-phase relation by discussing Josephson harmonics in conventional
tunnel Josephson junctions. The main part is concluded in Chapter 4, which also gives
perspectives on the implications of the results and relevant follow-up research. The
second part of the manuscript covers in particular the experimental setup and sample
holder (Appendix A), fabrication and additional measurements of the gralmonium circuit
(Appendix B) and details on Josephson harmonics (Appendix C).

1.2 Superconducting Quantum Circuits

Superconducting circuits are amongst the most promising platforms for implementing
quantum information hardware, and the largest quantum processors to date have been
realized with superconducting circuits. Fundamentally, the approach is based on the
lossless flow of current in superconductors, which enables the storage and manipulation
of, in principle, long-lived electromagnetic excitations in resonant circuits. Probably the
most intriguing feature of superconducting circuits is that a quantum state — typically
associated with atomic-scale particles — can be hosted by macroscopic objects on the scale
of hundreds of micrometers and involving many thousands of atoms.

As a consequence, superconducting circuits can be designed and fabricated using estab-
lishedmethods such as finite element electromagnetic simulations and thin film lithography.
Similar to classical electrical engineering, the basic building blocks of superconducting
circuits are capacitors and inductors, which can be assembled to circuits with tailored
purpose. Combined with the aforementioned design and fabrication techniques, this ap-
proach to quantum information hardware offers a high level of control for implementing
the quantum system of interest.

“ I will probably never stop being amazed
about the idea that we can lay out some metal
wires on a chip, cool them down and they start
to behave as a quantum object.”

The transition from classical to quantum is formalized in the framework of circuit quanti-
zation, a set of rules to systematically derive the quantum Hamiltonian of a circuit from its
lumped element representation [51, 52]. Per the correspondence principle and equivalent
to the role of position and momentum in quantum mechanics, the flux𝛷 in inductors and
charge 𝑄 on capacitor pads are promoted to conjugate variables for quantum circuits,

[𝑄,𝛷] = iℏ ⇔ [𝑛, 𝜑] = i . (1.3)

In the right hand side version of the commutator we have introduced two dimensionless
operators, the number of Cooper pairs 𝑛 = 𝑄/2𝑒 and the superconducting phase 𝜑 =
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1.2 Superconducting Quantum Circuits

2𝜋𝛷/𝛷0, with ℎ being Planck’s constant, 𝑒 the charge of an electron and𝛷0 = ℎ/2𝑒 the
superconducting magnetic flux quantum. As an example, using the formalism of circuit
quantization, the Hamiltonian of the quantum LC circuit can be quantized as

𝐻 =
𝑄2

2𝐶 + 𝛷
2

2𝐿 = ℏ𝜔r

(
𝑎†𝑎 + 1

2

)
, (1.4)

in which 𝑎 (𝑎†) are the bosonic creation (annihilation) operators of the harmonic oscillator
and 𝜔r = 1/√𝐿𝐶 is the resonant frequency.

1.2.1 Josephson Effect

In order to implement superconducting circuits which can be used to store and manipulate
non-classical states, it is essential to have a nonlinear circuit element at hand, in addition
to the linear capacitive and inductive building blocks. For this reason, the Josephson effect
plays a fundamental role in superconducting circuits as it provides a lossless source for a
nonlinear relation between the current through and the superconducting phase across a
circuit element. Josephson predicted that the supercurrent through two superconducting
electrodes separated by a thin insulator should be given by [53–55]

𝐼 (𝜑) = 𝐼c sin𝜑 (1.5)

in which 𝐼c is the maximum (critical) supercurrent sustained by the junction. The im-
portance of the Josephson effect can be compared to the relevance of diodes in classical
electrical engineering, which enable the implementation of digital hardware due to their
nonlinear current-voltage relation.

Since Josephson’s prediction, many types of so-called “weak links” have been studied
with generally more complicated current-phase relations [56]. While, so far, tunnel
Josephson junctions (JJs) have been considered to be sufficiently well described by the
purely sinusoidal Josephson C𝜑R given in Eq. (1.5), we will discuss in detail the validity and
limitations of this simplification in Chapter 3. For simplicity, in this introductory chapter
we keep the treatment of the tunnel JJ on the level of the purely sinusoidal Josephson
C𝜑R.

The energy contribution of a Josephson tunnel JJ in a circuit is given by integrating the
C𝜑R, which yields the Josephson energy-phase relation (E𝜑R),

𝐸 (𝜑) = −𝐸J cos𝜑 . (1.6)

Here, 𝐸J = 𝛷0𝐼c/2𝜋 is denoted the Josephson energy of the junction which is linked to
the critical current. Note that associating the superconducting phase operator with the
position variable turns out practical as, in this case, the E𝜑R Eq. (1.6) can be considered
a nonlinear potential term for a “phase particle”. Instead, if 𝜑 was associated with the
momentum, one would have to deal with a “nonlinear mass”. Despite this assignment of
position and momentum variables, the nonlinearity of the JJ is a form of kinetic inductance
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as it arises from the motion (here tunneling) of Cooper pairs across the barrier. The
notion of the JJ implementing a nonlinear inductance becomes evident by expanding the
cosine potential of Eq. (1.6). While the first order of the expansion would correspond to a
perfectly linear inductance with associated quadratic potential, the higher orders become
increasingly relevant for increasing 𝜙 .

1.2.2 Superconducting Quantum Bits

Based on the nonlinearity of the Josephson junction (JJ) as a circuit element, a variety of
superconducting quantum bits have been developed. In general, the different approaches
try to find the best compromise between the various characteristics relevant for imple-
menting a qubit. In particular, each design comes with a different degree of sensitivity to
the various noise and loss channels affecting the coherence times of the qubit. Moreover,
the possibility to perform fast gates can be limited by the anharmonicity of the qubit, i.e.
the difference in transition frequency between the first and second transition of the circuit.
Eventually, also the simplicity of the circuit design and its fabrication are highly relevant
to make academic or industrial research on devices accessible.

“We tend to call these circuits qubits but we
should be well aware that their higher level
spectrum can matter.”

— A SUPERVISOR

A typical approach to outline the developments in superconducting circuits would be to
follow the history of superconducting qubits starting from the Cooper-pair box (CPB): one
of the first implementations of a superconducting artificial atom with the JJ connected
to a superconducting island [57–59]. In the following, we instead take a state-of-the-art
perspective and introduce two of the currently most common types of superconducting
qubits, which are based on fundamentally different ways to harness nonlinearity from
the Josephson junction: the transmon and fluxonium qubit. For each qubit we make links
to historical developments in the field and highlight the advantages of the respective
design.

Transmon

As shown in Fig. 1.1a, the transmon is a superconducting circuit in which the JJ is shunted
by a large capacitor such that the Josephson energy 𝐸J is much larger than the charging
energy 𝐸C = 𝑒2/2𝐶 of the capacitor [60], in which 𝑒 is the charge of an electron. The
standard transmon Hamiltonian with a purely cosine energy-phase relation reads

𝐻 = 4𝐸C(𝑛 − 𝑛g)2 − 𝐸J cos𝜑 , (1.7)

in which 𝑛g is the offset charge (in number of cooper pairs) on the capacitor plate, for
example induced by electric fields or due to quasiparticles. The index of 𝑛g refers to the
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1.2 Superconducting Quantum Circuits

Figure 1.1: Two common superconducting qubits: transmon (left column) and fluxonium (right
column). The rows show the lumped element circuit schematic, the energy landscape and wavefunctions,
and the change of the spectrum with the respective external degree of freedom for the transmon (left
column) and fluxonium qubit (right column). The first row (panels a,d) shows the lumped element circuit
schematics with the relevant energy scales of the circuit elements: the Josephson energy 𝐸J for the junction,
the charging energy 𝐸C of the capacitor and, for the fluxonium, the inductive energy 𝐸L. The transmon
features exponentially suppressed sensitivity to the offset charge 𝑛g (cf. panel c) while for the fluxonium the
external flux𝛷ext threading the loop between inductor and JJ is an important tuning parameter. b,e Potential
energy landscape (black line) and first four wavefunctions offset by their eigenenergy. For the transmon,
the plot resembles an anharmonic oscillator in a potential well defined by the JJ (cf. Eq. (1.7)). In contrast,
the fluxonium physics at 𝛷ext/𝛷0 = 0.5 (half flux bias) is dominated by tunneling between the potential
wells (cf. Eq. (1.9)). The dashed gray parabola is the inductive energy contribution, which the Josephson
potential oscillates around. The parameters used for the transmon are 𝐸J/ℎ = 10 GHz, 𝐸C/ℎ = 0.2 GHz and
for the fluxonium 𝐸J/ℎ = 10 GHz, 𝐸C/ℎ = 10 GHz and 𝐸L = 0.3 GHz. c Charge dispersion vs. offset charge
𝑛g of the first two transmon levels. Note the orders of magnitude difference between the maximum charge
dispersion of the first (bottom panel) and second transition (top panel). f Fluxonium spectrum vs. external
flux𝛷ext. The potential and wavefunctions in panel e correspond to the spectrum at𝛷ext/𝛷0 = 0.5.

notion that, in principle, one can control the offset charge by applying a “gate” voltage to
the capacitor.

In the transmon regime 𝐸J/𝐸C ≥ 50 ≫ 1, the system dynamics correspond to the one of a
phase particle with mass given by the capacitance𝐶 living in the potential well defined by
the JJ (Fig. 1.1b). For this reason, the spectrum and wavefunctions are reminiscent of a
quantum harmonic oscillator. However, in contrast to a harmonic system, the nonlinearity

9



1 Introduction

of the Josephson potential leads to non-equidistant energy-levels with the fundamental
transition frequency approximately given by [60]

ℎ𝑓01 ≈
√︁

8𝐸J𝐸C − 𝐸C , (1.8)

and an anharmonicity𝛼/ℎ = 𝑓12−𝑓01 ≈ −𝐸C, whereℎ is Planck’s constant. Themain benefit
of the transmon regime is the suppression of the charge dispersion 𝛿 𝑓0 𝑗 = 𝑓0 𝑗 (𝑛g) − 𝑓0 𝑗 (0)
of the energy levels 𝑗 (cf. Fig. 1.1c), which scales exponentially with the ratio −√︁

8𝐸J/𝐸C.
In contrast, for the CPB in the opposite regime of 𝐸J/𝐸C ∼ 1, the offset charge has to be
stabilized at values for which the spectrum is first-order charge insensitive in order to
maximize the coherence, which is challenging in practice [59, 61, 62]. Note that while the
transmon regime, in principle, promises to be exponentially insensitive to charge noise, it
is still an important design consideration to ensure that the charge dispersion does not
limit the dephasing time and the anharmonicity is not lowered more than necessary [60].

Since its initial publication more than 15 years ago, the transmon has been in the focus of
research both in academia and industry leading to some of the largest quantum processors
to date [19, 21, 63, 64]. This success is largely due to the simplicity and robustness of the
circuit design and fabrication compared to other types of superconducting qubits. Moreover,
coherence times of transmons on the order of several 100 µs have been achieved [65, 66]
by lowering the dielectric losses in the capacitor interfaces, which are currently one of the
main limitations for more coherent devices [43, 66].

Fluxonium

In a fluxonium qubit, the JJ and capacitor across the junction are in parallel with a so-called
superinductance, forming a superconducting loop interrupted by the JJ (cf. Fig. 1.1c) [67].
The name superinductance refers to the regime inwhich the characteristic impedance of the
inductance exceeds the superconducting resistance quantum 𝑅q = ℎ/(2𝑒)2. Accordingly,
the standard fluxonium Hamiltonian with a purely cosine energy-phase relation reads

𝐻 = 4𝐸C𝑛2 + 1
2𝐸L

(
𝜑 − 2𝜋𝛷ext

𝛷0

)2
− 𝐸J cos𝜑 , (1.9)

in which 𝛷0 = ℎ/2𝑒 is the superconducting magnetic flux quantum, 𝐸L = (𝛷0/2𝜋)2/𝐿q
the inductive energy and𝛷ext the external flux through the fluxonium loop. Depending
on the external flux bias (and the energy scales 𝐸J, 𝐸c, 𝐸L) the fluxonium circuit can be
continuously tuned from predominently one relevant potential well (around𝛷ext = 0) to a
system dominated by tunneling between two symmetric potential wells (at𝛷ext = 0.5𝛷0).
In the latter case, shown in Fig. 1.1e, the frequency of the first transition at half flux bias is
approximately given by the phase slip rate [68].

𝑓01(𝛷ext = 0.5𝛷0) = 4√
𝜋

(
8𝐸3

J𝐸C
)1/4

𝑒−
√

8𝐸J/𝐸C , (1.10)

which shows that the transition is exponentially sensitive in
√︁

8𝐸J/𝐸C. The result is
intuitive considering that 𝐸J corresponds to the height of the tunnel barrier and 𝐸C to
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the inverse mass of the phase particle in the double-well potential. Consequently, the
fluxonium half-flux frequency depends strongly on the ratio of the energy scales while for
the transmon, the transition frequency depends on their product, and, thus, their absolute
values (cf. Eq. (1.8)).

Compared to the transmon qubit, the fluxonium features a much larger anharmonicity
(cf. Fig. 1.1e,f) which is a prerequisite to implement fast and high-fidelity gates [69, 70].
Moreover, using a superinductor to shunt the junction results both in insensitivity to charge
noise as well as reduced sensitivity to flux noise compared to early implementations of
flux based qubits [67, 71–73]. However, the challenges associated with implementing the
superinductor increase fabrication complexity. Over the last decade, different solutions
have been established to realize superinductors in practice. The historically first implemen-
tation is based on JJ arrays, in which multiple JJs with 𝐸J/𝐸C ≫ 1 are connected in series
to implement a sufficiently large and linear inductance [67, 74]. Alternatively, high-kinetic
inductance superconductors can be used, for example NbTiN [75], Ti𝑥Al1−𝑥N [76, 77] or
granular aluminum [78]. Finally, contrary to popular belief [67, 79], it has recently been
shown that superinductors can also be implemented based on the geometric inductance of
pure aluminum with sophisticated engineering of the wire layout [80, 81].

Interestingly, after primarily being in the spotlight of academic research, fluxonium qubits
are actively considered as a promising qubit platform for upcoming generations of indus-
trial superconducting quantum processors [70, 82]. In terms of coherence, the longest
documented coherence time of a superconducting qubit 𝑇 ∗

2 ≈ 1.5 ms to date has been
recently demonstrated in a fluxonium qubit [74]. We note that, in order to reach this
value, the device has been decoupled from the readout mode — an example of the trade-
off between different desired qubit properties mentioned in the introduction. Similar to
the transmon and other superconducting circuits, an analysis of the decoherence budget
reveals that improvements in sample fabrication and materials used are key factors to
further improve the performance of fluxonium devices [70, 74, 77].

1.2.3 Circuit Quantum Electrodynamics (cQED)

On top of the coherence of and control over a qubit’s state, the ability to perform a high-
fidelity measurement of the state is crucial. Inspired by the Nobel-Prize-winning field of
cavity quantum electrodynamics, which treats the interaction of atoms and other particles
with photons as the quanta of light [83], the framework of circuit quantum electrodynamics
(cQED) explores the coupling of superconducting artificial atoms to bosonic readout modes.
Since the seminal papers [84, 85], the cQED architecture has been established as a standard
technique for the readout of superconducting qubits.

Of particular relevance is the dispersive readout regime in which a two-level system
with transition frequency 𝜔q and the readout (“cavity”) mode at 𝜔r are weakly coupled
with a coupling rate 𝑔 such that 𝑔 is much smaller than the frequencies 𝜔q, 𝜔r as well
as the detuning 𝛥 = 𝜔q − 𝜔r. In this case, the qubit, readout and their interaction
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can be described by a rotating-wave approximation (𝑔 ≪ 𝜔q, 𝜔r) and an approximately
diagonalized (𝑔/𝛥 ≪ 1) form of the Jaynes-Cummings-Hamiltonian,

𝐻/ℏ ≈ 1
2

(
𝜔q + 𝜒

)
𝜎𝑧 +

(
𝜔r𝑎

†𝑎 + 𝜒𝜎𝑧
)
𝑎†𝑎 . (1.11)

Due to the last term in Eq. (1.11), the readout mode acquires a dispersive shift of 𝜒 = 𝑔2/𝛥
depending on the qubit state. In this approximation, the readout is quantum non-demolition
(QND), which implies that the state of the qubit is preserved after its projection.

“ The𝑇 ∗
2 is not only a matter of the qubit itself

but also about the quality of your readout.”
— A SUPERVISOR

The success of the dispersive readout scheme, often combined with near quantum-limited
amplification and Purcell filters, is evident in the realization of single-shot readout for
superconducting qubits with fidelities on the level of 99 % and beyond on timescales
of ∼ 100 ns [9, 10, 86–90]. However, understanding the nature of non-QND effects in
measurements of superconducting qubits becomes increasingly relevant. A variety of
possible explanations have been discussed over the last decade, as these deviations from
QND readout can be visible at much lower readout powers than expected [91–94]. For
this reason, it is important to be aware of the limitations for the approximations going
into Eq. (1.11). Particularly, the assumption of an ideal two-level system is not realistic given
the finite anharmonicity and presence of the higher level spectrum in superconducting
circuits, especially in weakly anharmonic transmons. Moreover, non-perturbative terms
which are ignored in the rotating wave approximation can become relevant [95–97].

1.3 Spin-cQED Hybrid Architectures

As we have seen in the previous sections, superconducting circuits excel as a platform
for quantum information due to established techniques to manipulate and readout the
quantum state with high fidelity on sub-microsecond timescales, enabled by engineering
circuit elements and their interactions. In contrast, the weakness of superconducting
hardware as mesoscopic objects is their sensitivity to the plethora of uncontrolled degrees
of freedom present in solid-state physics.

Pretty much the opposite challenges compared to superconducting circuits emerge when
using the spin of electrons, magnetic atoms or molecular magnets to store and manipulate
quantum information. As atomic-scale objects, they are typically well-isolated from the
environment with coherence times reaching seconds or even hours in the case of nuclear
spins [98, 99]. However, for the same reason, it is challenging to increase the coupling
to the spin degree of freedom sufficiently to address and read out the spin. To overcome
this challenge, a variety of readout schemes have been developed based on transport
measurements including molecular spin-transistors [100], carbon-nanotube quantum
dots [101] or scanning-probe techniques [102].
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What these approaches have in common is that they bridge the gap between the nanoscopic
scale of single spin systems and macroscopic objects. In this regard, superconducting
circuits are a promising constituent for hybrid quantum systems, owing to their flexibility
in tailoring electromagnetic couplings. Indeed, coupling superconducting resonators or
qubits to spins based on electron-spin-resonance (ESR) has been an active area of research
for more than a decade [103–106]. By confining the mode volume of the magnetic field
of a resonant circuit, the coupling can be enhanced to be sensitive to an ensemble of few
spins [47]. These efforts have culminated in the recent success of the readout of single
spins by using a superconducting single-photon detector in the readout chain [49, 50].

In this thesis, wework towards an alternative approach for a hybrid spin-cQED architecture
based on the kinetic inductance of superconductors, which arises due to the inertia of
cooper pairs to alternating current. In contrast to geometric inductance, no magnetic
field is associated with current flowing through a kinetic inductance. As a consequence,
coupling via the kinetic inductance could be used to implement longitudinal readout
schemes instead of transverse ESR-type coupling [107, 108]. Similar to the approaches
discussed above, the goal is to implement a magnetic field-resilient circuit which is locally
sensitive to the magnetic field of few or ultimately single spins.

1.4 Granular Aluminum Circuits in Magnetic Field

The goal of spin-cQED hybrid applications imposes a significant design constraint on the
superconducting circuit: it should be resilient to magnetic fields relevant for operating the
spin constituent, which are typically in the 100mT range. For example, using aluminum
— a well-established material for low-loss superconducting circuits [43] — for hybrid
applications is challenging due to its low critical field 𝐵c = 10 mT. In principle, it is possible
to increase the in-plane field-resilience by reducing the film thickness to values on the
order of 10 nm. However, the versatility of nonlinear devices based on standard mesoscopic
Josephson junctions with dimensions in the (100 nm)2 range is limited due to a Fraunhofer-
pattern suppression of the critical current [109, 110]. In contrast, working towards a
kinetic inductance based circuit puts disordered superconductors such as NbN [111–114],
NbTiN [75, 115, 116], TiN [117–119] or InO [120] in the focus.

In this work, the material of choice is superconducting granular aluminum (grAl), which is
composed of crystalline aluminum grains, 2–4 nm in diameter, separated by an amorphous
aluminum oxide (AlO𝑥 ) matrix [121, 122]. As a consequence, compared to pure aluminum,
grAl features an enhanced critical temperature on the order of 𝑇c ≈ 2 K with a dome-
like dependence on the sheet resistivity [123] as well as a substantially increased kinetic
inductance reaching up to nH/□ at a film thickness of 20 nm [124, 125]. Moreover, the
material can be fabricated with standard evaporation techniques by adding an oxygen
atmosphere while evaporating aluminum. Importantly, grAl has been established as a
low-loss material for superconducting circuits [124–126] and has already been used, among
others purposes, for implementing the superinductance of flux-based qubits [78, 127], and
even the nonlinear inductance of a transmon qubit [5].
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Although a critical magnetic field of several Tesla can be expected for granular aluminum
based on DC measurements [128, 129], it is essential to confirm that grAl remains a
low-loss material for microwave circuits in magnetic fields. In addition, the situation for
thin film geometries used in superconducting circuits can be different from the intuition
for bulk superconductivity. In general, for a superconductor subject to magnetic field,
two main effects are relevant: (i) the suppression of the superconducting gap and (ii)
screening currents trying to shield the field. Both mechanisms influence the kinetic
inductance of a superconductor like grAl. The first effect is relevant because the kinetic
inductance is directly related to the superconducting gap and the suppression thereof.
The second contribution arises from the screening currents already taking up part of the
critical current. In this way, the inductance is increased similar to the nonlinearity of the
Josephson inductance.

“ A thin film grAl resonator goes to the therapist. “I’m such a
disordered mess, my inner self is never free. Am I even a
superconductor if I cannot shield myself?”, it complains. “No
worries,” says the therapist, “don’t compare yourself to others so
much. You only have to shield yourself. . . a little bit.””

Due to the geometry of thin-film grAl circuits with thickness in the tens of nanometer,
the two mechanisms are relevant to different degree depending on the orientation of the
applied magnetic field with respect to the plane of the film. In the following, we discuss
the two effects and their influence on grAl circuits in more detail using the frequency
dependence and internal loss measurements of grAl stripline resonators similar to the
ones in Ref. [4]. All measurements shown are taken on samples fabricated with a sheet
indutance on the order of 2 nH/□, for which the remaining contribution of the geometric
inductance can be considered irrelevant [130]. The samples are measured in a cylindrical
copper sample holder (see Appendix A for more details) and cooled down in a Sionludi
dilution cryostat equipped with a compact 3D vector magnet.

