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Abstract 

 

Abstract 

Forests play a crucial role in providing ecosystem services such as fodder and fuelwood, as 

well as preventing erosion and regulating climate. However, forests are currently facing rapid 

decline in many parts of the world, which has far-reaching impacts on both the environment 

and society. While deforestation receives considerable attention in the literature, there is a need 

to delve deeper into understanding and managing forest decline, particularly in arid and semi-

arid regions. These regions, with their delicate ecosystems associated with challenges related 

to intense and long-lasting droughts, require special focus. This thesis seeks to enhance our 

comprehension of forest decline in arid and semi-arid regions by applying remote sensing (RS) 

techniques. It also aims to address the potential challenges that RS may encounter in these 

ecosystems. 

The overall thesis is divided into three studies each dealing with a specific aspect of forest 

decline analysis. Due to the crucial importance of accurate forest cover (FC) mapping as a basic 

prerequisite for detecting and understanding forest decline, the first study was centered on 

developing a work-flow for the precise estimation of woody canopy cover across the expansive 

semi-arid Zagros mountain area exceeding 500,000 km2, for which no representative FC map 

existed. The study sought to address the challenge of accurately characterizing woody canopy 

presence, which tends to be underestimated in arid and semi-arid regions by existing global 

mapping approaches. To address this, the study introduced a comprehensive remote-sensing 

workflow that combines multi-year Sentinel-2 (S2) data sourced from the Google Earth Engine 

and very high-resolution (VHR) imagery archives from Google® and Bing®. Several random 

forest (RF) models were trained and evaluated across different spatial resolutions to test the 

effect of spatial grain on mapping outputs, with the model featuring a 40-m spatial resolution 

emerging as the most effective. This model established robust associations between the 

reference dataset and woody canopy density estimates derived from S2 imagery, yielding a 

median coefficient of determination (R2) and root mean square error (RMSE) of 0.67 and 0.11, 

respectively. The workflow developed in this study is likely transportable to other arid and 

semi-arid regions, providing a resource-efficient workflow for woody canopy cover estimation 

and mapping. 

In the second study, the focal point was the detection and mapping of forest decline through 

the use of time series data and statistical trend analysis. This study, conducted within a smaller 

segment of the Zagros region (covering 3500 km2), employed three distinct approaches (i.e., 

RF, anomaly detection, and Sen´s Slope) based on Landsat time series (between 1986 and 

2021) to differentiate between non-declining and declining forest patches. Among these three 

approaches, the RF classification method exhibited the highest accuracy and kappa values of 

ca. 0.75 and 0.50, respectively. The anomaly detection approach displayed overall accuracy 

and kappa values of 0.65 and 0.30, while Sen's slope approach demonstrated accuracy and 

kappa values of 0.64 and 0.30, respectively. Interestingly, the outcomes of the RF classification 

proved to be relatively independent of the Landsat data acquisition timing, suggesting that 
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environmental variables may have played a more significant role in distinguishing between 

declining and non-declining regions than the spectral characteristics of the trees as observed 

remotely. Based on the results of this study, it can be inferred that detecting declining forest 

areas in arid and semi-arid regions using Landsat data poses a notable challenge, primarily due 

to the weak vegetation signals caused by the sparse and patchy canopy cover against a bright 

soil background. We assume that this is one of the key obstacles to detecting the subtle 

degradation signals. This study underscored the potential hurdles to forest decline detection via 

RS in arid and semi-arid regions and highlighted the need for the incorporation of additional 

environmental variables to overcome these limitations. 

In the final study of this thesis, the main aim was to gain insights into the underlying factors 

that contribute to the decline of individual trees and tree groups (encompassing five individual 

trees). This investigation delves into the issue of tree and forest decline in Zagros forests, taking 

a set of relevant environmental variables such as slope and precipitation, as well as tree 

characteristics like diameter at breast height (DBH) and tree height (H) into account. Field data 

was collected from part of the Zagros forests covering an area of 165 km2, and was combined 

with environmental data from publicly accessible databases. Relationships between tree 

decline and environmental factors were analyzed through the application of generalized 

additive models (GAMs). The results shed light on the significance of specific environmental 

factors, such as slope and the Bioclimate-16 variable (representing precipitation during the 

wettest quarter), in influencing individual tree decline across various decline categories (i.e., 

non-declining, slightly declining, moderately declining, and severely declining) (p-values of 

0.009 and 0.02 for slope and Bioclimate-16, respectively). The optimal multivariate model for 

assessing tree group decline incorporates variables such as slope, soil organic carbon (SOC), 

and silt, with SOC emerging as the predominant factor (p-value = 0.04). Notably, no significant 

correlation between forest decline and tree characteristics (especially tree height) was 

discerned. To ensure the model's robustness, potential spatial autocorrelation was assessed 

using the Moran´s I test. Additionally, a spectral analysis of bare soil in areas experiencing 

decline compared to non-declining regions consistently revealed diminished reflectance values 

across ten S2 bands, with VNIR-3, SWIR-2, red, green, and blue bands that consistently 

exhibited strong significance (confirmed through the Wilcoxon test) in all seasons except 

winter. These reduced reflectance values may signify that forests growing on soils with larger 

grain size (i.e., a higher proportion of sand) and/or higher organic carbon content may exhibit 

a higher susceptibility to tree decline. This study significantly contributes to our comprehension 

of the environmental factors associated with forest decline in semi-arid forests, which also 

underscores the potential utility of the spectral characteristics of bare soil in sparsely covered 

arid and semi-arid forests for predicting the likelihood of tree and forest decline. 

In summary, this thesis highlighted the unreliability of certain global FC products in arid 

and semi-arid regions. It meticulously mapped the woody cover across the entire Zagros forest 

solely using RS data, offering a versatile workflow that is applicable to various ecosystems, 

especially those in arid and semi-arid regions worldwide. The research further examined the 

RS-based separability of both declining and non-declining forest areas in the Zagros and 

revealed substantial challenges associated with using RS for detecting forest decline in sparsely 



Abstract 

iii 

 

vegetated arid and semi-arid landscapes. Ultimately, this study made a significant contribution 

to the understanding of tree and forest decline in the semi-arid Zagros forests, by identifying a 

set of environmental factors that differed between declining and non-declining areas. The 

outcomes of this thesis are aimed to call for more international attention and support subsequent 

studies on the complex forest decline phenomenon within the fragile Zagros ecosystems and 

beyond. 
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Wälder spielen eine entscheidende Rolle bei der Bereitstellung von Ökosystemleistungen wie 

Futter und Brennholz sowie beim Schutz vor Erosion und bei der Regulierung des Klimas. In 

vielen Teilen der Welt gibt es jedoch einen raschen Rückgang von Wald , was weitreichende 

Auswirkungen auf Umwelt und Gesellschaft hat. Während der Entwaldung in der 

einschlägigen Literatur große Aufmerksamkeit gewidmet wird, besteht die Notwendigkeit, 

auch das Verständnis von Waldrückgang zu vertiefen und Methoden zum Umgang damit zu 

erarbeiten, insbesondere in semi-ariden Regionen. Diese Gebiete mit ihren empfindlichen 

Ökosystemen, welche mit den Herausforderungen intensiver und lang anhaltender 

Dürreperioden konfrontiert sind, erfordern besondere Aufmerksamkeit. Diese Arbeit soll das 

Verständnis des Waldrückgangs in semi-ariden Regionen durch die Anwendung von 

Fernerkundungstechniken verbessern. Sie zielt auch darauf ab, die potenziellen 

Herausforderungen bei der Anwendung von Fernerkundung in diesen Ökosystemen 

anzugehen. 

Die Arbeit wurde in drei Studien unterteilt, die sich jeweils mit einem bestimmten Aspekt 

der Analyse des Waldrückgangs befassen. Da eine genaue Kartierung der Waldbedeckung die 

Grundvoraussetzung für die Erkennung und das Verständnis des Waldrückgangs ist, 

konzentrierte sich die erste Studie auf die Entwicklung eines Arbeitsablaufs für die präzise 

Schätzung der Waldbedeckung im ausgedehnten semi-ariden Zagros-Gebiet, das eine Fläche 

von mehr als 500.000 km² einnimmt und für das zuvor keine repräsentative 

Waldbedeckungskarte existierte. Ziel der Studie war es, das Vorhandensein von Gehölzen 

genau zu charakterisieren, da dieses in semi-ariden Regionen durch bereits existierende globale 

Kartierungsansätze tendenziell unterschätzt wird. Um dies zu erreichen, wurde ein 

umfassender Fernerkundungs-Workflow eingeführt, der von Google Earth Engine bezogene 

Sentinel-2-Daten (S2) mehrerer Jahre mit sehr hoch auflösenden Bild-Datensätzen von 

Google® und Bing® kombiniert. Mehrere Random-Forest-Modelle wurden für verschiedene 

räumliche Auflösungen trainiert und evaluiert, um die Auswirkungen der räumlichen 

Ausflösung auf die Kartierungsergebnisse zu untersuchen, wobei sich das Modell mit einer 

Auflösung von 40 Metern als das effektivste herausstellte. Dieses Modell stellte robuste 

Beziehungen zwischen dem Referenzdatensatz und den aus S2-Bildern abgeleiteten 

Schätzungen der Gehölzbedeckung her und erreichte einen mittleren Bestimmtheitsgrad (R2) 

von 0,67 und einen mittleren quadratischen Fehler (RMSE) von 0,11.  

Der in dieser Studie entwickelte Arbeitsablauf ermöglicht eine ressourceneffiziente 

Schätzung und Kartierung der Gehölzbedeckung. Es ist anzunehmen, dass er auch auf andere 

semi-aride Regionen übertragbar ist.   

In der zweiten Studie lag der Schwerpunkt auf der Erkennung und Kartierung des 

Waldrückgangs durch die Verwendung von Zeitreihen und statistische Trendanalysen. In 

dieser Studie, die in einem kleineren Segment (3500 km²) der Zagros-Region durchgeführt 

wurde, wurden drei verschiedene Ansätze (Random Forest (RF), Anomalie-Erkennung und 
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Sen's Slope) verwendet,  um auf der Grundlage von Landsat-Zeitreihen von 1986 bis 2021 

zwischen Flächen mit und ohne Waldrückgang zu unterscheiden. Unter diesen drei Ansätzen 

wies die RF-Klassifizierungsmethode die höchste Genauigkeit und den höchsten Kappa-Wert 

von 0,75 bzw. 0,50 auf. Der Ansatz zur Erkennung von Anomalien wies eine 

Gesamtgenauigkeit von 0,65 und einen Kappa-Wert  von 0,30 auf, während der Sen's Slope-

Ansatz eine Genauigkeit von 0,64 und einen Kappa-Wert  von 0,30 zeigte. Interessanterweise 

erwiesen sich die Ergebnisse der RF-Klassifizierung als relativ unabhängig vom Zeitpunkt der 

Landsat-Datenerfassung, was darauf hindeutet, dass Umweltvariablen bei der Unterscheidung 

zwischen Regionen  mit rückläufiger und nicht rückläufiger Gehölzbedeckung eine wichtigere 

Rolle gespielt haben könnten als die mittels Fernerkundung beobachteten spektralen Merkmale 

der Gehölze. Aus den Ergebnissen dieser Studie lässt sich ableiten, dass die Erkennung 

abnehmender Waldflächen in semi-ariden Regionen mit Hilfe von Landsat-Daten eine 

besondere Herausforderung darstellt, vor allem aufgrund der schwachen Vegetationssignale, 

die durch die spärliche und lückenhafte Vegetationsbedeckung vor einem hellen 

Bodenhintergrund verursacht werden. Wir gehen davon aus, dass dies eines der größten 

Hindernisse für die Erkennung der subtilen Degradationssignale ist. Diese Studie unterstreicht 

die potenziellen Hürden für die Erkennung des Waldsrückgangs mittels Fernerkundung in 

semi-ariden Regionen und verdeutlicht die Notwendigkeit, zur Überwindung dieser 

Einschränkungen zusätzliche Umweltvariablen mit einzubeziehen.  

In der abschließenden Studie dieser Arbeit ging es darum, Einblicke in die zugrunde 

liegenden Faktoren zu gewinnen, die zum Rückgang einzelner Bäume und Baumgruppen (fünf 

Einzelbäume umfassend) beitragen. Diese Untersuchung befasst sich unter Berücksichtigung 

von Umweltvariablen wie Hangneigung und Niederschlag sowie Baummerkmalen wie 

Brusthöhendurchmesser und Baumhöhe mit dem Rückgang von Bäumen und Wäldern in der 

Zagros-Region. Die Felddaten wurden in einem Teil der Zagros-Wälder auf einer Fläche von 

165 km² gesammelt und mit Umweltdaten aus öffentlich zugänglichen Datenbanken 

kombiniert. Die Beziehungen zwischen dem Rückgang der Bäume und den Umweltfaktoren 

wurden mit Hilfe generalisierter additiver Modelle (GAMs) analysiert. Die Ergebnisse geben 

Aufschluss über die Bedeutung spezifischer Umweltfaktoren, wie z. B. die Hangneigung und 

die Bioclim-16-Variable (Niederschlag während des feuchtesten Quartals), für den Rückgang 

einzelner Bäume in verschiedenen Rückgangskategorien, d. h. nicht abnehmend, leicht 

abnehmend, mäßig abnehmend und stark abnehmend (p-Werte von 0,009 für Hangneigung und 

0,02 für Bioclim-16). Das beste multivariate Modell zur Bewertung des Rückgangs von 

Baumgruppen umfasst Variablen wie Hangneigung, organischer Kohlenstoff im Boden (SOC) 

und Schluff, wobei sich der SOC als wichtigster Faktor herausstellte (p-Wert = 0,04). 

Bemerkenswert ist, dass kein signifikanter Zusammenhang zwischen dem Waldrückgang und 

den Baummerkmalen,insbesondere der Baumhöhe, festgestellt werden konnte. Um die 

Robustheit des Modells zu gewährleisten, wurde eine mögliche räumliche Autokorrelation mit 

dem Moran's I-Test untersucht. Darüber hinaus ergab eine Spektralanalyse des blanken Bodens 

in Gebieten mit rückläufiger Entwicklung im Vergleich zu Regionen ohne rückläufige 

Entwicklung durchgängig verringerte Reflexionswerte in zehn S2-Bändern, wobei VNIR-3, 

SWIR-2, rote, grüne und blaue Bänder in allen Jahreszeiten außer im Winter durchgängig eine 
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hohe Signifikanz aufwiesen (bestätigt durch den Wilcoxon-Test). Diese geringeren 

Reflexionswerte könnten darauf hindeuten, dass Wälder, die auf Böden mit größerer 

Korngröße (d. h. einem höheren Sandanteil) und/oder höherem Gehalt an organischem 

Kohlenstoff wachsen, anfälliger für Baumrückgang sind. Diese Studie leistet einen wichtigen 

Beitrag zum Verständnis der Umweltfaktoren, die mit dem Waldrückgang in semi-ariden 

Wäldern in Verbindung stehen, und unterstreicht den potenziellen Nutzen der spektralen 

Eigenschaften von blankem Boden in spärlich bewachsenen semi-ariden Wäldern für die 

Vorhersage der Wahrscheinlichkeit von Baum- und Waldrückgang. 

Zusammenfassend lässt sich sagen, dass diese Arbeit die Unzuverlässigkeit bestimmter 

globaler Waldbedeckungsprodukte in semi-ariden Regionen aufzeigt. Die Gehölzbedeckung 

des gesamten Zagros-Waldes wurde ausschließlich mit Fernerkundungsdaten kartiert und ein 

vielseitig einsetzbarer Arbeitsablauf entwickelt, der auf verschiedene Ökosysteme anwendbar 

ist, insbesondere in semi-ariden Regionen weltweit. Es wurde ferner  die 

fernerkundungsbasierte Trennbarkeit von rückläufigen und nicht rückläufigen Waldgebieten 

in der Zagros-Region untersucht und gezeigt, dass der Einsatz von Fernerkundung zur 

Erkennung des Waldrückgangs in spärlich bewachsenen semi-ariden Landschaften mit 

erheblichen Herausforderungen verbunden ist. Letztendlich leistete diese Studie einen 

wichtigen Beitrag zum Verständnis des Rückgangs von Bäumen und Wäldern in den semi-

ariden Zagros-Wäldern, indem sie eine Reihe von Umweltfaktoren identifizierte, die sich 

zwischen Gebieten mit und ohne Rückgang unterscheiden. Die Ergebnisse dieser Arbeit sollen 

zu mehr internationaler Aufmerksamkeit aufrufen und weitere Studien zu diesem komplexen 

Phänomen in den fragilen Zagros-Ökosystemen und darüber hinaus unterstützen. 
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1.  Introduction 

1.1.  Importance of forests and forest decline  

Forests hold immense value fby providing essential ecosystem goods and services. These 

services encompass resources like fodder, fuelwood, timber, medicinal plants, and herbs. 

Furthermore, forests play a vital role in maintaining soil stability, mitigating climate change, 

conserving water, and preventing erosion and desertification (Waroux and Lambin, 2012). 

They also play a crucial role in addressing a variety of pressing sustainability and social-

ecological challenges, including the loss of biodiversity (Estoque et al., 2022). However, 

forests are declining rapidly in many regions of the world (Kuuluvainen et al., 2021). 

Approximately 2 billion hectares of the Earth's forests have been subject to degradation, 

making forest decline a recognized international problem with environmental, social, and 

economic repercussions beyond the geographical borders. The negative consequences of 

decline do not only affect ecosystems (i.e., forest function and structure) (Wang et al., 2020; 

Vásquez-Grandón et al., 2018) but also the society. This has the potential to negatively impact 

millions of people who rely, either entirely or partially, on the benefits and resources that 

forests provide at local, regional, and global levels (Vásquez-Grandón et al., 2018). This impact 

extends to the vital ecosystem services that forests provide (Waroux and Lambin, 2012). Even 

though forest decline is a crucial topic, a tendency to focus on deforestation persists within the 

literature (e.g., Caballero et al., 2023; Jin et al., 2016), particularly in arid and semi-arid regions. 

The term forest decline refers to a “reduction of the capacity of a forest to provide goods and 

services” (Simula, 2009), while deforestation is “the permanent conversion of forests to 

alternative land cover types” (Hoekman et al., 2020). Whereas there is still a considerable 

research background on forest decline within tropical forests (e.g., Hoekman et al., 2020), 

temperate forests (e.g., Sáenz-Romero et al., 2020), and boreal forests (e.g., Kuuluvainen et al., 

2021; Sánchez-Pinillos et al., 2021), there is a noticeable dearth of attention paid to the forest 

decline in arid and semi-arid regions (e.g., Ghasemi et al., 2023; le Polain de Waroux et al., 

2012). It is, therefore, essential to map, and understand the forest decline for better forest 

management, particularly in arid and semi-arid regions with fragile ecosystems (Andrews et 

al., 2020; Anderegg et al., 2012) with periodic droughts, extreme heat, and overexploitation of 

scarce resources (i.e., water) (Malagnoux et al., 2007). 

1.2.  Plants' responses to stress  

In order to monitor forest decline, it is crucial to understand the structural and physiological 

responses of plants to stress (Pontius et al., 2020). Plants have mechanisms for adapting to 

environmental pressures such as water scarcity, but when these conditions exceed what is 

average for them, it can be hazardous to their health. One of the mechanisms plants use to cope 

with stress is the development of protective pigments in leaves (Pontius et al., 2020). By 
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capturing changes in canopy color, imagery can indicate the health status of trees (Windrim et 

al., 2020; Makinde and Salami, 2013). Another mechanism trees use to cope with stress is leaf 

orientation. The angle between the leaf normal and the zenith is a significant leaf trait 

associated with light interception, photosynthesis, energy balance, and competition among 

individual plants. Adjusting leaf angles can be a strategic response to variability in light, heat, 

or water conditions (Yang et al., 2023). Many trees exhibit the ability to rapidly change their 

leaf configurations in response to environmental stresses (Briglia et al., 2020). Tree leaf 

senescence, which involves cellular structural, metabolic, and gene expression changes, is 

another example of an adaptive mechanism. The senescence of leaves can be accelerated or 

postponed by environmental factors such as light, temperature, and water status (Zhao et al., 

2022a). Generally, higher temperatures delay senescence, while drought accelerates it, with 

variations among species. That is, warm weather and drought have opposing effects on 

senescence timing, as Estiarte and Penuelas (2015) noted. Prolonged senescence can extend 

chloroplast lifespan, boost photosynthesis, and enhance source strength (Zhao et al., 2022a). 

Additionally, early senescence due to heat stress can improve heat tolerance, as observed by 

He et al. (2021). These adaptability strategies of trees are called plasticity (Zheng et al., 2023). 

However, prolonged exposure to stressful situations causes trees to decline (Hosseini et al., 

2017).  

1.3.  Definition of forest decline  

Until now, there has been no universally accepted definition of "forest decline," and it continues 

to be extremely difficult to establish a clear and practical definition (Vásquez-Grandón et al., 

2018). Several definitions have been introduced with one already provided in section 1.1 

However, there is still some disagreement as to what exactly constitutes forest decline (Ciesla 

and Donaubauer, 1994). These disagreements are influenced by the goals and management 

intentions of global organizations, countries, and researchers. These diverse viewpoints have 

given rise to various distinct definitions of forest decline, with each definition highlighting 

different aspects such as forest structure, biomass, biodiversity, and ecosystem services (ES) 

(Delgado-Aguilar et al., 2019). For instance, Tejaswi (2007) defines forest decline as “a process 

that results in temporary or permanent deterioration in tree crown cover or species composition 

while the intact canopy cover remains above 10%” (this percentage may differ according to 

different climate zones and ecosystem types). Studies like Ciesla and Donaubauer (1994) 

described forest decline as an episodic event characterized by an early, progressive loss of vigor 

and health of trees or stands over a period in the absence of evidence of a single, clearly 

identified causative factor, such as a physical disturbance or attack by an aggressive disease or 

pest. The terms "forest dieback", "forest decline", "stand-level dieback", "canopy level 

dieback", or in German, "Waldsterben", or "Waldschäden" have been used with varying 

degrees of interchangeability to describe this problem (Ciesla and Donaubauer, 1994). 

Depending on the definition, forest decline is identified by symptoms such as stunted growth, 

early autumnal leaf coloring, yellowing, foliage loss, twig die-off, and an increased presence 

and pathogenicity of fungi that decay roots. Another characteristic of forest decline is that it 
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progresses differently among trees within the same stand. While some may exhibit only slight 

symptoms, others may be in an intermediate condition, and still others may be dead. In 

Romania, for example, oak decline was identified by a reduction in annual shoot growth, 

smaller leaf size, as well as yellowing, wilting, and leaf loss (Ciesla and Donaubauer, 1994). 

In this thesis, forest decline refers primarily to the temporary or permanent deterioration of tree 

cover, with a particular focus on the Persian Oak or Brant's oak. 

1.4.  Forest decline in arid and semi-arid areas 

Arid and semi-arid regions have experienced significant decline processes in the last few 

decades (le Polain de Waroux et al., 2012) (see Figure 1.1 for the global distribution of these 

regions). Deforestation in these areas has been extensively studied, but the problem of forest 

decline has received less attention (Vásquez-Grandón et al. 2018). Studying forest decline 

requires long-term data collection and analysis to understand gradual changes (Vásquez-

Grandón et al., 2018). This can be resource-intensive and demanding in terms of time and 

funding. Also, a significant limitation in comprehending forest decline processes relates to the 

frequently restricted availability of field datasets. Collecting data on forest decline necessitates 

labor-intensive and time-consuming field campaigns, which are particularly challenging due to 

the forest's wide geographic extent. Furthermore, certain regions may be difficult to assess 

because of restricted accessibility, for example, when quantifying forests on exceedingly steep 

inclines in remote zones with inadequately maintained or insufficient road systems (Diao et al., 

2020; Lausch et al., 2016). Forest decline is often the result of multiple stressors (i.e., biotic 

and abiotic factors) acting simultaneously (Hosseini et al., 2017). Isolating the individual 

contributions of each stressor is challenging, and understanding the interactions between these 

factors requires interdisciplinary research. 

In line with the above stated, forest decline in arid and semi-arid ecosystems presents 

significant ecological and environmental challenges due to the unique challenges faced by 

these regions, including water scarcity, fragile ecosystems, local livelihoods closely depending 

on the forest, and unique biodiversity (Andrews et al., 2020; Malagnoux et al., 2007). More 

than one billion people residing in arid and semi-arid climates rely on these forests to provide 

ES (le Polain de Waroux et al., 2012), making their decline particularly significant. To address 

these challenges, this thesis explores the capability of multi-scale remote sensing (RS) 

techniques to improve our understanding of forest decline in this specific context. 
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Figure 1.1 Global Distribution of arid and semi-arid climates according to the Köppen-Geiger 

Classification. The map uses different colors to depict arid regions (BWh and BWk) and semi-arid 

regions (BSh and BSk). The source of data used for this map is Beck et al. (2018). 

1.5.  Forest decline drivers in arid and semi-arid areas 

Climate models concur that as temperatures rise during the 21st century, numerous arid and 

semi-arid areas will face more frequent, severe, and prolonged droughts (Anderegg et al., 

2012). This will result in reduced overall soil moisture, heightened stress for trees due to 

drought, increased vulnerability to insect and disease outbreaks, and an elevated risk of 

wildfires (Andrews et al., 2020). Forest decline results from a complex interplay of biotic and 

abiotic factors. Climate change-related weather extremes like droughts are a major contributor 

to tree mortality and forest decline (Hosseini et al., 2017; Sulla-Menashe et al., 2014; Waroux 

and Lambin, 2012; Peñuelas and Sardans, 2021), particularly in arid and semi-arid regions. 

Moreover, overexploitation, pollution, wildfires (Sasaki and Putz, 2009), uncontrolled grazing, 

logging, insect damage, and pathogens exacerbate drought-induced stress (Sánchez-Pinillos et 

al., 2021). There is no single answer to the question of what factors contribute to forest decline 

processes. The influence of environmental factors on forest and tree decline, (Clatterbuck, 

2006), must be examined in conjunction with local conditions and the historical progression of 

the phenomenon (Bałazy et al., 2019). In this context, it is important to acknowledge that forest 

decline represents a multifaceted phenomenon necessitating a comprehensive examination of 

the contributing factors. While the complexities inherent in this phenomenon are duly 

recognized, this thesis is dedicated to the systematic exploration of these driving factors. It 

should be noted that the exact characteristics of these drivers continue to be the subject of 

ongoing research, which plays an integral role in the research inquiries posed within the context 

of this thesis. 
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1.6.  The showcased ecosystem: the semi-arid Zagros forests 

The Zagros forests cover approximately 20% of Iran's western land region (see Figure 1.2). 

The elevation in the Zagros Mountains varies widely, ranging from 200 to 4,409 m above sea 

level. Annual precipitation varies across the region from 250 to 800 mm. Mean annual 

temperatures also differ across the expanse, measuring 11°C in the northwest and 25°C in the 

southwest. The soil composition mainly results from limestone origins and is characterized by 

a pH range of 7.0 to 8.5 (Sagheb Talebi et al., 2014). The summers in Zagros are long and very 

hot, with low humidity. As one moves from southwest to southeast, there is a gradual increase 

in the mean annual temperature, along with a change in the temperature range (Sagheb Talebi 

et al., 2014). Brant's Oak (Quercus brantii var. persica) is the most common tree species in the 

area, interspersed with Quercus infectoria (G. Olivier), Quercus libani (G. Olivier), Pistacia 

atlantica (Desf., Wild Pistachio), Acer monspessulanum (L.), Crategus spp., Amygdalus spp., 

and Pyrus spp. (Erfanifard et al., 2014). 

 

 

Figure 1.2 Zagros Forest locations over Iran 

 

The Zagros Mountains cover more than 5 million hectares and comprise 40% of Iran's total 

forest area. They have been negatively affected by extreme weather conditions and wildfires, 

making them more susceptible to forest insects and pathogens. Over the past few decades, 

Zagros forests have been facing severe oak dieback (see Figure 1.3). The study of forest decline 

in the Zagros ecosystem is still in its early stages. There is still a lack of understanding of which 

regions are affected, and it is crucial to understand the main drivers of forest decline (i.e., 

topography, climate, soil) in those regions (Moradi et al., 2021).  
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Figure 1.3 Examples of the occurrence of tree decline in the Zagros (photos taken by Elham Shafeian 

from sites located in the central Zagros zone, September 2021). 

1.7.  Woody/Forest cover dynamics in arid and semi-arid areas  

A thorough examination of woody or forest cover (FC) in the study region is vital for a 

comprehensive understanding of deforestation and forest decline (Wang and Cochrane, 2005). 

FC has been identified as a crucial tool for detecting and comprehending forest decline 

(Ghanbari Motlagh and Kiadaliri, 2021; Yang et al., 2017; Hosseini et al., 2017; Gonsamo et 

al., 2013). FC refers to the amount of land covered by the vertical projection of tree canopies 

relative to the total area. Precise FC mapping is crucial for estimating carbon stocks, biomass, 

and as contribution to global change research (Ye et al., 2014). Changes in FC have significant 

impacts on ecosystem services, biodiversity, climate change feedback, and human well-being 

(Kuemmerle et al., 2009; Huang et al., 2008). FC change, especially a reduction, may indicate 

a decline or excessive use in forest and woodland areas, suggesting deforestation (Wang and 

Cochrane, 2005). Evaluating the precision of official forestry data and comprehending trends 

in FC pose challenges in numerous regions around the world. The field-based mapping of FC 

changes in mountainous and semi-arid regions is a time-consuming and complex task which 

partly explains why comprehensive forest change maps for these regions are scarce. RS 

methods are essential to overcome this challenge and provide more accurate estimations 

(Kuemmerle et al., 2009). 
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1.8.  The role of RS in the study of forest decline 

RS techniques, such as those used in this thesis, have been applied in various studies to detect 

forest decline in arid and semi-arid regions (e.g., Ghasemi et al., 2023; Ghasemi et al., 2022; 

Karami et al., 2018). Unlike costly and time-intensive ground-based methods for monitoring 

tree mortality and forest decline in forest ecosystems (Sherwood et al., 2021), RS offers a 

practical alternative for analyzing forest changes across extensive areas (Iverson et al., 1989). 

RS involves the use of devices to collect information about objects or areas without direct 

contact. Different materials interact uniquely with sunlight through the processes of reflection, 

absorption, or transmission at distinct wavelengths, creating identifiable spectral signatures 

(Lanfri, 2010). Changes in tree and foliage morphology due to stress can be discerned using 

remote sensors, by comparing scenes before and after the decline phenomenon. Studies by Senf 

et al. (2020), Wang et al. (2020), and Iverson et al. (1989) have demonstrated the effectiveness 

of this method. Repeated analysis enables efficient monitoring of vegetation health, using for 

example greenness information (Iverson et al., 1989). 

Although each plant species has unique spectral features, there are common variations in 

spectral responses to stress (Pontius et al., 2020). Healthy green vegetation preferentially 

absorbs red and blue light wavelengths for use in photosynthesis. Greenlight (wavelength 545–

565 nm), however, is mostly reflected, leading to the green appearance of healthy 

photosynthetically active biomass (Iverson et al., 1989; Wahbi et al., 2018). Stress-induced 

changes in leaf chemistry and physiology can be detected in the blue (480–520 nm) and red 

(600–680 nm) regions through changed chlorophyll absorption (Pontius et al., 2020). 

Shortwave infrared (SWIR bands; 1550–1750 nm) bands are sensitive to soil moisture and 

vegetation water stress (Yao et al., 2018). Masaitis et al. (2012) found a robust correlation 

between the spectral reflectance properties of trees and their stress status. They also confirmed 

that stress detection in some tree species is most sensitive to the red-edge spectral zone. 

Meiforth et al. (2020) demonstrated that a combination of six spectral bands in the visible and 

near-infrared (VNIR) range (550–970 nm) from hyperspectral images is sufficient to capture 

the complete range of canopy stress symptoms in kauri trees in New Zealand. Darvishi 

Boloorani et al. (2020) investigated the spectral characteristics of two-year-old Persian oak 

seedlings experiencing simultaneous water deficiency and dust storm stress. The spectral 

values of samples allowed for the successful identification of stressed samples and the type of 

stress at both leaf and canopy levels. The principles and changes in the spectral characteristics 

of vegetation under stress are used in this thesis to detect, map, and study tree and forest decline 

in the Zagros semi-arid forest. 
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Figure 1.4 Different spectral reflectance patterns exist between almost dead, stressed, and healthy 

leaves (illustrated here with Aesculus hippocastanum, at leaf level from left to right) (photos taken and 

edited by Elham Shafeian). The healthy plant displays high absorption of visible light (RGB) and 

significant reflection of near-infrared light (black arrow), whereas the sparse or unhealthy vegetation 

shows high absorption of visible light and decreased reflection of near-infrared light (Pontius et al., 

2020).  

One common methodical approach to examining vegetation’s health status in RS is to apply 

spectral indices. In RS, a spectral index is a mathematical expression or formula that extracts 

specific data about the surface being seen from the reflectance values of various bands or 

wavelengths of electromagnetic light. These indices are useful for a number of purposes, 

including the classification of land cover (LC), determining the health of the vegetation, and 

monitoring the environment (Farella et al., 2022). Vegetation mapping and monitoring often 

use spectral vegetation indices (VIs) to assess forest decline over large regions (Xie et al., 2008; 

Moreno-Fernández et al., 2021). Various VIs have been developed to detect changes in 

vegetation using RS data, with certain indices designed specifically for arid and semi-arid 

environments. These indices are effective for monitoring changes in vegetation cover and are 

derived from land surface reflectance. However, there are some limitations to using spectral 

indices in semi-arid environments that will be discussed later. 

Using RS-based time series analysis is a reliable method for uncovering changes on the Earth's 

surface and quantifying their magnitude over a designated monitoring period (Griffiths and 

Hostert, 2015). To effectively monitor and quantify changes and trends in vegetation, long-

term and consistent satellite data records are essential. Time-series methods provide a 

structured approach that enables the assessment of alterations in FC over time with greater 

detail. Moreover, they allow the identification and measurement of long-term trends related to 

gradual changes in the canopy (Griffiths and Hostert, 2015). RS time series data can be based 

on raw digital numbers or variables derived from the original data. Such variables include 

geophysical variables such as top-of-the-atmosphere reflectance and land surface temperature, 

as well as spectral indices like the Normalized Difference Vegetation Index (NDVI). Both 
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kinds of variables can be utilized to establish long-term time series and analyze them with 

respect to different statistical parameters. In forest monitoring, the primary goal of using RS 

and time series data is to understand how forests are changing over time (see Figure 1.5 as an 

example). This is accomplished by analyzing the changes in selected measures across various 

periods that are indicative of significant alterations within the forest (Kuenzer et al., 2015). In 

recent years, various methodologies have been developed to map forest dynamics and changes 

using a time series of multispectral optical satellite data (see next section), including MODIS, 

Landsat, and S2 (Francini and Chirici, 2022; Rodman et al., 2021; Wang et al., 2020; Lima et 

al., 2019; Sulla-Menashe et al., 2014). The combination of increased access, improved 

availability of algorithms and computer code and more powerful hardware and software has 

led to significant growth of the RS community applying time series approaches. Among these 

approaches, Landsat time series have been particularly recognized as a valuable data source for 

monitoring and assessing forest decline and disturbances, as well as providing continuous 

reports on forest dynamics and changes. This is due to their free accessibility, relatively high 

spatial resolution, and long and consistent acquisition record, making them readily available 

for analysis (Dutrieux et al., 2015; Zhu et al., 2020; Diao et al., 2020; Senf et al., 2020; 

Giannetti et al., 2020; Rodman et al., 2021).  

 

 

Figure 1.5 Time series of a tree group with an increasing vegetation signal (blue) and a decreasing 

vegetation signal (red) using a Landsat-8 NDVI time series in part of the study area (the green colors in 

the map represent higher NDVI values and therefore higher vegetation vitality, and the yellow and pink 

colors represent lower NDVI values and lower vegetation vitality). 
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Time-series algorithms for detecting FC change and disturbances over time, include for 

example Continuous Change Detection and Classification (CCDC; Zhu and Woodcock, 2014), 

Landsat-based Trends in Disturbance and Recovery Detection (LandTrendr; Kennedy et al., 

2010), and Breaks for Additive Season and Trend (BFAST; Verbesselt et al., 2010). However, 

these algorithms are more advantageous for monitoring large-scale forest changes or 

deforestation than assessing minor changes induced by forest decline and tree mortality (Zhu 

et al., 2020; Kennedy et al., 2018; Lausch et al., 2016). For example, the CCDC algorithm 

demonstrates high spatial and temporal accuracy for detecting various LC changes but 

performs poorly in identifying forest disturbances with relatively minor change magnitudes 

(Zhu et al., 2020). LandTrendr utilizes Landsat time-series stacks and temporal segmentation 

to identify significant characteristics related to discrete and gradual trends (Pasquarella et al., 

2022). However, it has limited application in arid and semi-arid regions. On the other hand, the 

BFAST algorithm, following a similar principle as LandTrendr, excels at detecting abrupt 

changes, not gradual ones like forest decline (Watts and Laffan et al., 2014). Due to the 

mentioned drawbacks of these algorithms, we employed alternative time series approaches 

such as Sen's slope and anomaly analysis in this thesis. The implementation of these methods 

will be explained in depth in Chapter 3. 

1.9.  Employed RS sensors: spatial and temporal resolutions 

A sensor, such as a digital camera, acts as a tool for detecting and recording electromagnetic 

radiation that comes from the surface or atmosphere of the Earth. This radiation can include 

visible light, infrared, or microwave wavelengths. In typical passive optical sensors, this 

radiation information is stored in the form of images composed of pixels with each pixel 

representing one cell of the sensor chip. Spatial resolution is the measure of detail within the 

collected images, typically indicated by pixel size, that is the area that is represented by one 

pixel in the final image (e.g., 30 m pixel size represents a 30 m by 30 m area) (Lillesand et al., 

2008). RS sensors are categorized into passive sensors, which measure reflected energy emitted 

typically by the sun, and active sensors, which emit their own radiation. This thesis focuses on 

passive satellite imagery, particularly Sentinel-2 (S2) and Landsat multispectral imagery. 

Choosing the appropriate RS sensor is vital for any applied RS study and should take into 

account the mapping goals, image expenses, climate and atmospheric conditions, and the 

associated technical challenges for image interpretation (Xie et al., 2008). Multispectral 

satellite images are advantageous because of their ability to provide extensive spatial coverage 

and comparably high temporal resolution. Figure 1.6 showcases the sensors employed in this 

study, including their temporal and spatial resolutions. Details regarding the sensors' 

resolutions can be found in Table 1.1 to Table 1.4. All RS data employed in the thesis is freely 

accessible and downloadable for example from the Google Earth Engine (GEE) platform. 

1.9.1.  S2 

Multispectral sensors can struggle to detect early decline symptoms in individual trees due to 

limitations in spectral, spatial, and temporal resolution (Pontius et al., 2020). However, the 
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launch of the European Space Agency's S2 (A and B) multispectral sensor showed promise in 

detecting spectral changes related to forest decline problems (Pontius et al., 2020). The S2 

mission includes two polar-orbiting satellites with a 5-day constellation revisit interval and a 

10-day individual satellite revisit interval. Detailed spectral band information is available in 

Table 1.1 (Pontius et al., 2020). In the first study, S2 data were utilized for FC mapping (see 

Chapter 2). Additionally, in the third study, the S2 spectral values of bare soil surrounding 

healthy and declining trees of the field-sampled plots were analyzed (see Chapter 4).  

 

Table 1.1 S2 band information 

S2 Spectral Band Wavelength (nm) Spatial Resolution (m) 

B1 - Ultra Blue (Coastal and Aerosol) 433-453 60 

B2 - Blue 458-523 10 

B3 - Green 543-578 10 

B4 - Red 650-680 10 

B5 - Visible and Near Infrared (VNIR) 698-713 20 

B6- Visible and Near Infrared (VNIR) 733-748 20 

B7 - Visible and Near Infrared (VNIR) 773-793 20 

B8 - Visible and Near Infrared (VNIR) 785-900 10 

B8a - Near Infrared Narrow (NIRn) 855-875 20 

B9 – Water Vapor  935-955 60 

B10 - Short Wave Infrared (Cirrus) 1360-1390 60 

B11 - Short Wave Infrared (SWIR1) 1565-1655 20 

B12 - Short Wave Infrared (SWIR2) 2100-2280 20 

 

1.9.2.  Landsat  

The Landsat family of sensors offers a vast array of data, which is particularly valuable for 

examining changes in forests on both regional and global scales, as noted by Xie et al. (2008). 

These sensors have undergone various upgrades since their initial launch in 1972. The 

multispectral bands in Landsat 4, 5, 7, and 8 provide a spatial resolution of 30 m and a temporal 

resolution of 16 days, as described by Lillesand et al. (2008). In the second part of this thesis, 

we utilized Landsat's time series data spanning from 1986 to 2021 to identify and map forest 

decline using various methodologies (a comprehensive explanation of these methods will be 

provided in Chapter 2). Further detailed information regarding the Landsat sensors employed 

in this study can be found in Table 1.2 to Table 1.4. 
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Table 1.2 Landsat-4 and -5 band information 

Landsat-4 and 5 Spectral Band Wavelength (nm) Spatial Resolution (m) 

Band 1 - Blue 450- 520  30 

Band 2 - Green 520-600 30 

Band 3 - Red 630-690 30 

Band 4 - Near Infrared (NIR) 760-900 30 

Band 5 - Near Infrared (NIR) 1550 - 1750 30 

Band 6 - Thermal 1040 - 1250 120 

Band 7 - Mid-Infrared 2080 - 2350 30 

 

Table 1.3 Landsat-7 band information 

Landsat-7 Spectral Band Wavelength (nm) Spatial Resolution (m) 

Band 1 - Blue 450-520 30 

Band 2 - Green 520-600 30 

Band 3 - Red 630-690 30 

Band 4 - Near Infrared (NIR) 770-900 30 

Band 5 - Shortwave Infrared (SWIR) 1 1550-1750 30 

Band 6 - Thermal 1040-1250 60  

Band 7 - Shortwave Infrared (SWIR) 2 2090-2350 30 

Band 8 – Panchromatic 520-900 15 

 

Table 1.4 Landsat-8 band information 

Landsat-8 Spectral Band Wavelength (nm) Spatial Resolution (m) 

Band 1 - Coastal aerosol 430-450 30 

Band 2 - Blue 450-510 30 

Band 3 - Green 530-590 30 

Band 4 - Red 640-670 30 

Band 5 - Near Infrared (NIR) 850-880 30 

Band 6 - Shortwave Infrared (SWIR) 1 1570-1650 30 

Band 7 - Shortwave Infrared (SWIR) 2 2110-2290 30 

Band 8 - Panchromatic 500-680 15 

Band 9 - Cirrus 1360-1380 30 

Band 10 - Thermal Infrared (TIRS) 1 1060-1119 100 

Band 11 - Thermal Infrared (TIRS) 2 1150-1251 100 
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Figure 1.6 Part of the study area: RS datasets with varying spatial resolutions utilized in this thesis 

from bottom left to top right: (A) Landsat-8; (B) S2, and (C) VHR Google Satellite images 

1.10.  Research gaps in studying arid and semi-arid FC and forest 

decline using RS 

1.10.1.  Reliability of global FC products  

The assessment of FC using satellite imagery has received comparatively less attention within 

arid and semi-arid regions (Soleimannejad et al., 2018; Yang et al., 2012). In contrast, earlier 

studies tend to concentrate on temperate ecosystems (e.g., Heckel et al., 2020), boreal regions 

(e.g., Korhonen et al., 2017), and tropical forests (e.g., Waśniewski et al., 2020). Conducting 

consistent ecosystem-wide assessments of FC across expansive geographical areas is 

challenging to achieve solely through field campaigns. As a result, many research efforts have 

merged field data with RS information to tackle this issue (e.g., Wagenseil and Samimi, 2007) 

or, alternatively, collected data solely using high-resolution aerial surveys, unmanned aircraft, 

or satellites (e.g., Fassnacht et al., 2021; Ludwig et al., 2019; Kattenborn et al., 2019). In the 

context of forest RS, tropical, temperate, and boreal forests set themselves apart from arid and 
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semi-arid ecosystems that exhibit a specific pattern of scattered tree occurrences. The resulting 

discontinuous crown cover leads to unique structural and spectral characteristics which differ 

from the mostly continuous FC in temperate, tropical, and boreal forests. The canopies of arid 

and semi-arid forests, characterized by a patchy and often sparse nature, also form a strong 

contrast with the bright soil background (Abdollahnejad et al., 2019). This contrast notably 

impacts the relationship between the FC and the satellite signal that is observed. These 

variations in spectral characteristics might be a key reason for the limited reliability of global 

FC products in these regions (Cunningham et al., 2019). Notably, underestimations of FC are 

commonly observed in these ecosystems (Friedl et al., 2002; Bastin et al., 2017; Cunningham 

et al., 2019). This scenario can create issues because global FC products are commonly used 

in environmental modeling and the planning of forest restoration and afforestation efforts, as 

well as forest decline studies. However, they are rarely thoroughly validated on a global scale 

(Fagan 2020). The issue with the accuracy of global products becomes evident (also mentioned 

by Bai 2010) in examples like Figure 1.7, where regions densely covered with trees are 

inaccurately portrayed as largely free of forests in two global FC products: the Hansen Global 

Forest Change Map 2000–2014 and the Global TanDEM-X Forest/Non-Forest Map by DLR. 

These two products indicate that most areas in the Zagros region have less than 10 percent 

woody vegetation or forests, even though in reality, there are locations where these forests have 

cover values ranging from 60 to 80 percent (Sagheb-Talebi et al., 2014). Therefore, a proper 

workflow to determine FC in arid and semi-arid patchy forests like Zagros is still missing. 

 

 

Figure 1.7 A Google satellite view of a small area of the Zagros region is in the left panel. The Hansen 

Treecover 2000 layer from the global FC product is shown in the upper right quadrant. Even though the 

high-resolution images show a significant amount of woody cover in this location of the Zagros area, 

the Hansen FC data suggests no coverage across the area. The DLR TanDEM-X Forest/Non-Forest 
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(FNF) product for the same area is shown in the lower right panel. Most of the zoomed-in area is 

categorized as non-forest (EPSG 4326). 

1.10.2.  Forest decline mapping and understanding  

Another issue with using RS to detect forest decline is that it can only detect symptoms of 

decline that are visible and occur in large enough areas to be seen by the sensor, as noted by 

Pontius et al. in 2020. Subtle spectral signals related to degradation or decline are difficult to 

detect (Hoekman et al., 2020). Forest disturbance caused by abrupt and discrete disturbances 

(i.e., wildfire or timber harvest) is easier to spot than forest decline caused by gradual 

disturbances that last several years. As a result, there have been relatively few studies focusing 

on the detection and mapping of forest decline, particularly in arid and semi-arid regions. 

The few existing studies for the Zagros region have concentrated on mapping and monitoring 

forest decline (e.g., Ghasemi et al., 2023; Ghasemi et al., 2022; Karami et al., 2018). On the 

other hand, investigations into the causes and interconnections of potentially related variables 

responsible for this decline are still sparse and only very limited studies exist (Moradi et al., 

2021). Therefore, more driver analyses examining forest decline in arid and semi-arid forests 

are still urgently needed.  

1.11.  Research objectives  

1. The objective of the first study in this thesis is to develop a workflow for estimating 

woody coverage in an extensive semi-arid region covering over 5,000,000 hectares 

using readily available S2 satellite data. Additionally, as a secondary aim, we 

investigate the impact of different spatial grains on the accuracy of the model. 

2. The second study is focused on assessing the efficiency of established techniques, 

including random forest (RF), anomaly detection, and Sen's slope analysis, in the 

detection and mapping of forest decline within a portion of the semi-arid Zagros forests, 

covering an area of approximately 350,000 hectares. This evaluation is based on the 

analysis of Landsat time series data spanning from 1986 to 2021. 

3. The third study, covering an area of approximately 165 km², seeks to examine the 

environmental factors and tree attributes contributing to the decline of mountainous, 

patchy, semi-arid Zagros forests. It aims to understand the impact of factors like 

topography, FC, DBH (diameter at breast height), and other relevant variables on the 

varying levels of tree and forest decline, including healthy, mildly declining, moderately 

declining, and severely declining conditions. The objective is to enhance our 

comprehension of the forest decline phenomenon by analyzing the associations 

between different patterns of decline and potential contributing factors. 
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1.12.  Thesis roadmap and structure 

The first chapter, “Introduction”, has supplied a synopsis of this thesis, including its research 

gaps, motivations, and definitions of key terms. Chapter 2 depicts the first study published in 

the scientific journal “International Journal of Applied Earth Observation and Geo-

information”, which uses S2 and high-resolution data to produce a woody cover map for the 

entire Zagros forests at various spatial grains. This chapter also the description of a workflow 

to create a comprehensive LC map of the study area. 

Chapter 3 presents the second study on forest decline detection published in the “European 

Journal of Remote Sensing”. This study is focused on detecting and mapping forest decline 

within a portion of the Zagros Forest, utilizing three time-series approaches: RF, anomaly 

analysis, and Sen's slope. Landsat satellite time series data spanning 36 years is employed for 

this purpose. Chapter 4 presents the third study submitted to “Forestry:  An International 

Journal of Forest Research”. This study is focused on understanding forest decline within a 165 

km2 portion of the Zagros Forest. Environmental factors, such as topography, FC, etc., are 

studied alongside tree characteristics, including DBH. Finally, Chapter 5, Synthesis and 

Outlook, concludes the thesis by summarizing the key findings and addressing the challenges 

encountered. This chapter also lays the foundation for future research through thought-

provoking recommendations. 

1.13.  List of papers 

1. Shafeian, E., Fassnacht, F.E., and Latifi, H., 2021. Mapping fractional woody cover in 

an extensive semi-arid woodland area at different spatial grains with Sentinel-2 and 

very high-resolution data, International Journal of Applied Earth Observation and Geo-

Information, 105, 102621; DOI: 1016/j.jag.2021.102621. 

2. Shafeian, E., Fassnacht, F.E., and Latifi, H., 2023. Detecting semi-arid forest decline 

using Landsat time series, European Journal of Remote Sensing, 56(1); DOI: 

10.1080/22797254.2023.2260549. 

3. Shafeian, E., Ewald, M., Latifi, H., Fassnacht, F.E., 2023. Unveiling the main drivers 

of tree decline in Zagros semi-arid Forests, Forestry:  An International Journal of Forest 

Research, (submitted). 