Resilience to In-Plane Magnetic Field

In Fig. 1.2 we show measurements for the magnetic field being applied parallel to the plane
of the thin-film (i.e. substrate surface). In this case the screening currents are minimal
and the dominant effect is the suppression of the gap. Based on Mattis-Bardeen theory,
for 𝑇 ≪ 𝑇c, the kinetic inductance 𝐿k is inversely proportional to the superconducting
gap 𝛥 [131, 132] and using the field-dependence of the gap, 𝛥 (𝐵∥) =

√︁
1 − (𝐵∥/𝐵c)2

with critical field 𝐵c, the relative frequency change of a resonator for 𝐵 ≪ 𝐵c can be
approximated by

𝛥𝑓r(𝐵∥)
𝑓r(0) =

𝑓r(𝐵∥) − 𝑓r(0)
𝑓r(0) ≈ −1

2
𝐿kin(𝐵∥)
𝐿kin(0) ≈ −1

4

(
𝐵∥
𝐵c

)2
, (1.12)

where 𝑓r(0) and 𝐿kin(0) are the resonant frequency and kinetic inductance in zero magnetic
field, respectively. While the resulting parabolic frequency shift corresponds to 𝐵c in the
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1.4 Granular Aluminum Circuits in Magnetic Field

Figure 1.2: Resilience of grAl resonators up to 1T. a 𝛥𝑓r/𝑓r in magnetic field 𝐵 ∥ applied in-plane to
the thin film (cf. sketch) for two stripline grAl resonators with resonatn frequencies at zero field 𝑓r (0) as
indicated in the legend. The dependence is parabolic as expected from Eq. (1.12). b Internal quality factor 𝑄i
for the same field range as shown in panel a. The markers correspond to 𝑄i and the shaded areas to the
systematic Fano uncertainty range introduced in Ref. [3] and calculated for an isolation of −15 dB. Note the
pronounced dip in 𝑄i at 𝐵 ∥ = 0.22 T and 0.28 T for the lower and higher frequency resonator, respectively.

range of several Tesla (cf. Fig. 1.2a), it should be mentioned that these values extracted
based on the approximation Eq. (1.12) have limited significance. We note that for each 𝐵∥ ,
the out-of-plane field 𝐵⊥ has been tuned such that 𝑓r is maximal in order to compensate
for misalignment of 𝐵∥ with the plane of the film.

Importantly, as we show in Fig. 1.2b, the internal losses of grAl resonators are resilient
to parallel magnetic field up to at least 1 T and stay on the level of 𝑄i ≈ 105 measured in
zero field [124, 125]. We note that this type of frequency-dependent measurement can be
subject to a systematic source of error due to Fano-type interference [3]. Interestingly, a
pronounced decrease in 𝑄i occurs at magnetic fields 𝐵∥ corresponding to the fields where
the Zeemann energy splitting of spins 1/2 with Landé factor 𝑔 = 2 are resonant with
the respective 𝑓r, i.e. ℎ𝑓r = 𝑔𝜇B𝐵∥ . While similar features have been observed in other
superconductors or different substrates and are commonly attributed to paramagnetic
impurities of the substrate or interfaces [115, 116, 133, 134], the precise origin of this
spin ensemble in grAl remains unknown. Among possible candidates are oxygen adsor-
bates [135, 136], trapped quasiparticles [137] and, in particular for grAl, spins localized in
the oxide between the aluminum grains [138].
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Figure 1.3: Sensitivity of grAl resonators to out-of-plane field. a Relative frequency shift 𝛥𝑓r/𝑓r in
magnetic field 𝐵⊥ applied perpendicular to the thin film (cf. sketch) for three stripline grAl resonators with
different widths𝑤 as indicated in the legend. The parabolic dependency is weaker the narrower the width.
The inset confirms the quadratic dependence on 𝐵⊥ and𝑤 as expected from Eq. (1.13). b Internal quality
factor 𝑄i for the same field range as shown in panel a. The markers correspond to 𝑄i and the shaded areas
to the systematic Fano uncertainty range introduced in Ref. [3] and calculated for an isolation of −15 dB.

Out-of-plane Sensitivity

For magnetic field applied perpendicular to the plane of the film, the phenomenon causing
the measured frequency shift is different. For typical resonator geometries, screening
currents lead to the dominating change in kinetic inductance, and the contribution from
the gap suppression is vanishing, as we will see in the following. The change in kinetic
inductance due to screening currents is given by 𝐿k(𝐼 )/𝐿k(0) =

√︁
1 + (𝐼/𝐼 ∗)2, in which

𝐼 ∗ is a parameter on the order of the critical current [112, 132, 139]. In order to get the
dependence on perpendicular field, the relevant film property is the effective screening
length 𝜆⊥ = 𝜆2

L/𝑡 , which enhances the London penetration depth 𝜆L when the film thickness
𝑡 ≪ 𝜆L. For a grAl film with 𝜆L on the order of micrometers [121, 140] and thickness
𝑡 = 20 nm, we get 𝜆⊥ ∼ 50 µm. As a consequence, for a stripline resonator with length
𝑙 ≫ 𝜆⊥ and width 𝑤 ≪ 𝜆⊥, the screening currents increase proportional to 𝐵⊥ ·𝑤 [115,
141]. Since the critical current increases linearly in𝑤 , the relative frequency shift of the
grAl resonator in small out-of-plane magnetic fields can be approximated by

𝛥𝑓r(𝐵⊥)
𝑓r(0) ≈ −1

2
𝐿kin(𝐵⊥)
𝐿kin(0) ∝ −

(
𝐼

𝐼 ∗

)2
∝ − (𝐵⊥𝑤)2 . (1.13)
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1.4 Granular Aluminum Circuits in Magnetic Field

This dependency is confirmed in Fig. 1.3a by measuring resonators with different widths
made from the same grAl film. Note that the field range explored in the measurement is
on the order of mT, about 3 orders of magnitude lower in comparison to in-plane field
required for similar frequency shifts (cf. Fig. 1.2a).

As shown in Fig. 1.3b, the internal losses are also resilient to out-of-plane magnetic field in
this range. However, this is true only in the regime below a geometry-dependent threshold
field 𝐵⊥,th, in which the internal losses remain on the order of the zero-field value and the
frequency shift is given by Eq. (1.13). In contrast to this reversible regime, grAl resonators
enter an irreversible regime above 𝐵⊥,th, in which the frequency shift becomes hysteretic
and 𝑄i shows stochastic jumps in value [4]. Moreover, in this regime crossings with
field-dependent modes can be observed, which can be attributed to fluxons coupled to
the microwave current of the resonator and tuned in frequency by the magnetic field.
Typical values for 𝐵⊥,th are on the order of 1mT for 10 µm-wide resonators [4] but can be
increased to several mT by reducing the resonator width as shown in Fig. 1.3.

In summary, the intrinsic losses of grAl resonators are resilient to magnetic fields up to 1 T
aligned in-plane to the film and, depending on the geometry of the circuit, resilient to order
of mT magnetic fields out-of-plane to the film. Notably, also the nonlinearity inherent to
the kinetic inductance of grAl has been shown to be resilient to in-plane magnetic field up
to ∼ 100 mT [5], as discussed in more detail in Section 2.1.2. The compromise of sufficient
resilience to in-plane magnetic fields but a remaining sensitivity, which can be tuned by
geometry, makes grAl a promising material choice for hybrid applications.
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2 Gralmonium: Granular Aluminum
Nano-Junction Fluxonium Qubit

In this chapter the first main result of the manuscript is presented: a single-layer
granular aluminum (grAl) fluxonium qubit, nicknamed gralmonium. First, we discuss
how grAl circuit elements can be designed to implement varying degrees of nonlin-
earity. Next, we outline how this work is related to the previous implementation of
a transmon qubit with a grAl Josephson element. After introducing a grAl-based
replacement for a tunnel junction, the grAl nano-junction, the circuit design and
model for the gralmonium is discussed. Experimental results on the spectroscopy
and time domain characterization of the gralmonium match all expectations for a
conventional fluxonium, apart from conspicuous fluctuations in parameters related
to the nano-junction. The chapter ends with the observation that the nano-junction
current-phase relation is indistinguishable from the expectation for a standard tun-
nel junction. This chapter is adapted in parts from Rieger, Günzler et al., Nat. Mater.
22, 194–199, 2023 (Ref. [1]).

2.1 Design Considerations

2.1.1 Nonlinearity of Granular Aluminum Circuit Elements

As discussed in the introductory chapter, the goal of implementing a magnetic-field
resilient circuit with the potential to detect the state of a few spins imposes two main
design constraints. We have already seen in Section 1.4 that grAl circuit elements fulfill the
first requirement which is to be compatible with magnetic fields on the order of ∼ 100 mT
relevant for the operation of spin-based qubits. The second constraint is the possibility
to realize a circuit element which is sensitive to the spin state. The rapid decay of the
magnetic dipole field with the cubed distance 1/𝑟 3 [142] suggests that such a detector
element would need dimensions on the nanometer scale.

Consequently, in this section, we discuss the versatility offered by grAl to implement
various circuit elements and focus on the dependence of their properties on film param-
eters and dimensions of the element. As illustrated in Fig. 2.1a, the microstructure of
grAl, composed of crystalline aluminum grains in an amorphous aluminum-oxide matrix,
corresponds to a 3D network of Josephson junctions. Note that the junctions in this
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2 Gralmonium: Granular Aluminum Nano-Junction Fluxonium Qubit

Figure 2.1: Nonlinearity of granular aluminum (grAl) circuit elements. a The microstructure of grAl,
consisting of crystalline aluminum grains in an amorphous aluminum oxide matrix (sketched in the zoom-in),
can be modeled as a 3D Josephson junction network. As a consequence the self-Kerr coefficient 𝐾11 of grAl
circuit elements scales inversely proportional to the critical current density 𝑗c of the film and the volume
𝑉grAl = 𝑙𝑤𝑡 of the grAl element with length 𝑙 , width𝑤 , and thickness 𝑡 b The scale of nonlinearity which
can be covered by grAl elements by tailoring their dimensions. While 𝐾11 can be designed much smaller
than the linewidth 𝜅, for example for resonators and superinductors, an elevated nonlinearity can be used
for paramteric amplification. Expanding on the implementation of a transmon qubit with a grAl volume on
the order of (100 nm)3 as the nonlinear Josephson element, this thesis addresses the question if a tunnel
junction can be replaced by a sufficiently small volume of grAl. Note that the scale is only qualitative on
purpose as the notion of 𝐾11 and 𝜅 is not precisely defined when transitioning from full grAl resonators to
increasingly smaller circuit components being made from grAl.

network do not necessarily coincide with the physical aluminum grains [138, 143]. Based
on this intrinsic structure, the circuit quantum electrodynamics of a rectangular strip of
grAl carrying a homogeneous current along one dimension, can be modeled as a 1D array
of Josephson junction for frequencies well below the plasma frequency of the film [144].
The resulting self-Kerr coefficient of the grAl element is given by

𝐾11 ∝
𝜔2

1
𝑗c𝑉grAl

, (2.1)

in which 𝜔1 is the frequency of the fundamental mode, 𝑗c is the critical current density of
the film and 𝑉grAl is the volume of the grAl element (cf. Fig. 2.1a). Note that 𝑗c decreases
with a power law inversely to the sheet resistivity of the grAl film [140, 145]. Remarkably,
the predicted scaling of Eq. (2.1) has been confirmed experimentally across many orders
of magnitude [144].

The key dependency of Eq. (2.1) for fabricating grAl circuit elements from a particular film
is conceptualized in Fig. 2.1b: for fixed frequency 𝜔1 and critical current density 𝑗c, the
nonlinearity of a grAl circuit element increases inversely proportional to the volume of the
element. As a consequence, the geometry of a grAl wire is a crucial tuning knob for tailoring
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2.1 Design Considerations

its nonlinearity. On the low nonlinearity side of the scale are grAl resonators [4, 125, 130]
and grAl superinductors [78, 127] with typical dimensions on the order of ∼ µm in width
and 100s of µm in length. As required for these objects, their self-Kerr coefficient 𝐾11 ∼ Hz
is sufficiently small such that the grAl volume implements a quasi-linear inductance. By
increasing the nonlinearity, a grAl circuit element can be utilized to achieve parametric
amplification [146] similar to Refs. [147–149].

“ If we trust a model over several orders of
magnitude, we might as well extrapolate it by
one more.”

Utilizing a grAl inductance with volume 10 × 200 × 500 nm3, a transmon-type supercon-
ducting qubit has been implemented in Ref. [5] in which the self-Kerr 𝐾11 ≈ 4.5 MHz
exceeds the linewidth of the mode by two orders of magnitude. Building on this result and
trying to implement an even smaller grAl circuit element, starts to test he limits of the
model underyling Eq. (2.1), especially as the dimensions of the grAl volume approach the
scale of only a few aluminum grains in the film. For this reason, this thesis addresses the
question how far the versatility of nonlinear grAl circuit elements can be extended and if
a sufficiently small grAl volume can effectively replace a conventional tunnel junction.

2.1.2 From GrAl Transmon to GrAl Fluxonium

The possibility to use order of (100 nm)3 volumes of grAl as nonlinear Josephson elements,
as explored in previous works in the group [5, 140], serve as valuable guidance. In particular,
the 10×200×500 nm3 nonlinear grAl inductance of the transmon qubit in Ref. [5] confirms
that magnetic field resilience and low microwave losses are still given for a grAl circuit
element which contains only a few thousand Al nano-grains. In this section, we briefly
discuss the implications and limitations of the grAl transmon approach in order to motivate
why a fluxonium-type circuit is suitable and necessary for utilizing even smaller nonlinear
grAl elements.

A key design aspect for the grAl transmon is that the grAl volume serving as the Josephson
element of the circuit must be shunted by a low-impedance capacitance in order not to
dilute the nonlinearity with additional (linear) inductance. This requirement is realized in
Ref. [5] by evaporating two additional layers of pure aluminum in a multi-angle fabrication.
Although the shunting layers ensure that the circuit is in the qubit regime, i.e. the self-Kerr
exceeds the linewidth 𝐾11 ≫ 𝜅 (cf. Section 2.1.1 and Fig. 2.1), the low anharmonicity of the
circuit can limit the manipulation and readout timescales. While further decreasing the
grAl volume would help to increase the nonlinearity, there are two practical challenges in
scaling down the unshunted grAl element for this type of circuit design. First, it will be
difficult to evaporate the two shunting layers in such close proximity to each other that
a sub (100 nm)2 area of grAl remains uncovered. Second, the grAl element can be easily
short-circuited by electrostatic discharge when it is galvanically connected to ideally very
low-impedance, large capacitance pads.

21



2 Gralmonium: Granular Aluminum Nano-Junction Fluxonium Qubit

Establishing the perspective of grAl for hybrid applications beyond the resonator mea-
surements discussed in the introductory Section 1.4, the grAl transmon has been shown to
be resilient up to in-plane magnetic fields of ∼ 100 mT. However, in this field range, the
circuit starts to be limited by the pure alumnium shunting layers. Since the low-impedance
capacitance is essential for the circuit design, the aluminum layers could be replaced by
superconductors with higher critical field. Unfortunately, alternatives like niobium are
more difficult to include in a multi-layer fabrication with granular aluminum, for example
due to the risk of lossy niobium oxides [150] or finite contact resistance between the layers.
Apart from that, the interface between high- and low-impedance layers will lead to locally
increased current densities and can lead to interference effects in magnetic field[146].

In terms of readout, the transmon in Ref. [145] is measured in resonance fluorescence
as it is directly coupled to a waveguide, which dominates the energy relaxation of the
qubit. Further decoupling the circuit would increasingly impair a fast and high-fidelity
readout. On the contrary, a cQED dispersive readout scheme with the transmon coupled to
a dedicated readout mode would offer (approximately) quantum non-demolition readout
(cf. Section 1.2.3). However, for a fixed-frequency transmon, the dispersive shift decreases
quadratically with the frequency detuning between qubit and readout mode, which reduces
the reliability of finding resonator-qubit pairs in a suitable coupling regime.

In total, while many aspects of the grAl transmon can be further improved, in the best case
the resulting circuit would approach the properties of conventional cQED transmons. In
contrast, a fluxonium-type of circuit offers a natural solution for many of the limitations
discussed above. First of all, in the fluxonium the nonlinear circuit element is shunted by
a high-impedance superinductor, which can be implemented with grAl [78, 127], avoids
the need for an additional shunting layer and, thus, simplifies the fabrication process.
Additionally, the superinductor comes with the practical advantage of protecting the small
grAl volume from discharge by limiting the current. Moreover, dispersive readout can be
implemented despite the high-impedance environment by sharing kinetic inductance with
a readout resonator similar to Refs. [78, 151]. Finally, for the purpose of coupling spins
to the circuit, the fluxonium transition frequency at half-flux bias would profit from an
exponential sensitivity to the parameters of the grAl Josephson element (cf. Section 1.2.2).

Of course, opting for a fluxonium circuit operated in strong magnetic fields can also bear
risks. One obvious caveat compared to a fixed frequency transmon could be the reliance
and sensitivity of the fluxonium to out-of-plane flux (cf. Section 1.2.2). On the other hand,
this degree of freedom can also be a powerful tool, e.g. to analyze the qubit at different
frequencies and to select coupled qubit-resonator pairs directly based on flux sweeps.
The latter idea is based on how the frequency extrema of the first fluxonium transition
are related to its circuit parameters: while the zero-flux frequency can be bounded by
the fluxonium inductance and capacitance, the half-flux frequency is most sensitive to
the Josephson energy. Lastly, by using high-resistivity grAl the length of the required
superinductor and, consequently, the loop area relevant for the out-of-plane sensitivity can
be scaled down compared to previous grAl-superinductor fluxoniums [125]. The remaining
design question is if it is feasible to implement a grAl volume small enough to operate in
the phase-slip regime required for a fluxonium tunnel junction.
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2.2 GrAl Nano-Junction

2.2 GrAl Nano-Junction

As outlined in the previous sections, in order to implement a fluxonium tunnel junction
using a small volume of grAl, the suitable approach is to utilize a high-resistivity grAl film
and aim to minimize the dimensions of the grAl element. With this strategy in mind, what
are realistic dimensions that should be aimed for and which level of nonlinearity would
we expect for such an element? In the following, we estimate an answer to these questions
by extrapolating the values documented in Ref. [140].

Given a measured critical current on the order of 𝐼c ∼ 1 µA for a grAl element with sheet
resistivity in the range 𝜌 ≈ 3000–6000 µΩ cm and cross-section ∼ 20×200 nm2, we find that
with a reduction in width by one order of magnitude, one could implement a grAl element
with critical current 𝐼c ≲ 100 nA corresponding to a Josephson energy of 𝐸J/ℎ ≲ 100 GHz.
Indeed, this would be the relevant order of magnitude for which the junction is placed
in the phase-slip regime 𝐸J ∼ 𝐸C (cf. Eq. (1.10)), provided that the capacitance across the
junction is small. As we expect 𝐶 ≪ 1 fF (corresponding to 𝐸C ≳ 20 GHz) for electrodes
with the mentioned dimensions, the regime required to implement a tunnel junction
appears to be within reach.

“ The size of the grAl volume for replacing a fluxonium tunnel
junction creates an interesting high-risk high-reward synergy:
the fluxonium will only work if the junction is small enough but
we will only know that the junction is small enough if we can
measure a fluxonium.”

Based on this estimation, it is clear that one has to lithographically define a volume 𝜀3

of grAl with dimensions on the order of 𝜀 ≈ 20 nm. In the following, we denote this
grAl element the grAl nano-junction. Owing to its small dimensions, this circuit element
is not only testing the limits of modeling the grAl microstructure (cf. Section 2.1.1) but
also the limits of reliable thin film lithography. In principle, the feature size can still be
directly written with high-resolution e-beam lithography, for example by a combination
of using conductive substrate like silicon, thin photo resist layers or an etching-based
fabrication approach. However, on insulating sapphire — an established low-loss substrate
for superconducting circuits thanks to its simplicity in handling and preprocessing —
proximity effects considerably influence the exposure and impair e-beam lithography on
the ∼ 10 nm scale.

Fig. 2.2 summarizes the approach developed to fabricate grAl nano-junctions with adequate
reproducibility based on lift-off lithography on sapphire substrate. As shown in Fig. 2.2a,
in order to fine-tune the width of the junction, the diagonal distance of two wires separated
by a few tens of nm is adjusted (green arrows) to maximize the yield of junctions which
are connected. Example scanning electron microscope (SEM) images of a 𝜀 ≈ 20 nm wide
nano-junction (left panel) and a disconnected version (right panel) are shown in Fig. 2.2b.
After optimizing the diagonal distance and the exposure parameters, a significant fraction
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Figure 2.2: Fabrication of the grAl nano-junction. a Sketch of lithography pattern to fabricate the nano-
junction. The geometry directly written with an electron beam and the area effectively exposed due to
proximity effects are shown in blue and yellow, respectively. As indicated by the green arrows, the overlap
leading to the nano-junction can be tuned by adjusting the diagonal distance between the corners of the
leads (green arrow). b Scanning electron microscope (SEM) images of a connected nano-junction (left panel)
and an disconnected version (right panel). The width of the nano-junction 𝜀 ≈ 20 nm is indicated by the
red arrows. c Histogram of measured nano-junction widths 𝜀 based on 50 SEM images similar to the ones
shown in panel b. The gray bar at 𝜀 < 0 shows the number of interrupted junctions, and the rightmost bar
with dashed outline includes all widths 𝜀 ≥ 40 nm.

of the nano-junctions in a fabrication run are in the target range for the width, as illustrated
by the histogram of measured widths for 50 nano-junctions in Fig. 2.2c.

2.3 Gralmonium Qubit

2.3.1 Circuit Design

Equipped with the preliminary considerations of the previous sections, here, we discuss
how the grAl nano-junction is embedded into a single-layer grAl fluxonium circuit, which
we nickname gralmonium. As shown in Fig. 2.3, the gralmonium circuit including its
readout antenna covers the whole scale of nonlinearity from resonator to nano-junction
sketched in Fig. 2.1. The sample is patterned from a single layer of grAl with thickness
20 nm and sheet resistance 1.5 kΩ/□ on a sapphire substrate (cf. Appendix B.1). The
readout antenna (Fig. 2.3a) is formed by a 4 µm × 700 µm stripline of grAl, for which we
expect a low nonlinearity on the order of a self-Kerr coefficient 𝐾11 ∼ 10 Hz [4, 144]. The
gralmonium qubit is galvanically coupled to the readout by sharing 8 µm of the antenna
as part of the fluxonium loop (Fig. 2.3b), similar to Refs. [78, 151]. The superinductor
is given by a 170 nm wide and approximately 50 µm long grAl wire. In order to reduce
the sensitivity to out-of-plane magnetic field, the loop area is decreased compared to a
rectangular shape by arranging the wire in a meander pattern.

Thewire of the flux loop is locally confined to a width of 𝜀 = 20 nm (Fig. 2.3c), implementing
the 𝜀3 volume of the grAl nano-junction (cf. Section 2.2). Given the ≈ 4 nm grain size in
grAl [122] and the superconducting coherence length of our grAl film, which we estimate in
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Figure 2.3: Microscope images and circuit schematics of the gralmonium sample. a Optical micro-
scope image of the readout resonator with the gralmonium qubit located in the center. The resonator is
implemented as a rectangular grAl strip antenna of width 4 µm and length 700 µm. b Zoom-in on the qubit
as a false-colored scanning electron microscope (SEM) image showing the meandered grAl superinductor
loop [78] (green) galvanically coupled to the readout antenna (ocher). The loop is closed by a coplanar
interdigitated capacitor (blue) in parallel with the grAl nano-junction. c Zoom-in on the grAl nano-junction
similar to Fig. 2.2b. The grAl volume on the order of 𝜀3 with 𝜀 ≈ 20 nm is realized by locally confining the
loop wire (red arrows). d Circuit model of the effective one-dimensional JJ chain implemented by the grAl
nano-junction and the surrounding superinductor. e Lumped element circuit schematic of the gralmonium
sample consisting of the qubit inductively coupled to the readout resonator. The colors of the nano-junction,
qubit capacitor 𝐶q, qubit superinductor 𝐿q, resonator capacitor 𝐶r, inductor 𝐿r and shared inductor 𝐿s match
the overlay colors in panel b. The circuit is measured in single-port reflection in a cylindrical copper sample
holder (cf. Appendix A) anchored at the mixing chamber stage of a dilution cryostat (𝑇 ≈ 10 mK), with a
Dimer Josephson Junction Array Amplifier (DJJAA) [6]. This figure is adapted from Fig. 1 in Ref. [1].

the range of 5 nm < 𝜉 < 10 nm < 𝜀 [121, 152], the nano-junction consists of a 3D network
of Josephson junctions. However, the operating frequency of the circuit is well below the
plasma frequency (≈ 70 GHz [123, 144]), which is why for both the nano-junction and the
superinductor wire, the 3D network can be effectively considered a 1D array of SIS JJs [144]
(Fig. 2.3d). While, in practice, it cannot be ruled out that the nano-junction is formed by
multiple Al-AlO𝑥 interfaces, a single effective Josephson energy 𝐸J and capacitance 𝐶J is
used to describe it analogous to a standard SIS JJ with sinusoidal current phase relation [56].
This assumption is tested by analyzing the spectrum of the gralmonium in Section 2.3.2 and
more thoroughly by checking for the presence of Josephson harmonics in Section 2.4.

The difference between the effective wire JJs and the nano-junction is the order of mag-
nitude different Josephson coupling due to the reduced cross-section. While for the
superinductor we estimate 𝐸arrayJ /𝐸arrayC ≈ 102, the nano-junction is expected to be in the
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relevant regime for a tunnel junction in a fluxonium, 𝐸J/𝐸C ≲ 1 (cf. also Section 2.1.2).
The two contributing factors for this difference are both the small Josephson coupling and
intrinsic capacitance 𝐶J < 1 fF of the nano-junction.

“ Some people like to give funny nicknames to (even slight
variations of) qubit circuits, others try to avoid it. I feel like it is
a fun game to play and my new personal favorite added to the
list of artificial atoms — such as transmon [60], fluxonium [67],
X-mon [153], gatemon [154], gralmonium [3] — is definitely the
recent “flowermon” [155].”

The lower bound for the total charging energy of the gralmonium is fixed by adding a
coplanar interdigitated capacitor 𝐶q (blue in Fig. 2.3b,e) in parallel to the nano-junction
such that 𝐸𝛴C ≈ 𝐸J. Note that owing to the compact layout of the superinductor loop, the
meanders close to the junction partially contribute to the intended𝐶q. This is indicated by
the color gradient between green (inductive) and blue (capacitive) in Fig. 2.3b. Although
the circuit is distributed due to its dense layout, we can model gralmonium in terms
of an effective lumped element representation as illustrated in Fig. 2.3e as long as the
operating frequencies are lower than other modes present in the distributed circuit. For
the measurements discussed in the following, the sample is mounted in a sub-wavelength
copper tube (see Appendix A) and measured in single-port microwave reflection employing
a parametric quantum amplifier [6].

2.3.2 Spectroscopy

As mentioned in Section 2.1.2, the fluxonium-based circuit offers an efficient way to test
for nano-junctions and gralmonium qubits in the intended regime: if a functioning qubit
is coupled to the resonator, the resonator flux sweep shows avoided level crossings at the
external flux values, at which the qubit and resonator modes match, as shown in Fig. 2.4a.
Importantly, the crossings repeat periodically in flux (cf. Appendix B.2), as expected for
fluxonium qubits. This is in contrast to similar crossings visible in grAl resonators subject
to out-of-plane magnetic field above their geometry dependent threshold (cf. Section 1.4
and Ref. [4]). While in total more than 20 functioning gralmonium devices have been
identified across more than 10 different wafers (cf. Appendix B.7), in the following we
focus the discussion on one main device, which has been measured in most detail.

In Fig. 2.4b, we map out the spectrum of the gralmonium up to 14GHz by following
the qubit mode with two-tone spectroscopy, i.e. by monitoring the readout resonator
while applying a second microwave tone at varying drive frequency 𝑓d. Interestingly, the
gralmonium spectrum with half-flux and zero-flux frequencies of 4.0 GHz and 10.8 GHz,
respectively, is reminiscent of conventional fluxonium spectra. Indeed, a joint fit of the 𝑓𝑔𝑒
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Figure 2.4: Gralmonium spectroscopy vs. external flux𝛷ext. a Phase response arg(𝑆11) of the readout
resonator measured in single-port reflection. Avoided level crossing are visible at the flux values at which
the qubit mode matches the resonator frequency. b Two-tone spectroscopy of the gralmonium, performed
by applying a second drive tone at 𝑓d while monitoring the resonator response. The markers show extracted
data for the transitions |g⟩ → |e⟩ (blue) and |g⟩ → |f⟩ (red). The empty ranges around 7.4 GHz and 13.1 GHz
are due to the qubit mode crossing the resonator and the first superinductor mode, respectively. The black
lines show a fit to the spectrum with the resulting qubit parameters 𝐿q = 285 nH, 𝐸J/ℎ = 23.4 GHz and
𝐶𝛴 = 𝐶q + 𝐶J = 1.26 fF as indicated in Fig. 2.3 and Table 2.1. In the insets, we present raw spectroscopy
data at the flux sweet spots; the color scale corresponds to the reflection amplitude |𝑆11 | normalized to the
maximum. This figure is adapted from Fig. 2 in Ref. [1].

and 𝑓𝑔𝑓 transition frequencies (blue and red in Fig. 2.4) based on numerical diagonaliza-
tion [78, 156] of the standard fluxonium Hamiltonian [67],

𝐻 = 4𝐸𝛴C𝑛
2 + 1

2𝐸L
(
𝜑 − 2𝜋𝛷ext

𝛷0

)2
− 𝐸J cos𝜑 , (2.2)

matches the data (black lines). Here, the grAl nano-junction is modeled with a purely
sinusoidal current-phase relation and effective Josephson energy 𝐸J (cf. Fig. 2.3d); 𝜑 and 𝑛
are the operators corresponding to phase difference across the junction and the normalized
number of Cooper pairs, respectively; 𝛷0 = h/2e is the superconducting magnetic flux
quantum, 𝐸L = (𝛷0/2𝜋)2/𝐿q the inductive energy and𝛷ext the external flux through the
gralmonium loop. The agreement between the gralmonium spectrum and the assumption
of a purely sinusoidal current-phase relation for the nano-junction is discussed in detail in
Section 2.4.

Based on the fit to the spectrum, we extract a Josephson energy 𝐸J = 23.4 GHz of the nano-
junction, which agrees with the expected range for the dimensions of the grAl volume
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Parameter Value Energy scale

Critical current 𝐼c = 48.7 nA 𝐸J/ℎ = 23.4 GHz
Inductance 𝐿q = 285 nH 𝐸L/ℎ = 0.573 GHz
Total capacitance 𝐶𝛴 = 1.26 fF 𝐸𝛴C/ℎ = 15 GHz

Table 2.1: Overview of gralmonium circuit parameters. The values are based on the fit to the spectrum
shown in Fig. 2.4b. Note that they correspond to an effective, lumped element description of the gralmonium
circuit as introduced in Fig. 2.3. The extracted capacitance is the total capacitance across the junction
𝐶𝛴 = 𝐶J +𝐶q, including the coplanar interdigitated capacitor.

involved (see Section 2.2). Moreover, as expected, the total fitted capacitance across the
junction𝐶𝛴 = 𝐶q+𝐶J is 1.26 fF is dominated by the fixed contribution from the geometrical
capacitance 𝐶q ∼ 0.8 fF. An overview of the fit parameters extracted from the spectrum is
given in Table 2.1.

“ If we only ever measured one “hero device”, the gralmonium
would be a prime contribution to the possible reproducibility
crisis in science [157]. Fortunately, with a sense of pride and
accomplishment, we have reproduced functioning qubits over
several years, on different wafers, with different designs, across
different clean-room facilities.”

Discussing the features in the spectrum in more detail, we note that the |g⟩ → |f⟩ transition
is suppressed around zero-flux (Fig. 2.4b, top left inset), which fulfills the fluxonium
selection rules [67]. Contrary to expectations, the linewidth of the |g⟩ → |e⟩ transition
does not get narrower when approaching the sweet spots at half- and zero-flux (Fig. 2.4b,
bottom and right inset). Instead, a toggling of the qubit frequency is observed, particularly
visible in the half-flux spectroscopy (bottom right inset) and occuring on a timescale
of minutes (corresponding to a few traces in the data). This observation indicates the
presence of critical current fluctuations as a dominating decoherence source (beyond flux
noise) and will be discussed in more detail in the following section.

2.3.3 Time Domain Characterization

In order to utilize the gralmonium — as a qubit for quantum information or a detector
circuit — sufficient energy relaxation (𝑇1) and coherence times (𝑇2) are important. The
first is essential to enable dispersive readout of the qubit state without decay of the state
populations over the time of the measurement 𝑡m ≪ 𝑇1. Moreover,𝑇1 gives an upper bound
for the coherence (𝑇2 ≤ 2𝑇1). The coherence 𝑇2 quantifies the decay of knowledge about
the qubit state. Regarding the usage as a detector, 𝑇2 also limits the frequency resolution
achievable for detecting external signals since dephasing 𝑇𝜑 corresponds to the noise on
the qubit frequency.
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Figure 2.5: Energy relaxation and coherence of the gralmonium at half-flux bias. a Example of a free
decay energy relaxation and b spin Hahn echo measurement. The black lines corresponds to exponential fits
with decay times 𝑇1 = 11.4 µs and 𝑇 echo

2 = 10.5 µs, respectively. The markers are the mean of 20 iterations,
each based on 100 averaged single shot qubit measurements, and the gray error bands show the standard
error of the mean over the 20 iterations. The insets contain histograms of the decay times extracted from
2000 individual iterations. c Extracted decay times 𝑇1 and 𝑇 echo

2 when sweeping the external flux around the
half-flux sweet spot. The colors match the experiments in panels a,b; the markers and errorbars correspond
to the mean and standard error of the mean of values from 5 repetitions of the flux sweep. This figure is
adapted from Fig. 3 in Ref. [1].

In Fig. 2.5 we show standard time domain measurements of the gralmonium at half-flux.
The free decay energy relaxation follows a single exponential with decay times on the
order of 10 µs (Fig. 2.5a). Note that this value is comparable to fluxonium qubits based on
conventional tunnel JJ, especially when considering the relatively high half-flux frequency
of 4.0 GHz, for example compared to Ref. [78]. One possible limiting factor for the 𝑇1
could be dielectric loss in the compact interdigitated capacitor [158] in parallel to the
nano-junction (cf. Fig. 2.3b, highlighted in blue). Interestingly, the values for 𝑇1 are similar
between free decay experiments and quantum jump traces (cf. Appendix B.5). This can
be an indication of the energy relaxation being independent of readout photon number,
similar to other fluxonium qubits with grAl superinductor [9, 10].

“ To use it as a detector, it should just be a
decent qubit and does not need to break a
world record for coherence.”

— A SUPERVISOR

Hahn echo experiments with a single refocusing 𝜋-pulse are also described by an expo-
nential decay with decay time 𝑇 echo

2 ∼ 10 µs, which is on the order of 𝑇1. As shown in
Fig. 2.5, the regime of𝑇 echo

2 ∼ 𝑇1 is only reached close to the half-flux sweet spot due to the
first-order insensitivity to flux noise. Note that the echo measurements discussed here are
filtering low-frequency noise, which explains the visible improvement when approaching
half-flux compared to Fig. 2.4 (bottom right inset). Based on the flux dependence, we
analyze the coherence budget in Appendix B.3. For additional time domain measurements
at zero-flux bias, see Appendix B.4.

So far, the gralmonium has been conforming to the expectations of a standard fluxonium
in many aspects. In the following, we will see that Ramsey measurements prelude the
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Figure 2.6: Fluctuations of the gralmonium frequency on different timescales. a Ramsey fringes show
a beating pattern, which indicates a toggling between two qubit frequencies 𝑓beating = 0.2 MHz apart (dotted
gray envelope of two-frequency sinusoidal fit in black). Although the measurements in both panels were
taken with nominal detuning of 2 MHz the different Ramsey frequency shows a jump in the average qubit
frequency by 𝛥𝑓12 = 1.5 MHz. The inset shows a histogram of the extracted 𝑇 ∗

2 is in the range of 1–10 µs.
b A joint histogram of the two frequencies extracted from Ramsey fringes similar to the ones in panel a gives
an overview of the involved frequency scales. c The power spectral density of the Ramsey frequency follows
a Lorentzian shape which confirms random telegraphic noise with a rate of 𝛤RTN = 9.4 mHz. d Overview of
the different timescales on which the qubit frequency changes. As shown in panels a-c, the beating 𝑓beating
and telegraphic toggling 𝛥𝑓12 occur on a timescale of milliseconds (i.e. faster than individual points in the
Ramsey measurements) and minutes, respectively. Every few days during a cooldown, the qubit frequency
changes by 10–100MHz and the largest shifts are observed after thermal cycling of the cryostat. We identify
changes in the nano-junction Josephson energy 𝐸J (cf. right hand axis) as the main cause of the frequency
fluctuations (see maintext). This figure is adapted from Fig. 3 and Fig. S11 in Ref. [1].

departure from these expectations. As shown in Fig. 2.6a, individual Ramsey traces at half-
flux exhibit a beating of the fringes, which can be captured with a two-frequency sinusoidal
fit enveloped by an exponential with decay time 𝑇 ∗

2 = 4.5 µs This result corresponds to
a toggling of the qubit between two transition frequencies 𝑓beating = 0.2 MHz apart and
on a timescale faster than the acquisition of single measurement values. We estimate this
timescale to be on the order of milliseconds.

Continuing on larger timescales, the comparison of the top and bottom panel in Fig. 2.6a
evidences that the average qubit frequency jumps by 1.5 MHz every few minutes. Both
the beating and frequency jumps are visualized in Fig. 2.6b as a histogram of the extracted
Ramsey frequencies — equivalent to a Fourier transform of the fringes vs. time. Note that
similar frequency fluctuations are visible also in continuous wave spectroscopy (Fig. 2.4b,
bottom right inset). Indeed, the power spectrum of the qubit frequencies is dominated
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2.4 Josephson Harmonics in the GrAl Nano-Junction

by a Lorentzian, which is associated with random telegraphic noise. The switching rate
𝛤RTN = 9.4 mHz extracted from a fit to the power spectrum confirms the timescale of the
fluctuations. In addition to the described fluctuations, we observe 10–100MHz jumps of
the gralmonium frequency at half-flux every few days. Interestingly, this is the case despite
the sample remaining at cryogenic temperature. Finally, as summarized in Fig. 2.5d, the
largest changes in the gralmonium spectrum occur after thermal cycling of the sample.

Interestingly, the magnitude of the frequency fluctuations changes systematically with flux
and is consistent with different sets of nano-junction parameters (see Appendix B.6). In
fact, since the gralmonium half-flux frequency is designed to be exponentially sensitive to
𝐸J/𝐸𝛴C of the nano-junction (cf. Eq. (1.10) in Section 1.2.2) it is not surprising that the qubit
is susceptible to microscopic changes in the (20 nm)3 volume of the grAl nano-junction
or its close vicinity. In particular, the spectrum is most sensitive to 𝐸J changes (Fig. 2.5e,
right hand axis) because 𝐸𝛴C is upper-bounded by the coplanar capacitance 𝐶q.

“ It looks like the gralmonium is indeed a very
sensitive detector circuit, as it is designed to be.
The question is: what is it detecting?”

There are many possible sources for the fluctuations intrinsic to the grAl nano-junction,
which cannot be disentangled without further measurements. One possible source could
be structural changes like tunneling crystalline defects, vacancies, interstitial impurities
or adsorbed molecules [43]. Alternatively, given the possibility of multiple connected
AlO𝑥 interfaces forming the effective nano-junction, charge-noise could be introduced via
Aharonov–Casher interference [159] of local charges. Somewhat ironical with regard to
the main motivation of implementing the gralmonium, the list of culprits also includes
paramagnetic impurities, which could influence the nano-junction via magnetic field. The
outlook on narrowing down the origin of the fluctuations is discussed in Chapter 4.

2.4 Josephson Harmonics in the GrAl Nano-Junction

We concluded in Section 2.3.2 that the gralmonium spectrum can be modeled assuming
the sinusoidal Josephson current-phase relation Eq. (1.5) with a single effective Josephson
energy 𝐸J for the grAl nano-junction. In the following, we quantify how accurate this
assumption is by testing the agreement between the measured gralmonium spectrum
and different current-phase relations. As shown in Fig. 2.7a, in addition to the purely
sinusoidal C𝜑R, we use two C𝜑Rs including higher harmonics sin(𝑚𝜑) ,𝑚 > 1 [2, 56].
The corresponding energy-phase relations (E𝜑R; cf. Fig. 2.7b) are used as the Josephson
term in the Hamiltonian Eq. (2.2), which can be numerically digaonalized similarly to the
methodology for the standard fluxonium Hamiltonian [156]. For each version of the E𝜑R,
we fit the Hamiltonian parameters to the measured gralmonium spectrum vs. external
flux (cf. Fig. 2.4b). Note that we include the coupling to the readout resonator in the model
for the standard E𝜑R in order to describe the avoided-level crossings between qubit and
resonator; this task becomes computationally intensive for non-sinusoidal C𝜑Rs.
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Figure 2.7: Testing for harmonics in the grAl nano-junction. a Current-phase relations (C𝜑Rs) used
for the comparison to the measured data: The purely sinusoidal C𝜑R, 𝐼 = 𝐼c sin𝜑 , is shown in green.
Alternatively, a slanted C𝜑R, 𝐼 = 𝐼c (sin𝜑 − 0.25 sin 2𝜑 + 0.05 sin 3𝜑) (orange), and a C𝜑R close to a sawtooth,
𝐼 = 𝐼c

∑10
𝑚=1 (−1) (𝑚+1) sin(𝑚𝜑)/𝑚 (red) is tested. b Energy-phase relations (E𝜑Rs) given by integrating the

C𝜑Rs in panel a. Note how the maximum of the potential at 𝜑 = 𝜋 gets sharper for the more slanted C𝜑Rs
including higher harmonics. c Difference between the modeled and experimental transition frequency
𝑓ge vs. external flux𝛷ext. The modeled frequencies 𝑓 model

ge are extracted by numerically diagonalizing and
fitting the Hamiltonian Eq. (2.2) with the Josephson potential given by the E𝜑Rs in panel b to the measured
frequencies 𝑓 exp.ge . The interval ±1 GHz around the avoided level crossing with the resonator (|𝛷ext/𝛷0 | ≈ 0.2)
is excluded from the data. This figure is adapted from Fig. S5 in Ref. [1].

Fig. 2.7c shows the remaining deviations between modeled and measured transition fre-
quencies 𝑓 model

ge − 𝑓
exp.
ge . Notably, the purely sinusoidal model (green) agrees with the

experimental data within the resolution of the measurement ±2 MHz and without sys-
tematic deviations. On the contrary, the C𝜑Rs with higher harmonic contributions lead
to systematic and one order of magnitude larger deviations (orange and red). Given the
spread of the measured data, we can place an upper bound of 5 % for the second harmonic
contribution in the grAl nano-junction C𝜑R. Lowering this bound would require higher
resolution spectroscopy data.

In summary, analyzing the Josephson harmonics in the grAl nano-junction shows no
deviation from the standard sinusoidal C𝜑R assumed for SIS tunnel JJ within the experi-
mental resolution. On the one hand, this confirms the modeling of the nano-junction as
a zero-dimensional tunnel JJ and shows that the nano-junction, indeed, is effectively a
replacement for a standard tunnel JJ in the gralmonium. On the other hand, this result
draws attention to the question of what the reference value for the contribution of higher
Josephson harmonics in standard Al-AlO𝑥 -Al tunnel JJ would be. The next chapter is
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dedicated to answering this question and enabling a quantitative comparison to the value
determined for the grAl nano-junction in the gralmonium qubit.
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3 Josephson Harmonics in Tunnel
Junctions

We have seen in the previous chapter that the grAl nano-junction current-phase
relation (C𝜑R) is indistinguishable from a purely sinusoidal form. In order to provide
context for this statement, this chapter documents the second main result of the the-
sis: the observation of corrections to the sinusoidal C𝜑Rs in conventional Al-AlO𝑥 -Al
tunnel Josephson junctions (JJs) in the form of harmonics. The chapter starts by giv-
ing an overview of C𝜑R in different types of Josephson weak links. Starting from the
C𝜑R of single conduction channels, we derive an expectation for the magnitude of
harmonics in a tunnel JJ based on a mesoscopic model of the barrier inhomogeneity.
Next, we show that spectroscopy measurements of transmon qubits across several
laboratories serve as a sensitive probe of the Josephson potential. This allows us
to quantify the magnitude of Josephson harmonics in these samples. Finally, the
implications for transmons beyond the spectrum are discussed. This chapter is
adapted in parts from Willsch, Rieger et al., arXiv:2302.09192, 2023 (Ref. [2]).

3.1 Setting an Expectation for Josephson Harmonics

3.1.1 C𝝋R in Different Types of Weak Links

Since Josephson’s initial prediction [53] and further theoretical treatment [54, 55] of the
tunnel current across superconducting electrodes separated by a thin insulating barrier, an
extensive body of theoretical and experimental work has refined the initial understanding
for the Josephson effect [56]. Soon after Josephson’s seminal work, the effect has been stud-
ied and measured in a variety of other weak links, in which the superconducting electrodes
are separated by a normal metal region, semiconductor or geometrical constriction, among
others [160]. Notably, in his description of the sinusoidal current-phase relation (C𝜑R) for
tunnel junctions, Josephson himself already makes the following statement [54]:

“ The microscopic theory [53] shows that, in the limit of weak
coupling, only first harmonics enter [and they] are good
approximations for the barriers normally used in tunneling
experiments.”