1.14.  Summary of the author’s contribution 

The research papers were prepared in collaboration with several co-authors. All manuscripts 

were originally drafted by me and subsequently revised by the co-authors. Apart from writing, 

I was involved in the study design and conducted the fieldwork with the help of my co-authors 

(and others). I performed the data processing and analysis, stimulated by the ideas of the co-

authors. Finally, the results were discussed and interpreted in collaboration with the co-authors.
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2.  Mapping fractional woody cover in an extensive semi-arid 

woodland area at different spatial grains with Sentinel-2 

and very high-resolution data 

Elham Shafeian, Fabian Ewald Fassnacht, Hooman Latifi 

Abstract 

Woody canopy cover is an essential variable to characterize and monitor vegetation health, carbon 

accumulation, and land-atmosphere exchange processes. RS-based global woody and FC maps are 

available, but with varying qualities. In arid and semi-arid areas, existing global products often 

underestimate the presence of woody cover due to the sparse woody cover and bright soil 

background. Case studies on smaller regions have shown that a combination of collected field data 

and medium-to-high-resolution free satellite data (e.g., Landsat or S2) can provide woody cover 

estimates with practically sufficient accuracy. However, earlier studies focused on comparably 

small regions and relied on costly field data. Here, we present a fully RS-based workflow to derive 

woody cover estimates over an area covering more than 0.5 million km2. The workflow is 

showcased over the Zagros Mountains, a semi-arid mountain range covering western Iran, the 

northeast of Iraq, and a smaller fraction of southeast Turkey. We use the Google Earth Engine to 

create homogeneous S2 mosaics of the region using data from several years. These data are 

combined with reference woody cover values derived by a semi-automatic procedure from 

Google® and Bing® very high resolution (VHR) imagery. Several RF models at different spatial 

grains were trained and validated at each grain with iterative splits of the reference data into 

training and validation sets (100 repetitions). The best results (considering the trade-off between 

model performance and spatial detail) were obtained for the model with a 40-m spatial grain, which 

showed stable relationships between the VHR-derived reference data and the S2-based estimates 

of woody cover density. The model resulted in median values of the R2 and RMSE of 0.67 and 

0.11, respectively. Our workflow is potentially also applicable to other arid and semi-arid regions 

and can contribute to improving currently available global woody cover products, which often 

perform poorly in semi-arid and arid regions. Comparisons between our woody cover products 

and common global woody or FC products indicate the clear superiority of our approach. In future 

studies, these results may be further improved by taking into account regional differences in the 

drivers of woody cover patterns along the environmental gradient of the Zagros area. 
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2.1.  Introduction 

Woody vegetation canopy cover (hereafter termed woody cover) is one of the most commonly 

used structural parameters to describe forest and woodland ecosystems and is an essential 

biodiversity variable under the class of ecosystem structure (Jongman et al., 2017). Woody cover 

is defined as the fraction of land that is covered by the vertical projection of trees’ and shrubs’ 

canopies relative to the entire area (Gonsamo et al., 2013; Yang et al., 2017). The woody cover is 

also an important input parameter to describe biosphere-atmosphere exchange processes such as 

evapotranspiration (Villegas et al., 2015). Further, woody cover can be used to describe the current 

state of an ecosystem: reductions in woody cover may indicate decline or overexploitation 

processes in forest and woodland areas (e.g., Wang and Cochrane, 2005), with corresponding 

losses in biomass and, hence, sequestered carbon. Increases in woody cover may indicate reduced 

anthropogenic pressure, for example, due to land-use changes (e.g., Baumann et al., 2012) or 

climate-change-induced encroachment of woody species in temperature- or, in some cases, 

precipitation-limited ecosystems (e.g., García Criado et al., 2020). In dryland ecosystems, an 

increase in woody cover may indicate unfavorable shrub encroachment processes, which may 

fragment habitats and endanger biodiversity (e.g., Yang and Crews, 2019). Regular monitoring of 

woody cover at the ecosystem level over large geographical areas is hardly feasible with terrestrial 

surveys alone. Hence, numerous studies have combined field data with RS data (e.g., Wagenseil 

and Samimi, 2007) or directly used remote sensing approaches to map forest or woody cover (e.g., 

Yang and Crews, 2019; Zhang et al., 2019; Nagelkirk and Dahlin, 2020). Woody cover over local 

to regional extents has, for example, been estimated from airborne RS data, including aerial 

photographs (e.g., Fadaei et al., 2010; López et al., 2016) and laser scanning data (e.g., Andersen 

et al., 2005; Lee and Lucas, 2007). While these approaches typically provide realistic woody cover 

estimates, these data are often restricted in their spatial coverage due to quite high costs and thus 

may not be available for some parts of the Earth. Therefore, other studies examined freely available 

satellite data to estimate forest and woody cover using data from sensors such as Landsat TM 

(Rikimaru et al., 2002; Nandy et al., 2003; Deka et al., 2012), Landsat ETM+ (Deka et al., 2012; 

Joshi et al., 2006), Landsat 8-OLI (Korhonen, 2017), and S2 (e.g., Korhonen et al., 2017; Zhang 

et al., 2019). As summarized by Yang et al. (2017), most of these studies applied one of three 

methodical approaches to estimate woody cover. These include pixel-wise and spectral unmixing, 

physically-based modeling, and empirical modeling approaches. 

In contrast to empirical methods, the spectral unmixing method does not necessarily involve 

field-based measurements, as all required information can be derived directly from the image being 

unmixed (Nagelkirk and Dahlin, 2020). The basic principle of pixel-wise spectral unmixing 

follows the assumption that the spectrum of each pixel is a (linear) mixture of the spectra of a 

limited number of so-called endmembers. Each endmember represents the spectral properties of 

one of the "pure" LC classes typically occurring in the region (e.g., soil, woody vegetation, rocks). 
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Comparing the spectrum measured for an individual pixel against the mixed spectra of the end 

members then allows us to estimate the percentage cover of each of the corresponding LC classes 

in the pixel. In a recent study in the presence of field data, spectral unmixing outperformed linear 

regression for mapping woody cover in a savannah environment, while RF outperformed the 

unmixing approach (Nagelkirk and Dahlin, 2020). The selection of endmembers was stated to be 

challenging in semi-arid regions due to the varying spectral properties of vegetation and soil over 

time and space (Nagelkirk and Dahlin, 2020). 

The inversion of physically-based models, which simulate the physical relationships between 

vegetation canopies’ spectral reflectance and a set of parameters including leaf and canopy traits, 

soil properties, and view-geometry parameters, has also been used to estimate fractional vegetation 

cover (FVC), a variable related to woody cover (Baret et al., 2007; Yang et al., 2017). Direct 

inversion of these models is usually difficult due to the complexity of the physical models, which 

often require the definition of numerous parameters while the corresponding data are limited. The 

comparably heterogeneous horizontal vegetation structure of semi-arid woodlands may also not 

match the key assumptions of some radiative transfer models. For example, the SAIL model 

assumes a horizontally homogeneous canopy (Verhoef 1984), which cannot be assumed for most 

semi-arid woodlands at the spatial scale of Landsat or S2. Hence, most studies and data products 

that follow a physical modeling approach to estimate variables related to vegetation cover are 

based on coarse-resolution data. Using coarse-resolution data, some generalizations can be made 

concerning the parameters required for the inversion procedure, and the assumption of a 

homogeneous canopy cover may become acceptable. For example, Yang et al. (2017) mention 

products based on MODIS and MERIS data, and Baret et al. (2007) used the PROSAIL model to 

estimate FVC from VEGETATION data at approximately 1.15 km spatial resolution. Contrarily, 

studies applying physically-based models to estimate vegetation cover at finer resolution are 

lacking, most likely due to the restrictions outlined above. 

Finally, the presumably most common and straightforward approach to estimating woody 

cover is via empirical models, in which a statistical relationship between vegetation cover and 

remotely sensed spectral information is established (Yang et al., 2017). Many earlier studies 

combined woody cover reference values obtained from field data or very high spatial resolution 

imagery (VHR) with moderate to high spatial resolution satellite data (e.g., Wagenseil and Samimi, 

2007; Bucini et al., 2009) via statistical or machine learning models (e.g., Wingate et al., 2019; 

Liao et al., 2020; Anchang et al., 2020). Machine learning models are often applied because of 

their computational efficiency and robustness against noisy data, as well as their ability to estimate 

multivariate nonlinear relationships (Yang et al., 2017). A general key limitation of empirical 

models is their commonly observed restriction to the environmental conditions under which they 

were established (Schlerf and Atzberger, 2006). As a result, empirical models often cannot be 

extrapolated to new conditions that were not covered in their calibration data (Twery and 

Weiskittel, 2013). Calibration data, in turn, are typically constrained by the availability of field or 

other reference datasets. On the other hand, empirical models need only basic inputs, are simple 
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to implement, and often perform better than physical models and spectral unmixing approaches 

within a limited data space or study area. Hence, they are a viable option if the corresponding 

reference data demands can be met. This high data demand for empirical models has become less 

problematic over the last few years. Numerous new satellite sensors deliver continuous streams of 

satellite data, with some of the data being available free of charge (Turner et al., 2015). Also, 

corresponding reference data have become increasingly available through data sharing and direct 

derivation from VHR imagery collected by aerial surveys, unmanned aerial systems, or satellites 

(e.g., Ludwig et al., 2019; Kattenborn et al., 2019; Fassnacht et al., 2021). In summary, empirical 

models have shown to work well if sufficient reference data are available, i.e., the advantages of 

empirical models over physical models and unmixing approaches may prevail if large amounts of 

reference data can be obtained at a low cost. 

Independent from the applied methodology, earlier studies examining workflows to estimate 

woody cover tend to focus on temperate (e.g., Heckel et al., 2020), boreal (e.g., Korhonen et al., 

2017), and tropical forests (e.g., Waśniewski et al., 2020). Contrarily, the estimation of woody 

cover from satellite imagery has been less frequently examined in arid and semi-arid regions 

(Soleimannejad et al., 2018; Yang et al., 2012). In the context of RS, such regions differ from 

tropical, temperate, and boreal forests in both their structural and spectral properties. Dryland 

ecosystems like the woodlands found in the semi-Mediterranean Zagros area on which we focus 

in this study are associated with patchy occurrences of trees and a corresponding discontinuous 

crown cover. In Zagros, these patterns are a result of the joint effects of a longstanding land use 

history and climatic conditions. These patchy and often sparse canopies typically build a strong 

contrast to the bright soil background (Abdollahnejad et al., 2019), which notably affects the 

relationship between woody cover and the observed satellite signal. 

Depending on the exact location and season in which RS data are acquired, herbaceous 

vegetation may additionally have a notable influence on the spectral signal (Rautiainen and 

Heiskanen, 2013; Rautiainen et al., 2011). In arid and semi-arid regions, vegetation growth is 

mostly limited by water availability; thus, vegetation phenology displays pronounced seasonal 

trends following the precipitation patterns (wet and dry seasons) of the region (Wagenseil, Samimi, 

2007). Hence, previous studies suggested that applying multi-temporal intra-annual data can be 

useful for mapping woody cover in arid and semi-arid regions (Zandler et al., 2015; Wingate et 

al., 2019; Ludwig et al., 2019). It has also been observed that spectral bands in the visual and near-

infrared regions often show a greater contrast between soil and woody vegetation during the dry 

season due to the lack of herbaceous vegetation (Ludwig et al., 2019). These differences in the 

spectral properties of arid and semi-arid woodland forests as compared to boreal, temperate, and 

tropical forests may be one important reason why global FC products often perform poorly in arid 

and semi-arid regions (Cunningham et al., 2019). In particular, underestimations of woody cover 

are common in these ecosystems (Friedl et al., 2002; Bastin et al., 2017; Cunningham et al., 2019). 

This can be problematic as these global FC products are often used as input to environmental 

modeling studies and for the planning of forest restoration and afforestation measures but are rarely 
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scientifically evaluated in these studies (Fagan, 2020). Inaccuracies in these products may also 

affect future decision-making, especially in regions that are associated with data scarcity 

(Cunningham et al., 2019). This local quality issue of global products is shown, for example, in 

Figure 2.1, where areas densely stocked with trees are depicted as mostly unforested in two global 

FC products (i.e., the Hansen Global Forest Change map 2000–2014 and the Global TanDEM-X 

Forest/Non-Forest Map by DLR). These two products show less than 5 percent woody vegetation 

or forests in most parts of the Zagros area, although in reality there are some areas in which these 

woodlands have cover values of up to 80–90 percent (Sagheb-Talebi et al., 2014). It has to be 

mentioned, though, that, for example, the Hansen global FC product is estimated for trees with 

heights greater than 5 m. These tree heights are not achieved in all areas of Zagros; however, a 

comparably large fraction of the oak forests of the region have notably higher trees. This is only 

one example that shows that the accurate quantification of woody cover from satellite imagery 

over dryland ecosystems with sparse vegetation cover (Soleimannejad et al., 2018; Yang et al., 

2012) and often limited amounts of field reference data (Bai, 2010) still remains a challenge. 
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Figure 2.1 The top panel shows a VHR Google satellite image of a small area in Zagros. The bottom left 

panel shows the Hansen treecover2000 layer of the global FC product. In this area of Zagros, the Hansen 

FC is very low in most parts even though the VHR images show a very high woody cover; in the bottom 

right panel, the DLR TanDEM-X Forest/Non-Forest (FNF) product for the same area is depicted. Almost 

the whole area is classified as non-forest as well. (The comparison of this area with the results of our woody 

cover map, is also shown in the Supplementary Material I). All images are projected in the geographic 

coordinate system (EPSG 4326). 

This challenge has been widely discussed in several recent studies. For example, Fagan (2020) 

shows that relying on current global FC products may lead to a wide overestimation of the 

afforestation potential in dryland regions as the actual FC is notably underestimated. Bastin et al. 

(2017) show in a study based on an extensive dataset of photo-interpreted forest and woodland 

plots in drylands (using VHR imagery available on Google Earth) that the actual tree cover of 

global drylands may be 40–47% higher than reported by global tree cover products. A more general 

discussion of the challenges of RS approaches in dryland ecosystems can be found in the recent 

review of Smith et al. (2019). 

In this study, we focus on the "Zagros Forests," which spread over a semi-arid mountain range 

covering western Iran, the northeast of Iraq, and a smaller fraction of southeast Turkey. Baseline 

information is generally sparse in this enormous area (about 5.5 million ha), and obtaining a woody 

cover map at a fine spatial grain is an important contribution to characterizing the forest structure 

of this vast area. Furthermore, information on woody cover is an important prerequisite for 

subsequent forest decline analyses from satellite time series, as the comparably large influence of 

the soil background has to be accounted for (Soleimannejad et al., 2018; Yang et al., 2012). To our 

knowledge, no study so far has estimated the woody cover of the entire Zagros Forests. Previous 

studies only examined a smaller subset of the Zagros area (e.g., Darvishsefat and Saroei, 2003; 

Ahmadi Sani et al., 2007; Abdollahi et al., 2010; Shahvali Kouhshour et al., 2012; Mirzaeizadeh 

et al., 2015). 

The objective of this study is to develop a workflow to derive woody cover estimates across a 

very large semi-arid area based on freely available S2 satellite data. As a sub-objective, we 

additionally examine how the spatial grain of the analysis affects the model quality. The latter is 

interesting for at least two reasons: 1. we expect that at the spatial grain of S2, the patchy 

occurrence of trees and shrubs may complicate the accurate estimation of woody cover, and 

switching to slightly coarser spatial grains may improve the model's performance. 2. A slightly 

coarser grain may additionally reduce the variability introduced by sub-pixel spatial shifts between 

reference data and S2 data. The presented workflow is potentially also applicable to other arid and 

semi-arid forest and woodland areas and can contribute to improving currently available global FC 

products, which often perform poorly across areas dominated by sparse woody vegetation on 

bright background soil. 
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2.2.  Materials and Methods 

2.2.1.  Study Area 

Our study area includes the entire Zagros Forests, covering more than 5.5 million ha across a length 

of approximately 1300 km (Khabazi, 2020; Rahimi et al., 2020). A third of the total population of 

Iran lives in this region (Pourmoghadam et al., 2013). The Zagros area encompasses more than 42 

percent of Iran’s forests. The area spreads from the southern part of West Azerbaijan Province to 

the Fars Province (Mahdavi et al., 2014) and expands to neighboring countries (northern Iraq and 

southeastern Turkey) ( 

Figure 2.2). The climate in the Zagros area is semi-arid, with a mean annual precipitation of 250 

to 800 mm and a mean annual temperature of 9 to 25 °C (Attarod et al., 2016). The woodlands in 

Zagros are associated with patchy occurrences of trees and a corresponding discontinuous crown 

cover. The most dominant and frequent tree species include Brant´s Oak (Quercus brantii var. 

persica), which is partly mixed with Quercus infectoria G.Olivier, Quercus libani G.Olivier, wild 

pistachio (Pistacia atlantica Desf.), Acer monspessulanum L., Crategus spp., Amygdalus spp., and 

Pyrus spp. (Erfanifard et al., 2014). The prevailing mixtures depend on multiple site factors along 

the latitudinal gradient. The Zagros Forests play an important role in maintaining endemic 

vegetation and wildlife habitats, providing forage and shelter for nomadic and rural populations 

and their cattle, as well as non-wood forest products like natural gum, oak seeds, and oak gall 

(Jazirei, Ebrahimi-Rostaghi, 2003; Sagheb-Talebi et al., 2014). Over the last decades, the Zagros 

area has been deeply affected by environmental and political processes such as the occurrence of 

weather extremes, the 8-year Iran-Iraq war (1980–1988), and the still ongoing oak dieback 

(Alibakhshi et al., 2019; Arsalani et al., 2018), which have all contributed to the decline of the 

ecosystems in Zagros. 
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Figure 2.2 Location of the Zagros study area. The small black dots indicate the location of the reference 

images. The colored polygons show the provinces of the three countries comprising parts of the Zagros 

area.  

 

2.2.2.  RS data 

This research is based on two main data sources: multispectral S2 satellite data and VHR satellite 

images from Google Earth and Bing. 

2.2.2.1.  Reference data preparation for woody cover estimation 

A large woody cover reference data set was collected using VHR Google Earth and Bing imagery. 

The most recent acquisition dates for VHR imagery were 2015 and 2016, and the spatial resolution 

of Google Earth and Bing imagery ranges from 15 m to 15 cm. In this study, we did not use images 

with less than 1.5 m spatial resolution to reduce uncertainty in the reference dataset. To compose 

our reference dataset, a total of 8000 points were randomly sampled inside the Zagros area, and a 

square buffer with a 200 × 200 m area was generated around each point. To create these buffers, 

we used the gBuffer function available in the rgeos library (Bivand et al., 2018) in R (R 

Development Core Team, 2021). Then, the corresponding Google Earth and Bing images were 

visually screened in QGIS to allocate the Google and Bing images at each location to one of the 

https://www.rdocumentation.org/packages/rgeos/versions/0.5-5
https://www.rdocumentation.org/packages/rgeos/versions/0.5-5
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three classes ("wooded area =1", "no wooded area = 0," and "non-interpretable area'' = 99) 

according to the area within each buffer. The non-interpretable areas mostly referred to image 

scenes of low quality (e.g., coarse spatial resolution, blurry images, images dominated by dark 

shadows) in which the woody cover could not clearly be identified. Non-interpretable areas were 

excluded, and the remaining images (in total, 1270 images) formed the basis of our reference 

dataset. The reference samples were well distributed over the entire Zagros area ( 

Figure 2.2) and had an average distance of approximately 8.8 km from each other. 

All the selected reference images were saved as geo-located screenshots in QGIS and cropped to 

the size of the squared buffers of 200 × 200 m. Then, a semi-automatic threshold-based approach 

was applied in R using raster and Rgdal libraries to prepare a binary dataset indicating the presence 

and absence of woody cover in each pixel of the high-resolution reference images. For this, we 

systematically applied several thresholds (typically ranging from 50 to 150 while the radiometric 

resolution of the screenshots was 8 bits with values from 0 to 255) to the blue channel of the RGB 

images until the resulting binary image agreed well with the visual impression of the woody cover's 

presence. Due to the very dark appearance of the woody vegetation in front of the bright soil 

background, this procedure was straightforward and reliable. This procedure resulted in high-

resolution binary images indicating areas of woody cover and bare soil ( 

Figure 2.3). From these images, the fractional woody cover in percent could be easily obtained for 

any subset of the high-resolution reference image by dividing the number of woody cover pixels 

by the total number of pixels. For each RF model (see  

Figure 2.3), we automatically produced the woody cover reference values from the high-resolution 

binary reference images by overlapping them with a polygon or vector file corresponding to the 

pixel size and selected grain of S2, as suggested by previous studies (e.g., Higginbottom et al., 

2018). All reference images can be accessed via a link provided in Supplementary Material I. 
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Figure 2.3 Preparation of the binary reference images for a wooded area (left panels) and a non-wooded 

area/bare soil (right panels) based on a simple threshold-based procedure. 

2.2.2.2.  Preparation of S2 mosaics and predictor variables 

We applied S2 surface reflection imagery available in the GEE platform 

(https:/earthengine.google.org/) data catalog. A detailed description of this data product and the 

applied radiometric, geometric, and atmospheric corrections can be found on the GEE webpage: 

(https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR, last access 

October 11, 2021).  

These data have a 5-day temporal resolution. For creating cloud-free mosaics, we first defined 

a filter to only consider S2 images with a maximum cloud cover of 30%. Then, from all remaining 

images acquired in the time period between 2018 and 2020 and during the summer months (June–

September), we calculated a composite mosaic image directly in the GEE. We did this by first 

using the quality assessment band (QA60) to eliminate cloud and cloud shadow-affected pixels for 

each of the S2 scenes (Gao et al. 2017; Zhang et al. 2020). Then we calculated the median 

reflectance value for each pixel and band from the remaining cloud-free image stack, which 

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR
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resulted in a cloud-free, high-quality mosaic. A visual screening of the mosaic showed that no 

recognizable data artifacts were present. In our preliminary analyses, we also examined the 

potential benefits of adding S2 mosaics from other seasons, but these did not improve the results. 

For the sake of parsimony, we focused on the summer mosaics only.  

In addition to the 10 S2 bands with 10- and 20-m resolutions, we calculated the NDVI and the 

reduced simple ratio (RSR) index. We included the RSR as it was found to decrease background 

effects in areas with open canopy cover in earlier studies (e.g., Brown et al., 2000; Zhu et al., 

2010). Furthermore, a binary vegetation layer predictor variable was produced by applying a 

threshold of 0.17 to the S2 NDVI image, which resulted in a binary image of vegetated and non-

vegetated areas. Then, the fraction of vegetation pixels at 10 m pixel size within the reference areas 

was determined and used as a predictor variable. The relatively low threshold was selected due to 

generally lower NDVI values in semi-arid regions such as the Zagros Forests (Eskandari et al., 

2020). To account for potential influences of the large environmental gradient covered by the 

Zagros area on the relationship between RS data and woody cover, we also included Bioclim 

variables (BIO12 = annual precipitation, BIO15 = precipitation seasonality (coefficient of 

variation), BIO16 = precipitation of the wettest quarter, and BIO17 = precipitation of the driest 

quarter) from the GEE data catalog in our woody cover models. Furthermore, we calculated gray-

level co-occurrence texture metrics (GLCM) using the NIR band (Band 8) of S2 and the NDVI to 

also consider the spatial context (Wood et al., 2012). GLCM texture variables were previously 

stated to be a strong proxy for vegetation structure (Wood et al., 2012) and were found to be 

beneficial for vegetation-related RS analyses in many earlier studies (e.g., Coburn and Roberts, 

2004; Dobrowski et al., 2008). We calculated texture metrics in the GEE for neighborhoods of 3 

× 3 and 5 × 5 pixels using the "glcmTexture '' function and selected the metrics entropy, contrast, 

similarity/dissimilarity, correlation, and variance. The selection of metrics was based on the 

recommendations of Deur et al. (2020). 

2.2.3.  Methods 

The methodical workflow for the study is summarized in Figure 2.4 and explained in more detail 

below. The GEE codes applied in this study can be found in Supplementary Material I. 
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Figure 2.4 The applied workflow for woody cover mapping, the arrows represent the direction of the 

process. 

2.2.3.1.  RF Algorithm 

We used the decision-tree ensemble method (RF) (Breiman 2001) to map the canopy cover and 

LC of the study area. For a summary of some earlier applications of RF in the context of RS, we 

refer to Belgiu and Drăguţ (2016). The benefits of RF over traditional classification and regression 

methods include its ability to manage numerous input variables, to run effectively on large 

datasets, to be less susceptible to noisy input data and outliers, and to be hardly prone to overfitting 

(Mellor et al., 2015; Gislason et al., 2006). RF is directly available in the GEE (Gaffarian et al., 

2020). The availability of RF in GEE is particularly valuable as image processing on local 

computers would require a lot of memory, a long processing time, and a lot of storage space for 

our extensive study area. 

2.2.3.2.  Variable selection, modeling and multi-scale analysis 

RF models were trained to predict the woody cover reference values using the 40 predictor 

variables described above and listed in Supplementary Material I. We ran multiple RF models 

trained at different spatial grains. We started with the original S2 resolution of 10 m and then 

reduced the resolution by 10 m steps. In the case of the model with 10 m resolution, we resampled 

the 20 m bands of S2 to 10 m in the GEE. This resulted in datasets with a pixel size of 10, 20, 30, 

40,... up to 120 m. We ran RF models separately for each spatial grain. For each model, we 

automatically produced the woody cover reference values from the high-resolution woody cover-

delineated RGB reference images by overlapping them with a polygon or vector file corresponding 

to the S2 pixel size of the current model and then counting the number of pixels in the high-

resolution binary reference images that were assigned to the woody cover class. The corresponding 
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fractional woody cover values were attached to the reference polygons. This step was conducted 

in R using the raster and rgdal packages. After obtaining the reference values, the polygon vector 

file was imported into GEE. Then, the mean values of all predictor variables for the pixels covered 

by the polygons were obtained and exported as a CSV file using GEE. The extracted values were 

then imported into R to run a feature selection using the "three-step variable selection using random 

forests" (VSURF) package (Genuer et al., 2015). The VSURF method is based on the RF model 

and is designed to manage high-dimensional data. The VSURF package is highly scalable and can 

be used to select features in both regression and supervised classification problems. To perform 

VSURF, the first step is to exclude all non-essential variables from the dataset. The second step is 

to pick all variables that are correlated to the response and contribute to a good model's 

performance. For prediction purposes, the third step refines the collection by removing redundancy 

in the range of variables chosen in the second step (Genuer et al., 2015). The selected predictor 

variables for each spatial grain are reported in Table 2.1. 

Using the VSURF-selected predictors, we then trained an RF model 

(ee.Classifier.smileRandomForest function with 500 trees) to predict woody cover across the entire 

Zagros area. This part of the analysis was again conducted in GEE. For model training in GEE, we 

used all available reference data to maximize the information content in the model used to create 

the prediction map of woody cover density. To further validate our models, we ran additional RF 

models in R by iteratively splitting the whole reference data set into 70% training and 30% 

validation samples. Optimal mtry parameters for the models in R were selected using the tuneRF 

function of the randomForest package. The tuneRF function was run with the following settings: 

ntreeTry = 50, stepFactor = 2, improve = 0.05, trace = TRUE, and doBest = TRUE. For the tuned 

models, we calculated RMSE and R2 values based on the validation samples for each of the 100 

model runs. 

2.2.3.3.  LC 

Our woody cover predictions were created for the entire Zagros area, which also includes non-

forested areas. Hence, a LC map was required to exclude other LC classes such as built-up, water, 

and agricultural areas. A recent country-wide LC map of Iran is available (Ghorbanian et al., 2020), 

and some other local products were provided by the provincial branches of the Research Institute 

of Forests and Rangelands, yet they are based on varied datasets and unclear methodology. Initial 

visual interpretation of those maps showed that they did not appropriately depict the wooded areas 

in our study region. Almost the entire woodland area in Zagros is classified as rangeland in the 

corresponding products (e.g., Ghorbanian et al., 2020), but other LC types were also misclassified 

in the available maps. Hence, a more suitable LC product was produced within this study. For this, 

we first prepared S2 mosaics following the workflow described above but containing all seasons. 