— B. D. JOSEPHSON (1964)
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3 Josephson Harmonics in Tunnel Junctions

The quote makes clear that the purely sinusoidal C𝜑R is an idealized assumption and, in
reality, the microscopic structure of the junction and the charge transport across it can
play a role for an accurate modeling of the Josephson effect.

In fact, with the exception of tunnel junctions, non-sinusoidal C𝜑Rs are a common occur-
rence in all other types of weak links. As an example, for superconductor-constriction-
superconductor (ScS) weak links, in which a continuous superconducting film is locally
confined to dimensions on the order of the coherence length, the expected form of the
C𝜑R strongly depends on the length and transverse dimensions of the constriction as well
as the temperature [56]. Generally, the supercurrent across a Josephson weak link can
be described in terms of an Andreev reflection picture [161]: electron-like quasiparticles
get reflected as holes on one side of the weak link and the holes are reflected as electrons
on the other interface. Via this cyclic process of Andreev reflections, Cooper pairs are
effectively transported across the junction. Electron-hole interference in the weak link
region leads to standing waves with quantized energy levels, referred to as Andreev bound
states [162].

Andreev physics can be particularly well studied in weak links, in which the supercon-
ducting electrodes are separated by a normal metal (SNS) or semiconductor region. The
main reason is that these types of structures can be designed to contain only a low number
of individual conduction channels. Moreover, the transparency of the channels can be
tuned via gate electrodes in the vicinity of the weak link. The shape of the Andreev bound
state C𝜑R and its dependency on the channel properties is fundamental for applying
the Andreev picture to tunnel junctions, as we will see in more detail in the following
sections. Interestingly, in recent years, the approach of integrating gate-tunable semi-
conductor nanowire weak links as Josephson elements in microwave superconducting
circuits and cQED schemes has gained increasing interest with applications including
hybrid superconductor-semiconductor qubits [154, 163], parametric amplification [164]
and Andreev-spin qubits [165, 166].

“ A junior and a senior physicist walk into a bar. The junior says:
“I have never heard about harmonics in tunnel junctions before.
This is exciting news!”, agitatingly waving a preprint in the air.
The senior berates him: “Oh, this is well known for decades!”.
Both turn to the authors of the Josephson Harmonics paper and
complain: “So why do you only realize this NOW?”.”

Given the extensive body of literature on the intricate details of C𝜑Rs in various weak links,
why is the purely sinusoidal Josephson C𝜑R ordinarily considered a good approximation
for tunnel junctions? We will address this question in Section 3.1.3 after being equipped
with an understanding of the properties of the Andreev bound state C𝜑R in individual
conduction channels.
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3.1.2 Single Conduction Channel Current-Phase Relation

The energy of an Andreev bound state for a conduction channel with transmission coeffi-
cient (also typically denoted transparency) 0 ≤ 𝑇 ≤ 1 is given by [56]

𝐸±(𝜑) = ±𝛥
√︃

1 −𝑇 sin2(𝜑/2) , (3.1)

where 𝛥 is the superconducting gap of the electrodes and 𝜑 the phase across the junc-
tion. The two branches indicated with + and − refer to the different directions of the
supercurrent. Fig. 3.1a shows the Andreev bound state energy-phase relation (E𝜑R) for
different transparencies𝑇 . In the low-transparency limit the two branches remain close to
the gap 𝛥 (green curve) while for high transparency 𝑇 → 1 the branches would become
non-differentiable and touch at 𝜑 = 𝜋 (red curve).

The corresponding C𝜑R of a single conduction channel is proportional to the derivative of
the E𝜑R Eq. (3.1),

𝐼 (𝜑) = 𝑒𝛥

2ℏ
𝑇 sin𝜑√︁

1 −𝑇 sin2(𝜑/2)
, (3.2)

in which 𝑒 is the electron charge and ℏ the reduced Planck constant. Inherited from the
shape of the E𝜑R, the C𝜑R is close to sinusoidal for𝑇 → 0 and approaches a sawtooth-like
shape for 𝑇 → 1 (cf. Fig. 3.1b). Since it is a periodic function of 𝜑 , the shape of the C𝜑R
can be analyzed intuitively as a Fourier series

𝐼 (𝜑) = 𝑒𝛥

2ℏ

∞∑︁
𝑚=1

𝑐𝑚 (𝑇 ) sin(𝑚𝜑) , (3.3)

with the Fourier coefficients 𝑐𝑚 (𝑇 ) of the𝑚-th Josephson harmonic in the C𝜑R depending
on the transparency of the channel.

The relative magnitude of the coefficients is shown in Fig. 3.1c for different transparencies,
illustrating several relevant properties. First of all, the sign of the coefficients alternates
between odd and even orders. Moreover, the magnitude decays the higher the order such
that the harmonics are generally a correction to the purely sinusoidal contribution given
by 𝑐1. Finally, the harmoncis stay relevant to much higher order for higher transparency
channels compared to low-transparency channels. For this reason, both limits are discussed
in more detail in the following.

Low-Transparency Limit

In the limit of 𝑇 ≪ 1 the single channel C𝜑R, Eq. (3.2), reduces to the familiar purely
sinusoidal Josephson C𝜑R, 𝐼 = 𝐼c sin𝜑 , with the critical current given by the channel
transparency𝑇 and the prefactor of Eq. (3.2). In this limit, the remaining relative magnitude
of each harmonic relative to the previous would be on the order of [2]

𝑐𝑚+1
𝑐𝑚

∼ −𝑚 − 1/2
4𝑚 𝑇 , (3.4)
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Figure 3.1: Current-phase-relation of single conduction channels. a Energy-phase relations of an
Andreev bound state in a weak link for different channel transparencies 𝑇 as given by Eq. (3.1). The
energy is relative to the Fermi energy 𝐸F and normalized by the superconducting gap of the electrodes
𝛥. b Current-phase relations (C𝜑Rs) corresponding to the transparencies in panel a as given by Eq. (3.2).
Each C𝜑R is normalized to its maximum current, the critical current 𝐼c. The C𝜑R for 𝑇 = 0.1 is plotted as
a dashed line to leave visible the one for 𝑇 = 10−6. c Order𝑚 fourier coefficients 𝑐𝑚 (𝑇 ) of the C𝜑Rs in
panel b normalized to the coefficient of the first order 𝑐1. Note the alternating sign of the coefficients and the
transparency-dependent decay in magnitude. The bars of coefficients below an magnitude of |𝑐𝑚 | < 10−9

are exaggerated to remain visible. The colors in panels b and c correspond to the ones in panel a.

which is proportional to the transparency 𝑇 itself. For example, the second harmonic
only contributes at a level of −𝑇 /8 relative to the first harmonic (cf. green bar for𝑚 = 2
and 𝑇 = 10−6 in Fig. 3.1c). As a consequence the presence of harmonics can indeed be
considered irrelevant for a channel with sufficiently low transparency .

Fully Open Point Contact

In the opposite limit, a single channel with 𝑇 → 1 would correspond to a fully open point
contact, for which the C𝜑R is shaped sawtooth-like with coefficients [2]

𝑐𝑚+1
𝑐1

= (−1) (𝑚+1) 3𝑚
4𝑚2 − 1 . (3.5)

This limit can be seen as the upper limit for the higher harmonic contributions in Eq. (3.3)
as values of the Fourier coefficients 𝑐𝑚 above the ones in Eq. (3.5) would be unphysical.

3.1.3 Mesoscopic Model of a Tunnel Junction

Based on the results of the previous section, we can discuss the case of typical tunnel
junctions employed in superconducting circuits. In this case, the charge transport across
(and the C𝜑R of) the full junction is given by the sum over contributions from multiple
conduction channels [56, 167, 168], as sketched in Fig. 3.2a. Inherited from the low-
transparency limit of a single channel (see previous section), the total C𝜑R would also be
purely sinusoidal if all channels have sufficiently low transparency.
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Since, in this case, the critical current of the JJ is proportional to the sum of transparencies
and the resistance of the JJ is on the order of the superconducting resistance quantum, one
can estimate the number of conduction channels and their transparency by assuming a
perfectly homogeneous barrier. Concretely, for an Al-AlO𝑥 -Al junction with dimensions
on the order of (100 nm)2, one finds a number of channels on the order of 106 with
transparency 𝑇 ∼ 10−6 [169, 170]. In some sense, estimating the transparency with this
approach is a “self-fulfilling prophecy” as it relies on summing the transparencies of
sinusoidal contributions, which is apparently validated by the resulting value of 𝑇 ≪ 1.

Realistically, a perfectly homogeneous barrier is only an approximation of the complex
microscopic reality for conduction channels in a mesoscopic tunnel JJ. Due to the many
degrees of freedom involved, the C𝜑R can be seen as a unique finger print linking the
microscopic charge transport and the macroscopic supercurrent through the junction.
Since, in principle, one would need to consider as many degrees of freedom in the total
C𝜑R as conduction channels, it is convenient to reduce this complexity by modeling the
large number of conduction channels as a distribution of transparencies 𝜌 (𝑇 ) described by
only a few parameters. This approach allows to get an intuition for the expected magnitude
of harmonics in tunnel JJs.

In fact, some universal distributions of the form 𝜌 (𝑇 ) ∝ 𝑇 −𝑝/√1 −𝑇 are discussed in
the literature, corresponding to different assumptions about the properties of the weak
link [56, 171–173]. Specifically, 𝑝 = 1/2 describes a chaotic dot connected to supercon-
ducting leads by ballistic point contacts [174], 𝑝 = 1 represents the KO-1 model by Kulik
and Omelyanchuk [175] and 𝑝 = 3/2 a disordered interface [171]. Interestingly, these
distributions have in common that they diverge both for 𝑇 → 0 and 𝑇 → 1. However,
due to the parameters for typical AlO𝑥 barriers and aluminum electrodes, one should not
expect an AlO𝑥 tunnel JJ to be described by these universal distributions [2].

Instead, we base our own model on the observation that standard AlO𝑥 barriers, grown
by static oxidation of evaporated aluminum electrodes, are inhomogeneous in nature.
For example, these inhomogeneities can include contaminants, atomic scale defects [176]
and random crystalline orientations of the grains forming the electrodes. As a minimal
contribution, we should expect the thickness of the barrier to be varying around an average
thickness on the order of 2 nm as supported by transmission electron microscope (TEM)
images (cf. Fig. 3.2b) as well as molecular dynamics simulations (Fig. 3.2c) similar to the
ones in [177, 178]. The images and simulations (see Appendix C.6 for details) reveal that
typical thickness variations are on the order of several 10 % of the average thickness. Based
on this observation and measurements reported in the literature [179, 180], we can model
the local barrier thickness 𝑑 as a Gaussian distribution truncated for 𝑑 ≥ 0 with average
thickness 𝑑 and standard deviation 𝜎𝑑 ,

𝜌 (𝑑 ;𝑑, 𝜎𝑑) =
2𝛩 (𝑑)

1 + Erf (𝑑/√2𝜎𝑑)
1√

2𝜋𝜎𝑑
exp

(
− (𝑑 − 𝑑)2

2𝜎2
𝑑

)
, (3.6)

as illustrated in Fig. 3.2d (bottom panel). Here,𝛩 is the Heaviside step function and Erf
the error function, ensuring 𝑑 ≥ 0 and normalization of the distribution, respectively.
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Figure 3.2: Mesoscopic model of harmonics in a tunnel junction. a Schematic of the cross-section of a
superconductor-insulator-superconductor (SIS) tunnel JJ. The charge transport across the barrier is given by
a large number (of order 106) of conduction channels with a distribution of transparencies 𝑇𝑛 as sketched
for multiple low-and a few high-transparency channels in green and red, respectively. b False-colored
high-angle annular dark field scanning transmission electron microscope (HAADF-STEM) image of an
AlO𝑥 tunnel barrier fabricated by shadow evaporation. The average barrier thickness 𝑑 is on the order
of 2 nm (white arrow). Due to zone axis alignment, individual columns of atoms are resolved in the top
electrode and reveal atomic-scale variations in the barrier thickness. Additional STEM images with thickness
variations and structural defects such as grain boundaries are shown in Appendix C.6. cMolecular dynamics
simulation of AlO𝑥 barrier growth. Note the thickness variations within the same crystalline orientation
of the Al electrodes and, in particular, between Al(100) and Al(111). d Gaussian distributions of thickness
𝜌 (𝑑) with different standard deviations 𝜎𝑑 around an average thickness 𝑑 = 1.6 nm (bottom panel). The
top panel shows the thickness-dependence of transparency for a rectangular tunnel barrier (cf. Eq. (3.7)),
which is used to calculate the transparency distributions 𝜌 (𝑇 ) shown in panel e. Note that all distributions
have the most weight towards 𝑇 → 0 but also show a divergence for 𝑇 → 1. The relative contribution of
the low-transparency regime 𝑇 ≪ 1 decreases with larger thickness variation 𝜎𝑑 . f Relative magnitude of
Josephson harmonics in the energy-phase relation (cf. Eq. (3.8)) for the transparency distributions in panel e.
Note that the magnitude of higher harmonics (𝑚 ≥ 2) increases with stronger thickness variation 𝜎𝑑 . The
colors in panels e and f correspond to the ones in panel d. Panels a-c of this figure are adapted from Fig. 2 in
Ref. [2].

Assuming a rectangular tunnel potential for the barrier, the dependence of transparency
(i.e. the transmission probability) on the thickness follows [181]

𝑇 (𝑑) = 1
1 + 𝑎2 sinh(𝑑/𝑑0) , (3.7)

with the parameters 𝑎2 = 2.87 and 𝑑0 = 0.21 nm describing height and width of the tunnel
barrier and their values being calculated based on a literature review [2]. The dependency
is shown in the top panel of Fig. 3.2d. Using Eq. (3.7), the Gaussian thickness distribution
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of Eq. (3.6) can be transformed into the transparency distribution vs. thickness 𝜌 (𝑇 ;𝑑, 𝜎𝑑)
as shown in Fig. 3.2e.

Similar to the aforementioned universal distributions in the literature, the mesoscopic
model leads to the strongest contributions of transparencies towards 𝑇 → 0 and 𝑇 → 1.
The first observation should be very well expected since almost all of the thicknesses in
the Gaussian distribution lead to vanishing transparencies according to the exponential
decay of Eq. (3.7) for 𝑑 ≫ 𝑑0. The divergence at 𝑇 → 1 is explained by the fact that,
although the probability for small thicknesses 𝑑 → 0 is vanishingly low in the Gaussian
model, the thickness-dependence of the transparency Eq. (3.7) flattens towards 𝑇 = 1
in the same regime. As a consequence, the relative weight of the high-transparency
contributions is very sensitive to the standard deviation of thickness 𝜎𝑑 in respect to the
average thickness 𝑑 .

Based on this result, the Josephson enegies of harmonics in the energy-phase relation
can be calculated by integrating the Fourier coefficients 𝑐𝑚 (𝑇 ) with weight given by the
transparency distribution 𝜌 (𝑇 ;𝑑, 𝜎𝑑):

𝐸J𝑚 =
1
𝑚

∫ 1

0
d𝑇 𝜌 (𝑇 ;𝑑, 𝜎𝑑) 𝑐𝑚 (𝑇 ) . (3.8)

The relative Josephson energies |𝐸J𝑚/𝐸J1 | of order𝑚 resulting from the mesoscopic model
are shown in Fig. 3.2f. Remarkably, the contribution of the second harmonic can be in the
percent range for 20 % variations of the barrier thickness.

In summary, based on modeling the tunnel barrier with realistic assumptions on the
inhomogeneity we expect percent-level higher harmonic contributions in the C𝜑R of
Al-AlO𝑥 -Al tunnel JJs. While the mesoscopic model gives a powerful intuition for the
magnitude of harmonics in standard AlO𝑥 tunnel JJs, it is important to also discuss the
limitations of the approach. In particular, it should be emphasized that the magnitude of
harmonics in the model mainly depends on the relative thickness variations 𝜎𝑑/𝑑 instead
of each parameter individually. As a consequence, the model should not be seen as a tool
to accurately determine the absolute value of the average barrier thickness or its standard
deviation. Moreover, the model cannot properly describe the harmonics in junctions close
to the point-contact limit since the only way to capture such terms is by decreasing 𝑑/𝜎𝑑
to unreasonably low values.

3.2 Transmon as a Testbed for the Energy-Phase Relation

Equipped with an expectation for the magnitude of harmonics in standard Al-AlO𝑥 -Al
tunnel junctions, the question is how to experimentally access these contributions. In
fact, it can be challenging to measure percent-level corrections to a purely sinusoidal
C𝜑R with standard direct-current (DC) methods [56]. As an example, switching current
measurements are mostly sensitive to the maximum height of the C𝜑R and not the precise
shape of it [140, 182]. Moreover, in SQUID-based experiments a tunnel junction is typically
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used as a reference junction in order to characterize the non-sinusoidal C𝜑R of another
weak link of interest [183]. In general, for any experiment trying to determine the C𝜑R,
the phase across the junction is determined by the circuit into which it is embedded.

In this study we use transmon superconducting qubits (cf. Section 1.2.2 and Ref. [60])
to access Josephson harmonics in standard tunnel junctions. As shown in Fig. 3.3a the
discrete levels of the transmon are a sensitive probe of the potential defined by the E𝜑R
of the junction. The main benefit of using transmons is their simple circuit topology, i.e.
in principle the junction is only shunted by a large capacitor. Moreover, the transmon
transitions in the GHz-regime can be measured with high accuracy by circuit quantum
electrodynamics techniques such that even relative frequency deviations smaller than 10−3

are resolvable.

To support the findings with evidence across the community, we consider devices fab-
ricated and measured in several laboratories: (i) a transmon from Karlsruhe Institute of
Technology (KIT), measured in 3 successive cooldowns, (ii) a transmon from Ecole Normale
Supérieure (ENS) Paris (same device as in Ref. [184]), (iii) a frequency-tunable transmon
from University of Cologne (Köln) (similar setup and device as in Ref. [110]), and (iv)
20 qubits from the IBM Hanoi processor. All transmons are based on Al-AlO𝑥 -Al tunnel
junctions. For an overview of sample properties see Appendix C.1. For each qubit, the
spectroscopy data includes the transition frequencies 𝑓0 𝑗 — measured in terms of 𝑗-photon
transitions 𝑓0 𝑗/ 𝑗 for the levels 𝑗 = 1, 2, . . . — as well as the readout resonator frequencies
𝑓r, 𝑗 depending on the transmon state 𝑗 = 0, 1. Moreover, for the Köln sample the data
contains the offset charge dispersion amplitudes 𝛿 𝑓 𝑗 .

In order to test the agreement with different junction C𝜑Rs, the measured transition
frequencies are compared to the values obtained by diagonalizing different model Hamil-
tonians. As a baseline model, we use the standard transmon model,

𝐻std = 4𝐸C(𝑛 − 𝑛g)2 − 𝐸J cos𝜑 + 𝐻res , (3.9)

as introduced in Eq. (1.7) but additionally considering the readout resonator interaction,

𝐻res = 𝛺𝑎
†𝑎 +𝐺𝑛(𝑎 + 𝑎†) (3.10)

where 𝛺 is the bare resonator frequency, 𝐺 is the electrostatic coupling strength between
resonator and transmon, and 𝑎† (𝑎) is the bosonic creation (annihilation) operator of the
resonator mode. Including 𝐻res accounts for the dressing of the states due to hybridization
between transmon and resonator [60, 85, 185, 186]. The free parameters 𝐸C, 𝐸J, 𝛺,𝐺
are obtained by solving the inverse eigenvalue problem [187–190] for the measured
spectroscopy data (see Appendix C.3 for details).

Fig. 3.3b shows that the standard transmon model Eq. (3.9) fails to describe the measured
frequency spectra for all samples. The deviations between model and experiment are much
larger than the measurement uncertainty, for which a conservative upper bound would
be 1MHz, and they increase systematically with higher transition number. Trivially, the
model is able to match the first two transition frequencies, 𝑓01 and 𝑓02 with the two free
parameters 𝐸J and 𝐸C. In contrast, the third transition 𝑓03 can already deviate by more than
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Figure 3.3: Transmon as a testbed for the energy-phase relation. a The discrete levels of a transmon
qubit probe the Josephson potential. Thanks to the sensitivity of RF measurements even relative deviations
lower than 10−3 can be detected between the transition frequencies in the GHz range expected for a purely
cos𝜑 potential (grey line and dotted grey levels) and potentials including higher harmonics (red). bDeviation
between the frequencies 𝑓 model

0𝑗 predicted by the standard transmon model Eq. (3.9) and the measured
transitions 𝑓 exp.

0𝑗 for transmon devices at KIT (red stars), ENS (yellow squares), Köln (blue diamonds), and
IBM (green circles). Three successive cooldowns are shown for the KIT sample in dark red to bright red.
The Köln markers are based on one set of transition frequencies selected from a frequency sweep (cf. arrow
in Fig. 3.5a). The IBM markers show 20 qubits of the IBM Hanoi processor with varying marker size and
shade of green. Note that the vertical scale is linear between ±100 MHz and logarithmic otherwise. The
lines between markers are guides to the eye. c Similar to panel b but with the modeled frequency given by
the Josephson harmonics Hamiltonian Eq. (3.11). The top panel shows a phenomenological model truncated
at 𝐸J4. The bottom model shows the mesoscopic model in which the 𝐸J𝑚 are parameterized in terms of the
average barrier thickness 𝑑 and standard deviation 𝜎𝑑 (cf. Section 3.1.3). This figure is adapted from Fig. 2
and Fig. 3 in Ref. [2].

10MHz. The direction of deviations can be both positive (KIT, ENS, Köln) and negative
(most IBM transmons). Notably, deviations similar to the ones observed in our data are
present also in previously published transmon spectroscopy [191–193] (see Appendix C.2
for details).

As shown in Fig. 3.3c, the agreement with measured spectra can be improved by orders of
magnitude by using a Josephson harmonics model

𝐻har = 4𝐸C(𝑛 − 𝑛g)2 −
∑︁
𝑚≥1

𝐸J𝑚 cos(𝑚𝜑) + 𝐻res . (3.11)

As discussed in Section 3.1.3, the energies 𝐸J𝑚 are generally a unique result of each
junction’s channel-transparency distribution 𝜌 (𝑇 ). For this reason, we consider here two
simplified models to treat the 𝐸J𝑚: (i) a phenomenological model truncated at the 4th order
(top panel of Fig. 3.3), i.e. with 𝐸J1, . . . , 𝐸J4 as free parameters and (ii) the mesoscopic model
discussed in the previous section (bottom panel), in which the 𝐸J𝑚 are parametrized based
on the barrier inhomogeneity. Both models capture the experimental spectroscopy data
up to at maximum ±15 MHz deviations.

The phenomenological model allows to extract the first four best-fit 𝐸J𝑚 although without
providing physical intuition for their resulting values (listed in Appendix C.3). In order to
apply the same methodology to all samples, we fix the value of 𝐸C for each device based on
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finite element simulations and fit the remaining free parameters in the model Eq. (3.11). As
a consequence, the model guarantees agreement with the lowest 4 transition frequencies.
In particular, this leads to a perfect fit for the IBM qubits, for which only 4 transition
frequencies are available in the data. Notably, despite the phenomenological approach
and truncating at the 4th order, many samples have physically reasonable 𝐸J𝑚 coefficients
while some devices need up to𝑚 = 6 terms (cf. following section).

As outlined in detail in Section 3.1.3, the mesoscopic model allows to calculate the 𝐸J𝑚 de-
pending on the average barrier thickness 𝑑 and standard deviation 𝜎𝑑 according to Eq. (3.8).
Consequently, only 2 degrees of freedom are added compared to the standard transmon
model. Despite this simplicity, the model can describe the KIT, ENS and Köln samples.
In contrast, the IBM data cannot be modeled in this way as the 𝐸J𝑚 required to explain
the transition frequencies remain close to the point-contact limit. The obtained model
parameters 𝑑 and 𝜎𝑑 are on a reasonable order of magnitude compared to the expectations
from STEM imaging and molecular dynamics simulation (cf. Fig. 3.2).

3.3 Magnitude of Harmonics in Tunnel Junctions

We have seen in the previous section, that including Josephson harmonics in the transmon
Hamiltonian improves the agreement with measured spectroscopy data by orders of
magnitude across all devices. However, there are several considerations which we have to
take into account when interpreting these results. In this section, after discussing the issues
concerning the model and methodology, we instead utilize an approach which allows to
extract the range for the magnitude of harmonics consistent with the experimental data.

First of all, by fitting a model including Josephson harmonics to the data, we force the
additional degrees of freedom in the model to capture all deviations of the experimental
data from the standard transmonmodel shown in Fig. 3.3b. Consequently, this methodology
ignores other contributions in the Hamiltonian, which might be missing compared to an
accurate description of the real samples. Thanks to the simplicity of the transmon circuit,
it is generally possible to include additional terms in the model and test their consequences
quantitatively. In detail, we have considered the following additional contributions: stray
inductance in the JJ leads, hidden modes coupled to the qubit, the coupling between
qubits as present on the IBM multi-qubit device, or an asymmetry in the superconducting
energy gaps. By including these additional terms in the transmon Hamiltonian, we
have confirmed that they contribute to varying degree but cannot explain the measured
deviations (cf. Appendix C.4), especially not consistently across devices.

“ The point is that, whenever we propose a solution to a problem,
we ought to try as hard as we can to overthrow our solution,
rather than defend it. Few of us, unfortunately, practice this
precept; but other people, fortunately, will supply the criticism for
us if we fail to supply it ourselves.”

— KARL POPPER, THE LOGIC OF SCIENTIFIC DISCOVERY, 1959

44



3.3 Magnitude of Harmonics in Tunnel Junctions

Figure 3.4: Observed magnitude of Josephson harmonics in tunnel junctions. a Ranges of harmonics
𝐸J𝑚 consistent with the measured spectrum for the KIT sample. The blue bars are obtained by scanning
all sets of 𝐸J𝑚 up to𝑚 = 10, which are able to reproduce the measured spectrum. Note that harmonics up
to𝑚 = 6 are required at a level above 10−4 relative to 𝐸J1 while the bars for higher orders extend to below
10−6. The shaded gray area indicates the range of harmonics between the upper limit of the fully open
point contact (𝑇 = 1) and the lower limit of a homogeneous barrier with 𝑇 = 10−6 for all channels (see
maintext). The rose markers and dashed line indicates the set of 𝐸J𝑚 obtained from a fit to the mesoscopic
model (cf. Fig. 3.3c). b Same as panel a but for qubit 0 of the IBM Hanoi processor. Note that the harmonics
up to𝑚 = 4 are required to be close to the point-contact limit. c Comparison of harmonics ranges for several
transmon samples as introduced in Fig. 3.3. Note that all devices require a percent-level contribution of the
second harmonic. This figure is adapted from Fig. 3 and Fig. S5 in Ref. [2].

The other critical issue with the methodology could be that by simply introducing more
degrees of freedom, the Josephson harmonics model can capture experimental data with
better agreement. This can be particularly problematic when using the phenomenological
model, which includes a number of higher harmonic Josephson energies 𝐸J𝑚 each of which
adds an additional degree of freedom. A directly related concern is the question of how
many 𝐸J𝑚 should be included; in particular, is it reasonable to truncate the model at order
𝑚 = 4 as shown in the top panel of Fig. 3.3c. Interestingly, the mesoscopic model implies
that many experimental spectra can in fact be matched with two additional degrees of
freedom only, based on which all 𝐸J𝑚-coefficients are parameterized.

“With four parameters I can fit an elephant,
and with five I can make him wiggle his
trunk.”

— JOHN VON NEUMANN (1953) [194]

To address the concerns described above, we can utilize the following procedure to extract
information about the magnitude of Josephson harmonics from the measured spectroscopy.
On purpose, we employ a harmonics model with more degrees of freedom than available in
the data, i.e. for our spectroscopy we include 𝐸J𝑚-terms up to order𝑚 = 10. As a result, we
expect multiple sets of (𝐸J1, 𝐸J2, . . .) to be able to reproduce exactly the measured spectrum
of each sample. We find the range of these solutions by scanning all relevant combinations
of 𝐸J𝑚 (for details see Appendix C.3) between the two limiting cases of the fully open
point contact and the low-transparency case (cf. Section 3.1.2). Particularly relevant is the
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minimum possible value of each harmonic in order to still be able to describe the measured
data, as it informs about the relevance of this order.

The result of this procedure is illustrated in Fig. 3.4 by indicating the ranges of relative
harmonics |𝐸J𝑚/𝐸J1 | consistent with the measured spectra as vertical bars from the min-
imum to maximum possible value. As an example, in the KIT transmon (Fig. 3.4a), the
ranges for𝑚 = 7 and𝑚 = 8 extend to a level below 10−6 which implies that the model
could have been truncated at the 6th harmonic without a relevant change in the accuracy.
On the other hand, the minimum required relative contribution of harmonics up to𝑚 ≤ 6
is on the level of 10−4 or higher. As another example, the same procedure for qubit 0 of
the IBM Hanoi processor (Fig. 3.4b) requires all contributions up to𝑚 = 4 at percent levels
and is compatible with vanishing higher orders𝑚 ≥ 5.

Remarkably, as shown by the sample overview Fig. 3.4c, the contribution of the second
Josephson harmonic is in the few percent range across all samples. We note that this holds
even after considering additional corrections such as series inductance or gap asymmetry in
the superconducting electrodes (cf. Appendix C.4). The ranges are also consistent with the
Josephson harmonics ratios corresponding to the mesoscopic model for the samples which
can be described by it (cf. the rose markers and line for the KIT sample in Fig. 3.4a). Note
that the barrier for the KIT sample seems to evolve towards lower harmonics contributions,
potentially due to aging between cooldowns 1 and 2, and thermal annealing between
cooldowns 2 and 3. Based on the minimum required contribution of harmonics, the
procedure presented here implies the presence of at least one conduction channel with
transparency 𝑇 ≳ 0.1 in the AlO𝑥 tunnel barrier [2]. In general, the methodology can
serve as a tool to characterize the magnitude of Josephson harmonics and the homogeneity
of tunnel barriers.

3.4 Impact on Transmon Charge Dispersion

The key design feature of the transmon is that it promises an exponential suppression
of the charge dispersion at the cost of only a linear reduction of the anharmonicity
(cf. Section 1.2.2, Fig. 1.1 and Ref. [60]). For this reason, the charge dispersion is a very
sensitive additional probe of the model used for the Josephson potential on top of the
average transition frequencies discussed so far. Evidently, it is highly relevant to discuss
the consequences of Josephson harmonics on the transmon charge dispersion.

A comparison between experiment and model predictions is shown in Fig. 3.5a based on
the Köln device, for which measurements of the maximum charge dispersion amplitude
𝛿 𝑓0 𝑗 of the first three levels 𝑗 = 1, 2, 3 are available. The data has been taken for a
sweep of the transmon transition frequencies by applying an in-plane magnetic field up
to 𝐵∥ = 0.4 T, which suppresses the Josephson energies of the junction (mainly due to
the Fraunhofer-pattern suppression when flux penetrates the JJ [110, 195]). Strikingly,
the charge dispersion predicted by the standard model (dashed gray line in Fig. 3.5a)
underestimates the experimental data by a factor of 2 to 7. In comparison, the prediction
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Figure 3.5: Impact of Josephson harmonics on transmon charge dispersion. a Underestimation of
the charge dispersion 𝛿 𝑓0𝑗 of levels 𝑗 = 1, 2, 3 for the Köln transmon by the standard transmon model.
Compared to the measured dispersion (blue markers) vs. first transition frequency 𝑓01, the standard model
prediction (grey dashed lines) is too low by a factor of 2 to 7, as highlighted by the gray arrows. In contrast,
the Josephson harmonics model Eq. (3.11) (solid blue lines) matches the measured data. The transition
frequencies are tuned by suppressing the Josephson energy up to 35 % with an in-plane magnetic field 𝐵 ∥
indicated by the color scale. Both model predictions are calculated based on the same parameters used
for the 𝐸J4 model shown in Fig. 3.3c including constant ratios 𝐸J𝑚/𝐸J1, while only 𝐸J1 is varied to tune the
frequency. The blue arrow at 𝑓01 = 5.079 GHz indicates the subset of the data used in Fig. 3.3. b Evidence for
a reduction in charge dispersion by up to one order of magnitude (gray arrows) due to Josephson harmonics
for IBM qubits 0, 1 and 2. Similar to panel a, the dashed gray lines indicate the standard model predictions.
The green bars show the ranges of charge dispersion for levels 𝑗 = 1, 2, 3, 4 corresponding to the ranges of
𝐸J𝑚/𝐸J1 shown in Fig. 3.4c. This figure is adapted from Fig. 4 in Ref. [2].

based on the Josephson harmonics model (solid blue lines) matches the data points. Notably,
for both models the same parameters as in the standard model and 𝐸J4-model shown
in Fig. 3.3 are used. Only the first Josephson energy 𝐸J1 is varied to tune the transition
frequencies, while in particular the relative ratios of Josephson harmonics 𝐸J𝑚/𝐸J1 are kept
constant. This methodology confirms that the same set of relative harmonics can describe
the measured spectroscopy and charge dispersion for different transition frequencies.

On the contrary, Josephson harmonics can also lead to a reduction in charge dispersion
compared to the expectation of the standard model, as evidenced in Fig. 3.5b by the first
three IBM qubits. Since detailed measurement of the charge dispersion are not available,
we compare the prediction of the standard model (dashed gray lines) to the range of
possible charge dispersion amplitudes based on the Josephson harmonics model (green
bars), corresponding to the ranges of 𝐸J𝑚/𝐸J1 shown in Fig. 3.4c. The results show that the
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charge dispersion for the qubit transition 𝑓01 can be a factor of 4 lower than expected from
the standard transmon model.

The shortcomings of the standard transmon model in describing the charge dispersion are
mainly due to amisjudgement of the ratio 𝐸J/𝐸C when themodel parameters are fixed based
on the first two transition frequencies 𝑓01 and 𝑓02. As a consequence of the exponential
scaling, even moderate changes of 𝐸J/𝐸C by percent are visible in an amplified way in the
charge dispersion amplitudes. This is most visible for the IBM qubits, in which relatively
strong contributions of the third harmonics (cf. Fig. 3.4c) lead to an effectively increased
height of the Josephson potential in the harmonics model, which explains the significantly
reduced charge dispersion prediction. In contrast, for the university transmons, the
harmonics model corresponds to a smaller potential height and, consequently, incrased
charge dispersion. Note that the correction in charge dispersion from Josephson harmonics
compared to the standard transmon model are only on the order of 10 % when evaluated
for the same 𝐸J/𝐸C [2].
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4 Conclusion & Outlook

Here, we summarize the results of the manuscript and outline perspectives for future
work. With the two main results of the thesis in mind, we discuss the implications
of our findings for grAl nano-junctions and mesoscopic tunnel junctions. In this
thesis we have shown that the grAl nano-junction can serve as the tunnel JJ in a
single-layer grAl fluxonium qubit with — besides conspicuous fluctuations of the
Josephson energy — remarkably standard spectrum and coherence. This paves the
way for using gralmonium devices or grAl nano-junction circuits in hybrid and other
future applications. We have also observed measurable corrections to the presumed
ideal sin𝜑 nonlinearity in mesoscopic tunnel JJs based on transmon spectroscopy.
Evaluating the consequences of Josephson harmonics for other devices based on
tunnel JJs will be a relevant task for the field of superconducting circuits in general.
This chapter is adapted in parts from the conclusion paragraphs of Refs. [1, 2].

Manuscript Summary

This manuscript started by introducing and motivating the appeal of hybrid architectures
for quantum information processing based on superconducting circuits and spin qubits
(electron spins, molecular magnets, etc.). By discussing the measurements of resonators
in magnetic field similar to Ref. [4], we have confirmed that the high-kinetic-inductance
superconductor granular alumimum (grAl) is a promising material to implement magnetic
field resilient circuits for hybrid applications. In particular, the internal losses of grAl
resonators remain resilient to magnetic field up to 1 T applied in-plane to the thin film. For
fields perpendicular to the film, the sensitivity depends on the geometry of the resonators
and is typically about 3 orders of magnitude stronger. An intriguing feature in the internal
loss measurements versus magnetic field is the occurence of a prominent increase in losses
at magnetic field values for which spins 1/2 with Landé factor of 𝑔 = 2 are resonant with
the mode. The precise origin of this spin 1/2 ensemble remains unclear, to date.

The first main result of the thesis is the implementation of a fluxonium-type superconduct-
ing quantum bit in a single layer of grAl: the gralmonium qubit [1]. As a key novelty, the
tunnel junction of the gralmonium is given by a lithographically defined grAl volume on
the order of (20 nm)3: the grAl nano-junction. Despite this unconventional circuit element,
most measurements of the gralmonium are remarkably consistent with standard fluxonium
expectations. In particular, the spectrum is reminiscent of conventional fluxonium spectra
in the literature. Moreover, the energy relaxation and coherence times on the order of
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10 µs are comparable to many superconducting devices. By analyzing the spectrum of
the gralmonium in detail we have inferred that the current-phase relation (C𝜑R) of the
grAl nano-junction is indistinguishable from the purely sin𝜑 Josephson C𝜑R within the
accuracy of the measurement. The upper bound for possible remaining contributions
from higher Josephson harmonics can be set at 5 %. However, fluctuations of the grAl
nano-junction parameters influencing the spectrum of the gralmonium have been observed
on timescales ranging from millisecond to days and most drastically after thermal cycling
of samples.

The analysis of the grAl nano-junction C𝜑R can be placed in context by answering the
following question: how close are conventional Al-AlO𝑥 -Al tunnel Josephson junctions
to the idealized, purely sinusoidal C𝜑R? In the second part of the manuscript, we have
addressed this question based on spectroscopy of superconducting transmon qubits from
several laboratories [2]. For the purpose of this analysis, transmons are advantageous
because they are widely available in the community and have a simple circuit design
such that alternative explanations for deviations in the spectroscopy can be ruled out by
performing quantitative analysis. From a model of tunneling through an inhomogeneous
AlO𝑥 barrier, we deduced the expectation of harmonic contributions in the percent range.
Indeed, the measured spectroscopy data is consistent with the presence of percent-level
harmonics across samples. The immediate consequence for transmon qubits is a changed
sensitivity to offset-charge by up to an order of magnitude, as it is exponentially sensitive
to the shape of the Josephson potential.

In summary, comparing Josephson harmonics in the grAl nano-junction and conventional
Al-AlO𝑥 -Al tunnel JJs, a surprising conclusion can be drawn: While the nano-junction
C𝜑R is compatible with a purely sinusoidal form within the accuracy of the measurement,
the C𝜑R of conventional tunnel JJs requires percent-level second harmonic contributions
to be consistent with the measured spectroscopy across multiple samples. In this sense, the
gralmonium and grAl nano-junction have remarkably standard properties and conventional
tunnel JJs turn out to be less ideal than previously considered. Consequently, each of these
results paves the way for a variety of future experiments which we discuss in more detail
in the following.

Outlook on Granular Aluminum for Hybrid Applications

This work further cements granular aluminum as an interesting material platform for
superconducting circuits in magnetic field. Even based on resonator measurements only,
the combination of resilience and sensitivity allows to tailor grAl circuits to specific
hybrid applications. The increased losses at magnetic fields corresponding to electron-spin
resonance show that grAl intrinsically couples to a spin ensemble of unkown origin, which
prompts follow-up experiments to understand the source of these spins and the coupling
mechanism to grAl. Notably, these experiments can be relevant for superconducting
circuits in general as the coupling to spin 1/2 impurities can be observed in various
superconductors and on different substrates [115, 116, 133, 134]. Moreover, it could
contribute to residual flux noise in superconducting circuits [196, 197] and even be linked
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to the recent observation of a two-level system environment coupled to a grAl fluxonium
qubit [7].

Expanding on the result of the grAl transmon qubit in Ref. [5], which has been measured in
magnetic field up to ∼ 100 mT, the gralmonium design fully incorporates the field resilience
offered by thin film grAl. While the grAl transmon starts to be limited by the requirement
for separate, pure aluminum shunting layers, the gralmonium as a single-layer grAl circuit
can be expected to feature the same field-compatibility in the Tesla-range as measured for
grAl resonators. Consequently, the gralmonium and similar circuits will be a promising
tool for superconducting circuit measurements in relatively strong magnetic fields. One
practical caveat for these experiments could be the out-of-plane sensitivity of the qubit
spectrum to external flux bias due to the fluxonium loop. Although the gralmonium loop
area is already relatively small thanks to a meandered design and the high resistivity grAl
film, if required, the sensitivity can be further reduced by implementing a gradiometric
loop design similar to Refs. [8, 198].

Perspective for the Gralmonium & GrAl Nano-Junction

With its promising first characterization in terms of spectroscopy and coherence, the
gralmonium is a significantmilestone for a circuit which is globally field resilient and locally
sensitive to the small volume of the grAl nano-junction and its environment. Potentially, the
energy relaxation and coherence times can be further improved by optimizing the design
and fabrication of the gralmonium. Interestingly, the sensitivity to its tunnel junction
parameters, integrated into the fluxonium-type circuit by design, is already visible in
terms of fluctuations of the grAl nano-junction parameters influencing the gralmonium
spectrum. Future experiments are required to rule out or identify possible candidates
at the root of these fluctuations such as structural defects, charge-noise via Aharonov–
Casher interference or paramagnetic impurities. Approaches to discriminate between
these candidates could involve the application of a local electric field bias using a gate
electrode, mechanical stress [199] or magnetic field. Moreover, possible routes to reduce
the fluctuations could be cold substrate deposition, which results in smaller and more
regular grains [122], or post processing of the film by hydrogen or laser annealing [200].

“ In science, when you manage to answer one
question you typically raise multiple new ones.
And that’s a success.”

— A SCHOOL TEACHER

Apart from applications for hybrid quantum information hardware the grAl nano-junction
itself is an interesting extension of the superconducting circuit toolbox. With its nanoscopic
footprint, the nano-junction has an intrinsically small capacitance𝐶J ≲ 1 fF by avoiding the
parallel plate capacitance associated with typical mesoscopic tunnel JJs with dimensions
in the (100 nm)2 range. This enables access to the parameter regime of 𝐸J/𝐸C ∼ 1 with
𝐸C/ℎ ∼ 10–100 GHz, interesting for high-impedance circuits which rely on large quantum
fluctuations of the phase [201, 202] and high-impedance metrological JJ applications [203].
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Finally, the gralmonium coherence, comparable to conventional superconducting qubits,
distinguishes the grAl nano-junction from constrictions embedded into qubits based on
homogeneously disordered superconductors with orders of magnitude higher dissipa-
tion [204, 205], likely thanks to the chemical and structural similarity of grAl to Al-AlO𝑥 -Al
tunnel JJs.

Implications of Josephson Harmonics in Tunnel Junctions

In this work, we have observed Josephson harmonics in tunnel junctions based on transmon
spectroscopy, with immediate consequences for the design and measurements of transmon
qubits and processors. Most notably, as a consequence of Josephson harmonics, transmon
dephasing due to charge noise can be reduced by an order of magnitude without further
lowering the circuits anharmonicity. This paves the way for a possible optimization route,
in which Josephson harmonics are engineered to optimize the spectrum for reduced charge
dispersion and increased anharmonicity. Approaches to turn this idea into reality include
shaping the channel transparencies directly or utilizing networks of high transparency JJs
to implement arbitrarily tailored C𝜑Rs as outlined recently in Ref. [206].

Importantly, the consequences of harmonics in the C𝜑R of tunnel junctions probably go
beyond the observation in transmon qubits presented here. Consequently, they trigger a
reevaluation of current models for many devices based on tunnel JJs in quantum technology
and metrology [186, 207–210]. Specifically, it will be of interest to understand the impli-
cations of Josephson harmonics in other superconducting artificial atoms, for gates and
computation schemes relying on higher levels [211–214], quantum-non-demolition read-
out fidelities [9, 96, 97], and frequency crowding mitigation in quantum processors [200].
Moreover, Josephson harmonics will probably have to be considered in topological JJ
circuits [202, 215, 216], in pumping schemes for parametric amplification and bosonic
codes [217, 218], in JJ metrological devices [219–222], and they can be utilized to realize
Josephson diodes [223]. In conclusion, as measurements and models of superconducting
circuits progress towards ever-decreasing error margins, Josephson harmonics will need
to be embraced both in material science to optimize tunnel barriers and in circuit design
as an integral part of the device physics.
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A Cylindrical Waveguide Sample Holder

Two common sample holder schemes to measure superconducting circuits are 3D waveg-
uides or cavities, and 2D on-chip geometries. 3D cQED architectures have the advantage
that the electric field coupling to the circuit can be diluted in order to minimize the energy
participation ratio of dielectric losses [156, 224, 225]. Moreover, they do not require an on-
chip ground plane as the waveguide itself serves as the ground for the electric field. Ideally,
the waveguide volume represents a clean vacuum environment, especially important in
the vicinity of the device, while coupling polarized microwave signals to the sample. In
contrast, 2D on-chip layouts and environments for superconducting circuits have to be
carefully engineered in order to avoid parasitic modes and impedance mismatches. How-
ever, in order to lower the cut-off frequency of 3D waveguides to the operating frequencies
of superconducting circuits in the ≲ 10 GHz range, the dimensions of the waveguide are
typically on the order of few centimeters [226].

For the measurements of the grAl resonators in magnetic field (cf. Section 1.4 and Ref. [4])
and the gralmonium (Chapter 2), we employ a sub-wavelength cylindrical copper waveg-
uide sample holder as illustrated in Fig. A.1 with schematics and finite-element simulations.
The main feature of the sample holder is the small transverse size of the copper tube with
inner diameter of 3mm and a wall thickness of only 0.3mm. As a consequence, we expect
a cut-off frequency of the waveguide on the order of ∼ 60 GHz [226] and the conven-
tional standing-wave pattern coupling in the frequency band of the waveguide cannot be
utilized.