Using images of different seasons may improve the LC classification results, especially when 

classifying agricultural areas (Wingate et al., 2019; Zandler et al., 2015). Thus, we used mosaics 

based on the S2 images of the last three years, including the spring (March, April, and May), 
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summer (June, July, and August), and fall (September, October, and November) seasons. We 

excluded winter as the corresponding mosaics were more frequently affected by data artifacts from 

clouds and snow. For each season, we calculated a gray-scale image from the S2 image using 

Equation 1. Texture variables for each of these grayscale images were calculated using the 

glcmTexture function in GEE. We used a neighborhood size of 2 and a kernel size of 3 ×  3, and 

all 21 available texture metrics were used as predictors (e.g., entropy, contrast, asimilarity, 

correlation, etc.). 

Grey Scale Image 0.3 2Band8 0.59 2Band 4 0.11 2Band3S S S=  +  +   (2.1) 

We further used additional vegetation indices (e.g., Soil Adjusted Vegetation Index (SAVI), 

Normalized Difference Tillage Index (NDTI), introduced by Deventer et al. (1997), Enhanced 

Vegetation Index (EVI), SRTM digital elevation data (Farr et al., 2007), and predictor variables 

from Sentinel-1 (S1) images). We used S1 C-band Ground Range Detected SAR data from GEE 

(ImageCollection ID: COPERNICUS/S1 GRD) at 10 m pixel size for the spring (March, April, 

and May), summer (June, July, and August), and fall (September, October, and November) seasons 

between 2018 and 2020. To construct a homogeneous subset of S1 data, metadata properties were 

used to filter the S1 data collection with the following settings: polarization of the transmitter and 

receiver: ['VV', 'VH'], instrument mode of "IW" (interferometric wide swath and orbit properties 

pass: "DESCENDING"). Then we calculated a composite mosaic image directly in the GEE, 

obtaining median-backscatter values for each pixel. 

We defined seven LC classes for the supervised classification, including built-up, plantations 

(orchards), agriculture, water, wooded areas, rangeland, and bare soil. We collected approximately 

1,000 reference data points per class via visual interpretation of high-resolution Google and Bing 

imagery in GEE. 70 percent of these points were used to train an RF model in classification mode 

to classify the stacked image for the entire Zagros area. Point-based training for RF classifiers was 

stated to result in more accurate classification compared to polygon-based training (Corcoran et 

al., 2015). We used an equal number of training points for each class since RF tends to assign more 

pixels to the classes with a larger number of training points (e.g., Latifi et al., 2015). Analogously 

to the woody cover models, we used the VSURF package to select the most important predictors 

to improve the model. In the final model, 25 important variables were selected by VSURF (see 

Supplementary Material I). Then, after adding the important variables, we ran the model by 

splitting the whole reference data set into 70% training and 30% validation samples to create the 

prediction map. We ran additional RF models to validate our model by iteratively splitting the 

whole reference data set into 70% training and 30% validation samples, following the same 

approach outlined above for the woody cover models. We calculated confusion matrices from the 

100 iterations and reported the accuracy of the classification via overall accuracy, kappa, and class-

specific accuracies (sensitivity, specificity, and balanced accuracy). 

http://onlinelibrary.wiley.com/doi/10.1029/2005RG000183/full
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2.2.3.4.  Woody cover histogram 

As a final step, we created 25,000 random points across the entire Zagros area, and at the location 

of each random point, we extracted the estimated woody cover as well as the LC class assigned to 

the point. These data were then used to depict a histogram of the woody cover percentages across 

the entire Zagros area. 

2.3.   Results 

2.3.1.  Woody cover map 

Figure 2.5 shows violin plots for the model performance metrics obtained during the iterative 

evaluations of the RF models for estimating woody cover. The results notably improve from the 

highest resolution at 10 × 10 m until 40 × 40 m, but then improvements slowly level off and remain 

approximately constant until they reach the coarsest spatial grain of 120 × 120 m. As the results 

hardly improved at resolutions coarser than 40 m, we prepared the prediction maps at 40 m spatial 

resolution, as a finer spatial grain was considered beneficial. 

For the selected model with 40 m resolution, R2 values range between 0.56 and 0.74, with a 

median value of 0.67. The RMSE values range between approximately 0.10 and 0.14, with a 

median of 0.12. 

 

 

Figure 2.5 From left to right, the development of R2 and RMSE with decreasing spatial grain for the RF 

models estimating woody cover are illustrated. The gray-shaded area in the violin plots shows the 

distribution of values, and the white point in each violin plot shows the median value. 
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Figure 2.6 Scatter plot between observed and predicted woody cover estimates using the RF model at 40 

m spatial grain. Results of all 100 model runs conducted in R 

The corresponding scatter plot of the RF model with a 40-m pixel size indicates that the model 

works reasonably well but also that a quite notable amount of variation in the reference data cannot 

be explained. Particularly for higher cover values, the model only works moderately well (Figure 

2.6). The tendency of RF to underestimate high and overestimate low values is also apparent. 

The final woody cover map for the entire Zagros area is depicted in Figure 2.7. High woody 

cover values are particularly visible in the northern, more humid parts of Zagros and in the central 

mountain regions with higher elevations. This agrees very well with the existing knowledge of the 

cover distribution in the region. 
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Figure 2.7 Map of woody cover estimates for the entire Zagros area. The three subsets A, B and C show 

two focus areas in topographically complex regions and one focus area with buildings and agricultural 

fields. The upper row shows the S2-based woody cover map and the bottom row the corresponding areas 

of VHR RGB imagery. Contour lines showing the elevation above sea level are shown on top of the RGB 

images. 

The three focal areas of the woody cover map (Figure 2.7) show that the developed woody 

cover product is able to depict varied cover situations quite well, even though areas with over- and 

underestimated cover values are also clearly apparent. Judging from the displayed contour maps, 
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no obvious influence of topography on the woody cover estimates can be observed in the depicted 

focal area maps. 

The selected predictors that were applied in the final RF models at each spatial grain are 

summarized in Table 2.1. The selected variables are overall very stable across the examined spatial 

grains. In almost all models, most S2 bands were selected except for the SWIR bands B10–B12 

and the red-edge band B6. The B8a band is also only selected in one model, while for all other 

models, B8 (which includes the spectral region of B8a) was selected. Besides the original bands, 

the two examined indices, NDVI and RSR, as well as the threshold variable based on NDVI, were 

chosen in almost all models, whereby NDVI and the threshold variable were always among the 

first-ranked predictors. Additionally, two NDVI-based texture metrics (NDVI contrast and NDVI 

asimilarity) were frequently selected. All four bioclimatic variables were selected in almost all 

models, even though mostly at higher ranks. 

Table 2.1 The VSURF selected predictors for woody cover estimation from the complete set of 40 

predictors. The numbers represent the rank at which the corresponding variable was selected in the model 

of the corresponding grain size (columns). 

Grain [m] 

Predictor 

10 20 30 40 50 60 70 80 90 100 110 120 

B2 6 5 6 6 6 5 6 6 6 6 6 6 

B3 5 4 4 5 5 4 5 5 5 5 5 4 

B4 2 2 3 3 3 3 2 2 3 2 2 3 

B5 4 6   4 4   4 4 4 4 4   

B6     12                 12 

B7   11 11 13 13 12     13     11 

B8 11     11 11   11 11 11 11 11   

B8a           10             

B12           11             

NDVI 1 1 1 1 1 1 1 1 1 1 1 1 
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thres 3 3 2 2 2 2 3 3 2 3 3 2 

RSR 7 7 5 7 7   7 7 7 7 7 5 

NDVI_contrast 9 8 7 9 9 7 9 9 9 9 9 7 

NDVI_corr_1     13                 13 

NDVI_asm_1 15     14 14   15 15 13 15 14   

NDVI_texture55           14             

NDVI_entropy                         

NDVI_var           13             

NDVI_ent_1           16             

B8_contrast     14                 14 

B8_ent_1 14 12         14 14   14 13   

B8_var 16           16 16   16 15   

bioclim 12 10 9 8 10 10 15 10 10 10 10 10 8 

bioclim 15 8 10 10 8 8 9 8 8 8 8 8 10 

bioclim 16 12   9 12 12 8 12 12 12 12 11 9 

bioclim 17 13   13 15 15 9 13 13 14 13 12 13 

2.3.2.  LC map 

Figure 2.8 displays a summary of the validation metrics for the LC classification. The highest 

sensitivity was gained by bare soil and built-up classes, with median values of both > 0.98. The 

lowest sensitivity values (0.85 and 0.92) were observed for the wooded area and agriculture 

classes, respectively. The highest specificity values were obtained for water, built-up classes, and 
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bare soil (all three > 0.99), and the lowest specificity values were obtained for rangeland, wooded 

area, agriculture, and plantation, respectively (approximately 0.98). 

The corresponding trends are also mirrored in the balanced accuracies, which were again 

highest for the bare soil with a median value of 0.99, built-up and water with median values of 

more than 0.98, and lowest for the wooded area and agriculture with approximately 0.91 and 0.95, 

respectively. All metrics were comparably stable throughout the 100 iterations, which indicates 

that the number of training samples was sufficient. The LC classification model reached an overall 

accuracy and a kappa value of more than 0.94 and 0.93, respectively. 

 

 

Figure 2.8 (A) Balanced accuracy; (B) specificity, and (C) sensitivity of the LC classes in the supervised 

classification 

 

The final S2-based LC map for the entire study area and some focal area maps with 

corresponding high-resolution RGB imagery are shown in Figure 2.9. The dark-green belt of 

"wooded areas" reaching from the north-west to the south-east of the study area agrees very well 

with the fractional woody cover map (Figure 2.9). The huge agricultural areas in the north of 

Zagros are also clearly visible, while agricultural areas are more sparsely distributed in the 

southern parts of Zagros. The other land-cover classes mostly occur in smaller proportions, except 

for rangeland, which becomes more continuous in the southern parts of Zagros, where tree growth 

is more and more limited due to climatic conditions. Overall, the LC map agrees well with the 

known distribution of LC in the Zagros area. 
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Figure 2.9 Map of LC estimates for the entire Zagros area. The panels A, B and C show focus areas of the 

S2-based LC map and below them, the corresponding areas of VHR RGB imagery (classes with non-green 

colors were masked out in the final woody cover product). 

 

As shown in the focus area maps, discriminating the plantation or orchard class from the 

wooded areas was not always possible (see Figure 2.9 Panel C and additional graphs in the 

Supplementary Material I), and especially in areas with dense natural woody cover, some 
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confusion occurred. Some further confusion occurred between built-up areas and very bright bare 

soil or pebble areas (see Figure 2.9, panel B, along the river). Finally, the classes of bare soil, 

rangeland, and wooded areas expectedly showed some confusion. This is no surprise, as these 

three classes more or less form a continuum from bare soil to woodlands, with rangeland having 

higher fractions of herbaceous vegetation. A clear separation of the three classes is therefore 

challenging, even in the field. 

2.3.3.  Woody cover histogram 

  

Figure 2.10  Histograms of woody cover estimates for n random points across the complete Zagros area 

and for different combinations of LC types as obtained from the LC classification. 

 

According to the final woody cover map presented in this study, most areas classified as forests 

have a woody cover below approximately 60%, even though higher cover values exist in some 

areas (bottom right panel of Figure 2.10). The highest frequencies can be observed for areas with 

a cover of approximately 10%, which is FAO’s minimum cover to fulfill the definition of a forest. 
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If woody cover estimates for bare soil, rangeland, and plantation areas are additionally considered 

in the histogram, the proportion of very low cover values increases notably (top panels in Figure 

2.10). 

2.4.  Discussion 

In this study, we suggest a fully RS-based workflow to estimate fractional woody cover across the 

entire Zagros Mountains. Our results demonstrate the capability of S2 images to estimate woody 

cover in the semi-arid Zagros Forest area using reference data from VHR satellite imagery from 

Google Earth and Bing instead of field measurements. Our methodology is practical when focusing 

on vast areas where field sampling can be very time-consuming and expensive. Recently published 

studies proved that VHR imagery can be used as a complement to field sampling (e.g., Anchang 

et al., 2020; Eskandari et al., 2020), whereas some studies solely relied on VHR imagery as a 

surrogate for field data (e.g., Kattenborn et al., 2019; Fassnacht et al., 2021; Ludwig et al., 2019). 

The latter studies argued that, for certain objectives, VHR imagery might even be more reliable 

than field data. For example, visual estimates of woody cover on the ground may be less accurate 

as the field observer is not sharing the bird's-eye perspective of the satellite data (Kattenborn et al., 

2019). Visual comparisons of our resulting woody cover map showed very good agreement with 

the VHR data and seem to confirm the validity of this approach. 

One challenge when working with extensive study areas is environmental variability. The 

Zagros area is considered a geographic entity, but the environmental and socio-political settings 

within Zagros vary widely. The Zagros area has varying rainfall patterns and crosses several 

climatic zones, from very hot and dry (in southern Zagros) to semi-arid and even cold climates (in 

northern Zagros) (Ashraf Vaghefi et al., 2019). Different dominant woody species may occur in 

each of these climatic zones, as exemplified by 1) the high mixture of Q. libani and Q. infectoria 

with Q. brantii in the northern part and their absence in the central and southern parts; and 2) the 

dominant Amygdalus spp. in the very southern part, occasionally in the absence of Q. brantii. 

Another significant source of variation is the traditional land-use practices outside the main urban 

centers, which range from the dominance of settled villages in the northern parts to different types 

of nomadic life in the central and southern parts, resulting in variable forest tenure and thus 

densities due to different silvopastoral systems. This might be one reason why our model was able 

to predict woody cover reasonably well, but still, a notable amount of unexplained variation 

remained. Given the comparably low woody cover in most parts of Zagros (Figures. 2.7 and 2.10), 

the obtained median RMSE value of 0.11 (11%) is comparably high and indicates that there is still 

room for improvement in the suggested workflow. Concerning the variability introduced by 

differing climatic conditions, we tried to at least partly account for the environmental gradients of 

the Zagros area by adding bioclimatic variables to our workflow. These turned out to be among 

the selected predictors in almost all RF models, which confirms the importance of considering 

information on environmental gradients in estimating woody cover fraction. Some earlier studies 
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focusing on woody cover estimation classified their study area into various bioclimatic zones and 

found a significant relationship between bioclimatic zones and woody cover density (e.g., Brandt 

et al., 2018; Sankaran et al., 2005). Thus, an alternative to our suggested approach could be to 

classify the entire study area into different climatic zones and then train separate zone-specific 

models. 

Another source of variation in our workflow relates to the VHR (Bing and Google Images). 

Most Google satellite images for the Zagros area are more recent than the Bing Maps images 

(Lesiv et al., 2018). This was also reflected in the data used for our analysis (7000 Google Earth 

vs. 1000 Bing images). For most sub-regions, particularly in the central part of Zagros, no VHR 

imagery with an acquisition date after 2015 or 2016 was available. Hence, these older reference 

data might not have been fully representative of the current conditions mirrored in the S2 imagery 

and may have had a negative effect on our model performance. This issue could be addressed by 

collecting UAV data in areas with outdated VHR images; however, that would also lead to notably 

increased costs. 

2.4.1.  Effects of spatial grain on model performance 

One objective of our study was to examine how the spatial grain of the analysis affects the quality 

of the model. We initially used S2 bands at 10 m pixel size and then additionally ran the model 

with down-sampled S2 data with pixel sizes from 20 to 120 m spatial resolution. Our results show 

a decrease in RMSE and an increase in R2 from 10 to 60 m pixel size, followed by saturation and 

comparably stable results with only marginal fluctuations afterward. This model improvement at 

a coarser spatial grain matches our expectations and is in line with the findings of Korhonen et al. 

(2017), who reported better model performances when using nine S2 image pixels instead of one. 

Higginbottom et al. (2018) also estimated woody cover density using Landsat TM/ETM+ imagery 

at 30, 60, 90, and 120 m pixel sizes and suggested that the most accurate model was the model 

with the coarsest resolution (R2 = 0.8, RMSE = 8.9, at the 120 m pixel scale) when solely using 

dry season images. They discussed that while the maps at 120 m were of the highest model 

accuracy, they were less suitable to detect smaller clumps and canopies of dryland vegetation. 

Accordingly, and as a compromise between model performance and the ability to depict finer 

spatial patterns, we used the 40-m model to produce our final map. The tendency of the models to 

perform better at coarser spatial grain may relate to at least two aspects: First, potential co-location 

errors between S2 and VHR imagery at the sub-pixel scale have less influence at coarser grain. 

Second, by increasing the spatial grain of the analysis, the number of extreme values in the 

reference data (very high and very low woody cover estimates) will decrease (see Supplementary 

Material I). The latter point may lead to reductions in RMSE, particularly if a model like RF is 

applied that tends to predict intermediate values. This phenomenon has, for example, been 

described for biomass estimation models trained with field plots of differing sizes and using 

several RS data types (e.g., Fassnacht et al., 2018; Hosseini et al., 2020) and is also related to the 
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inability of RF to predict out of the range of its reference values. It was consequently reported in 

many studies that RF tends to under-predict high and over-predict low values, which was also 

confirmed in our study (Figure 2.6). 

2.4.2.  Selected predictor variables 

The spatial scale only had a minor influence on the selected predictor variables. According to the 

results of VSURF-based variable selection, the frequency and order in which predictor variables 

were selected remained fairly constant across all examined scales. One exception was band 8 

(spectrally centered at 842 nm), which was repeatedly selected in models based on coarser grain 

data (> 70 m). It was also remarkably the case for two texture metrics based on the same band 

(B8_ent_1 and B8_var), which indicates that NIR-based texture information may become more 

relevant at coarser spatial grains. This seems logical, as spatial variation in reflectance in the NIR 

is likely to relate to varied woody cover situations in our study area. This variation may play less 

of a role at finer spatial grains, where the information in the individual pixel may be sufficient to 

describe the reference woody cover values extracted from the VHR images. 

The most frequently selected predictor variables that were present in all RF models included 

NDVI, B4 (red band), thres, B3/green band, bio12 (annual precipitation), and B2/blue band. 

Hence, bands from the visual part of the spectrum were constantly selected. This partly agrees with 

Higginbottom et al. (2018), who reported B3 as the second-best individual S2 band (with R2 = 

0.66–0.70) for monitoring canopy properties in patchy, discontinuous woody vegetation in South 

Africa. Heckel et al., (2020) and Waśniewski et al. (2020) also reported that the bands from the 

visual domain notably contribute to estimating FC. In contrast to Higginbottom et al. (2018) and 

some studies in other forest ecosystems (e.g., Waśniewski et al., 2020; Heckel et al., 2020), we 

found the red edge bands (B5–B7) and also the bands located in the near-infrared (B8, B8a) to be 

of only intermediate importance for estimating woody cover. While this has also been reported by 

other earlier studies focusing on related variables such as leaf area index (LAI) (Meyer et al., 

2019), it is very likely that this is also a consequence of NDVI being the most important predictor 

variable in all models. As NDVI captures the most important information contained in the red-

edge bands, the additional, finer information from the red-edge bands may simply not be relevant 

when focusing on a straightforward target variable such as woody cover. The high importance of 

NDVI comes as no surprise, as it has been previously reported to be a highly significant predictor 

variable for estimating tree and woody canopy cover fractions in the Zagros region (Eskandari et 

al., 2020). It was interesting to see that our NDVI threshold predictor (named thres), a binary mask 

derived by applying a threshold of 0.17 to the NDVI, was among the most frequently selected 

predictor variables. The idea of this predictor was to imitate the approach with which the reference 

data was created, and we assumed that it would be particularly useful at coarser spatial resolutions. 

However, the predictor was relevant even at the finest spatial resolutions examined. 
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The two SWIR bands of S2 played almost no role in our study, and only B12 was selected once 

in the model at a 60 m spatial grain. This is not surprising, as the differentiation of the dark 

vegetation in front of the soil background is unlikely to depend on additional information on 

canopy structure or water content that is mostly contained in the SWIR bands. Furthermore, similar 

to the red-edge band, the most important information related to the SWIR bands (or at least Band 

11) might have already been captured by the RSR index, which was also one of the most frequently 

selected predictors in all models. This index combines information from the RED, NIR, and SWIR 

regions and tends to decrease the effects of bright and pronounced soil background in situations 

with sparse canopy cover like our study area. This high relevance of the RSR index agrees well 

with the findings of several earlier studies focusing on similar target variables (e.g., Brown et al., 

2000; Zhu et al., 2010). 

Earlier studies proved that climatic variables are important for mapping woody vegetation and 

can improve RS models (e.g., Liu et al., 2017; Brandt et al., 2018). Therefore, to account for the 

potential influences of the large environmental gradient covered by the Zagros area on the 

relationship between RS data and woody cover, we also included selected bioclimatic variables 

(BIO12, BIO15, BIO16, and BIO17). The annual precipitation (BIO12) was selected in all models, 

while precipitation seasonality (Bio15) was selected in all models except the model with 40 m 

resolution. The precipitation of the wettest and driest quarters (BIO16 and BIO17) was also 

selected for all models except for the model with 20 m resolution. Even though the bioclimate 

variables had a notably lower spatial resolution as compared to the S2-based predictors, it was 

remarkable to observe that they were still selected in almost all models. We assume that the 

bioclimate variables were helpful to pre-stratify the feature space into coarse environmental 

regions, which may explain a part of the variability in the reference data that was collected across 

the entire Zagros area. Topography metrics were also explored in some preliminary analyses but 

were found to not increase the model's performance. The result of this analysis is shown in the 

Supplementary Material I. This was surprising but may partly be explained by the large 

environmental gradient of our study area. This gradient may challenge a stable relationship 

between topography and woody cover. For example, in the northern areas with more precipitation, 

a shaded slope may be disadvantageous (due to less light and hence photosynthetic activity), while 

in the southern areas with less precipitation, a shaded slope may be beneficial due to the reduced 

transpiration stress. A more detailed analysis would be required to understand how the patterns of 

differing woody cover values relate to environmental variables and land-use trajectories. Our 

woody cover map could be a good starting point to analyze this question in future studies, and 

corresponding findings may in turn be helpful to further improve the presented workflow by 

considering regional differences in the drivers of woody cover patterns. 
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2.4.3.  Relevance of the created woody cover map 

For environmental science and natural resource management, accurate and timely maps of woody 

cover are critical (Karlson et al., 2015). The Zagros Forests, which have a documented history of 

human settlements dating back beyond 5500 years, are one of Iran's most valuable cultural 

landscapes and play an important role in soil and water conservation. Climate change, population 

development, and people's reliance on these woodlands for their livelihoods (by harvesting wood 

and forest sub-products, turning woodlands into agricultural fields, and grazing areas) have all 

contributed to the decline of the woodland ecosystems in Zagros over the last 30 years (Jazirei and 

Ebrahimi, 2013). Despite the high environmental importance of these woodlands, they are 

currently not part of a national-scale protection plan. As a result, developing accurate maps of the 

Zagros Forests (cover, density, and distribution) is an important contribution to monitoring the 

area. Providing an accurate fractional woody cover map can therefore support forest managers in 

determining (1) the exact distribution of wooded areas in the vast Zagros region and (2) support 

the regular assessment of potential changes induced by, for example, changes in land-use practices 

and climate change (Eskandari et al., 2020). 

Our woody cover product and the straightforward workflow developed here are particularly 

relevant for semi-arid and arid regions, as many existing large-scale tree and woody cover products 

based on satellite data have clear limitations for characterizing areas with sparse tree canopies 

(e.g., Brandt et al., 2016; Cunningham et al., 2019; Fagan 2020). To further illustrate this, we 

validated the Global Forest Change map (Hansen et al., 2000), a benchmark for many similar 

studies, using our reference dataset. The corresponding results show a severe underestimation of 

the woody cover across the entire Zagros Forest (Figure 2.7). This backs up prior findings of Bastin 

et al. (2017), Brandt et al. (2016), and Cunningham et al. (2019), who also reported that global 

forest and woody cover products are underestimating the woody cover in arid and semi-arid forests 

and woodlands. Our final woody cover map returned visually much more plausible estimates 

across the majority of the Zagros region compared with all available global products, including 

the GFC and a recently published map of the Zagros area (Ghorbanian et al., 2020). 
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Figure 2.11 Validation graph of Hansen global FC product at 30 m resolution with our reference woody 

cover dataset. It is worth mentioning that the Hansen global FC product is estimated for trees with heights 

greater than 5 m. While these heights are not achieved in all areas of Zagros, there is still a large fraction 

of the area with notably higher trees. 