Instead, in our sub-wavelength sample holder, the circuit is coupled directly to the evanes-
cent microwave field of a stripped coaxial pin (cf. panels a-c of Fig. A.1). In this regime,
the coupling is expected to decay exponentially with respect to the distance between
sample and pin (and also with decreasing microwave frequency). Indeed, a finite-element
simulation of the coupling to a stripline grAl resonator antenna (Fig. A.1d,e) confirms
the expected scaling with distance in the regime of coupling quality factors 𝑄c between
104 and 106. On the one hand, this sensitivity to the chip-pin distance can be a source of
inconvenience when aiming for a precise coupling strength. On the other hand, it can
be utilized to increase or decrease the coupling to fabricated circuits between cooldowns,
simply by adjusting the sample holder to the desired distance (see Ref. [3]).

The sample holder is anchored to the mixing chamber stage of a Sionludi dilution cryostat
for experiments involving Tesla-range magnetic field or, alternatively, in a Bluefors dilution
cryostat for standard microwave characterizations. Thanks to its small diameter, for the
field measurements the sample holder can be used in combination with a compact 3D
vector magnet anchored at the 4 K-stage of the cryostat as shown in Fig. A.2 (and utilized
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A Cylindrical Waveguide Sample Holder

Figure A.1: Schematics and simulations of cylindrical waveguide sample holder. a,b Cross-section
schematics and artistic image composition of the cylindrical copper waveguide. By tightening the clamping
screw of a copper dowel against the copper tube wall, the sample is fixed inside the waveguide. The circuits
on the chip are coupled to the evanescent field of the stripped coaxial cable pin, since typical operating
frequencies (∼ 4–10 GHz) are well below the cut-off frequency of the waveguide (∼ 60 GHz) [226]. The
coupling strength can be adjusted by unscrewing the copper tube relative to the fixed coaxial cable, i.e. by
changing the chip-pin distance 𝛥𝑙 (cf. green arrows and panel e). c Color plot of the electric field distribution
based on finite-element simulation. The electric field amplitude indicated by the color scale corresponds to
an energy of 1 J in the simulation. d Optical image of a sample with 10 stripline resonators with lengths
between 400 µm and 950 µm and arranged in a radial geometry to couple to the coaxial pin. The image
corresponds to the region of the chip indicated by the blue rectangle in panel a. e Coupling quality factor𝑄c
for the resonator indicated by the green arrow in panel d extracted by finite-element simulation depending
on the chip-pin distance 𝛥𝑙 (cf. green arrows in panel a). 𝑄c changes exponentially (dotted gray line) with
𝛥𝑙 by one order of magnitude for one pitch of the sample holder fine thread (cf. panel a), which corresponds
to 0.5mm. This figure is adapted from Fig. 7 of Ref. [3] and Fig. S1 of Ref. [1].

in Refs. [3, 4]). This setup has the advantage that heating effects on the mixing chamber
stage due to ramping the Ampere-range currents for the magnetic field are avoided by
the relatively large cooling power offered by the 4 K-stage. Note that for measurements
involving the vector magnet, we do not include additional (e.g. infrared or magnetic)
shielding between the cylindrical sample holder and the coils of the vector magnet.
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Figure A.2: Pictures of the sample holder and vector magnet. a The sample holder anchored to the
mixing chamber stage (vertical copper plate) of a Sionludi dilution cryostat. b Thanks to its small dimensions,
the copper tube can be surrounded by a compact 3D vector magnet anchored at the 4 K-stage of the cryostat.
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B Details on the Gralmonium

This chapter is adapted from the supplementary material of Ref. [1].

B.1 Fabrication Recipe

Here we summarize the fabrication recipe of the gralmonium samples discussed in the
manuscript (cf. Table B.1). The samples are fabricated on c-plane, double-side polished sap-
phire substrates using lift-off e-beam lithography. The resist stack consists of 700–800 nm
MMA EL-13 and 300 nm PMMA A4. A 10 nm chromium anti-static layer is evaporated
before exposing the samples with a 100 keV e-beam writer. After etching the chromium
layer, an MIBK-isopropanol mixture (volume ratio 1:3) is used for spray development of
the samples. Before the metal deposition in a PreVac evaporation system, the substrate is
cleaned with a Kaufmann ion source in an Ar/O2 descum process similar to Ref. [227] and
the vacuum is improved using titanium gettering. The 20 nm thick granular aluminum film
is deposited under zero angle, at room temperature and a deposition rate around ≈ 1 nm/s
in a dynamic oxygen atmosphere resulting in a chamber pressure of 10−5 − 10−4 mbar. The
resulting sheet resistance for the main text sample is 1.5 kΩ/□.

Step Description Details

Substrate c-plane sapphire thickness 330 µm
double-side polished

Cleaning Ar/O2 descum
Bottom resist MMA EL-13 thickness ∼ 700–800 nm
Top resist PMMA A4 thickness ∼ 300 nm
Anti-static Cr at rate 0.1 nm thickness ∼ 10 nm
Exposure 100 keV e-beam writer
Chromium etch 10 s
Development MIBK-isopropanol 1:3 spray developer
Gettering Ti at rate 0.2 nm/s for 2min shutter closed

E-beam evaporation Al at rate ∼ 1 nm/s thickness ∼ 20 nm
O2 pressure 10−5–10−4 mbar

Lift-Off Acetone, ethanol rinse

Table B.1: Gralmonium fabrication recipe. Overview of fabrication steps for the single-layer, zero-angle
gralmonium recipe as explained in the main text.
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Figure B.1: Periodic avoided level crossings between gralmonium and resonator. Flux sweep of the
readout resonator extending up to𝛷ext/𝛷0 = 10. The avoided level-crossings repeat periodically and are
superimposed by a ≈ 200 kHz frequency shift across the entire sweep (indicated by the white arrows and
horizontal lines) due to screening currents in the antenna (cf. Eq. (1.13) in Section 1.4). The resonance
frequency is 2.5MHz higher compared to the main text measurement (Fig. 2.4a), since the data shown here
was taken in a previous cooldown.

B.2 Flux Periodicity

As outlined in Section 2.1.2 and shown in Fig. 2.4a, the signature of gralmonium devices
coupled to the readout resonator and operating in the target frequency range (∼ 4–10 GHz)
are periodic qubit-resonator avoided level-crossings vs. external flux. In Fig. B.1 we show
an extended flux sweep of the main text device in another cooldown up to𝛷ext/𝛷0 ≥ 10,
revealing the strict periodicity of the avoided level-crossings. A frequency shift of 200 kHz
is accumulated across the entire flux sweep range, as expected from the out-of-plane
magnetic field dependence of the 4 µm wide grAl stripline (cf. Fig. 1.3 in Section 1.4 and
Ref. [4]).

Since the 𝐸J/𝐸C ratio for the grAl nano-junction is highly sensitive to its width (cf. Sec-
tion 2.2), very different spectra can occur even for devices with nominally identical fabrica-
tion, in particular due to lithography variability. In the following we detail how measuring
the out-of-plane magnetic field dependence is an efficient method to select devices of
interest. In Fig. B.2 we compare three devices with nominally identical design for the
gralmonium and nano-junction, fabricated in the same evaporation on the same chip and
measured in the same cooldown. While the first device (Fig. B.2a) shows no qubit-resonator
avoided level-crossings, the resonator frequency shifts down by 1MHz in the measured
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B.2 Flux Periodicity

Figure B.2: GrAl nano-junction regimes. The panels in the left column show flux sweeps of the reflection
coefficient for three different samples with nominally identical gralmonium and nano-junction design
(cf. Fig. 2.2). The right column depicts an SEM image of each grAl nano-junction corresponding to the sample
shown in the flux sweep and taken after the cooldown. a Flux sweep without avoided level-crossings and
slightly decreasing resonator frequency with increasing external flux. These observations can be attributed
to the too wide nano-junction (𝜀 ≈ 50 nm) and resulting screening currents in the loop. b Flux sweep with
periodic avoided level-crossings indicating a functioning gralmonium attached to the resonator, similar to
the measurement shown in the main text Fig. 2.4a. The grAl nano-junction width is in the same regime of
𝜀 ≈ 20 nm as the main sample (Fig. 2.3d). c Constant resonator frequency due to an interrupted nano-junction.
Note that the remaining contribution due to screening currents in the resonator is neglibile in this field
range (cf. Fig. B.1 in comparison).

field range. The absence of crossings can be explained by a ratio 𝐸J/𝐸C ≫ 1 for this
nano-junction such that quantum fluctuations of the phase are suppressed (cf. Eq. (1.10)).
In this regime, the external flux applied to the sample induces circulating currents in the
fluxonium loop, leading to the 1MHz frequency shift — a much larger field dependence
than expected from the out-of-plane shift of the bare grAl antenna (see Fig. B.1 in compar-
ison). Indeed, the SEM image of the nano-junction, taken after the cooldown of the device,
confirms a relatively large width 𝜀 ≈ 50 nm. In contrast, the flux sweep shown in Fig. B.2b
features qubit-resonator avoided level crossings similar to the main text sample (Fig. 2.4a),
and the corresponding SEM image indicates a grAl nano-junction width on the order
of 20 nm. For an interrupted nano-junction, as shown in Fig. B.2c, no visible resonator
frequency shift occurs in the measured flux range, consistent with the expectation for the
out-of-plane field dependence (cf. Fig. B.1 and Section 1.4).

Based on the evidence presented in Fig. B.2 and the SEM images of 53 devices (his-
togrammed in Fig. 2.2c in the main text), we find that 22% of nano-junctions are in
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Figure B.3: Gralmonium decoherence budget analysis around half-flux. The green markers represent
the echo decoherence rate 𝛤 echo

2 = 1/𝑇 echo
2 calculated from the Hahn echo data vs. external flux shown

in Fig. 2.5c in the main text. The blue horizontal line indicates the contribution from energy relaxation,
𝛤1/2. By fitting the linear increase of 𝛤 echo

2 , we extract a flux noise amplitude of 𝐴𝛷 = 30 µΦ0 (dashed blue
lines). Among other reasons, the residual decoherence exactly at half-flux can be explained by shot noise
corresponding to an average thermal population of 𝑛 ≈ 0.007 in the readout resonator (red horizontal line).

the target regime for the width corresponding to connected junctions with 𝜀 ≤ 25 nm.
Likely, this percentage can be further improved by using thinner resist layers and by using
aluminum instead of chromium for the anti-static coating (cf. Appendix B.1) to reduce the
edge roughness of the written pattern. Moreover, owing to the single-layer circuit design,
etching is an appealing alternative to lift-off fabrication for the gralmonium and nano-
junction, with the possibility to use sub 10 nm resolution negative e-beam resists. Beyond
improving the reliability of lithography and fabrication, post-processing samples with
wet-etching or annealing can bring nano-junctions closer to a desired 𝐸J regime. Finally,
even nano-junctions similar to Fig. B.2a may lead to working gralmonium devices for
sufficiently large grAl sheet resistivity below the superconductor-to-insulator transition.

B.3 Decoherence Budget at Half-Flux

In the following, we analyze the decoherence of the main gralmonium sample around
half-flux bias based on the 𝑇 echo

2 data of Fig. 2.5c in the main text. Fig. B.3 shows the
corresponding decoherence rate 𝛤 echo

2 = 1/𝑇 echo
2 (green markers). The main contributions

to the decoherence rate are energy relaxation 𝛤1/2, flux noise 𝛤𝛷 (𝛷ext), photon shot noise
due to stray photons in the resonator 𝛤𝑛 , and critical current noise in the nano-junction
and superinductor 𝛤𝐼c :

𝛤 echo
2 =

𝛤1
2 + 𝛤𝛷 (𝛷ext) + 𝛤𝑛 + 𝛤𝐼c . (B.1)

From the data in Fig. 2.5c, we conclude that energy relaxation vs. external flux is flat
in the measured flux range with an average 𝑇1 = 𝛤−1

1 = 14 µs. The associated constant
contribution 𝛤1/2 is indicated in Fig. B.3 by the horizontal blue line. Around half-flux bias,
a linear increase of 𝛤 echo

2 can be observed (dashed blue lines) and the slope corresponds to a
1/𝑓 flux noise amplitude of𝐴𝛷 = 30 µΦ0. Note that an additional, flux-dependent Gaussian
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Figure B.4: Gralmonium time domain characterization at zero-flux. a Example of a free decay energy
relaxation and b spin Hahn echo measurement. The black lines are exponential fits corresponding to
𝑇1 = 11.9 µs and𝑇 echo

2 = 5.2 µs, respectively. The average𝑇1 is comparable to half-flux, while𝑇 echo
2 is a factor

of 2 lower (cf. Fig. 2.5). c Example of a Ramsey fringes measurement with nominal detuning of 2MHz. In
contrast to half-flux bias (cf. Fig. 2.6), we do not observe a beating of the fringes at zero-flux, and the fit
(black line) corresponds to a single sinusoidal with exponential envelope (dotted gray lines).

component in the echo decay curves cannot be excluded due to the limited resolution and
SNR of the measurements. For this reason, we use an exponential decay to fit the entire
data set vs. flux consistently.

Even exactly at half-flux bias,𝛷ext/𝛷0 = 0.5, where the spectrum is first-order insensitive
to external flux (𝜕𝜔/𝜕𝛷ext = 0), the value of 𝛤 echo

2 is a factor of 2 larger than the possible
𝑇1-limit 𝛤1/2. Reasons for the residual dephasing could be either higher-order flux noise
contributions or photon shot noise. Given the dephasing rate due to photon shot noise in
the low-photon limit, [228, 229]

𝛤𝑛 =
𝑛𝜅𝜒2

𝜅2 + 𝜒2 , (B.2)

and the independently measured values of 𝜒 and 𝜅 (cf. Fig. B.6 in Appendix B.5), an average
population of 𝑛 ≈ 0.007 in the resonator would explain the residual dephasing rate. Note
that the estimated value is consistent with typical values observed in the literature (see
e.g. [229]). Finally, the echo sequence can efficiently filter the critical current noise, which
likely explains the factor of 3 increased 𝑇 echo

2 compared to the Ramsey decay time 𝑇 ∗
2

at half-flux (cf. Fig. 2.6). This is due to the echo sequence filtering noise on timescales
between 10 µs (given by the filter function cut-off) and ms (the timescale already captured
by the two frequency sinusoidal fit for the Ramsey measurement).

B.4 Zero-Flux Coherence

Fig. B.4 shows standard energy relaxation and coherence measurements of the |g⟩ → |e⟩
transition performed at zero-flux bias similar to Fig. 2.5 at half-flux bias in the main
text. The transition is not plasmon-like in the gralmonium device, as illustrated by the
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Figure B.5: Gralmonium potential energy landscape and wavefunctions. The black line represents
the energy potential and the colored lines correspond to the real part of the first four wavefunctions offset
by their eigenenergies. Both are calculated for the gralmonium parameters given in Table 2.1 in the main
text. a At zero-flux bias,𝛷ext = 0, all wavefunctions are significantly delocalized over three potential wells.
As a consequence, the |g⟩ → |e⟩ transition is not plasmon-like as typically the case for fluxoniums with
larger 𝐸L (corresponding to less inductance in the loop). b At half-flux bias𝛷ext/𝛷0 = 0.5, the first transition
frequency is determined predominantly by tunneling through the double-well barrier, similar to Fig. 1.1e in
the introduction.

energy potential and wavefunctions in Fig. B.5a. Moreover, in contrast to measurements
at half-flux, the Ramsey fringes (Fig. B.4c) can be fit with a single sinusoidal.

B.5 Quantum Jumps Analysis

Here we discuss the single-shot dispersive readout of the gralmonium enabled by the
near quantum-limited DJJAA parametric amplifier [6] in the readout chain (cf. Fig. 2.3e).
Fig. B.6a shows a histogram of the readout resonator reflection coefficient 𝑆11 based on 50
repetitions of 10ms long readout tones, each sliced into 784 ns long contiguous sections.
The histogram is measured at a readout frequency of 𝑓r = 7.4086 GHz and readout power
of 𝑛 ≈ 10 circulating photons in the resonator. Based on the steady-state populations of
the ground state |g⟩ and first excited state |e⟩, we find an effective qubit temperature of
𝑇q ≈ 37 mK. As shown in Fig. B.6b, by measuring the IQ histograms for various readout
frequencies, we determine the dressed resonator responses for the qubit being in |g⟩ and
|e⟩, which are separated by the dispersive shift 𝜒/2𝜋 = −1.72 MHz (cf. Section 1.2.3). Note
that readout with maximum phase separation of 180° is available due to the regime of
|𝜒 | > 𝜅 . As a consequence, the average reflection coefficient can reach a value of |𝑆11 | = 0
in two-tone spectroscopy measurements (see e.g. Fig. 2.4b in the main text).

While Fig. B.6 is based on histograms of single-shot readout measurements, we analyze the
same data as a function of time in Fig. B.7. The analysis is based on the same contiguous
reflection coefficient data as histogrammed in Fig. B.6a. In order to encode the qubit
state information in the in-phase quadrature 𝐼 , we rotate the IQ plane to align the states
with the 𝐼 axis. Consequently, the means 𝜇g,e ≈ ±3.0

√︁
photon and standard deviations

𝜎g,e ≈ 1.0
√︁
photon for the qubit states can be extracted from a double gaussian fit to the
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Figure B.6: Dispersive readout of the gralmonium. a Histogram of contiguous reflection coefficient
measurements in the complex plane at half-flux bias𝛷ext/𝛷0 = 0.5 and a readout frequency of 𝑓r = 7.4086 GHz.
The points are integrated for 784 ns and measured at a readout power of 𝑛 ≈ 10 circulating photons in
the readout resonator. The ground state |g⟩ and first excited state |e⟩ are visible and their populations
correspond to an effective qubit temperature of 37mK. b Resonator phase responses for the qubit in the
ground state |g⟩ (blue) and excited state |e⟩ (red). The values are extracted based on IQ histograms taken
vs. readout frequency 𝑓r similar to the one shown in panel a but with a 𝜋/2 qubit pulse applied before the
readout pulse, in order to balance the visibility of the two states. From fits to the phase responses (black
lines), we find a dispersive shift of 𝜒/2𝜋 = −1.72 MHz between the dressed resonator states and a resonator
linewidth of 𝜅/2𝜋 = 1.00 MHz.
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Figure B.7: Gralmonium quantum jumps analysis. a Example time trace of contiguous readout resonator
reflection coefficient measurements (connected black markers). The data corresponds to the points his-
togrammed in Fig. B.6a and we plot the in-phase quadrature 𝐼 , which encodes the qubit state information.
The trace is measured at a readout power of 𝑛 ≈ 10 circulating photons and demodulated in windows
of 784 ns. A latching filter is used to assign the qubit state (green line) based on the ±2𝜎 bands (shaded in
blue and red for |g⟩ and |e⟩, respectively) around the mean values of the qubit states. Panels b and c show
histograms of the dwell times 𝜏e and 𝜏g spent by the qubit in the excited and ground state, respectively. From
maximum-likelihood exponential fits we extract the average qubit relaxation time 𝑇↓ = 9.9 µs and excitation
time 𝑇↑ = 1.1 ms.
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Figure B.8: Evidence of Josephson energy toggling in gralmonium spectrum. The spectroscopy shown
in this figure is measured on the main gralmonium sample (cf. Fig. 2.4) but in a preceding cooldown (#3 in
Fig. B.9) without using a parametric amplifier. Each vertical trace contains 100 points which, in total, are
averaged over 50 s. The color scale corresponds to the in-phase component of the single-port reflection
coefficient 𝑆11, with the minimum and maximum values rescaled to the 0 − 1 interval. Notably, across the
entire flux range, two dominant qubit frequencies are visible and their spectrum vs. external flux can be
fitted (dashed and dotted black line) with identical circuit parameters except for the nano-junction Josephson
energy 𝐸J differing by 190MHz. The splitting between the two spectra is 7.4MHz close to zero-flux (panel a).
Notably, as expected from the two-𝐸J model, the lines merge and cross at𝛷ext/𝛷0 ≈ 0.08 (panel b) and they
are separated by more than 10MHz towards half-flux (panel c). At half-flux (panel d), the largest splitting
(30MHz) occurs and additional lines become visible.

marginal distribution along the 𝐼 quadrature. We use a two-point latching filter to assign
the qubit state |g⟩ or |e⟩ to each contiguous point; a change in qubit state is declared
when the in-phase value 𝐼 enters the 𝜇 ± 2𝜎 band (shaded regions in Fig. B.7a) centered on
the other qubit state. Fig. B.7b,c show histograms of the dwell times in each qubit state.
Based on exponential fits to the data, we calculate an energy relaxation during readout
of 𝑇1 = (𝑇 −1

↓ +𝑇 −1
↑ )−1 = 9.8 µs. Notably, this value is consistent with the range extracted

from free decay energy relaxation measurements (Fig. 2.5a).

B.6 Evidence of EJ-Toggling in Spectroscopy

The gralmonium half-flux frequency changes even when the sample is kept at cryogenic
temperatures, as discussed in the main text Section 2.3.3 and Fig. 2.6. If the trace averaging
time is on the order of the respective toggling timescale, the frequency fluctuations are
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also visible in continuous wave spectroscopy vs. external flux. For example, in the half-flux
spectroscopy shown in the main text (Fig. 2.4b, bottom right inset), jumps in the qubit
frequency occurring every few traces evidence a toggling on minutes timescale.

The panels of Fig. B.8 show spectroscopy data taken for the main gralmonium sample in a
previous cooldown without a parametric amplifier. As a consequence, the averaging time
per trace is about one order of magnitude longer and the toggling on minutes timescale is
imprinted on the spectroscopy data as distinct lines corresponding to the different qubit
transition frequencies. In Fig. B.8 the different qubit frequencies are visible within the same
trace, in contrast to the jumps occurring between traces in Fig. 2.4b. Notably, transverse
coupling to parasitic two-level systems residing at fixed frequency is ruled out as the origin
of these fluctuations based on the observation of two qubit frequencies across the entire
flux range of the spectroscopy. Instead, the two qubit spectra can be described by two fits
to the fluxonium Hamiltonian Eq. (2.2), only differing in the value of the nano-junction
Josephson energy 𝐸J. In particular, both the merging of the two spectra at𝛷ext/𝛷0 ≈ 0.08
(Fig. B.8b) and their frequency inversion between zero-flux (panel a) and half-flux bias
(panel d) are predicted by the two-𝐸J model.

B.7 Additional Gralmonium Spectra

In this section, we discuss gralmonium spectra vs. external flux beyond the data shown
in Fig. 2.4b in the main text. The set of spectra in Fig. B.9 is based on the main sample
measured in 6 successive cooldowns. A comparison of the panels (plotted with identical
vertical scale) highlights significant changes in the spectra, especially regarding the half-
flux frequency. Based on the fits (black lines) to Hamiltonian Eq. (2.2), the nano-junction
Josephson energy 𝐸J can be identified as the parameter with the strongest changes between
measurements, as indicated in Fig. 2.6d in the main text. Although the total gralmonium
capacitance 𝐶𝛴 = 𝐶q +𝐶J also changes (apparently correlated in direction and strength
with 𝐸J), its minimal value is bounded by the interdigitated capacitance 𝐶q ≈ 0.8 fF
(corresponding to a maximum charging energy of 𝐸𝛴C ≤ 𝐸

q
C ≈ 24 GHz). The source of

this apparent correlation is not currently identified and more work is needed in order to
elucidate the underlying mechanism.