In our product, we dealt with the problem of bright soil background by adding bare soil samples 

with corresponding zero woody cover reference values to our reference dataset and by including 

the RSR index as an input variable. Both measures improved the performance of our model. We 

also followed the suggestion by Symeonakis et al. (2018) and used S2 images of the dry/summer 

season, i.e., the time of maximum difference amongst the spectral signals amongst vegetation, 

crops, and grasses. In terms of additional RS data from active sensors, the application of S1 SAR 

data could be examined in the future. However, some studies have already shown that adding S1 

data does not always improve the results (Heckel et al., 2020). In some preliminary analyses, the 

addition of S1 backscatter variables did not improve our models for estimating woody cover 

(results not shown here). One reason for this might be that the Zagros area is topographically 

complex, and the standard pre-processing of SAR data to account for terrain shadows, 

foreshortening, and related effects in GEE may not have been sufficient to obtain a signal that 

increases the information content already available in the S2 data. As discussed below, S1 data 

was, however, helpful in improving the differentiation of urban and bare soil areas in the land-

cover classification. This may relate to the comparably extreme behavior or urban areas in the SAR 

signal (double-bounce effect), which may have led to a comparably clear signal despite the 

challenges discussed related to the pre-processing of the SAR data. 
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2.4.4.  LC mapping 

Studies on the status quo and changes in ecosystems and land-use systems in the Zagros region 

are partly constrained by the lack of reliable LC maps (Eskandari et al., 2020). Recently published 

LC maps for the entire country of Iran based on S1 and S2 data resulted in overall accuracy and 

kappa coefficients of 91.35% and 0.91, respectively (Ghorbanian et al., 2020). However, these 

maps showed a severe underestimation of forested areas in the Zagros region, mostly due to 

misclassification as rangelands. This may also relate to the definition of the classes of forest and 

rangeland. Most of the Zagros Forests are indeed used as rangeland by nomads and villagers living 

in the area. On the other hand, extensive temperate forest regions exist in the northern parts of Iran, 

and hence, in a national-scale LC map, the class forest may have been exclusively used for these 

ecosystems. Other products covering the entire Zagros area were not available, excluding global 

land-cover products, which are typically either available at a comparably coarse spatial grain or 

with only a few land-cover classes. Our LC product achieved high accuracies for the seven 

considered classes, and we deem it useful for masking out irrelevant LC classes from our woody 

cover product. The use of this map for other purposes may be limited due to the comparably sparse 

number of land-cover classes considered in the workflow. Furthermore, despite the overall high 

accuracy, we still observed some obvious misclassifications in our LC map. One of the major 

problems was the misclassification of orchards with natural woody cover. Particularly in areas 

where orchards are surrounded by forest stands, it is very challenging to discriminate between the 

two classes. One example is given in Supplementary Material I, where it is shown that very dense 

natural woodlands tend to be misclassified as plantation areas. One approach to improving related 

misclassifications in future studies may be to integrate spatial context into the analysis. In most 

cases, plantations and orchards occur in the immediate neighborhood of settlements and nearby 

roads. Hence, integrating a layer representing the distance to settlements and roads could be helpful 

to mitigate the over-classification of plantation areas. Further confusion occurred between the 

buildup class and bare soil. This is also a commonly occurring problem that has been discussed 

before (e.g., Piyoosh and Ghosh 2018). In the Zagros area, besides bare soil areas, areas covered 

with seasonally occurring herbaceous vegetation and crops (especially rainfed crops) can be 

confused with built-up areas. Combining optical and radar data can help mitigate this problem. 

While optical data is able to capture phenological characteristics of the vegetation, the backscatter 

behavior of SAR data can further contribute to reliably identifying built-up surfaces as the 

scattering behavior typically differs notably between vegetated and bare soil areas (Luti et al., 

2021). Some earlier studies showed the potential of jointly using S1 and S2 data to extract built-

up areas (e.g., Luti et al., 2021; Dong et al., 2020; Abdikan et al., 2016). However, in 

topographically complex areas such as the Zagros region, the pre-processing of SAR data to 

account for terrain shadows, foreshortening, and related effects is rather challenging. In our study, 

we addressed this issue by applying filters to the available S1 data catalog in GEE, and this 
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comparably straightforward approach resulted in reasonable SAR mosaics that contributed to 

improved separation of built-up and bare soil areas. 

2.5.  Conclusions 

In this study, we proposed a workflow to map woody cover in an extensive semi-arid woodland 

region at comparably high spatial resolution using exclusively freely available datasets. The 

presented workflow, based on a combination of VHR images from Google Satellite, Bing, and S2 

multispectral satellite data, implemented mostly in the GEE, resulted in a reliable woody cover 

product for the entire Zagros Forest area. An additional LC classification was used to mask out 

irrelevant LC classes. The woody cover product was compared to existing global FC datasets and 

proved to be of notably higher quality. The approach is particularly interesting because no costly 

field data is required, the work flow is straightforward to implement, and it could hence also be 

beneficial for estimating woody cover in other arid and semi-arid regions of the world. 
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2.6.  Supplementary Material I 

Comparison of woody cover product with global FC maps

 

 

Figure 2.12 The left panels show the Hansen global FC product; the center panels show Google Satellite 

VHR imagery of the same area and the right panels show the predicted woody/canopy cover of our S2 

based 40 m resolution model. All images are projected in the geographic coordinate system (EPSG 4326). 

Figure 2.12 shows one exemplified site in the Zagros region where comparably high FC values 

can be observed, but the global FC product of Hansen fails to capture these areas adequately. It is 

important to say that the Hansen map only depicts forests with a minimum height of 5 m; however, 

at the same time, this minimum height is frequently reached by oak trees in the Zagros area, 

particularly in the comparably dense woodlands as shown here. 
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Figure 2.13 Map of Hansen global FC for the entire Zagros area. The three subsets A, B and C show two 

focus areas in topographically complex regions and one focus area with buildings and agricultural fields. 

The upper row shows the Hansen treecover2000 layer of FC map and the bottom row the corresponding 

areas of VHR RGB imagery. Contour lines showing the elevation above sea level are shown on top of the 

RGB images. 
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List of all predictors used in the woody cover model 

Table 2.2 The predictors used in the study of woody cover. 

Variable name Description 

"B2" B2 (490 nm) band of S2 with 10 m resolution 

"B3" B3 (560 nm) band of S2 with 10 m resolution 

"B4" B4 (665 nm) band of S2 with 10 m resolution 

"B8" B8 (842 nm) band of S2 with 10 m resolution 

"B5"  B5 (705 nm) band of S2 with 20 m resolution 

"B6"  B6 (740 nm) band of S2 with 20 m resolution 

"B7" B7 (783 nm) band of S2 with 20 m resolution 

"B8A"  B8a (865 nm) band of S2 with 20 m resolution 

"B11" B11 (1610 nm) band of S2 with 20 m resolution 

"B12"  B12 (2190 nm) band of S2 with 20 m resolution 

"B8_contrast" Contrast metric of glcm function on NIR band with 3*3kernel size 

"B8_var" Variance metric of glcm function on NIR band with 3*3kernel size 

"B8_ent" Entropy metric of glcm function on NIR band with 3*3kernel size 

"B8_corr" Correlation metric of glcm function on NIR band with 3*3kernel size 

"B8_asm" Asimilarity metric of glcm function on NIR band with 3*3kernel size 
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"B8_contrast_1”   Contrast metric of glcm function on NIR band with 5*5 kernel size 

"B8_var_1"   Variance metric of glcm function on NIR band with 5*5 kernel size 

"B8_ent_1"   Entropy metric of glcm function on NIR band with 5*5 kernel size 

"B8_corr_1" Correlation metric of glcm function on NIR band with 5*5 kernel size 

"B8_asm_1" Asimilarity metric of glcm function on NIR band with 5*5 kernel size 

"NDVI"   Normalized difference vegetation index 

"ndvi_texture33" Standard Deviation of NDVI band with 3*3 kernel size 

"ndvi_texture55" Standard Deviation of NDVI band with 5*5 kernel size 

"nir_texture55" Standard deviation of NIR band with 5*5 kernel size 

"thres" threshold of NDVI (Normalized difference vegetation index) 

"NDVI_contrast" Contrast metric of glcm function on NDVI band with 3*3 kernel size 

"NDVI_var" Variance metric of glcm function on NDVI band with 3*3 kernel size 

"NDVI_ent" Entropy metric of glcm function on NDVI band with 3*3 kernel size 

"NDVI_corr" Correlation metric of glcm function on NDVI band with 3*3 kernel size 

"NDVI_asm" Asimilarity metric of glcm function on NDVI band with 3*3 kernel size 

"NDVI_contrast_1" Contrast metric of glcm function on NDVI band with 5*5 kernel size 

"NDVI_var_1" Variance metric of glcm function on NDVI band with 5*5 kernel size 

"NDVI_ent_1" Entropy metric of glcm function on NDVI band with 5*5 kernel size 
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"NDVI_corr_1" Correlation metric of glcm function on NDVI band with 5*5 kernel size 

"NDVI_asm_1" Asimilarity metric of glcm function on NDVI band with 5*5 kernel size 

"bio12" Annual Precipitation 

"bio15" Precipitation Seasonality (Coefficient of Variation) of Bioclim 

"bio16" Precipitation of Wettest Quarter of Bioclim 

"bio17" Precipitation of Driest Quarter of Bioclim 

"rsr" the reduced simple ratio index 

  

Figure 2.14  The development of RMSE with decreasing spatial grain for the RF models estimating woody 

cover are illustrated. The grey-shaded area in the violin plots shows the distribution of values, the white 

point in each violin plot shows the median value. Here we also added topographical variables (elevation 

and slope) called “40_srtm” using NASA SRTM Digital Elevation 30m data for the regression model with 

40 spatial resolutions to check their effects on the model. As it can be seen, there are hardly any 

improvements in the model, so we did not use these variables in the final model. 
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List of all predictors used in the LC model  

Table 2.3 The predictors used in the study of LC. 

Variable name Description 

"1_NDVI" NDVI index of S2 for spring 

"1_SAVI" SAVI index of S2 for spring 

"1_NDTI" NDTI index of S2 for spring 

"0_EVI" EVI index of S2 for fall 

"slope" Slope NASA SRTM Digital Elevation  

"0_NDVI" NDVI index of S2 for fall 

"0_SAVI" SAVI index of S2 for fall 

"2_NDTI" NDTI index of S2 for summer 

"2_EVI" EVI index of S2 for summer 

"1_B8" B8 band of S2 for spring 

"elevation" Elevation band of NASA SRTM Digital Elevation  

"VH_1" DESCENDING VH band for spring 

"summer_gray_contrast" Contrast metric of glcm function with 3*3 kernel size for summer 

"spring_gray_contrast" Contrast metric of glcm function with 3*3 kernel size for spring 

"1_B12" B12 band of S2 for spring 

"VH_2" VH band for summer (DESCENDING) 

"1_B8A" B8A band of S2 for spring  

"1_B11" B11 band of S2 for spring 

"2_B8" B8 band of S2 for summer 

"2_RSR" RSR index of S2 for summer 

"0_RSR", RSR index of S2 for fall 

"1_B2" B2 band of S2 for spring  
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VV_2", VV band for summer (DESCENDING) 

"2_B6" B6 band of S2 for summer 

"spring_gray_savg" Sum Average metric of glcm function with 3*3 kernel size for spring 

 

Validation of land-cover classification and examples for 

misclassifications 

Table 2.4 Confusion matrix of LC classification – the confusion matrices of the 100 iterative validation 

runs were aggregated. Orange marked cells indicate higher amounts of confusion, for the two purple marked 

cells, additional examples are given below.  
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Agriculture 26926     19    748  707    110    195    520 

Built-up 4 28707 92 0 154 8 17 

Wooded area 247 128 25639 1092 25 341 783 

Plantation 1103 100 982 27919 0 104 4 

Bare Soil 57 263 171 24 29512 47 440 

Water 56 11 92 417 30 29288 0 

Rangeland 833 95 2352 89 114 37 28198 

 

The confusion matrix (Table 2.4) confirms the overall very-high accuracy of the land-cover 

classification. Confusions (marked in orange) are mostly observed for the different vegetation-

related classes. An example for two typical confusions is depicted in Figure 2.15: Dense wooded 

areas are in some cases mis-classified as plantation areas (see also Figure 2.16) and very bright 

bare soil areas are in some cases confused as built-up. The latter problem was notably more 

pronounced in preliminary classification models that did not include SAR data. 
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Figure 2.15 A wooded area example, that is miss-classified as plantation area and very bright bare soil 

area, that is miss-classified as built-up area 

 

  

Figure 2.16 Two example photos of mixture of plantation/orchard and natural Zagros Forest in an area in 

Fars Province (taken in September 2019 by Elham Shafeian) 
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Figure 2.17  (A) Balanced accuracy; (B) specificity and (C) sensitivity of the LC classes in the supervised 

classification with topographical variables (elevation, slope) using NASA SRTM Digital Elevation 30m 

data, as it can be seen, there are hardly improvements in the landcover model, so we did not used these 

variables in the final model. 

 

Distribution of woody cover reference values for the examined spatial 

grains and correlations between the references datasets 
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Figure 2.18 Histograms showing the woody cover reference datasets for the examined spatial grains. 

Extreme values (very high and very low cover values) become less frequent with increasing coarser spatial 

grains. 
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Figure 2.19 Scatterplots between all woody cover reference datasets for the examined spatial grains. As 

expected, the larger the grain difference, the less correlated the reference datasets applied for the different 

models are. 

Reference images 

The link to access the reference images used in the present study: 

 

https://drive.google.com/drive/folders/1KjnVRMVRzrxp8KS1AqivGpUsjrhVFQ-x?usp=drive_link 

 

https://drive.google.com/drive/folders/1KjnVRMVRzrxp8KS1AqivGpUsjrhVFQ-x?usp=drive_link
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Google Earth Engine Codes 

 

for the Forest/woody cover product at 40 m spatial grain and at: 

https://code.earthengine.google.com/d668f1c9e91b1c3c2be0b19678ec19ee 

for the LC classification: 

https://code.earthengine.google.com/f068d8006d0f81d01dcd1054081e1ec9 

 

 

 

 

 

 

 

 

https://code.earthengine.google.com/d668f1c9e91b1c3c2be0b19678ec19ee
https://code.earthengine.google.com/f068d8006d0f81d01dcd1054081e1ec9
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3.  Detecting semi-arid forest decline using time series of 

Landsat data 

Elham Shafeian, Fabian Ewald Fassnacht, Hooman Latifi  

 

Abstract 

Detecting forest decline is crucial for effective forest management in arid and semi-arid regions. 

RS using satellite image time series is a useful tool for identifying reduced photosynthetic activity 

caused by leaf loss and defoliation. However, current studies face limitations in detecting forest 

decline in sparse arid and semi-arid forests. In this study, three Landsat time-series-based 

approaches were used to distinguish non-declining and declining forest patches in the Zagros 

forests. The RF approach was the most accurate approach, with an overall accuracy and kappa 

value of almost 0.75 and 0.50, respectively followed by the anomaly detection approach with an 

overall accuracy and kappa value of 0.65 and 0.30, and the Sen's slope approach with an overall 

accuracy and kappa value of 0.64 and 0.30, respectively. The classification results were mostly 

unaffected by the Landsat acquisition times, indicating that rather environmental variables may 

have contributed to the separation of declining and non-declining areas and not the remotely sensed 

spectral signal of the trees. We conclude that identifying degraded and declining forest patches in 

arid and semi-arid regions using Landsat data is challenging. This difficulty arises from weak 

vegetation signals caused by limited canopy cover before a bright soil background, which makes it 

challenging to detect modest degradation signals. Additional environmental variables may be 

necessary to compensate for these limitations. 
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3.1.  Introduction 

Recent research highlights the rapid decline of arid and semi-arid forests worldwide, emphasizing 

the need for a better understanding of the causes of forest decline (e.g., Anderegg et al., 2012). 

While many studies have investigated deforestation in these regions (e.g., Hoyos et al., 2013; 

Waroux and Lambin 2012), forest decline has received relatively little attention (Waroux and 

Lambin 2012; Li et al., 2009). The decline of forests is often the result of degradation, which 

negatively impacts their functional and structural properties (Wang et al., 2020; Vásquez-Grandón 

et al. 2018). Forest decline can also decrease the regeneration capacity of a forest by reducing the 

number of available reproductive trees and altering micro-environmental conditions, in addition to 

the direct loss of trees (Cailleret et al., 2019). Moreover, forest decline can have long-term 

consequences for ecosystem services and regulatory services (Waroux and Lambin, 2012). 

Forest decline is often caused by interacting biotic and abiotic factors (Hosseini et al., 2017). 

Among abiotic factors, droughts can have a particularly damaging effect on forests (Sulla-Menashe 

et al., 2014; Waroux and Lambin 2012). Arid and semi-arid ecosystems must deal with more 

frequent and severe droughts, which, in combination with other biotic stressors, can lead to 

significant forest decline (Sánchez-Pinillos et al., 2021). While forest decline occurs globally, arid 

and semi-arid ecosystems are particularly vulnerable, with an increasing tree mortality rate (David 

et al., 2022). 

The Zagros forests in western Iran have been suffering from significant forest decline due to 

climatic extremes, wildfires, and overexploitation by local populations. Their low tree species 

diversity, dominated by a few oak species, in particular Brant's Oak (Quercus brantii Lindl.), makes 

them susceptible to various forest pathogens (Moradi et al., 2021; Goodarzi et al., 2016). Earlier 

studies conducted in the region often focused on deforestation but not forest decline (e.g., Moradi 

et al., 2021; Jahanbazy Goujani et al., 2020; Hosseini et al., 2017; Goodarzi et al., 2016). 

Understanding forest decline in the region is crucial for effective forest management and adaptation 

initiatives but is still lacking for larger continuous areas (Moradi et al., 2021). 

Field data on forest decline is often limited due to cost, particularly in less accessible and 

extensive areas (Lausch et al., 2016, Diao et al., 2020, Shafeian et al., 2021) such as the Zagros 

forests. Studies performed by, for example, Wang et al. (2020) and Senf et al. (2020), indicate that 

RS is an alternative to assess forest decline in the field and over large regions. Comparing multi-

temporal satellite images enables the detection of changes in vegetation conditions in a particular 

area (Wang et al., 2020). Various studies have used VIs like NDVI (Jin et al., 2016) and normalized 

burn ratio (NBR) (Francini and Chirici, 2022) to detect forest decline. However, multispectral VIs 

are known to have limitations in monitoring biophysical and biochemical vegetation properties in 

semi-arid ecosystems (e.g., David et al., 2022). For instance, NDVI is sensitive to green 

components, not to woody components, and factors like moisture content and species composition 

can influence the relationship between biomass and NDVI. The EVI was developed to overcome 

the drawbacks associated with variable background reflectance and atmospheric interference in the 
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NDVI (David et al., 2022). The EVI provides more comprehensive information about changes in 

vegetation over time and space and is particularly suitable for assessing vegetation in arid and semi-

arid ecosystems. Meanwhile, Bae et al. (2022) and Li et al. (2022) note that studies on forest decline 

commonly utilize VHR RS data, which can be costly and challenging to acquire for extensive areas. 

As mentioned above, many RS studies in the context of forest monitoring have focused on 

deforestation rather than forest decline. The identification of deforestation (using optical RS) is 

based on the distinction of forest and non-forest land-cover types, such as open landscapes, bare 

soil, crops, and settlements (Hoekman et al., 2020). Among several types of RS data, multi-spectral 

optical images are the most cost-effective option for monitoring large forest areas. Time series of 

multispectral optical satellite data, such as Landsat and S2, have facilitated the development of 

various methodologies for mapping forest changes (Giannetti et al., 2020). In particular, the 

Landsat time series has been recognized as a valuable data source for tracking forest decline and 

disturbances due to their free accessibility, relatively high spatial resolution (30 m), long and 

consistent acquisition record, and accessibility (Dutrieux et al. 2015; Zhu et al. 2020; Diao et al. 

2020; Senf et al. 2020; Giannetti et al. 2020; Rodman et al. 2021). 

A variety of algorithms have been introduced for identifying forest disturbances throughout 

time, such as Continuous Change Detection and Classification (CCDC; Zhu and Woodcock, 2014), 

Landsat-based Trends in Disturbance and Recovery Detection (LandTrendr; Kennedy et al., 2010), 

and Breaks for Additive Season and Trend (BFAST; Verbesselt et al., 2010). Nevertheless, the 

majority of these algorithms are more advantageous for monitoring forest changes or deforestation 

than assessing forest decline or minor changes in forest status (Zhu et al., 2020). The difficulty of 

detecting subtle signals of degradation is a challenge for all algorithms, as spectral signals 

associated with tree mortality depend on various factors, including the number of canopy layers 

and FC (Hoekman et al., 2020). 

This study seeks to assess the effectiveness of well-established methods like RF, anomaly 

detection, and Sen's slope analysis for identifying and mapping forest decline in the Zagros semi-

arid forests.  

3.2.  Materials and Methods 

3.2.1.  Study area 

The study area is located in the Chaharmahal and Bakhtiari provinces of Iran, in the Zagros semi-

arid forests, with average rainfall of 250–800 mm and temperatures ranging from 9–25 °C (Attarod 

et al., 2016). The study area is located in the southwestern part of the province (Figure 3.1). The 

Zagros forests play an important role in preserving the unique vegetation and habitats indigenous 

to the region (Shafeian et al., 2021; Sagheb-Talebi et al., 2014). The most prominent and 

widespread tree species found in the area include Brant's oak (Quercus brantii Lindl.), which is 

partially mixed with Quercus infectoria G.Olivier, Quercus libani G.Olivier, wild pistachio 
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(Pistacia atlantica Desf.), and Acer monspessulanum L. In addition, one can commonly find 

Crataegus spp., Amygdalus spp., and Pyrus spp. in the area (Daneshmand Parsa et al., 2016; 

Erfanifard et al., 2014). 

 

Figure 3.1 (A) Location of Iran; (B) Digital Elevation Model (DEM) of Chaharmahal and Bakhtiari 

Province; (C) Sampled area covered in the green square (AOI); (D) An example UAV image of the study 

region. 

3.2.2.  Reference data 

So far, no official and regular forest inventories exist for the majority of the Zagros region. 

Therefore, we tried to maximize the number of field samples from which the state of the forest is 

known by merging various datasets collected between 2021 and 2022 in the region. 

The first part of our reference data was collected during a field campaign in the spring of 2022, 

during which declining and non-declining areas were inventoried. After consultation with local 

experts to define the study area, a stratified random sampling approach was used to select areas for 

sampling. Two factors were considered to stratify the study area: Illumination Condition (IC) and 

FC. The IC for each pixel in the study area was calculated using NASA SRTM Digital Elevation 

imagery available on GEE (ID: USGS/SRTMGL1_003). Although IC is not directly related to 

forest decline, it was assumed that it could affect satellite signals. In addition, an existing FC map 
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for the area provided by Shafeian et al. (2021) was used. FC is known to significantly affect RS 

signals. The study area was divided into four classes each for IC and FC, resulting in a total of 

sixteen layers (combinations of IC and FC classes). To further account for accessibility, a 400-m 

buffer was applied around roads, and random points were generated within these buffers with a 

minimum distance of 100 m between each point. Nine random points were selected for each 

stratum, for a total of 144 candidate positions for field verification. Approximately half of these 

points were eventually visited and field recorded. During the field campaign, information on the 

condition of the forests was collected and classified into two general categories: "declining" and 

"non-declining". Overall, this process allowed the collection of reference data that can be used to 

validate and calibrate RS data to accurately assess forest decline in the study area. 

The second source of reference data was a field campaign conducted in September 2021. The 

locations of the field surveys were determined by first stratifying the study area into two zones of 

declining and non-declining areas according to an EVI time series as observed for the last 36 years 

using Landsat data. To identify these zones, we applied an EVI anomaly approach based on data 

between 1986 and 2021. The resulting binary image indicated declining and non-declining areas. 

The field plot locations were chosen at random within the defined declining area. Plots in 

inaccessible areas were dropped and replaced with plots that were located closer to the roads. 

During the field campaign, we visited and recorded 43 sites. Any signs of deterioration, such as 

foliar deficiencies, branch mortality, or unusual leaf coloration, were documented (Figure 3.2 

shows some examples of the decline signs). 
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Figure 3.2 Example of declining trees in the study area. Images were taken by Elham Shafeian during the 

field campaign in September 2021. The exact reasons for the decline were often unknown. In some cases 

signs of the presence of damaging insects or pathogens were visible, but it was impossible to determine 

whether these were a consequence or the reason for the decline.  

The third source of data is a set of additional GPS locations for declining and non-declining 

tree groups collected by local forest service officers in September 2022. All the reference points 

used in this study are jointly plotted in Figure 3.3. In total, we had positions for 461 declining and 

422 non-declining plots. 
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Figure 3.3  The reference points, declining areas in red and non-declining in green 

3.2.3.  Methodology 

The workflow for the study is outlined in Figure 3.4 and further described below. 
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Figure 3.4 The workflow of the present study (steps 1, 2, and 3 were performed in GEE, and step 4 was 

performed in R.) 

3.2.3.1.  RS analysis 

In this study, we looked at a variety of methodical approaches developed for analyzing time series 

and image stacks of optical Landsat images to see if we could distinguish between declining and 

non-declining forest regions. In the following, we will first describe the pre-processing steps and 

then introduce the tested methodical approaches. 

3.2.3.1.1 Landsat time series and image processing 

The GEE platform was used to process the Landsat image time series. The analysis employed the 

Landsat Surface Reflectance Tier 1 data from Landsat 4 Enhanced Thematic Mapper (ETM), 

Landsat 5 ETM, Landsat 7 ETM+, and Landsat 8 Operational Land Imager (OLI) (IDs, 
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respectively: LANDSAT/LT04/C01/T1; LANDSAT/LT05/C01/T1; LANDSAT/LE07/C01/T1; 

and LANDSAT/LC08/C02/T1_L2). We filtered the image collection to include all images that 

were available for the summer periods of 1986 to the summer periods of 2021. We examined three 

definitions for the summer periods to see if there was any effect on the results: (1) Landsat data 

from the months between July and the end of September, (2) July and the end of August, and (3) 

only August, i.e., the dry season, with the highest spectral signal differences between trees and 

other vegetation, crops, and grass, as suggested by Symeonakis et al. (2018). Then we calculated 

the annual median reflectance value for each pixel and band from the remaining cloud-free image 

stack, which resulted in a cloud-free, high-quality mosaic. In order to detect forest decline, a set of 

VIs was computed using these annual composites (Martin-Ortega et al., 2020). The examined VIs 

are summarized in Table 3.1. In the case of the RF classifications (see below), we did not use the 

annual mosaics but calculated a single mosaic using all Landsat data from the corresponding time 

periods. 

Table 3.1 Equations of the used VIs 

VI Name Equations  Reference 

NDVI Normalized Difference 

Vegetation Index 

(NIR – RED)/(NIR + RED) Rouse et al. 

(1974) 

GNDVI green NDVI (NIR- GREEN)/(NIR+ 

GREEN) 

Gitelson et al. 

(1966) 

kNDVI Kernel NDVI tanh ((NIR-RED)^2 /2 sigma) 

 

 sigma = NIR + RED (0.5) 

Camps-Valls et 

al. (2021) 

NRGI Normalized Green-Red 

Vegetation index 

(GREEN - RED)/(GREEN + 

RED) 

Buce Saleh 

(2019) 

EVI Enhanced Vegetation 

Index 

2.5 ((NIR – RED)/(NIR + C1 

× RED – 7.5 × BLUE + 1)) 

Liu and Huete 

(1995) 

SR Simple Ration (NIR)/(RED)  Jordan (1969) 

SLAVI Specific Leaf Area 

Vegetation Index 

(NIR)/(RED+SWIR) Lymburner et al. 

(2000) 

NDWI Normalized Difference 

Water Index 

(GREEN-

NIR)/(GREEN+NIR) 

Hardisky et al. 

(1983) 

NDMI Normalized Difference 

Moisture Index 

(NIR - SWIR)/(NIR + SWIR) United States 

Geological Survey  

NDTI  Normalized Difference 

Tillage Index  

(SWIR1 - SWIR2) / (SWIR1 + 

SWIR2) 

Deventer et al. 

(1997) 

https://www.sciencedirect.com/science/article/pii/S1110982311000147#b0165
https://www.sciencedirect.com/science/article/pii/S1110982311000147#b0165
https://www.sciencedirect.com/science/article/pii/S1110982311000147#b0110
https://www.sciencedirect.com/science/article/pii/S1110982311000147#b0135
https://www.sciencedirect.com/science/article/pii/S1110982311000147#b0135
https://www.sciencedirect.com/science/article/pii/S1110982311000147#b0090
https://www.sciencedirect.com/science/article/pii/S1110982311000147#b0090
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NBR Normalized Burn Ratio (NIR- SWIR2)/(NIR + 

SWIR2) 

United States 

Geological Survey  

ARVI Atmospherically 

Resistant Vegetation Index  

(NIR-(2×RED)-

BLUE)/(NIR+(2×RED) +BLUE) 

 Kaufman and 

Tanre (1992) 

GCI Green Chlorophyll 

Index 

NIR / GREEN – 1 Gitelson et al. 

(2005) 

GLI Green Leaf Index (GREEN-RED-BLUE)/(2× 

RED+GREEN+BLUE) 

 

Gitelson et al. 

(2002) 

 

3.2.3.2.  Identifying forest decline   

The datasets described in the previous section were used as inputs to the following approaches: 

3.2.3.2.1 RF classification 

The RF classifier (Breiman, 2001) was used to classify the study area into declining and non-

declining classes. Previous studies (e.g., Belgiu and Dragut, 2016) successfully utilized the RF 

classifier for satellite data classification and forest disturbance analysis. In this study, several RF 

classifiers were trained with Landsat data covering various year intervals, and each classifier was 

validated using iterative splitting of the reference data (see below) into training and validation sets 

(with 100 repetitions) to distinguish between declining and non-declining areas throughout the 

study area. This was done using the randomForest package in R with the number of trees (ntree) 

set to 500 and the second parameter, mtry, set to default settings. In order to prevent the issue of 

having two different classes in one pixel (a few of the available field plots were located too close 

to each other), we built a function during the RF classification training to eliminate any duplicated 

reference pixels, resulting in the removal of 164 points. As a result, a total of 719 reference points 

remained. As inputs, we initially used the Landsat time series with images from summer 1986 to 

summer 2021 as well as from 2000–2021 and from 2010–2021 and examined the three input 

options described above: (1) images from July to the end of September; (2) images from July to 

the end of August; and (3) images from August. We examined several time periods since we did 

not have a clear idea of when the field-observed decline processes had started. According to local 

experts and previous literature, the decline accelerated after the year 2000 (e.g., Ghanbari Motlagh 

and Kiadaliri, 2021), but no detailed information exists. Since the RF was showing very stable 

results, we then examined even more time periods reaching further in the past (1986-1990, 1986-

1999, 1991-1995, 1996-2000, 2001-2005, 2006-2010, 2011-2015, and 2016-20201). 

We used all of the VIs listed in Table 3.1 as predictors, as well as the seven original bands of 

the Landsat data. Then, in addition to using all the predictors separately for each input period, we 

also applied the feature selection algorithm VSURF in R (Genuer et al., 2015). The first step in the 

https://cran.r-project.org/web/packages/randomForest/index.html
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variable selection process with VSURF is to remove all non-essential, i.e. highly interrelated 

variables, from the dataset. The second step is to select all variables that are related to the response 

and help the model perform well. The third step refines the collection for prediction purposes by 

removing redundancy in the range of variables chosen in the second step (Genuer et al., 2015). 

Table 3.2 shows the predictor variables that were selected for each of the three input options. To 

obtain the final maps, we used all available reference data for classification. The result was a binary 

map of binary raster layers showing two classes (non-declining, and declining). To validate the RF 

model, the reference data set was repeatedly divided into 70% training samples and 30% validation 

samples (Shafeian et al., 2021). We obtained kappa and overall accuracy from the validation 

samples.  

In addition to the Landsat series, we also applied an RF classification to S2 imagery captured 

between 2015 and 2021 using the same procedure (see Supplementary Material II). The spatial 

resolution of S2 imagery is higher than that of the Landsat series at 10 * 10 m, making it a good 

option for forest decline detection. However, these images have only been available since 2015, 

limiting the ability to perform time series analysis such as anomaly detection over a longer period. 

3.2.3.2.2 Anomaly analysis 

As a second approach, we applied a pixel-wise anomaly analysis using the VIs. For this purpose, 

we used the annual Landsat mosaics from 1986–2021. Again, we examined the three input options 

to define the summer period. Following the calculation of the VIs for each image collection as 

described above, a median value filter of a temporal moving window with a three-year interval was 

applied to the annual time series of the indices, that is, 1986–1989, 1987–1990,... 2018–2021. Then 

all these images were stacked into one single image time-series stack. This step was conducted to 

smooth the datasets and avoid the potential influence of particularly high or low values in an 

individual year, which may have been related to extraordinary weather conditions or a limited 

number of cloud-free sample pixels. For each pixel of this time series stack, the "all-time high" and 

"all-time low" values, defined as the 90th and 10th percentiles, respectively, were calculated. Then 

the 10th percentile was subtracted from the 90th percentile to check how widely the VI value of a 

given pixel varied over the whole time period. This range was then used to define an anomaly 

threshold. For example, the range was multiplied by 0.5, and the resulting value was added to the 

value of the 10th percentile of the VI time series. We then considered an area to be declining if the 

current VI value (see below) was below the 10th percentile plus the 0.5 × range value. The 

corresponding areas were identified by applying the pixel-specific thresholds, resulting in a binary 

raster layer (zero or black = non-declining, and one or orange = declining) for each VI. We varied 

the factor with which the range was multiplied and examined the results for all factors from 0.15 

to 0.9 with steps of 0.05. The current VI value for each pixel was obtained from a cloud-free mosaic 

image of the current status of the area calculated from Landsat images of the years 2018–2021. 

These calculations were performed for all indices given in Table 3.1.  
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3.2.3.2.3 Sen’s Slope analysis  

Sen's slope, or Theil-Sen's slope (Sen, 1968), is a non-parametric trend analysis that is resistant to 

outliers and rejects odd values without changing the slope (Correa‐Díaz et al., 2019). We used this 

approach because it is useful to identify whether a regular time series has a statistically significant 

positive or negative trend. The Sen's slope can account for the magnitude of changes (Reygadas et 

al., 2019). Thus, after importing a cloud-free Landsat time series and calculating the 

aforementioned VIs (e.g., KNDVI, ARVI, etc.), the Sen's slope was calculated using the 

ee.Reducer.sensSlope() function available in GEE. With this algorithm, we could estimate the trend 

of changes in the region over the previous 36 years using mosaics of Landsat imagery. We again 

examined all three input options with respect to the summer period. The results were then exported 

as a raster layer for each summer period and VI (14 VIs and three summer periods gave a total of 

42 single-band raster layers). To translate the Sen's slope results into a binary map that we could 

compare with our reference data, we defined a function to calculate 500 different threshold values 

for each VI (based on the range of Sen’s slope values obtained for the VI) and determined the best 

threshold for detecting the declining areas (according to our reference data). We calculated the 

thresholds for each VI individually since each index had a different range of values. We ran this 

for each index separately over three summer seasons. Finally, the threshold with the highest overall 

accuracy was recorded (the results of the selected threshold for each index are summarized in Table 

3.6 in Supplementary Material II). 

3.2.3.3.  Visualization of VIs time series 

To guide the interpretation of the results, particularly with respect to the anomaly and Sen’s slope 

analysis, we additionally visualized the VI time series from 1984-2022 for the two most accurate 

(according to overall accuracy) VIs using the pixels representing the reference data locations for 

declining and non-declining areas from the spring 2022 campaign. We calculated the median of all 

pixels coinciding with the corresponding reference plots. 

3.3.  Results 

Figure 3.5 displays binary decline maps from all three approaches. To ensure that the analysis 

focused only on relevant LC types, we used an LC map to mask out irrelevant classes such as water, 

bare soil, and agriculture, using the LC map of Shafeian et al. (2021). This left only rangeland, 

forest, and plantations for further analysis, allowing for a more accurate and targeted assessment 

of the study area. 

Visual inspection revealed that certain areas in the southwest were consistently detected as 

declining zones in all approaches, but each approach contained some errors. RF performed better 

than the other two approaches. However, overall, the examined approaches performed moderately 

to poor, as also reflected in the noticeable differences between the maps.  
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Figure 3.5 A) Sen's slope (NDMI index with threshold = 107.93 (August)); B) Anomaly (NRGI 20th 

percentile (July-August)), and C) RF (July-August) for 1986 to 2021(Declining forest areas are marked in 

orange, while non-declining areas are depicted in black); D) LC map (masked classes in white and the 

relevant classes in green); E) Google Earth view of the study area. 
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3.3.1.  Validation and accuracy of forest decline detection 

3.3.1.1.  RF 

The RF accuracy for different summer seasons was stable, with the median overall accuracy out of 

100 iterations for splitting training and testing reference points ranging between 0.72 and 0.76 

(Figure 3.6). The best accuracy was achieved using input datasets containing images taken between 

July 1 and the end of August for the years between 2000 and 2021 (overall accuracy = 0.76, kappa 

= 0.50). The user's accuracy for the non-declining class was approximately 0.80, whereas it was 

approximately 0.72 for the declining class. The producer's accuracies for the two classes were 0.78 

and 0.72, respectively (see Figure 3.7). Images for the period between 1986 and 2021 had the 

second-highest median values for overall accuracy and kappa with 0.75 and 0.48, respectively (see 

Figure 3.6). The user´s and producer´s accuracies for the non-declining class of this analysis were 

around 0.76 and 0.77, respectively, and for the declining class, 0.70 and 0.69, respectively (see 

Figure 3.7). 

More detailed RF results for the years 1986–2021, 2000–2021, and 2010–2021 for all the 

summer seasons are shown in Figure 3.13 in Supplementary Material II (i.e., specificity, F1 Score, 

etc.). The RF results for the years further in the past, including 1986–1999, 1990–1995, and 1996–

2000, for the three examined summer periods and their comparison with other year interval results 

are shown in Figure 3.6. The highest accuracy was obtained for the input dataset with images from 

July 1 to the end of August for the years between 1996 and 2000 (overall accuracy = 0.76, kappa 

= 0.50). Also, the user´s accuracy of the non-declining class and the declining class for this analysis 

was almost 0.78 and 0.72, respectively, and the producer´s accuracy of the non-declining and 

declining classes was almost 0.80 and 0.71, respectively (Figure 3.7). The user´s accuracy of the 

non-declining class and the declining class for this analysis for other summer seasons (August and 

July-September) can be found in Figure 3.11 and Figure 3.12  in Supplementary Material II. 

The RF results based on VSURF-selected predictors hardly improved accuracy and kappa values. 

The selected predictors are summarized in Table 3.2. 

Table 3.2 The results of VSURF on RF for each season. The selected predictors of Landsat 8 images are 

written with a suffix (_LS8). 

Landsat data for summer periods Selected predictors 

August  

1986-2021  

B1 , B2 , B3_LS8,  NDVI, B2_LS8, B3, NDWI, B5, NRGI, NDTI 

August 

2000-2021 

B2 , B1 , B3_LS8 , B3, NDMI, NDWI, B6, B1_LS8,  NDTI 

August  

2010-2021 

B2, B1, B3_LS8, B3, B2_LS8, NDWI, B1_LS8, B6, B5 

July- August 

1986-2021 

B1, B2, B3_LS8, B3, NDVI, NDWI, NRGI, B5, B6, NDTI 
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July- August  

2000-2021 

B1, B2, B3, NRGI, NDTI, NDWI 

July- August 

2010-2021 

B2, B1, B2_LS8, NDWI, B6, B5, NRGI, B1_LS8 

July- September 

1986-2021 

B1, NDMI, B3, B2_LS8, NDWI, B6, NDTI 

 

July- September 

2000-2021 

B2, B1, NDMI, B3, B2_LS8, NRGI, NDWI, NDTI 

July- September 

2010-2021 

B2 , B1, NDMI, B3_LS8, B2_LS8, B3, B6, NDWI 

 

  

Figure 3.6 The upper row of the plot shows the overall accuracy and the kappa values of the RF 

classifications for the years 1986–2021 (86–21), 2000–2021 (00–21), and 2010–2021 (10–21) for the three 
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examined summer periods shown in different colors (August, July–August, and July–September). The lower 

row of the plot shows the same analysis for the years 1986–1999 (86–99), 1991–1995 (91–95), and 1996–

2000 (96–00). The fine dashed lines indicate the overall mean across all bean plots. 

 

Figure 3.7 The upper row of the plot shows the user and producer accuracies for declining and non-

declining classes of RF classifications for the years 1986–2021 (86–21), 2000–2021 (00–21), and 2010–

2021 (10–21) for the July–August summer period. The lower row of the plot shows the same analysis for 

the years 1986–1999 (86–99), 1991–1995 (91–95), and 1996–2000 (96–00). The fine dashed lines show the 

overall mean across all bean plots. 
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3.3.1.2.  Anomaly analysis 

The best results for anomaly analysis were obtained when using the annual composite time series 

comprising images from July to August. In this configuration, the GLI (30th percentile) achieved a 

kappa value of 0.30 and an overall accuracy of 0.65. The user accuracies for the non-declining and 

declining classes were 0.61 and 0.69, respectively, while the producer accuracies for these classes 

were 0.71 and 0.59, respectively. In contrast, when using images from July and September, the 

NDWI (15th percentile) and the NDWI (20th percentile) had the lowest accuracy values, with kappa 

values and overall accuracy of -0.13 and 0.45, respectively. The Kappa values of anomaly analyses 

for three summer periods at different percentiles for all the VIs are shown in Figure 3.8, and the 

overall accuracies are shown in Figure 3.19, Supplementary Material II. Further details on the 

results can be found in Table 3.3. The detailed results of this analysis for user´s and producer´s 

accuracies for declining and non-declining classes can be found in Table 3.6, Supplementary 

Material II. 

 

Figure 3.8 Kappa values of anomaly analysis at different percentiles for all the VIs of August (left panel), 

July to August (center panel), and July to September (right panel). 

 

Table 3.3 A summary of the results (overall accuracy (in bold) and kappa value) of the anomaly approach 

for different VIs at different threshold percentiles (15–90) for July to August. The percentile (P) with the 

highest overall accuracy is marked with an asterisk, and the VI with the highest overall accuracy is 

underlined.  

          P 

VI       

15 20 25 30 40 50 60 70 80 90 

NDVI 0.54 

0.11 

0.54 

0.11 

0.56 

0.15 

0.56 

0.15 

0.59 

0.20 

0.59 

0.21 

0.60 

0.22 

0.60 

0.21 

0.61* 

0.24 

0.60 

0.20 

GNDVI 0.47 

-0.002 

0.47 

-0.002 

0.47 

-0.002 

0.47 

-0.002 

0.47 

0 

0.48 

0.02 

0.53 

0.09 

0.55 

0.14 

0.58 

0.19 

0.58 

0.18 
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KNDVI 0.50 

0.04 

0.52 

0.09 

0.53 

0.10 

0.53 

0.10 

0.54 

0.13 

0.56 

0.15 

0.57 

0.17 

0.57 

0.17 

0.59 

0.20 

0.58 

0.18 

NRGI 0.62* 

0.25 

0.63* 

0.26 

0.62* 

0.23 

0.60 

0.18 

0.57 

0.12 

0.57 

0.11 

0.55 

0.07 

0.54 

0.04 

0.53 

0.02 

0.52 

0.009 

EVI 0.53 

0.10 

0.53 

0.10 

0.54 

0.11 

0.55 

0.12 

0.55 

0.13 

0.55 

0.14 

0.57 

0.16 

0.59 

0.19 

0.59 

0.20 

0.61* 

0.23 

SR 0.50 

0.04 

0.52 

0.07 

0.53 

0.10 

0.53 

0.10 

0.54 

0.12 

0.56 

0.15 

0.57 

0.16 

0.57 

0.16 

0.59 

0.20 

0.58 

0.18 

SLAVI 0.52 

0.07 

0.54 

0.12 

0.55 

0.14 

0.55 

0.14 

0.56 

0.15 

0.58 

0.18 

0.58 

0.19 

0.59 

0.20 

0.60 

0.22 

0.60 

0.22 

NDWI 0.47 

-0.007 

0.49 

-0.005 

0.50 

-0.003 

0.50 

-0.002 

0.52 

0.007 

0.52 

0.004 

0.52 

0.002 

0.52 

0.002 

0.52 

0.002 

0.52 

0 

NDMI 0.52 

0.08 

0.55 

0.14 

0.56 

0.15 

0.56 

0.15 

0.59 

0.20 

0.60 

0.22 

0.61* 

0.24 

0.61 

0.23 

0.60 

0.22 

0.59 

0.18 

NDTI 0.47 

-0.002 

0.47 

-0.001 

0.47 

-0.002 

0.47 

-0.006 

0.47 

-0.009 

0.47 

-0.007 

0.47 

-0.007 

0.47 

-0.006 

0.47 

-0.002 

0.48 

0 

NBR 0.47 

-0.006 

0.47 

-0.002 

0.47 

-0.01 

0.47 

-0.01 

0.46 

-0.002 

0.47 

-0.008 

0.47 

-0.005 

0.46 

 -0.02 

0.47 

-0.01 

0.50 

0.03 

ARVI 0.50 

0.04 

0.50 

0.04 

0.50 

0.05 

0.52 

0.08 

0.53 

0.10 

0.54 

0.12 

0.55 

0.14 

0.56 

0.15 

0.57 

0.16 

0.56 

0.14 

GCI 0.47 

0 

0.47 

-0.002  

0.47 

-0.002 

0.47 

-0.002 

0.47 

-0.002 

0.47 

-0.006 

0.47 

-0.002 

0.49 

0.02 

0.50 

0.04 

0.53 

0.09 

GLI 0.56 

0.14 

0.60 

0.22 

0.62* 

0.26 

0.65* 

0.30 

0.61 

0.22 

0.60 

0.19 

0.60 

0.19 

0.60 

0.12 

0.57 

0.07 

0.55 

0.05 

 

3.3.1.3.  Sen’s Slope  

The highest overall accuracy for Sen´s slope was achieved by GLI and NDMI for August, with 

approximately 0.64 (kappa = 0.53) and 0.63 (kappa = 0.56), respectively. The Kappa values of the 

Sen´s slope for all the VIs of three summer periods at different thresholds are shown in Figure 3.9; 

the overall accuracies are shown in Figure 3.20, Supplementary Material II. The lowest overall 

accuracy (0.39) was obtained by GCI and GNDVI for both August and July–August. Detailed 

information for the median overall accuracy and kappa values for each VI is shown in Table 3.4. 

The corresponding results for user´s and producer´s accuracies for declining and non-declining 

classes can be found in Table 3.7, Supplementary Material II. 
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Figure 3.9  Kappa values of the Sen´s slope for all the VIs of August (left panel), July to August (center 

panel), and July to September (right panel). 

 

Table 3.4 A summary of the most accurate results of Sen's slope for different VIs for August after trying 

500 different VI-specific thresholds; the highest overall accuracies among all the VIs are marked with an 

asterisk sign.  

VI  Overall Accuracy  Kappa 

NDVI 0.51 0.01 

GNDVI 0.47 -0.02 

KNDVI 0.51 -0.004  

NRGI 0.52 0.04  

EVI 0.51 0.004 

SR 0.51 0.48 

SLAVI 0.52 0.06 

NDWI 0.52 0.02 
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NDMI 0.55* 0.13   

NDTI 0.49 0.002 

NBR 0.52 0.009 

ARVI 0.51 -0.01 

GCI 0.47 -0.014 

GLI 0.53 0.065 

3.3.2.  Time series of NDMI and GLI  

NDMI and GLI were the best VI indicators of forest decline in the semi-arid forests studied. Figure 

3.10 shows the time series (1984–2022) of Landsat-based NDMI and GLI values with median and 

standard deviation values for non-declining and declining reference points. Differences in VI over 

time for declining and non-declining regions were subtle, with no clear trend visible. GLI showed 

a downward trend after 2000, but it was visible in both declining and non-declining areas, making 

it hard to interpret. The trend also coincided with the launch of Landsat-7 and may relate to a 

technical artifact. 

 

Figure 3.10 Time series of NDMI and GLI for August: The median of declining pixels (red) and non-

declining pixels (blue) are depicted. 
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3.4.  Discussion 

In this study, we investigated whether well-established methods such as RF, anomaly detection, 

and Sen's slope analysis can detect and map forest decline in sparse and patchy semi-arid forests 

using the Landsat time series. In the following, we will discuss the technical results for the applied 

VIs and examined approaches, followed by a general discussion exploring challenges in detecting 

and mapping vegetation decline in mountainous semi-arid regions. 

3.4.1.  Spectral bands and VIs 

Choosing appropriate RS indicators is critical for successfully detecting forest decline. In our study, 

the performance of VI-based approaches varied significantly depending on the VI used. This 

finding is consistent with previous studies on forest decline (Yu et al., 2021). Certain VIs, such as 

NDMI and GLI, appear to be more effective at detecting subtle spectral changes in semi-arid forests 

than other VIs. Such indices, which include a SWIR band, are more closely related to physiological 

variables such as hydraulic conductivity and water potential than greenness indices, particularly in 

arid and semi-arid regions (e.g., Moreno-Fernández et al., 2021; Marusig et al., 2020). However, 

the usefulness of NDMI has also been demonstrated in studies of ecosystem types other than arid 

and semi-arid regions. For example, Li et al. (2022) successfully used the NDMI to detect forest 

disturbance in a subtropical forest. 

The NDMI is calculated using both NIR and SWIR bands. Both bands are known to be directly 

related to key vegetation properties, including the high NIR reflectance of parenchyma cells and 

the high sensitivity of the SWIR band to leaf water content. Hence, NIR and SWIR bands are 

frequently reported to be important predictors in studies examining vegetation dynamics using 

satellite data. For example, Meyer et al. (2019) found the NIR and SWIR bands as important 

variables for tracking changes in leaf area in satellite data time series. Similarly, Moreno-Fernández 

et al. (2021) found for Landsat time series data that forest decline was linked to the trend component 

of the spectral index series, with the wetness index NDMI exhibiting declines earlier than the 

greenness indices (EVI, and NDVI). Negative trends occurred earlier for wetness indices like 

NDMI than for greenness indices, indicating that the former may be better suited for detecting 

declines. 

Gu et al. (2008) and Li et al. (2022) emphasized the significance of SWIR bands in identifying 

forest decline. Li et al. (2022) observed a decline in accuracy of up to 26 percent when excluding 

SWIR bands from their modified continuous monitoring of land disturbance approach. In our study, 

the SWIR bands and VIs that included SWIR bands were frequently chosen by the VSURF variable 

selection for various RF classifications, underscoring the importance of SWIR spectral bands in 

detecting semi-arid tree decline. Furthermore, the NDWI index, calculated from the green and NIR 

bands, was frequently selected but performed poorly in detecting anomalies during the July to 

August and July to September periods. Previous research, such as that by Das et al. (2023), has 

reported the relevance of NDWI in identifying declining and stressed forests. 
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In addition to NDMI and NDWI, GLI showed promising results in our study area, despite being 

rarely used in prior studies to detect forest decline. GLI has been utilized successfully for other 

vegetation monitoring purposes, such as detecting vegetation using aerial images (e.g., Eng et al., 

2019). The GLI uses blue, green, and red bands. It was one of the best indices in anomaly and Sen´s 

slope approaches but was not selected by VSURF as an important variable for the RF 

classifications. However, all the bands that are required to calculate GLI were frequently selected 

by VSURF for the RF classifications in all summer periods. The selection of the green band partly 

agrees with Higginbottom et al. (2018), who reported the green band as the second-best individual 

band for monitoring canopy properties in sparse woody vegetation. 

NDVI was only considered a medium-important index in anomaly and Sen's slope approaches 

and was not selected in any of the VSURF runs. Therefore, NDVI does not appear to be a reliable 

indicator of forest decline in arid and semi-arid vegetation, which is consistent with Madonsela et 

al. (2018) but contrasts with Camarero et al. (2015), who suggested that NDVI is a dependable 

indicator of drought-induced productivity decline. 

It should be noted that leaf structure and vegetation type are also important to be considered 

when choosing the appropriate VIs. Only a few studies have investigated VIs for different leaf 

structures. Croft et al. (2014) evaluated several VIs to estimate leaf chlorophyll content in different 

leaf and canopy structures, including broadleaf and coniferous trees across a Canadian test site. 

They found that the canopy-scale relationship between spectral indices and foliar chlorophyll 

content was particularly strong for broadleaf samples compared to coniferous trees. However, in 

our study area, the tree species are mostly broad-leaved Brant oaks, so this was not an issue to 

consider. But, in heterogeneous forests with both types of leaf structure, this could be an important 

factor in selecting appropriate VIs.  

3.4.2.  The importance of acquisition time windows of satellite images 

This study found that the best time window for detecting forest decline differed slightly depending 

on the approach used. The RF and anomaly approaches were more accurate in detecting declines 

in images captured from July to August, while Sen's slope was most accurate for images captured 

in August only. This may be due to the particularly dry conditions during these months, which lead 

to greater spectral differences between trees and other vegetation. This finding is supported by a 

study by Symeonakis et al. (2018). We observed that RF performed better for the predictors based 

on July and August images compared to Sen's slope, which worked slightly better for only August 

images. However, we did not find any explanation for this observation, and the performance 

differences were subtle. 