In total, we measured the spectra of 20 gralmonium devices across 11 wafers and find that
all data is consistent with the standard fluxonium Hamiltonian Eq. (2.2). The spectra and fit
parameters of three devices with the same circuit design as the main sample (cf. Fig. 2.3) are
shown in Fig. B.10. Notably, the spread of the Josephson energy across devices, 7–40GHz,
is of the same order as the variations of individual nano-junctions in successive cooldowns,
8–27GHz (cf. Fig. B.9).
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Figure B.9: Gralmonium spectra in successive cooldowns. The panels show the spectra and fit parame-
ters of the main sample in consecutive cooldowns. The blue markers are the |g⟩ → |e⟩ transition frequencies
extracted from two-tone spectroscopy and the black lines show fits of Eq. (2.2) to the data. The spectrum
changes significantly between cooldowns, which is particularly notable around half-flux bias. The changes in
half-flux frequency and corresponding 𝐸J are indicated in Fig. 2.6d on the “cooldown” timescale. Comparing
the fit parameters evidences relatively large changes in 𝐸J, moderate changes in 𝐶𝛴 , and constant values of
the inductance 𝐿q within few percent. We note that an unambiguous fit for the second cooldown (panel b) is
difficult because data was only taken around half-flux bias. For this reason, we show two plausible parameter
sets by fixing 𝐿q to the value of the previous cooldown and𝐶𝛴 around the lower bound𝐶q ≳ 0.8 fF expected
from the finger capacitance and observed in other samples (cf. Fig. B.10a).
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Figure B.10: Spectra of additional gralmonium samples. Similar to Fig. B.9, the blue markers are the
|g⟩ → |e⟩ transition frequencies extracted from two-tone spectroscopy, the black lines show numerical fits
of Eq. (2.2) to the data and the fit paramters are indicated in the panels. a In this sample, the Josephson
energy of the grAl nano-junction is small enough to lift the entire spectrum of the first transition to the
10GHz range. b,c The parameters of these samples are similar to the gralmonium discussed in the main text
(cf. Fig. 2.4b and Table 2.1).
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This chapter is adapted from the supplementary material of Ref. [2].

C.1 Transmon Samples Overview

Here we introduce the different transmon samples measured for the Josephson harmonics
analysis. An overview of the devices is shown in Table C.1 and, in the following, we
give a short summary of the properties of each sample. The measured qubit transition
and readout resonator frequencies for all samples are listed in Table C.2. More in-depth
information, in particular on the KIT and Köln devices, is discussed in the supplementary
material of Ref. [2].

KIT

The KIT sample consists of a 3D transmon with a single JJ shunted by an in-plane capacitor
with rectangular pads, which is capacitively coupled to an on-chip, lumped-element
readout resonator. The resonator is measured in single-port reflection in a 3D waveguide
sample holder, similar to Refs. [5, 6]. From finite-element simulations, we extract the
charging energy 𝐸C/h = (242 ± 1) MHz and a series inductance in the leads to the JJ of
𝐿s ≈ 380 pH. Taking into account an additional contribution from kinetic inductance
of 𝐿kin ≈ 60–120 pH, we expect the total series inductance for the KIT transmon to be
at maximum 𝐿s,tot ≈ 500 pH. The sample is fabricated on c-plane, double-side polished
sapphire substrate with a bi-layer resist stack of 700 nm MMA EL-13 and 300 nm PMMA
A4, and a 10 nm gold conduction layer for e-beam writing. The substrate is cleaned with
an Ar/O2 descum process and the vacuum is improved using titanium gettering, before the
metal deposition in a Plassys evaporation system. The aluminum layers are evaporated
with target film thicknesses of 30 nm and 40 nm at angles of 0° and 20°, respectively.
Between the evaporations, the JJ AlO𝑥 barriers are grown under static oxidation at an
oxygen pressure of 10mbar for 2.5min. The approximate junction area is (100 nm)2.

Notably, the KIT sample has been measured in 3 separate cooldowns, which enables
an analysis of the spectroscopy with fixed charging energy 𝐸C (given by the geometry
of the capacitor pads). In contrast, the Josephson energy and harmonics can evolve
between cooldowns, in particular due to aging between cooldown 1 and 2 and accidental
thermal annealing at 100 °C between cooldown 2 and 3. In the second cooldown, a DJJAA
parametric amplifier [6] has been added to the experimental setup, allowing to extract
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the dispersive shifts between the dressed resonator responses for different qubit states.
The average energy relaxation and Ramsey coherence times are𝑇1 = 8.7 µs and𝑇 ∗

2 = 12 µs,
respectively, measured in the 3rd cooldown of the sample.

Köln

The Köln device, studied in the research group led by Y. Ando and C. Dickel, is a SQUID
transmon with rectangular capacitor pads, capacitively coupled to a two-port copper cavity.
While the cavity is measured in reflection, additional qubit drive tones or time-domain
pulses at the qubit frequency are applied to the second port. The device was fabricated with
the same capacitor geometry and in the same batch as the device documented in [110]. The
fabrication consists of a single e-beam lithography step using a MMA/PMMA resist stack
on sapphire substrate. A weak oxygen plasma was applied to remove resist residues after
development. The aluminum layers were evaporated in a Plassys MEB 550S system with
target film thicknesses of 10 nm and 18 nm at angles of ±20◦. Between the evaporations,
the JJ AlO𝑥 barriers were grown by static oxidation at an oxygen pressure of 1mbar for
6min. From AFM imaging, we estimate the areas of the two JJs, (160 nm)2 and (260 nm)2.
The energy relaxation time of the first excited state is on the order of 𝑇1 = 10 µs, the
Ramsey coherence time on the order of 𝑇 ∗

2 = 3 µs, and 𝑇 echo
2 is typically similar to 𝑇1.

The Köln device offers two distinctive features compared to the other transmon samples.
Firstly, the transmon can be frequency-tuned by applying magnetic field with a 3-axis vec-
tor magnet (cf. Ref. [110]). In this work we focus on the dependence on in-plane magnetic
field, which suppresses the effective transmon Josephson energy (-ies), predominantly due
to Fraunhofer pattern interference [110, 195]. We estimate the additional suppression of
the superconducting gap to contribute at maximum 10% to the 𝐸J𝑚 suppression. Note that
the data vs. in-plane magnetic field is mainly taken at the bottom sweetspot of the SQUID
(by adjusting the out-of-plane field component).

The second feature is that detailed charge dispersion measurements are available thanks
to the possibility to apply a gate-voltage 𝑉g to one of the cavity pins through a bias-tee,
which enables control of the offset charge 𝑛g (cf. Section 1.2.2). As a consequence, both the
average frequencies 𝑓0 𝑗 and charge dispersion amplitudes 𝛿 𝑓0 𝑗 of the transmon transitions
can be measured versus in-plane magnetic field. For the magnetic field setting 𝐵 = 0.2 T
used in Fig. 3.3 in the main text, the measured qubit transition and readout resonator
frequencies are listed in Table C.2. The full spectroscopy and charge dispersion data for
varying in-plane magnetic fields (shown in Fig. 3.5 in the main text) is available in the
repository [230] of Ref. [2].

ENS

The ENS transmon sample, designed and studied in the research group led by Z. Leghtas,
is identical to the one documented in Refs. [184, 231]. It is a 3D transmon containing a
single JJ shunted by an in-plane plate capacitor with rectangular pads. The transmon is
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Sample Schematic Features

KIT

• readout via 3D waveguide
• measured in 3 cooldowns
• detailed finite-element
simulations

Köln
• frequency-tunable (SQUID
& in-plane field)

• detailed charge dispersion
data

ENS

• measured up to the 6th
transition

• deep transmon regime of
𝐸J1/𝐸C ≳ 100

IBM

• commercial multi-qubit
processor

• statistics on 20 measured
qubits

Table C.1: Overview of transmon devices for Josephson harmonics analysis. For each device we show
a representative image and list the distinct features of the sample. For KIT, we depict an optical microscope
image of a sample similar to the measured one (adapted from Fig. S18 in Ref. [2]). The transmon is coupled to
an on-chip lumped-element readout resonator (aluminum in white, sapphire substrate in gray) and measured
in a 3D waveguide. For Köln, we show a sketch of the 3D transmon in the two-port readout cavity (adapted
from Fig. S23 in Ref. [2]). The charge offset of the transmon can be tuned by applying a voltage 𝑉g to one
of the cavity pins and the transmon frequency can be tuned both by applying an in-plane field 𝐵 ∥ or an
out-of-plane field 𝐵⊥. For ENS, we illustrate the dressed readout resonator responses for 6 different qubit
states (adapted from Fig. 3 in Ref. [184]). For IBM, we show the connectivity between the transmons on the
IBM Hanoi device. The color of each qubit represents the qubit frequency from 𝑓01 = 4.719 GHz (dark blue,
Q12) to 𝑓01 = 5.256 GHz (light purple, Q2).

capacitively coupled to a copper cavity, which is read out in transmission. The sample was
fabricated in a single e-beam lithography and double-shadow evaporation step on sapphire
substrate using a MMA/PMMA resist stack. After an in-situ Ar/O2 descum cleaning
process, the two aluminum layers were evaporated in a Plassys evaporation system with
target thicknesses of 35 nm and 100 nm at angles of ±35°. The JJ oxide barrier was grown
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Sample KIT ENS Köln IBM
CD1 CD2 CD3 0T 0.2 T Q0 Q13

𝑓 0
𝑗/
𝑗
(G

H
z)

1 6.0391 5.8884 4.7219 5.3548 7.1095 5.079 5.0354 4.9632
2 5.934 5.7777 4.5966 5.2678 6.977 4.912 4.8598 4.791
3 5.819 5.6596 4.4590 5.1763 – 4.722 4.6698 4.599
4 5.6945 5.5305 4.3066 5.0792 – – 4.535 4.4251
5 5.5588 – – 4.9758 – – – –
6 – – – 4.8648 – – – –

𝑓 r
es
,𝑗
(G

H
z)

0 7.4613 7.4615 7.4564 7.76131 7.5658 – 7.167 7.222
1 7.4587 7.4589 7.45561 7.75608 7.5838 – 7.1636 7.219
2 – – 7.45495 7.75135 – – – –
3 – – 7.45415 7.747 – – – –
4 – – – 7.74276 – – – –
5 – – – 7.73902 – – – –
6 – – – 7.73385 – – – –

Table C.2: Transmon spectroscopy data for Josephson harmonics analysis. The top half of the table
shows the measured qubit frequencies in terms of multi-photon transitions 𝑓0𝑗/ 𝑗 between the ground state
and each state 𝑗 . The bottom half lists the dressed readout resonator frequencies 𝑓res, 𝑗 for the transmon in
state 𝑗 . Two selected field settings 𝐵 = 0 T and 𝐵 = 0.2 T are shown for the Köln device. For the IBM Hanoi
processor, we list the data for qubits Q0 and Q13. The full data for the Köln transmon and more IBM qubits
is available in the repository [230] of Ref. [2].

under static oxidation between the evaporations at a pressure of 20mbar with a 4:1 Ar:O2
mixture for 7min. The area of the JJ is 260 nm × 200 nm. The average energy relaxation
and Ramsey coherence time of the qubit are 𝑇1 = 15 µs and 𝑇 ∗

2 = 11 µs, respectively.

IBM

For conformity, we report here the description identical to Ref. [2]: The IBM data was
measured on the Hanoi, Falcon r5.11 processor for 20 out of the 27 qubits. The transition
frequencies of the IBM transmons were obtained by multi-mode spectroscopy (at a single
probe frequency) enabled by Qiskit Pulse [232, 233] to measure 𝑓0 𝑗/ 𝑗 for 𝑗 = 1, 2, 3, 4. Since
the 𝑗 = 4 transition frequency was often near the bandwidth limit imposed by Qiskit
(±500 MHz from the 𝑗 = 1 transition), additional sideband modulation was applied at the
pulse level to probe those frequencies. For the IBM Hanoi qubits 0 and 13, the measured
spectroscopy data is listed in Table C.2. The full spectroscopy data for all qubits is available
in the repository [230] of Ref. [2].
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C.2 Transmon Spectroscopy in the Literature

Since the initial publication [60], transmons have been measured and modeled in a variety
of papers in the literature. Notably, most published data only includes the low-energy
manifold of the spectroscopy, i.e. typically the lowest two transition frequencies. In
this case, agreement with the standard transmon model is guaranteed since the degrees
of freedom in the data can be matched perfectly by the free parameters in the model.
The same is true when considering the first transition frequency and additional charge
dispersion measurements. As an example, Ref. [234] reports measurements of the first two
transition frequencies 𝑓01 and 𝑓02 for one qubit and measurements of 𝑓01 and the charge
dispersion for another qubit. Consequently, the mismatch to the standard transmon model
cannot be analyzed based on the given data.

Interestingly, in the majority of papers in which multiple and sufficiently accurate fre-
quencies are reported, deviations from the standard model are observable, similar to our
measurements. In particular, the transmon reported in Ref. [191] shows deviations up to
10MHz for the 4th transition frequency when modeled without higher Josephson har-
monics. Moreover, the device measured in Ref. [192, 193] deviates by up to 400MHz from
the standard model for the 6th transition. An example for spectroscopy which can be
described without Josephson harmonics up to ∼ MHz deviations at the 5th level is given
by the transmon in Ref. [235].

Finally, it should be pointed out that it would not be surprising to find a transmon which is
well described by the standard model with purely sinusoidal C𝜑R. Given our mesoscopic
model for tunneling through an inhomogeneousAlO𝑥 barrier, such a casewould correspond
to a JJ with a highly uniform, low-transparency barrier. However, based on the evidence
in the literature and our measured data reported in the main text, an agreement with the
standard transmon model seems to be the exception for tunnel JJs currently employed in
superconducting qubits.

C.3 Fitting methodology

As discussed in the main text in Section 3.3 the methodology to fit the transmon Hamilto-
nian to the experimental data and obtain the corresponding model parameters is central to
interpreting results. In the following, we discuss in more detail the numerical techniques
employed in the analysis. First, the approach to diagonalize the standard and Josephson
harmonics Hamiltonian is outlined. Next, we explain how model parameters are deter-
mined by solving the inverse eigenvalue problem (IEP) given the measured spectroscopy.
After discussing briefly the choice of weights in the objective function for fitting the param-
eters, we detail the procedure to extract the ranges of harmonics consistent with the data.
In-depth information on the numerical methods are available in the “Methods” section
and supplementary material of Ref. [2]. Note that developing the detailed methodology
described in the following was a joint work of D. Willsch, M. Willsch and G. Catelani from
FZ Jülich, and the author of this manuscript, within the larger collaboration of Ref. [2].
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Hamiltonian Diagonalization

The matrices of the standard transmon model 𝐻std, Eq. (3.9), and Josephson harmon-
ics model 𝐻har, Eq. (3.11), are constructed in the charge basis {|𝑛⟩}, in which 4𝐸C(𝑛 −
𝑛g)2 =

∑
𝑛 4𝐸C(𝑛 − 𝑛g)2 |𝑛⟩⟨𝑛 | is diagonal and −𝐸J𝑚 cos(𝑚𝜑) = −∑

𝑛 𝐸J𝑚/2 ( |𝑛⟩⟨𝑛 +𝑚 | +
|𝑛 +𝑚⟩⟨𝑛 |) has constant entries −𝐸J𝑚/2 on the𝑚-th subdiagonal. We first diagonalize the
bare transmon matrix (excluding 𝐻res), which yields the transmon eigenenergies 𝐸 𝑗 and
eigenstates | 𝑗⟩. Next, the joint transmon-resonator Hamiltonian 𝐻std/har =

∑
𝑗 𝐸 𝑗 | 𝑗⟩⟨ 𝑗 | +

𝛺𝑎†𝑎 + ∑
𝑗, 𝑗 ′ 𝐺 | 𝑗⟩⟨ 𝑗 |𝑛 | 𝑗 ′⟩⟨ 𝑗 ′| (𝑎 + 𝑎†) is diagonalized, in which 𝑎 =

∑
𝑘

√
𝑘 + 1 |𝑘⟩⟨𝑘 + 1|.

By assigning a photon number label 𝑘 and transmon state label 𝑗 to each resulting eigenen-
ergy 𝐸

𝑙
and eigenstate |𝑙⟩ based on the largest overlap max𝑘,𝑗 | ⟨𝑘 𝑗 |𝑙⟩ |, we find the dressed

energies 𝐸
𝑘 𝑗

and states |𝑘 𝑗⟩.
This procedure is carried out for both offset charge values 𝑛g = 0 and 𝑛g = 1/2 and results
in the transmon transition frequencies ℎ𝑓 model

0 𝑗 (𝑛g) = 𝐸0 𝑗 (𝑛g) − 𝐸00(𝑛g) and the resonator
frequencies ℎ𝑓 model

res, 𝑗 (𝑛g) = 𝐸1 𝑗 (𝑛g) − 𝐸0 𝑗 (𝑛g). The predicted model frequencies are then
given by the averages 𝑓 model

0 𝑗 = [𝑓 model
0 𝑗 (0) + 𝑓 model

0 𝑗 (1/2)]/2 and 𝑓 model
res, 𝑗 = [𝑓 model

res, 𝑗 (0) +
𝑓 model
res, 𝑗 (1/2)]/2, and the charge dispersion amplitude is given by 𝛿 𝑓 model

0 𝑗 = |𝑓 model
0 𝑗 (0) −

𝑓 model
0 𝑗 (1/2) |. For the diagonalization, we consistently use 𝑛 = −𝑁, . . . , 𝑁 with 𝑁 = 14 (i.e.
in total 2𝑁 + 1 = 29) charge states, 𝑗 = 0, . . . , 𝑀 − 1 with 𝑀 = 12 transmon states, and
𝑘 = 0, . . . , 𝐾 − 1 with 𝐾 = 9 resonator states. The cut-offs 𝑁 ,𝑀 and 𝐾 have been chosen
such that adding more states does not change the model predictions significantly.

Obtaining Model Parameters by Solving the IEP

The problem of obtaining the parameters xstd of the standard transmon model and xhar

of the Josephson harmonics model, such that the linear combinations of eigenvalues
f = (𝑓 model

01 , 𝑓 model
02 , . . . , 𝑓 model

0𝑁𝑓
, 𝑓 model

res,0 , 𝑓 model
res,1 ) agree with the measured data, belongs to the

class of Hamiltonian parameterized inverse eigenvalue problems (HamPIEPs). In our case,
we solve the HamPIEP using the globally convergent Newton method [236] with cubic
line search and backtracking [237] and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [238] as implemented in TensorFlow Probability [239]. The Jacobian 𝜕f/𝜕x
is obtained by performing automatic differentiation through the diagonalization with
TensorFlow.

For the 𝐸J4 model shown in Fig. 3.3c, the IEP is solved unambiguously for the parameters
x = (𝐸J1, 𝐸J2, 𝐸J3, 𝐸J4, 𝛺,𝐺) given the lowest 4 transmon transition frequencies and by fixing
the charging energy values 𝐸KITC /ℎ = 242 MHz, 𝐸ENSC /ℎ = 180 MHz, and 𝐸IBMC /ℎ = 300 MHz.
This approach ensures that all samples can be treated identically and the models are
consistent with knowledge of the transmon capacitance, for example based on finite-
element simulations (cf. Appendix C.1). For the mesoscopic model (see Section 3.1.3), the
parameters x = (𝑑, 𝜎, 𝐸C, 𝐸J, 𝛺,𝐺) are determined by minimizing the objective function∑𝑁𝑓

𝑗=1 |𝑓 model
0 𝑗 − 𝑓 experiment

0 𝑗 |/ 𝑗 + ∑1
𝑗=0 |𝑓 model

res, 𝑗 − 𝑓 exp.res, 𝑗 | using the BFGS algorithm. The initial
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Sample Model 𝐸C/ℎ 𝐸J/ℎ 𝐸J2/𝐸J 𝐸J3/𝐸J 𝐸J4/𝐸J 𝑑 𝜎𝑑 𝛺/ℎ 𝐺/ℎ
𝐸J 0.197 24.852 - - - - - 7.454 0.078

KIT 𝐸J2 0.242 21.801 -0.019 - - - - 7.454 0.086
CD1 𝐸J4 0.242 21.997 -0.026 0.004 -0.001 - - 7.454 0.086

𝑑, 𝜎𝑑 0.293 20.186 -0.067 0.017 -0.007 1.06 0.45 7.454 0.095
𝐸J 0.206 22.704 - - - - - 7.454 0.086

KIT 𝐸J2 0.242 20.530 -0.016 - - - - 7.454 0.093
CD2 𝐸J4 0.242 20.383 -0.010 -0.003 0.001 - - 7.454 0.093

𝑑, 𝜎𝑑 0.284 19.361 -0.057 0.014 -0.005 1.62 0.50 7.454 0.101
𝐸J 0.223 13.803 - - - - - 7.454 0.080

KIT 𝐸J2 0.242 13.164 -0.009 - - - - 7.454 0.083
CD3 𝐸J4 0.242 13.225 -0.013 0.002 -0.001 - - 7.454 0.083

𝑑, 𝜎𝑑 0.254 12.977 -0.024 0.005 -0.002 1.62 0.38 7.454 0.085

ENS

𝐸J 0.167 23.191 - - - - - 7.739 0.179
𝐸J2 0.181 22.053 -0.008 - - - - 7.739 0.187
𝐸J4 0.186 21.811 -0.014 0.001 -0.000 - - 7.739 0.189
𝑑, 𝜎𝑑 0.195 21.505 -0.028 0.006 -0.002 1.63 0.39 7.739 0.194

Köln
𝐸J 0.285 16.785 - - - - - 7.545 0.077
𝐸J4 0.330 15.577 -0.023 0.004 -0.001 - - 7.545 0.083
𝑑, 𝜎𝑑 0.331 15.627 -0.027 0.006 -0.002 1.93 0.43 7.545 0.083

IBM 𝐸J 0.302 11.925 - - - - - 7.160 0.133
Q0 𝐸J4 0.300 14.672 -0.141 0.083 -0.027 - - 7.160 0.133

Table C.3: Parameters of standard transmon and Josephson harmonics models. The models are
referred to as 𝐸J for the standard transmon model Eq. (3.9), 𝐸J2 and 𝐸J4 for phenomenological Josephson
harmonics models Eq. (3.11) truncated at the 2nd and 4th harmonic, respectively, and 𝑑, 𝜎𝑑 for the mesoscopic
model (see Section 3.1.3). While the 𝐸J𝑚/𝐸J are fit parameters in the phenomenological models, they are
calculated based on the mean 𝑑 and standard deviation 𝜎𝑑 of the barrier thickness in the mesoscopic model.
The barrier dimensions are given in nanometers, the energy ratios are unitless and all other parameters
are given in gigahertz. For the Köln sample, we indicate the 𝐸J corresponding to zero magnetic field. All
parameters have been obtained by solving the HamPIEP (cf. Appendix C.3).

values for the minimization are given by 𝑑 = 1.64 nm (taken from the molecular dynamics
result in Appendix C.6), 𝜎 = 𝑑/4, and (𝐸C, 𝐸J, 𝛺,𝐺) from the standard transmon model.
For the Köln data, 288 data points (as shown in the frequency sweep Fig. 3.5a) have to be
described with the same model parameters x by only varying the first Josephson energy.
To fulfill this constraint, we use cubic interpolation as a function of 𝑓 model

01 and include
only a few central points for the available frequencies in the solution of the IEP. The
model parameters of the samples for the standard transmon model, phenomenological
models truncated at 𝐸J2 and 𝐸J4, and the mesoscopic model are listed in Table C.3. For the
parameters of additional models and samples, see the supplementary material of Ref. [2]
or the corresponding repository [230].
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Choice of Weights in the Objective Function

Formodels with a number of parameters #x smaller than the number of measured transition
frequencies #f , the HamPIEP cannot be solved unambiguously. Instead, as mentioned above
for the mesoscopic model, the solution is found by minimizing an objective function given
by the weighted sum of absolute differences between measured and modeled transition
frequencies,

𝑁tr∑︁
𝑗=1
𝑤0 𝑗

���𝑓 model
0 𝑗 − 𝑓 exp.0 𝑗

��� + 𝑁res∑︁
𝑗=0
𝑤res, 𝑗

���𝑓 model
res, 𝑗 − 𝑓 exp.res, 𝑗

��� , (C.1)

inwhich𝑤0 𝑗 and𝑤res, 𝑗 areweights for the transmon and resonator frequencies, respectively.
Importantly, the choice of the weights influences which frequencies are prioritized to be
matched by the fit but it does not change if a model can or cannot describe the full set of
measured transitions accurately [2].