3.4.3.  Differences in performances between the examined approaches  

In our study, RF outperformed other methods in terms of accuracy, which may be due to its use of 

multiple predictor variables. Although the overall performance was moderate, the balanced class-
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specific accuracy suggests that RF was able to capture spectral information related to declining 

forest areas. Interestingly, we observed no notable differences in performance between RF models 

trained with Landsat data from different time periods (1986–2021, 2000–2021, and 2010–2021), 

despite the reference data being collected in 2021 and 2022. This observation was unexpected, as 

we expected that using more recent data would lead to better results. Results for different RF 

models with various additional year intervals are provided in Supplementary Material II. According 

to local experts, the widespread severe oak decline in the study area only emerged after 2010, which 

may indicate that the subtle spectral differences enabling to differentiate declining from non-

declining areas in this study may not necessarily relate to changes in the spectral signal due to 

decline of the trees but rather to general differences in the site conditions on which declining and 

non-declining forest areas are located. This may very well relate to other environmental parameters 

such as differing soil conditions, co-occurring vegetation, topography, or a combination of both. 

The anomaly detection and Sen’s slope analysis approaches performed notably worse than RF 

in the study. A direct comparison between RF and the other two approaches (anomaly and Sen's 

slope) is not feasible due to the distinct methodologies employed in these analyses, in particular 

concerning the input data and the validation. RF, as a supervised classification method, a portion 

of the reference data (equal to 70% of all reference data) is directly utilized for model training. 

Contrarily, in the anomaly analysis and Sen's slope approach the reference data is only used for the 

validation and accuracy assessment; even though determining the optimal threshold based on the 

reference data is similar to applying the reference data as training data. Nevertheless, the better 

performance of RF is somewhat expected due to the notably increased number of predictors as 

compared to the other two tested approaches relying on a single VI. 

Several earlier studies found Sen’s slope approach useful for trend detection in vegetation 

degradation. For instance, Zhang et al. (2022) used three trend analyses, including Sen's slope and 

Mann-Kendall tests, to assess the changing trend and degradation of the environmental quality of 

the Loess Plateau in China. Sen's slope and Mann-Kendall analysis were observed to be robust and 

insensitive to outliers, and their combination was suggested to offer advantages over a simple linear 

regression. The Loess Plateau has experienced serious erosion processes, resulting in clearer 

spectral change signals in satellite imagery, which may explain the successful application of trend-

analysis techniques in this area. 

Our study found that anomaly detection and Sen's slope approach, which are based on temporal 

analysis, perform poorly. This suggests that we may not be able to detect a clear change in the 

spectral signal caused by forest decline. This though is also backed up by the visualization of the 

time series of the two most accurate VIs which showed similar signals for declining and non-

declining areas, which makes a reliable separation with only one single VI's information difficult 

(Figure 3.10). The downward trend observed for GLI after 2000 may relate to the start of a general 

vegetation decline (reported in previous studies), but it could also be an artifact related to the launch 

date of Landsat 7 in 1999 with slightly deviating spectral properties. This supports the idea that, 

rather than spectral changes caused by forest decline, spectral differences due to differing 
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environmental conditions enable us to at least partly distinguish declining from non-declining areas 

in our semi-arid study area.  

3.4.4.  Environmental variables with a potential influence on forest decline  

Earlier studies showed that topography is occasionally related to forest decline in the Zagros forests 

(Goodarzi et al. 2016). Adding topographic information to the RS predictors may be one way to 

improve the detection of declining areas. However, we utilized elevation, slope, and aspect data 

derived from a 30-m DEM (see Hawker et al., 2022 for more data details) for one of the RF 

classifications (1986-2021, July to August), and the results were not significantly improved 

(Supplementary Material II). 

Differences in regional climatic conditions could be further important variables affecting forest 

decline. Multiple studies revealed an increase in forest decline worldwide associated with global 

warming and a more pronounced drought. Moreno-Fernandez et al. (2019) found that warmer 

conditions are directly linked to worse vegetation health in open, evergreen oak woodlands. 

Ahmadi et al. (2014) showed that climatic variables such as yearly precipitation, temperature, and 

moisture were strongly correlated with the risk of forest decline within Zagros forests. Similarly, 

Kooh Soltani et al. (2018) showed that these three elements were most crucial in the emergence of 

forest decline. Hence, one way to further improve the detection of declining oak stands may be to 

integrate climatic data. However, it is not fully clear whether our study area is large enough to span 

a sufficiently large climate gradient (independent from topography) to improve our results. The 

highly clustered occurrence pattern of declining areas in our reference dataset (Figure 3.4) suggests 

that the use of standard climatic datasets such as Bioclim at a spatial resolution of 1 km may lead 

to notably improved accuracy (Supplementary Material II), which is, however, mostly due to the 

spatial autocorrelation in our reference data. Thinning out the reference dataset could be 

accomplished but would likely lead to a too-small dataset to draw meaningful conclusions, whereas 

field inventory of larger sample sizes would entail a high level of logistics and financial means. 

Un-crewed aerial vehicles may contribute to making the corresponding effort more efficient (Latifi, 

2023).  

The influence of different soils and co-occurring vegetation communities on the observed 

decline processes remains unclear and requires further investigation. These variables could 

potentially lead to changes in the observed spectral signal. While we currently have limited 

information on these two variables for our study region, we plan to explore their influence in future 

work. 

3.4.5.  Technical challenges of detecting forest decline in semi-arid areas 

Future work on detecting and mapping forest decline in arid and semi-arid areas could also benefit 

from technical improvements addressing some of the challenges that may have impacted the results 

of the present study. For example, in arid and semi-arid regions, detecting subtle decline processes 

is complicated by mixed pixels with bright soil backgrounds, as noted by Wang et al. (2022) and 

Maier et al. (2022). To address these challenges, we utilized blue bands and VIs that incorporated 
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the soil background, such as GLI and ARVI. However, it should be noted that even with this 

approach, the correction for the soil background is not entirely accurate, and more sophisticated 

approaches may be needed. 

A further, often-neglected influential factor on the spectral signal is the influence of the cast 

shadows of trees. Depending on spatial resolution and acquisition geometries, tree shadows can 

negatively impact the quality of RS data and negatively affect vegetation monitoring through mixed 

pixels (Wang et al., 2022), particularly in low-density forests with potentially large shadow 

fractions. To address this issue, Larsen and Salberg (2010) proposed tree shadow removal 

approaches. Although not the focus of this study, developing an algorithm to quantify and correct 

the influence of shadows could be useful for monitoring Zagros' semi-arid forests via RS. 

Other technical challenges that could have affected the identification and mapping of declining 

forest areas include the lack of correction factors to calculate VIs across different Landsat sensors. 

Landsat 4–7 and Landsat 8 have slight spectral band offsets, which can result in small changes in 

the spectral signal that are not related to underlying changes in the forest. Additionally, some 

spectral bands used in this study (red, NIR, and SWIR) are narrower for Landsat 8 than for Landsat 

4–7. These challenges should be considered in future work to improve the accuracy of forest 

decline detection and mapping. 

In an ideal scenario, satellite images would be acquired using identical technology and 

acquisition conditions, but this is not possible to achieve retrospectively. To address the differences 

between images in a time series, correction factors could be applied. However, in regions with 

limited information on the stability of the spectral signal over the last few decades, reference data 

or prior knowledge of spectrally stable areas would be necessary to successfully implement such 

corrections. Unfortunately, this was not feasible for our study due to the lack of corresponding 

information. 

3.5.  Conclusion 

We evaluated three approaches in order to map declining forest areas in a semi-arid region using 

the Landsat time series from 1986 to 2021. These approaches were RF, anomaly detection, and 

Sen's slope analysis. RF outperformed the other two methods. Sen's slope and anomaly approaches 

produced unsatisfactory results, which did not result in maps that could serve as valuable input to 

forest managers. We found that VIs, including NIR and particularly SWIR, were helpful for all 

methods. Interestingly, the RF classification was not sensitive to the Landsat data's acquisition time 

periods, suggesting that its ability to distinguish declining from non-declining forest areas was 

likely due to general environmental differences rather than spectral changes caused by the decline 

process. Further research is required to identify the environmental factors that contribute to these 

variances. In conclusion, mapping forest decline in arid and semi-arid sparse cover forests using 

medium-resolution Landsat data is challenging, and technical improvements are needed to address 

issues with bright soil backgrounds and tree-cast shadows. 
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3.6.  Supplementary Material II 

 

Additional Random Forest results 

 

RF using Landsat imagery 

 

 

Figure 3.11 The upper row of the plot shows the user and producer accuracies for declining and non-

declining classes of RF classifications for the years 1986–2021 (86–21), 2000–2021 (00–21), and 2010–

2021 (10–21) for the August summer period. The lower row of the plot shows the same analysis for the 
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years 1986–1999 (86–99), 1991–1995 (91–95), and 1996–2000 (96–00). The fine dashed lines show the 

overall mean across all bean plots. 

 

Figure 3.12 The upper row of the plot shows the user and producer accuracies for declining and non-

declining classes of RF classifications for the years 1986–2021 (86–21), 2000–2021 (00–21), and 2010–

2021 (10–21) for the July –September summer period. The lower row of the plot shows the same analysis 

for the years 1986–1999 (86–99), 1991–1995 (91–95), and 1996–2000 (96–00). The fine dashed lines show 

the overall mean across all bean plots. 
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Figure 3.13 Results of the validation of the RF classifications for the years 1986–2021 (86), 2000–2021 

(00), and 2010–2021 (10) for the summer seasons (August, July–August, and July–September), from left to 

right. 

 

Figure 3.14  Overall accuracy and the kappa values of RF classifications for the years 1986-1999 (86-99), 

1986-2021 (86-21), 2000-2021 (00-21), 2010-2021 (10-21), 1986-1990 (86-90), 1991-1995 (91-95), 1996-

2000 (96-00), 2001-2025 (01-05), 2006-2010 (06-10), 2011-2015 (11-15), and 2016-2021 (16-21) for the 

month of August. The fine dashed lines indicate the overall mean across all bean plots. 
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Figure 3.15 Overall accuracy and the kappa values of RF classifications for the years 1986-1999 (86-99), 

1986-2021 (86-21), 2000-2021 (00-21), 2010-2021 (10-21), 1986-1990 (86-90), 1991-1995 (91-95), 1996-

2000 (96-00), 2001-2025 (01-05), 2006-2010 (06-10), 2011-2015 (11-15), and 2016-2021 (16-21) for the 

months July to August. The fine dashed lines indicate the overall mean across all bean plots. 

 

 

Figure 3.16 Overall accuracy and the kappa values of RF classifications for the years 1986-1999 (86-99), 

1986-2021 (86-21), 2000-2021 (00-21), 2010-2021 (10-21), 1986-1990 (86-90), 1991-1995 (91-95), 1996-

2000 (96-00), 2001-2025 (01-05), 2006-2010 (06-10), 2011-2015 (11-15), and 2016-2021 (16-21) for the 

months July to September. The fine dashed lines indicate the overall mean across all bean plots. 
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Figure 3.17 Overall accuracy and the kappa values of RF classifications for the years 1986–2021 (86–2021) 

for July to August months compared to the results with extra predictors using DEM (elevation, slope, and 

aspect) as well as Bicoclim variables (BIO01, BIO12, BIO15, and BIO17). The fine dashed lines indicate 

the overall mean across all bean plots. 

So, according to Figure 3.17, the overall accuracy of the Landsat data for the 1986–2021 period was 

approximately 0.74 (kappa = 0.48). When incorporating DEM, the accuracy slightly increased, 

with an overall accuracy (OA) of 0.75 and a kappa of 0.50. Additionally, utilizing Bioclim data 

resulted in higher accuracy, reaching 0.84 with a corresponding kappa value of 0.69. 

 

Table 3.5 A summary of the RF performance for different years at three different summer periods out of 

100 iterations (gray rows: August, blue rows: July-August, purple rows: July-September), the highest overall 

accuracies of each summer period being marked with an asterisk sign. 

Date – Period Overall Accuracy  Kappa  

1986-2021 0.747 * 0.484 

2000-2021 0.745 0.483 

2010-2021 0.74 0.47 

1986-2021 0.745 0.48 

2000-2021 0.756* 0.50 
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2010-2021 0.736 0.46 

1986-2021 0.74 0.473 

2000-2021 0.743 0.475 

2010-2021 0.745* 0.472 

 

RF classification using S2 imagery 

We additionally ran the RF classification using S2 imagery between 2015 and 2021 for three 

different summer seasons. We calculated all of the VIs listed in Table 3.1 as predictors, as well as 

used the 10 original bands of the S2 images with 10 and 20 m spatial resolutions for a total of 24 

bands in the images. In general, the overall accuracies and kappa values are lower than Landsat 

imagery, and this could be because the years of data availability for S2 are shorter and only 

available from 2015. Another potential issue could be that due to the sparse tree cover, the increased 

spatial resolution leads to higher variability in the spectral signal which further complicates the 

identification of the declining tree groups.  The highest overall accuracy and kappa value were 

gained for the S2 images between July and September, with a median of 0.68 and 0.35, respectively. 

August images gained the second-highest overall accuracy and kappa value, with 0.675 and 0.335, 

respectively. Finally, the images between July and August with 0.664 and 0.32 had the lowest 

median overall accuracy and kappa value out of 100 iterations for splitting training and testing 

reference points. 
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Figure 3.18 Overall accuracy and the kappa values of RF classifications using S2 imagery for the years 

2015-2021 for the three examined summer periods. The fine dashed lines indicate the overall mean across 

all bean plots. 

 

Additional Anomaly results 

 

Figure 3.19  Overall accuracy of anomaly analysis at different percentiles for all the VIs of August (left 

panel), July to August (center panel), and July to September (right panel). 

 

Table 3.6 The detailed user and producer accuracies for anomaly analysis for all VIs at different percentiles 

(Ps) for healthy or non-declining (H) classes in white columns and declining (D) classes in gray columns 

Decline 

class 

H            D H            D H            D H            D H            D H            D H            D H            D H            D H            D 

P   

 

VI 

 

15 20 25 30 40 50 60 70 80 90 

 

NDVI 

0.51 

 

0.98 

0.89 

 

0.14 

0.51 

 

0.97 

0.87 

 

0.14 

 

0.52 

 

0.97 

 

0.88 

 

0.18 

 

0.52 

 

0.96 

0.86 

 

0.20 

 

0.54 

 

0.94 

0.83 

 

0.27 

 

0.54 

 

0.87 

0.80 

 

0.30 

0.55 

 

0.94 

0.75 

 

0.36 

0.56 

 

0.92 

0.69 

 

0.42 

0.58 

 

0.87 

0.68 

 

0.50 

0.58 

 

0.74 

0.62 

 

0.59 

GNDVI 0.48 

 

0.99 

0 

 

0 

0.48 

 

0.99 

0 

 

0 

0.48 

 

0.99 

0 

 

0 

0.48 

 

0.99 

0 

 

0 

0.48 

 

0.99 

0.50 

 

0.002 

0.48 

 

0.99 

0.78 

 

0.03 

0.50 

 

0.98 

0.87 

 

0.12 

0.52 

 

0.94 

0.80 

 

0.20 

0.54 

 

0.86 

0.73 

 

0.33 

0.55 

 

0.67 

0.63 

 

0.50 

KNDVI 0.49 

 

0.99 

0.89 

 

0.05 

0.50 

 

0.99 

0.94 

 

0.10 

0.51 

 

0.99 

0.93 

 

0.12 

0.51 

 

0.98 

 

0.90 

 

0.12 

0.51 

 

0.98 

0.90 

 

0.15 

0.52 

 

0.95 

0.83 

 

0.20 

0.53 

 

0.92 

0.78 

 

0.25 

0.53 

 

0.87 

0.73 

 

0.30 

0.55 

 

0.83 

0.71 

 

0.36 

0.55 

 

0.76 

0.66 

 

0.43 

 

NRGI 0.60 

0.62 

0.64 

0.62 

0.65 

0.52 

0.63 

0.73 

0.66 

0.44 

0.61 

0.79 

0.66 

0.33 

0.58 

0.84 

0.68 

0.21 

0.55 

0.91 

0.84 

0.13 

0.55 

0.98 

0.97 

0.07 

0.54 

1 

1 

0.04 

0.53 

1 

1 

2 

0.53 

1 

1 

1 

0.52 

1 

EVI 0.51 

0.96 

 

0.82 

0.14 

0.50 

0.96 

0.79 

0.14 

0.51 

0.94 

0.76 

0.17 

0.51 

0.93 

0.76 

0.20 

0.52 

0.91 

0.73 

0.23 

0.52 

0.88 

0.71 

0.23 

0.53 

0.85 

0.70 

0.32 

0.55 

0.82 

0.69 

0.38 

0.56 

0.77 

0.68 

0.44 

0.56 

0.71 

0.67 

0.52 
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Additional Sen´s slope results 

 

 

Figure 3.20 Overall accuracy of the Sen´s slope for all the VIs of three summer periods at different 

thresholds 

Table 3.7 Shows the results of the range of Sen's slope threshold values for each index in parenthesis and 

the best thresholds in our study out of 500 different VI thresholds; the value in parentheses represents the 

range of values defined by the function for each VI. 

VI Threshold (Aug) Threshold (Jul-Aug) Threshold (Jul-Sep) 

NDVI  (-398.2 to 618.8) ( -393.48 to 651.3) (-397.6 to 687) 

SR 0.49 

0.99 

0.89 

0.05 

0.50 

0.99 

0.91 

0.09 

0.51 

0.99 

0.93 

0.12 

0.51 

0.98 

0.90 

0.12 

0.51 

0.98 

0.89 

0.15 

0.52 

0.95 

0.83 

0.20 

0.53 

0.92 

0.78 

0.25 

0.53 

0.87 

0.72 

0.30 

0.55 

0.84 

0.72 

0.37 

0.55 

0.76 

0.65 

0.43 

SLAVI 0.50 

0.98 

0.87 

0.10 

0.51 

0.98 

0.09 

0.14 

0.52 

0.98 

0.89 

0.17 

0.52 

0.97 

0.89 

0.17 

0.52 

0.95 

0.82 

0.21 

0.53 

0.94 

0.82 

0.25 

0.54 

0.90 

0.77 

0.30 

0.54 

0.86 

0.73 

0.35 

0.56 

0.80 

0.70 

0.43 

0.57 

0.73 

0.67 

0.40 

NDWI 0.35 

0.11 

 

0.50 

0.81 

0.34 

0.06 

0.51 

0.89 

 

0.31 

0.03 

0.51 

0.93 

 

0.27 

0.01 

0.51 

0.96 

 

0.80 

0.94 

 

0.52 

1 

1 

0.04 

0.52 

1 

1 

0.02 

0.52 

1 

1 

0.02 

0.52 

1 

1 

0.02 

0.52 

1 

----- 

0 

0.52 

1 

NDMI 0.50 

0.96 

 

0.78 

0.12 

0.50 

0.96 

0.83 

0.19 

0.52 

0.95 

0.83 

0.20 

0.52 

0.94 

0.81 

0.22 

0.54 

0.91 

0.78 

0.30 

0.55 

0.86 

0.74 

0.37 

0.57 

0.82 

0.72 

0.43 

0.57 

0.75 

0.68 

0.48 

0.57 

0.68 

0.64 

0.68 

0.57 

0.54 

0.61 

0.60 

NDTI 0.48 

1 

 

0 

0 

0.48 

1 

0.66 

0.04 

0.48 

0.99 

0.33 

0.02 

0.47 

0.99 

0 

0 

0.47 

0.99 

0.16 

0.02 

0.47 

0.98 

0.33 

0.06 

0.47 

0.98 

0.38 

0.01 

0.47 

0.97 

0.44 

0.02 

0.48 

0.96 

0.50 

0.03 

0.48 

0.95 

0.52 

0.04 

NBR 0.47 

0.99 

 

0 

0 

0.47 

0.99 

 

0.40 

0.43 

0.47 

0.99 

 

0 

0 

0.47 

0.98 

0.14 

0.02 

0.47 

0.97 

0.16 

0.04 

0.47.5 

0.97 

0.43 

0.02 

0.47 

0.96 

0.48 

0.03 

0.47 

0.92 

0.43 

0.05 

0.47 

0.91 

 

0.48 

0.08 

0.49 

0.88 

0.60 

0.15 

ARVI 0.49 

 

0.99 

0.89 

 

0.05 

0.49 

 

0.99 

0.89 

 

0.05 

0.49 

 

0.99 

0.90 

 

0.06 

0.50 

 

0.99 

0.91 

 

0.095 

0.50 

 

0.99 

0.89 

 

0.12 

0.51 

 

0.98 

0.80 

 

0.15 

0.52 

 

0.95 

0.80 

 

0.19 

0.53 

 

0.90 

0.74 

 

0.26 

0.53 

 

0.83 

0.68 

 

0.34 

0.53 

 

0.73 

0.63 

 

0.41 

GCI 0.47 

1 

 

-----

-0 

0.48 

1 

0 

0 

0.48 

0.99 

0 

0 

0.48 

0.99 

0 

0 

0.48 

0.99 

0 

0 

0.48 

0.99 

0 

0 

0.48 

0.99 

0.43 

0.65 

0.48 

0.97 

0.68 

0.04 

0.49 

0.92 

0.62 

0.12 

0.51 

0.79 

0.61 

0.30 

GLI 0.52 

0.89 

 

0.73 

0.26 

0.56 

0.85 

0.74 

0.39 

0.58 

0.77 

0.73 

50 

0.61 

0.71 

0.69 

0.59 

0.62 

0.55 

0.60 

0.67 

0.63 

0.41 

0.59 

0.77 

0.70 

0.32 

0.58 

0.87 

0.71 

0.19 

0.55 

0.93 

0.75 

0.11 

0.54 

0.96 

0.78 

0.06 

0.53 

0.98 
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 113.37 130;132 106.6; 108.8 

GNDVI    (67 to  460.7) 

 381.8; 382.6 

(76.4 to 435.2) 

370.5 to  374.8 

 (76.4 to 435.2) 

370.5 to 374.8 

KNDVI    (-1457 to 2588.6) 

 245.4 

(-1846.5 to 2559) 

245.9 

-1867.8 to 2762 

201.2 

NRGI  -615.5 to -103.3 

-386.6 

(-676.25 to -162.2) 

-348.7; -330 

-689.4 to -200.04 

-348 

EVI   (-304.9 to 319.3)  

-7.2; -3.45; -2.2; -0.95; 0.3; 1.5; 2.8 

(-290.8 to 343.6) 

-22.5 

 (-279.3 to 428.4) 

-18.3;-16.9;-15.5 

SR   -129.424 to  242.283 

-129.4 to -79.51 

(-157 to  246.7) 

-157 to -99.6   

 (-153.4 to 255.7 ) 

-153.4 to -101.8 

SLAVI  (-471.7 to 832.7) 

72; 95.5; 100.7; 

108.6; 113.8 

(-746 to 820.5) 

 85.8 

(-581.33 to 826.9) 

101.6 

NDWI   (-461.3 to  -67.6 ) 

-185.18 

 (-435.7 to -76.96) 

-200.6 

(-466.8 to -66.6) 

 -223 

NDMI    -426.4 to  657.4 

 107.93 

(-702.6 to 805.7) 

-79.95 to 201 

(-613.3 to 891.5) 

197.9; 200.9 

NDTI  (-488 to 775.4) 

362.7;  367.77 

(-531.8 to 751.9)  

430.3 

(-668.3 to 968.9) 

378.3 

NBR    (-260.5 to 584.6) 

169.67 

 (-258.3 to 530.3) 

-223.5 

(-393 to 573.6) 

190 

ARVI    (-338.8 to 584.5) 

 97.85;  99.7; 101.5 

 (-353.3 to 699.9) 

125.7 

( -338.8 to 584.5) 

97.8; 99.7; 101.5 

GCI   (12.16 to  130.4) 

92.2; 96.5 

(13.9 to 120.9) 

96; 96.3 

(12.4 to 132.9) 

86.8 ; 88.75 

GLI    (-717.4 to 114.5) 

-400.65 

(-849 to 166.1) 

-436 

(-849.07 to 166.13) 

-436 

 

Table 3.8 The detailed user and producer accuracies for Sen´s Slope analysis for all VIs at different for 

healthy or non-declining (H) classes in white columns and declining (D) classes in gray columns. 

VI  User’s Accuracy 

                 H - D 

Producer’s Accuracy 

             H - D 

 

NDVI 0 0.52 0 0.99 

GNDVI 1 0.52 0.002 1 

KNDVI 0 0.52 0 0.99 

NRGI 1 0.52 0.002 1 
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EVI 0 0.52 0 0.99 

SR 0 0.52 0 0.99 

SLAVI 0 0.52 0 0.99 

NDWI 1 0.52 0.002 1 

NDMI 0 0.52 0 0.99 

NDTI 0 0.52 0 0.99 

NBR 0 0.52 0 0.99 

ARVI 0 0.52 0 0.99 

GCI 1 0.52 0.002 1 

GLI 1 0.52 0.002 1 

 

Code availability 

The GEE script examples for all approaches between 1986 and 2021 (the July to August summer 

period) are available at the following links: 

 

Landsat composites used for RF classification: 

https://code.earthengine.google.com/f6c031edd386262a516039388927b678 

Anomaly analysis with the NDMI index: 

https://code.earthengine.google.com/c84284b3c7e2aeea41677b6686e8093b 

Sen´s slope with the NDMI index: 

https://code.earthengine.google.com/ceced91e6bf5c932c1b022785c1e2f97

https://code.earthengine.google.com/f6c031edd386262a516039388927b678
https://code.earthengine.google.com/c84284b3c7e2aeea41677b6686e8093b
https://code.earthengine.google.com/ceced91e6bf5c932c1b022785c1e2f97
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4.  Unveiling the main drivers of tree decline in Zagros semi-

arid Forests 

Elham Shafeian, Michael Ewald, Hooman Latifi, Fabian Ewald Fassnacht  

 

Abstract 

Tree decline in semi-arid forest ecosystems causes severe socio-economic and environmental 

problems. This study investigates tree and forest decline in Iran's Zagros forests, considering 

environmental factors (e.g., topographic, soil, and climatic variables) and tree characteristics (e.g., 

DBH and tree height). We used field data from Chaharmahal-and-Bakhtiari (a study area covering 

165 km²) and environmental data derived from freely available databases. Relationships between 

tree and forest decline and environmental data were analyzed using generalized additive models 

(GAMs). Our findings reveal that slope and the Bioclim-16 variable (precipitation of the wettest 

quarter) significantly influence tree decline across various decline classes (p-values: slope = 0.009, 

Bioclim-16 = 0.02). The best multivariate model for forest decline incorporated the explaining 

variables soil organic carbon (SOC) and silt, with SOC emerging as the key factor (p-value = 0.04). 