For models which can describe the data reasonably, a straightforward choice of the weights
is𝑤0 𝑗 = 1/ 𝑗 for the qubit and𝑤res, 𝑗 = 1 for the first two resonator frequencies. The first
choice is motivated by the multi-photon transitions 𝑓 exp.0 𝑗 / 𝑗 being measured with similar
uncertainty ≲ 1 MHz. For the resonator, the weights ensure that the dispersive shift 𝜒01
between qubit ground and first excited state is matched by the fit.

In contrast, for models which deviate systematically from the data like the standard
transmon model (cf. Fig. 3.3b), the choice𝑤0 𝑗 = 1/ 𝑗 leads to the fit matching all frequencies
on average (due to the curvature of the deviations). Instead, for such models we take the
choice to put priority on the first two transmon transitions 𝑤01 = 𝑤02 = 1 for several
reasons. First, the approach ensures consistency with the conventional approach of fitting
only the first two transitions with the standard model parameters 𝐸J, 𝐸C. Moreover, the
fundamental transition is typically available with the best experimental precision by
measuring Ramsey fringes. Finally, the systematic uncertainty is increasing for the higher
levels due to charge dispersion (cf. Section 1.2.2). Different cases for the choice of weights
are discussed in detail in the supplementary Section II B of Ref. [2].

Extracting Ranges of Josephson Harmonics

Here we detail how the ranges of 𝐸J𝑚 consistent with measured spectroscopy for a sample,
as shown in Fig. 3.4, are obtained. Solving the HamPIEP for a dataset including 𝑁 𝑓
measured transition frequencies 𝑓0 𝑗 , 𝑗 = 1, . . . , 𝑁 𝑓 , and two resonator frequencies 𝑓res,0
and 𝑓res,1 uniquely determines the parameters x = (𝐸J1, . . . , 𝐸J𝑁𝑓

, 𝛺,𝐺). In order to extract
ranges of the first 𝑁 𝑓 Josephson energies, we include varying values of four additional
ratios y = (𝐸J𝑁𝑓 +1/𝐸J1, . . . , 𝐸J𝑁𝑓 +4/𝐸J1). In particular, we scan each of these four 𝐸J𝑚/𝐸J1
over 16 geometrically spaced values between the point contact limit 3(−1)𝑚+1/(4𝑚2 − 1)
and (−1)𝑚+1 min{10−7, |𝐸J𝑚+1/𝐸J1 |}, for which the first entry is always skipped to ensure
|𝐸J𝑚/𝐸J1 | > |𝐸J𝑚+1/𝐸J1 |. Additionally we test y = (0, 0, 0, 0) to check if the model can be
truncated at 𝐸J𝑁𝑓

.
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Given each additional parameter combination y, the HamPIEP can be solved for the
spectroscopy data to obtain the unique solution x. We note that some of the solutions for
the 𝐸J𝑚 extracted with the scanning procedure might correspond to unphysical solutions
because (i) some of the leading ratios 𝐸J𝑚/𝐸J for𝑚 ≤ 𝑁 𝑓 might be larger than the fully open
point contact limit, (ii) the magnitudes |𝐸J𝑚 | might not be strictly decreasing for increasing
order𝑚, or (iii) the signs might not be alternating. These unphysical outcomes can also
occur when the Josephson harmonics model Eq. (3.11) is truncated at too low orders.
The maximum and minimum possible ratios |𝐸J𝑚/𝐸J | extracted based on the described
procedure define the vertical bars shown in Fig. 3.4.

C.4 Additional Hamiltonian Contributions

In the following sections, we summarize briefly the influence of additional contributions
in the standard transmon Hamiltonian instead of including higher Josephson harmonics.
Corresponding plots illustrating the magnitude of deviations from the standard model
expected from these considerations are shown in Fig. C.1. An in-depth treatment and
discussion of each alternative contribution is available in supplementary Section I D of
Ref. [2]. Note that the analysis described in the following was a joint work of D. Willsch,
M. Willsch and G. Catelani from FZ Jülich, and the author of this manuscript, within the
larger collaboration of Ref. [2].

Series Inductance

One possible addition to the standard transmon model arises from the wires connecting
the JJ to the capacitor pads. Due to their elongated geometry they come with a potentially
relevant geometrical and kinetic inductance. As an example, for the KIT sample we
estimate these contributions to sum up to an inductance of 𝐿s,tot ≲ 500 pH in series to the
JJ (cf. Appendix C.1). This value corresponds to an inductive energy scale 𝐸L = (𝛷0/2𝜋)2/𝐿q
of 𝐸L/ℎ ≳ 300 GHz such that 𝐸J/𝐸L ≪ 1. The series inductance can be included in the
transmon hamiltonian by adding the inductive energy term,

𝐻 = 4𝐸C(𝑛 − 𝑛g)2 − 𝐸J cos𝜑J + 𝐸L2 𝜑
2
L . (C.2)

The effect of the series inductance is that the phase drop in parallel to the capacitor is now
distributed across the inductance, 𝜑L, and the junction, 𝜑J.

The relation between 𝜑J and 𝜑L is given by a transcendental equation [2] but, due to
its symmetry properties, the 2𝜋-periodicity of the Hamiltonian is conserved despite the
presence of the 𝜑2 term. As a consequence, the Hamiltonian can be written in terms of
a Fourier series similar to the Josephson harmonics series Eq. (3.11). Interestingly, the
coefficients of the series have similar properties to harmonics, i.e. an alternating sign
and decreasing magnitude with higher order. As an example, for the KIT sample with
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𝐸J/𝐸L ≈ 0.07 we find −1.75 % and 0.061 % contributions of the cos 2𝜑 and cos 3𝜑 term,
respectively, relative to the 𝐸J of the JJ.

Fig. C.1a shows the remaining deviations from the measured spectroscopy of the KIT
sample when including various sizes of series inductance in the Hamiltonian Eq. (C.2).
Most importantly, even for the conservatively estimated upper bound for the device, the
series inductance cannot explain the measured deviations. In order to bring the transition
frequencies close to the measured values, the series inductance would have to be at least a
factor of 2 larger than expected. In summary, while series inductance can lead to similar
kinds of corrections to the standardmodel as higher Josephson harmonics, it cannot explain
the measured deviations. Note that by considering series inductance in the Josephson
harmonics model, the ranges of harmonics consistent with the measured data (cf. Fig. 3.4)
would be shifted to lower values.

Hidden Modes

While we include the coupling to the readout resonator mode in the transmon models,
additional hidden modes can, in principle, impact the transmon spectrum due to hybridiza-
tion. These modes would be considered “dark” modes to the transmon as their coupling
strength 𝐺dark should be considerably smaller than the intended readout-qubit coupling
which is designed strong on purpose. We test the effect of an additional dark mode at
frequency 𝛺dark by adding the corresponding terms in the standard transmon model,

𝐻 = 𝐻std +𝛺dark𝑏
†𝑏 +𝐺dark𝑛(𝑏 + 𝑏†) , (C.3)

in which 𝑏† (𝑏) are the hidden mode’s creation (annihilation) operators. We consider a
coupling of 𝐺dark/ℎ = 9 MHz, a factor of 10 smaller than the coupling estimated for the
standard model of the KIT sample (cf. Table C.3).

As expected and as shown in Fig. C.1b, the addition of the dark mode only has significant
influence on the higher transmon transition frequencies if 𝛺dark is placed in proximity
to other transitions in the spectrum, for example 𝑓01 of the transmon. Even then, due
to the curvature of the measured deviations from the standard model, including a dark
mode cannot align the model predictions of the full spectroscopy dataset. Consequently,
hidden modes are an unlikely explanation for the measured deviations from the standard
transmon model. Multiple modes would have to be placed at particular frequencies and
coupling strengths to match the model to the experimental data — a situation which is
implausible both for 3D waveguide or cavity architectures and 2D chip designs.

Multi-Qubit Coupling

For the IBM Hanoi multi-qubit device, an additional contribution to deviations from the
standard transmon model can arise from the qubit-qubit coupling on the the chip. The
transmons are coupled by short coplanar waveguide resonators with resonant frequencies
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Figure C.1: Influence of additional contributions to the transmon Hamiltonian. a Difference between
frequencies 𝑓 model

0𝑗 predicted by the Hamiltonian Eq. (C.2) including series inductance and the frequencies
𝑓
exp.

0𝑗 measured for the KIT sample for transmon transitions |0⟩ → | 𝑗⟩. The colors correspond to various
values of the inductance, as indicated in the legend; dashed lines are guides to the eye. Gray circles denote the
standard transmon model, corresponding to the limit 𝐿 = 0. We estimate a total series inductance of 0.5 nH
for the sample, for which deviations up to 50MHz remain (green triangles). b Plot similar to panel a but using
the Hamiltonian Eq. (C.3) including a dark mode at frequency 𝛺dark as indicated by the legend. We fix the
coupling to the qubit at𝐺dark/ℎ = 9 MHz; gray circles denote the standard transmon model without the dark
mode. The additional mode cannot remove the measured deviations. c Absolute difference of the frequencies
𝑓
coupled

04 obtained from diagonalization of the capacitively coupled multi-transmon system Eq. (C.4) and the
frequencies 𝑓04 obtained from the diagonalization of the single-transmon-resonator system depending on
coupling strength 𝐽 . The colors indicate the 20 measured qubits (see legend). The gray arrow indicates
the design value of 2MHz for the IBM Hanoi device, at which the change of all frequencies is lower than
1MHz. The same observation holds for the lower transitions 𝑓0𝑗 with 𝑗 = 1, 2, 3. This figure is adapted from
Figs. S10, S12, S13 in Ref. [2].
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much larger than the transmon transition frequencies. For this reason, the coupling can be
treated as capacitive transmon-transmon coupling given by a Hamiltonian of the form

𝐻 = 𝐻std,𝑖 +
∑︁
⟨𝑖, 𝑗⟩

𝐽 𝑛𝑖𝑛 𝑗 , (C.4)

in which 𝐻std,𝑖 is the standard Hamiltonian of transmon 𝑖 including its readout resonator
and 𝐽 the capacitive coupling strength between all connected transmon pairs ⟨𝑖, 𝑗⟩. The
connectivity of the IBM Hanoi device is shown in Table C.1.

We diagonalize the Hamiltonian for the joint system of up to three neighboring transmons
and their readout resonators. Fig. C.1c shows the absolute difference |𝑓 coupled

0 𝑗 − 𝑓0 𝑗 | between
the coupled and the uncoupled systems as a function of the coupling strength 𝐽 for all qubits
measured up to level |4⟩ and coupled to at least one such qubit. By varying the coupling on
a scale of 0 to 50MHz [240] we find that for values of 𝐽/ℎ ≈ 2 MHz, relevant for the IBM
Hanoi device, the effect on the spectrum is marginal. In summary, the transmon-transmon
coupling on the IBM Hanoi chip cannot explain the measured deviations from the standard
transmon Hamiltonian shown in Fig. 3.3b.

Asymmetry in Superconducting Gaps of Junction Electrodes

Typically, the film thickness of the top electrode in Al-AlO𝑥 -Al tunnel JJs is chosen larger
than the thickness of the bottom electrode to ensure the overlap area of the junction
is properly contacted with the lead (see schematic in Fig. 3.2a). As a consequence, the
superconducting gaps of the two electrodes can differ slightly 𝛥1 ≠ 𝛥2 due to the gap’s
dependence on film thickness. What is the influence of this asymmetry on the JJ current-
phase relation?

It turns out that the higher harmonic contributions are, in fact, suppressed with increasing
asymmetry in the gaps [2] compared to the case of a single (symmetric) gap discussed
in the main text Section 3.1.2. In particular, for a realistic assumption on the asymmetry
𝛥1/𝛥2 = 0.9, the second harmonic coefficient is reduced by 0.07 % and for an extreme
regime of 𝛥1/𝛥2 = 0.5, the suppression reaches 2.9 %. Moreover, the suppression is the
strongest in the low-transparency limit of the current-phase relation. In conclusion,
an asymmetry in the superconducting gaps of the JJ leads, would not help to explain
deviations from the standard transmonmodel but instead marginally suppress the presence
of Josephson harmonics.

C.5 Engineering Josephson Harmonics

As discussed in the main text (see Fig. 3.5b), the IBM transmons evidence that significant
contributions from higher harmonics 𝐸J2, 𝐸J3, 𝐸J4 (cf. Fig. 3.4b,c) can reduce the charge
dispersion 𝛿 𝑓 while keeping the anharmonicity |𝛼 | = 2𝜋 |𝑓12 − 𝑓01 | constant. In contrast,
in the standard transmon model, lowering the charge dispersion by increasing 𝐸J/𝐸C
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Figure C.2: Engineering Josephson harmonics for transmons. a Placement of standard model (blue
circle), the 𝐸J4 harmonics model (green cross), and an engineered 𝐸J4 model with increased anharmonicity
(yellow diamond) in a 2D plot of charge dispersion 𝛿 𝑓01 and absolute anharmonicity |𝛼 | for IBM Q0. For the
engineered model, the parameters are chosen such that the qubit frequency 𝑓01, the resonator frequency 𝑓res,0,
and the charge dispersion 𝛿 𝑓01 stay constant. b Josephson harmonics energy ratios |𝐸J𝑚/𝐸J1 | corresponding
to the models shown in panel a. c Potential energies corresponding to the models shown in panel a. Panels b
and c use the same coloring as panel a. This figure is adapted from Fig. S8 in Ref. [2].

would reduce the anharmonicity (cf. Section 1.2.2). Building upon this evidence, can the
anharmonicity also be increased by further engineering the 𝐸J𝑚 contributions?

In Fig. C.2, we show that, indeed, sets of 𝐸J𝑚 coefficients exist, which result in a reduced
charge dispersion (gren arrow in Fig. C.2a) and increased anharmonicity (yellow arrow)
compared to the standard transmon expectation. The Josephson harmonics energy ratios
corresponding to the models are plotted in Fig. C.2b. The main reason for the increased
anharmonicity is a reduction of 𝐸J4, while 𝐸J2 and 𝐸J3 remain almost unchanged. Intuitively,
𝐸J3 must stay large to maintain the height of the potential for the reduced charge dispersion.
On top of that, the reduced 𝐸J4 slightly widens the potential around level |2⟩, which draws
the level towards the bottom of the potential well and thus increases the anharmonicity,
as illustrated in Fig. C.2c.

We note that in practice it is not straightforward to tune the values of coefficients
(𝐸J2, 𝐸J3, 𝐸J4) to arbitrary values. Achieving this level of control, likely requires a combina-
tion of various strategies, such as shaping the channels’ transparencies, adding inductive
elements in series, flux bias, etc. (cf. also Ref. [206]). As a consequence, it is currently an
open question whether it is possible or not to engineer a set of Josephson harmonics 𝐸J𝑚 ,
similar to the values discussed here, in a real device.

C.6 Evidence for AlO𝑥 Barrier Inhomogeneity

The mesoscopic model discussed in the main text is based on the observation that a
realistic AlO𝑥 tunnel barrier, fabricated with standard shadow evaporation techniques, is
inhomogeneous. In particular, the model predicts the magnitude of Josephson harmonics
based on assumptions on the thickness variations of the barrier. The atomic-scale structure
of an AlO𝑥 barrier is illustrated in Fig. 3.2b,c with a STEM micrograph and two images
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Figure C.3: Stages of molecular dynamics model for AlO𝑥 barrier growth. a Initial construction of an
Al(100) model with double island defect from Al atoms (violet) in a face-centered cubic crystal structure.
b Oxygen atoms (red) are randomly added to the model with a minimum and maximum Al-O-atom distance
of 1Å and 10Å, respectively. c The system is propagated for 1500 steps of Verlet molecular dynamics at
300 K with a time step length of 2 fs. d The remaining free oxygen is removed from the system, resulting
in aluminum structures wrapped in a layer of AlO𝑥 that can be used for the analysis in surface-like or
junction-like configurations. The simulations have been performed at ITIM, Cluj, Romania, and the figure is
adapted from Fig. S25 in Ref. [2].

resulting from molecular dynamics simulation of the barrier growth. In the following
sections we further substantiate the material provided in the main text by outlining the
procedure for the molecular dynamics simulation and showing additional STEM images.

C.6.1 Molecular Dynamics Simulation

The molecular dynamics (MD) simulations have been conceived and performed at ITIM,
Cluj, Romania. Detailed technical information on the simulations are available in the
supplementary material of Ref. [2]. In the following, we summarize the main approach
for the simulations and discuss in detail the results regarding the barrier inhomogeneity,
relevant for the mesoscopic model.

The orientation of crystalline aluminum grains in junction electrodes grown by standard
shadow evaporation techniques is random. For this reason, in the MD simulations, we
consider two distinct cases for the geometric structure of the surfaces: Al(100) and Al(111),
corresponding to opposite extremes which we average over. A similar approach using
Al(100) and Al(111) to investigate junction properties was recently proposed in Ref. [178].
Several models for the Al crystal are generated both with ideal (flat) configuration and
with various types of defects, such as steps or islands. As an example, Fig. C.3a shows a
model with a double island configuration. Next, the Al crystals are allowed to interact
with gaseous oxygen atoms placed on top (Fig. C.3b). The initial ratio between oxygen and
aluminum is approximately 1:2, i.e. the initial oxygen represents a third of the total number
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of atoms in the system (12x12x20=2880 Al atoms and 1500 O atoms). For each model the
system is propagated at 300 K for 3 ps, with a time step of 2 fs, as illustrated in Fig. C.3b-d.
During propagation, the aluminum layer incorporates oxygen atoms (Fig. C.3c). Since we
are only interested in the resulting solid structure, the oxygen atoms that remain unbound
are removed after the propagation, as shown in Fig. C.3d.

After the MD relaxation, the differences between the Al(100) and Al(111) systems can be
analyzed. First, we observe that Al(100) accepts, on average, up to 2 % more oxygen, with
the percentage referring to the total number of atoms. Moreover, we find that surfaces
with defects generally accept more oxygen. For the purpose of simulating tunnel junctions,
the thickness of the AlO𝑥 barrier is of particular interest. It can be calculated as the
difference between the coordinates of the first and the last atom that forms the AlO𝑥 layer.
Interestingly, with an average thickness of 16.4 Å the barrier formed on Al(111) is 2 Å
thicker than the one formed on Al(100), when averaging over the different defect models.
This result is surprising considering that Al(111) generally accepts fewer oxygen atoms
than the aluminum in symmetry (100). Comparing the Al-O bond lengths, we obtain only
a slightly larger length for Al(111), i.e. (1.96± 0.16) Å instead of (1.95± 0.17) Å for Al(100).
Therefore, the difference in the length of the Al-O bonds formed on the two types of bulk
does not explain the difference in the oxide thickness of up to 2Å.

However, the analysis of the structure and composition of the systems shows that different
chemical bonds are formed between aluminum and oxygen in the AlO𝑥 layer, depending
on the surface orientation. In Al(111), even though it incorporates less oxygen compared
to Al(100), a higher percentage of oxide and sub-oxide is formed, resulting in a thicker
barrier. This fact, correlated with the bond lengths and the penetration depth of oxygen,
indicates that the thickness of the AlO𝑥 layer depends on the type and quality of the
surface. The rougher the surface, the more oxygen it absorbs and, consequently, the larger
the barrier thickness. Since a typical tunnel junction barrier is obtained by oxidizing a poly-
crystalline film with grains much smaller than the junction and with random orientations,
we expect the barrier to be inhomogeneous: depending on the crystalline orientation and
oxide thickness at their respective positions, the conduction channels will have different
transparencies.

C.6.2 Scanning Transmission Electron Microscopy

In Fig. C.4, we show additional STEM images of Al-AlO𝑥 -Al barriers fabricated by e-
beam deposition of aluminum and thermal oxidation. The images have been taken in the
research group led by P. Schüffelgen and D. Grützmacher at FZ Jülich. The inhomogeneities
illustrated by themicrographs are qualitatively similar to the simulatedmolecular dynamics
results.
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Figure C.4: Additional STEM images of AlO𝑥 JJ barriers. a Bright field (BF) STEM image of a barrier
grown under static oxidation at 1mbar for 30min. The image is acquired with both zone axes misaligned,
confirming the crystallinity of both the upper and lower electrode simultaneously. The rotational misalign-
ment of the crystals explains the linear patterns compared to the dotted pattern in Fig. 3.2b in the main
text. In this image, the Al grain of the bottom electrode is not homogeneously oxidized; crystalline Al
reaches into the barrier region (cf. linear pattern indicated by the red arrow and line), reducing the barrier
thickness locally. b A zoomed-out BF-STEM image of a different part of the barrier in panel a showing a
grain boundary in the top Al electrode, indicated by the red arrow. c High-angle annular dark field (HAADF)
STEM image of a different region of the barrier shown in Fig. 3.2b in the main text. The image shows a grain
boundary of the bottom Al electrode, indicated by the red arrow. The STEM images have been taken in
the research group led by P. Schüffelgen and D. Grützmacher at FZ Jülich, and the figure is adapted from
Fig. S27 in Ref. [2].
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