No significant correlation between tree or forest decline and tree characteristics was observed. 

Additionally, a spectral analysis of bare soil in declining and non-declining areas consistently 

demonstrated reduced reflectance values in declining regions across 10 S2 bands, with VNIR-3, 

SWIR-2, red, green, and blue bands consistently showing significant differences as unveiled by the 

Wilcoxon test in all seasons except winter. These reduced reflectance values may indicate that 

forests stocked on soils with larger grain size (a higher fraction of sand) and/or higher organic 

carbon content may be more prone to decline. This study contributes to our hitherto understanding 

of the main drivers of tree and forest decline in semi-arid forests, underscoring the potential utility 

of the spectral properties of bare soil in sparse semi-arid forests to predict the likelihood of tree 

decline. 
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4.1.  Introduction 

The dynamic response of trees to environmental variables over time demonstrates their ability to 

adapt to extreme events such as drought. This dynamic response is also called plasticity (Zheng et 

al., 2023). However, prolonged exposure to stressful situations causes trees to deteriorate. 

Particularly, a combination of biotic and abiotic factors can increase the stress level of trees and 

their subsequent deterioration (Hosseini et al., 2017). The occurrence of tree mortality and the 

consequent forest decline due to unfavorable climatic conditions has been reported in several 

ecosystem types (Andrus et al., 2023), but particularly in arid and semi-arid ecosystems (e.g., 

Ghanbari Motlagh and Kiadaliri, 2021; Walker et al., 2012; Mahdavi et al., 2015). This trend is 

expected to continue to accelerate in the next few decades (Etzold et al., 2019). Amongst other 

influences, climate warming may exacerbate drought stress and contribute to the decline of forests 

in water-limited arid and semi-arid regions hereafter semi-arid regions (Camarero, 2017). 

Therefore, these ecosystems are particularly susceptible to prolonged droughts (David et al., 2022), 

yet many semi-arid regions remain under-examined. Hence, it is crucial to identify factors that 

contribute to the decline of trees in such ecosystems. 

The mountainous Zagros forests of western Iran are an example of a large semi-arid region that 

has received comparably little attention in the international literature. While some studies have 

addressed the subject of forest decline in the Zagros (Moradi et al., 2021; Jahanbazy Goujani et al., 

2020; Hosseini et al., 2017), research on the forest decline in this ecosystem is still in its early 

stages. Most of the research in the Zagros area has focused on mapping and detecting forest decline 

(e.g., Ghasemi et al., 2023; Ghasemi et al., 2022; Karami et al., 2018) rather than understanding its 

drivers, which, along with comprehending the interconnections among the drivers, remains an open 

task (Moradi et al., 2021). Forest management, economic policies, and mitigation and adaptation 

initiatives can all benefit from a thorough understanding of forest decline (Anderegg et al., 2012). 

Outside the Zagros area, a number of studies examined forest decline in (semi)-arid regions. 

For instance, Fensham and Fairfax (2007) showed in the Central Queensland savanna of Australia 

that areas with higher forest densities had reduced surface soil moisture availability. This led to an 

escalation in tree mortality as surface soil moisture decreased. Furthermore, the link between 

topography (i.e., elevation, slope, and aspect) and tree mortality or forest decline in semi-arid 

regions has been demonstrated in some previous studies, including studies in Zagros (e.g., Moradi 

et al., 2021; Jahanbazy Goujani et al., 2020; Hosseini et al., 2017). Topography influences 

irradiation and, therefore, soil moisture and drought conditions (Ewane et al., 2023). The effects of 

other environmental factors such as extreme climatic conditions and soil variables have been 

reported before; Zhang et al. (2023), in a study in semi-arid forests in China, identified climate and 

soil factors as the primary drivers of vegetation response to drought in their study area. In a study 

in the Wyoming Basin ecoregion of the United States, Assal et al. (2016) found that high elevation 

and northern slopes were related to increased drought-induced tree mortality. The study found that 

forest density may have increased on northern slopes during the wet 1990s, which may have 
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increased mortality risk during droughts. In terms of tree characteristics, they pointed out that most 

mortality occurred among the largest trees, but a significant number of small and medium-sized 

aspen trees also experienced mortality. Some studies have also focused on understanding the 

relationship between tree characteristics, such as tree height (e.g., Stovall et al., 2019), and tree 

mortality or forest decline in semi-arid regions. 

While many studies discuss the main drivers of decline, there are also contrasting views even 

within similar ecosystem types. For example, in a (semi)-arid African savanna in South Africa, 

MacGregor and O'Connor (2002) conducted a study on Colophospermum mopane trees that were 

subjected to severe drought. The study found that trees growing in sandy or on fine-textured soils 

such as clay were not affected by dieback, as soil type and topography were not related to dieback. 

Instead, dieback was found to be associated with factors such as vegetation structure, soil quality, 

and soil chemical composition (i.e., high sodium content). These nuanced yet confounding results, 

especially in the semi-arid ecosystems, illustrate that the causes of forest and tree mortality due to 

environmental factors and tree characteristics are complex, difficult to predict, and site-specific, 

requiring local-level research (also noted by Sharwood, 2021; Bałazy et al., 2019). 

As already briefly mentioned above, soil properties within forest ecosystems can serve as 

indicators of forest decline, and soils in declining forests may differ from those in healthy forests 

(e.g., Chaparro et al., 2018). However, conducting soil measurements in the field is both expensive 

and labor-intensive. Moreover, some study sites may remain inaccessible, such as those situated in 

steep or remote areas (Lausch et al., 2016; Diao et al., 2020). RS is a suitable method for monitoring 

forests (but also soil attributes) across extensive areas (Bałazy et al., 2019). Differences in spectral 

values have been shown to be associated with soil properties such as moisture (e.g., Welikhe et al., 

2017; Fabre et al., 2015; Lobell and Asner, 2002), SOC (e.g., Esmizade et al., 2022; Shields et al., 

1968), and texture (i.e., sand, silt, and clay content) (e.g., Bousbih et al., 2019). Chaparro et al. 

(2018) investigated the role of soil moisture in a forest decline event that occurred in 2012 in 

northeastern Spain, and concluded that in the presence of dry soils, the probability of observing a 

decline in deciduous forests increased. Another study conducted in the Central Zagros region by 

Esmizade et al. (2022) found a significant correlation between SOC content and reflectance values 

obtained from Landsat data. Generally, it has been observed that reflectance values in the visual 

and near-infrared regions decline with increasing grain size of the soil, soil moisture, and SOC. 

Thus, understanding whether there are spectral differences in the bare soil surrounding declining 

and non-declining forest patches may help us understand how soil properties affect forest decline. 

It should be noted, however, that predicting soil variables from RS is a challenging task because 

these methods only provide surface data and do not capture subsurface properties and states (e.g., 

Döpper et al., 2022). Still, satellite-based spectral analysis of bare soil areas in open semi-arid 

forests has so far not been related to forest decline processes but may help in identifying and 

mapping declining areas. 

Detecting and mapping spatial patterns of forest decline is crucial, as it serves as a primary 

measure of comprehending tree mortality and predicting and regulating future forest development 

https://onlinelibrary.wiley.com/authored-by/O%27Connor/Timothy+G.
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(Etzold et al., 2019). This calls for enhancing data collection to attain an efficient and robust 

understanding of forest decline (Dorman et al., 2015). However, the limited availability of 

comprehensive datasets is a significant constraint in investigating forest decline in semi-arid 

regions. The collection of data on forest decline, including the identification of possible causes, is 

a tedious and time-consuming task due to the widespread nature of forest decline (Lausch et al., 

2016; Diao et al., 2020; Shafeian et al., 2023). Furthermore, understanding tree and forest decline 

is complicated because tree mortality is unevenly distributed across numerous spatial scales and 

temporal variability occurs due to its gradual nature (Dorman et al., 2015). Additionally, multiple 

stress factors operating at different spatiotemporal scales hinder our understanding of forest decline 

(Camarero, 2017). There is no universally applicable answer to the question of which factors 

contribute significantly to forest decline processes (e.g., Bałazy et al., 2019), as the influence of 

diverse environmental factors on forest decline and tree mortality must be both individually and 

jointly assessed (Bałazy et al., 2019). 

The primary objective of this study is to gain a deeper understanding of forest decline in the 

mountainous, semi-arid Zagros forests. We aim to gain a better understanding of the factors driving 

tree decline (individual trees) and forest decline (tree groups) by examining the relationships 

between different classes of decline and various environmental variables (i.e., topography and 

climate) as well as tree characteristics, including diameter at breast height (DBH) and tree height. 

The research also includes spectral analysis of bare soils in declining and non-declining tree groups 

using S2 imagery. Thus, this study seeks to answer two main questions: 1) what are the main drivers 

of tree and forest decline in the Zagros forests? 2) Is there a significant difference in the spectral 

values of bare soils between declining and non-declining tree groups using S2? 

4.2.  Material and Methods 

4.2.1.  Study area 

The Zagros forests, which make up roughly 44% of Iran's total FC, play a pivotal role with respect 

to several key ecosystem services, including water supply, soil conservation, and climate change 

mitigation, as well as the overall socioeconomic stability of the region (Sagheb Talebi et al., 2014). 

Precipitation in the complete Zagros region generally demonstrates a declining pattern both from 

north to south and from west to east. The majority of the annual rainfall is concentrated during the 

winter season, with an average ranging from 400 to 800 mm, constituting about 70% of the total 

annual precipitation (Sagheb Talebi et al., 2014). Climatic data obtained from the Zagros region 

reveals an annual average temperature range spanning from 9 to 25 °C, with variations influenced 

by both latitude and altitude (Sagheb Talebi et al., 2014). The geographical scope of our research 

is centered in the southern sector of the central zone of Zagros forests, specifically situated within 

the Chaharmahal and Bakhtiari Province. The most dominant and widespread tree species include 

Brant’s oak (Quercus brantii var. persica), which is partially mixed with Quercus infectoria 
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G.Olivier, Quercus libani G.Olivier, wild pistachio (Pistacia atlantica Desf.), and Acer 

monspessulanum L. In addition, Crataegus spp., Amygdalus spp., and Pyrus spp. occur frequently 

(Erfanifard et al., 2014). Leaves of Brant's oaks appear and reach full growth at different times in 

the Zagros region, ranging from early March to late May (Hesami et al., 2016; Mardani and 

Youssefi, 2005). Conversely, leaves begin to fall starting in early November and are usually 

completely shed by December (Mardani and Youssefi, 2005). Figure 4.1  shows the location of our 

study area as well as the distribution of sampled sites. 

 

Figure 4.1  From the right bottom to the right top: A) The location of Iran; B) The study area covered with 

Google satellite imagery; C-D) A close-up of two declining tree groups (the orange points are the declining 

sampled trees); E-F) A close-up of two non-declining tree groups (the green points are the non-declining 

sampled trees). 

4.2.2.  Reference data 

4.2.2.1.  Sample plots and individual trees 

A field campaign was conducted during the summer of 2021 to gather reference data. The sites for 

the field surveys were chosen by dividing the study area into declining and non-declining zones 
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based on Landsat imagery observations from the past 36 years (Shafeian et al., 2023). To determine 

these zones, we utilized an EVI anomaly approach, utilizing data from 1986 to 2021 (refer to 

Shafeian et al., 2023 for more information). Field plot locations were chosen at random within the 

identified areas of decline, which are characterized by notably reduced EVI values compared to 

historic values. We ensured to survey all major illumination, aspect, and slope configurations. We 

investigated 43 plots consisting of five individual trees (hereafter called tree groups), resulting in 

a total of 215 individual trees sampled. For the analysis, we used 190 (90 declining and 100 non-

declining) individual trees, for which the exact locations were identifiable in the unmanned aerial 

vehicle (UAV) imagery collected during the field survey. Differential GPS was utilized to record 

the central positions of the field plots (Figure 4.1). A DJI® Mavic Pro equipped with an RGB 

camera was employed for the drone surveys that captured aerial snapshots of every plot. The high-

resolution UAV data was acquired and used to evaluate the crown condition of the trees and to 

match the field data with the high-resolution Google Maps satellite imagery that was used as base 

maps in QGIS. Detailed records of the site's general conditions were also collected, including 

individual trees. The declining sampled trees were further subdivided into four classes: non-

declining (class = 0), slightly declining (class = 1), moderately declining (class = 2), and severely 

declining (class = 3). This classification was determined using approximate percentage ranges of 

the damage (detailed descriptions provided in Table 4.1) and tree group decline levels (i.e., non-

declining and declining). To classify the overall decline level of tree groups, a systematic approach 

was implemented. If more than 60 percent of the trees within a tree group were defined as 

"declining," we categorized the entire group as "declining", which was otherwise categorized as 

“non-declining”. Additionally, we took into account the condition of the surrounding regions in the 

field to make informed classifications. This method allowed for a comprehensive assessment of 

tree group health while considering both the majority condition within the group and the broader 

environmental context. The tree groups, divided into declining and non-declining, amounted to n 

= 43. 

Table 4.1 The detailed description of the individual tree decline classes 

   Tree decline 

Category 

Damage 

Percentage 

Range 

Description 

 

 

 0. Healthy or 

non-

declining 

0-5% Trees in this category were in excellent 

health, with very minimal or no visible 

damage.   

 

 

 1. Slightly 

declining 

5-30% Trees in this category had some visible 

damage or stress but were generally healthy. 

This may include a few dead branches or 

minor insect damage.  
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 2. Moderately 

declining 

30-50% Trees in this category were experiencing 

significant stress and damage. They had 

extensive insect infestations, multiple dead 

branches, or signs of disease.  

 

 

 3. Severely 

declining 

More than 

50% 

Trees in this category were in critical 

condition and at risk of declining further or 

dying. They had extensive damage and 

significant dieback, and they may show 

clear visible signs of disease.  

 

  

Figure 4.2   Histograms providing information on the individual trees analyzed in this study, from left to 

right: frequencies (the number of trees) of different tree decline classes (status); frequencies of the 

approximate tree height (H) in m; DBH in cm. 

4.2.2.2.  Reference data over bare soil areas 

A second reference dataset was obtained by visually interpreting Google satellite imagery in QGIS. 

We identified areas that were predominantly covered with bare soil and were located close to 

declining and non-declining tree groups. These areas were analyzed to determine if there were any 

differences in the spectral properties of the bare soil inside or near declining and non-declining tree 

groups. These reference points were established in S2 pixels, which we assumed to be free of 

vegetation (0% tree cover) based on visually interpreting Google satellite imagery. A total of 486 

reference points were collected, consisting of 256 areas located near declining and 230 areas near 

non-declining tree groups. 
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4.2.3.  RS data 

4.2.3.1.  S2 

The multispectral data of S2 has been found to be valuable in identifying forest decline by 

comparing the spectra of declining forests to those of healthy ones over time (Pontius et al., 2020). 

S2 comprises two polar-orbiting satellites, resulting in a 5-day revisit time. The Multispectral 

Imager (MSI) provides 13 spectral bands with pixel sizes ranging from 10 to 60 m. We excluded 

three bands with a resolution of 60 m and utilized the remaining 10 bands in our study. Our 

objective was to analyze the spectral properties of bare soil in declining and non-declining tree 

groups. Processing of the S2 imagery was conducted through the GEE platform, importing the 

Harmonized S2 MSI: Multispectral Instrument, Level-2A (ID: 

"COPERNICUS/S2_SR_HARMONIZED") dataset. To ensure data quality, we filtered the image 

collection to include cloud-free or less cloudy (0–5%) composite images available between 2020 

and 2022. The study considered four distinct seasons: winter (January to the end of March), spring 

(April to the end of June), summer (July to the end of September), and autumn (October to the end 

of December). For each month, a 15-day median image was exported, resulting in two images per 

month. This division was achieved by dividing the image acquisition dates into two intervals: the 

1st to the 15th day of the month and the 16th to the last day of the month (a total of 72 exported 

images). See Supplementary Material III for the link to GEE scripts for importing and downloading 

S2 images. 

4.2.4.  Environmental variables 

An overview of the variables utilized to investigate their relationship with declining and non-

declining trees and tree groups is presented in Table 4.2. Detailed descriptions of these relevant 

variables are provided below. 

4.2.4.1.  Topography 

We used the Global FABDEM (Forest and Buildings Removed from Copernicus DEM), one of the 

most recent DEM products available as a project on GEE (Hawker et al., 2022), to investigate the 

effect of topography. After importing the DEM dataset, we calculated the slope and aspect using 

its elevation band, and the result of each calculated variable was exported separately as a single 

raster layer using QGIS. We additionally calculated a hillshade image, setting the sun’s elevation 

at 56.4° and azimuth at 144.1°. These settings matched the acquisition time of a PlanetScope image 

acquired close to the date of our field campaign, mid-September 2021, which was used for a 

plausibility check and confirmed the validity of the obtained shadowing patterns. 
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4.2.4.2.  Topographic Wetness Index 

The compound topographic index (CTI), also referred to as the topographic wetness index (TWI), 

serves as a potential drought indicator related to tree and forest decline in our analysis. Beven and 

Kirkby (1979) introduced the concept of this index. TWI values range from -3 to 30, and the TWI 

is computed using factors like slope steepness and direction to estimate the accumulation of water 

flow. Elevated TWI values commonly signify wetter conditions, whereas lower TWI values are 

indicative of drier conditions and steeper slopes (Winzeler et al., 2022). The TWI serves as an 

objective measure of site moisture (Winzeler et al., 2022; Kopecký and Cizkova, 2010), aiding in 

the detection of stressed trees and forest decline. First, we imported the image collection of the 

“MERIT/Hydro/v1_0_1” global hydrology dataset into GEE to obtain upstream data (Yamazaki et 

al., 2019). The flow accumulation area and elevation bands of the upstream drainage area were 

chosen. Then the TWI equation given below was employed to derive a raster layer. Supplementary 

Material III includes a GEE script link for TWI estimation. 

TWI = upstream drainage area (flow accumulation area) × pixel size or resolution 

/ (slope radians) × log10 (4.1) 

4.2.4.3.  Climate 

Prolonged exposure to extreme conditions (warmer and drier) can lead to partial canopy dieback 

and tree mortality (Andrus et al., 2023), particularly in semi-arid ecosystems. As temperature and 

precipitation are considered important climatic variables in tree and forest decline (e.g., Andrus et 

al., 2023; Shiravand and Hosseini, 2020), we also included selected bioclimatic variables from the 

Bioclim dataset (Hijmans et al., 2005). We included temperature data (i.e., bioclim-1 = annual 

mean temperature, bioclim-4 = temperature seasonality (standard deviation 100), bioclim-7 = 

temperature annual range, and bioclim-10 = temperature annual range) as well as precipitation data 

(i.e., bioclim-12 = annual precipitation, bioclim-15 = seasonality of precipitation (coefficient of 

variation), bioclim-16 = precipitation of the wettest quarter, and bioclim-17 = precipitation of the 

driest quarter) to account for potential influences of climatic gradients on tree decline (Shafeian et 

al., 2021). The data were acquired in GEE ("WORLDCLIM/V1/BIO"), and each variable or band 

was exported separately as a single raster layer. See Supplementary Material III for the link to GEE 

scripts for importing and downloading Bioclim variables (ca. 1 to 2 km). 

4.2.4.4.  Soil 

Soil properties, including moisture levels and soil texture (i.e., clay, sand, and silt content), 

significantly impact the drought susceptibility of forests (Ewane et al., 2023). In warmer and drier 

climates marked by reduced soil moisture, lower humidity, and greater heat stress, trees may 

struggle to reach the critical physiological thresholds needed for survival (Andrus et al., 2023). Soil 

variables were extracted from SoilGrids data, an initiative led by the World Soil Information Center 

(ISRIC), which is available on GEE at a spatial resolution of 250 m. SoilGrids offers maps for ten 
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discrete soil properties. To gain more comprehensive insights into this dataset, please refer to 

Poggio et al. (2021).  

4.2.4.5.  Tree density 

The term tree density or FC refers to the proportion of land covered by the vertical projection of 

the tree canopy relative to the total area (Gonsamo et al., 2013). Andrus et al. (2023) posit that 

reducing FC can potentially increase resource availability, promoting the vigor and growth of 

surviving trees. Similarly, the study confirms the inverse correlation, wherein high forest density 

may limit resource availability and decrease tree vigor and growth. We compared the FC of 

declining versus non-declining trees and tree groups in the study area, as it is considered a major 

contributing factor to forest decline (e.g., Ghanbari Motlagh and Kiadaliri, 2021; Hosseini et al., 

2017). Our data was obtained from an FC map available for the entire Zagros region (Shafeian et 

al., 2021). 

4.2.4.6.  Illumination  

Illumination is a significant resource for plants that influences their recruitment and growth. It can 

also play a vital role in forest survival (Matsuo et al., 2021). The illumination condition (IC) ranges 

from 0 to 1 and represents poorly lit and well-illuminated zones, respectively, and it is determined 

by the incidence angle. The following equation was used to determine IC: 

IC cos( ) cos( ) sin( ) sin( ) cos( )z s z s a o=     −  (4.2) 

where z is the solar zenith angle (incident angle for a horizontal surface, provided by the sensor 

metadata), s is the terrain slope calculated from the DEM, a is the solar azimuth angle (provided 

by the sensor metadata), and o is the terrain aspect. A GEE script was applied to use the DEM and 

metadata of the solar angels in the image to determine the IC at the pixel level and add it as a new 

band (Martín-Ortega et al., 2020). Pixels with high median IC values (bright pixels) are placed in 

the sun's direction and receive more light (Martn-Ortega et al., 2020). The link for the 

corresponding GEE scripts can be found in Supplementary Material III. 

Table 4.2 List of environmental variables with their sources 

Variable Source 

Topography DEM (30-m) (Hawker et al., 2022) 

TWI MERIT Hydro (Yamazaki et al., 2019) 

Climate Data Long-term means of precipitation and temperature of Worldclim (Hijmans et al., 

2005) 

Soil SoilGrids data from World Soil Information (ISRIC) (Poggio et al., 2021) 

FC Fractional woody cover map (Shafeian et al., 2021) 

IC DEM (30-m) (Hawker et al., 2022) 
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4.2.5.  Tree characteristics  

Tree decline can be notably influenced by tree characteristics (i.e., DBH, height, and crown size). 

Several studies have shown that differences in DBH (e.g., Akkuzu et al., 2009; Schroeder, 2010; 

Eriksson et al., 2005) and tree height (e.g., Tymi'nska-Czaba'nska et al., 2022; Stovall et al., 2019) 

can lead to different tree mortality rates. Therefore, we also investigated potential links between 

field-measured DBH, tree height, and the decline of individual trees and tree groups. 

4.2.6.  Methodology 

4.2.6.1.  Distribution of the environmental variables  

The density plots, also referred to as kernel density estimation (KDE) plots, illustrate the 

distribution of environmental variables within distinct groups, namely declining and non-declining 

individual trees (Figure 4.4). The density plots depict the distribution of the same environmental 

variables across different tree groups (Figure 4.5). We employed the Terra package in R (Hijmans 

et al., 2023) to retrieve raster and spatial data values at these reference points. 

4.2.6.2.  Statistical analysis  

In total, we fitted four GAM models. In the first two models, we used four tree decline classes at 

the individual tree level (four classes of decline: healthy, slightly declining, moderately declining, 

and severely declining) as response variables fitted one model using the environmental variables 

as predictors and one model using the tree characteristics. We fitted two more models using the 

same sets of predictors but the decline classes at the tree group level (two classes of decline: 

declining and non-declining) as response variables. Tree group decline status was included as a 

binary response variable, and tree decline at the individual tree level was included as an ordered 

categorical response variable in the respective models. Environmental variables were included in 

the models as predictors (i.e., individual smooth terms). For the models including individual tree 

decline classes as a response variable, we additionally included the tree group ID as a random factor 

in the model as individual trees from one tree group were not considered independent replications. 

Some variables were omitted from the analysis due to noticeable inter-correlations (more than 

80%) among variables, specifically elevation and several bioclimatic variables such as bioclimate-

01, bioclimate-04, bioclimate-07, bioclimate-10, bioclimate-12, and bioclimate-15. Therefore, 

from the bioclimatic variables, we retained bioclimate-16 for the analysis. This resemblance in 

correlation patterns is visualized in Figure 4.9 (Supplementary Material III), which depicts 

correlation plots for both the reference data and the remaining environmental variables. For a more 

comprehensive view, correlation plots for all environmental variables, including the excluded ones, 

are available in Supplementary Material III. We set an upper limit on the number of environmental 

predictors (n = 3) and tree characteristics predictors (n = 2) in the GAM models and explored 

models with all possible variable combinations. This is because when dealing with numerous 

https://cran.r-project.org/web/packages/terra/index.html
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predictor variables, hidden relationships among some of them may lead to redundancy, which could 

affect the accuracy and interpretability of GAM models as well as increase the computation time. 

Final models were selected based on the lowest Akaike Information Criterion (AIC) value, 

indicating the best fit. 

Model residuals were checked for spatial autocorrelation by calculating Morans’ I values. The 

residuals of the models with tree group status as a response variable were significantly auto-

correlated for both environmental predictors as well as tree characteristics. Therefore, we refitted 

these models, including the center coordinates of the tree groups as an additional smooth term to 

account for the spatial autocorrelation. The GAM models with individual tree decline levels as a 

response variable were only significantly auto-correlated when using tree characteristics as a 

predictor. Therefore, we refitted these models as well, including the coordinates of each individual 

tree as an additional smooth term to account for the spatial autocorrelation. We applied the GAM 

models using the mgcv package (Wood, 2023) available in R software (version 4.2.1) (R Core 

Team, 2022) using restricted maximum likelihood for smoothing parameter estimation. The 

dimensions of the individual smooth terms were restricted to a maximum value of three to avoid 

too-wiggly spline fits (overfitting). 

In an additional experiment, we compared the spectral values of bare soils near two tree groups 

(declining and non-declining), during the 2020–2022 timespan to analyze the main bands using the 

Wilcoxon statistical test. The methodological flowchart is depicted in Figure 4.3. Reference point 

classes were captured for both declining and non-declining bare soil. Values were then extracted 

through the terra package in R (Hijmans et al., 2023), using S2 imagery. Subsequently, a Wilcoxon 

test using the wilcox.test function of the stats package in R (R Core Team, 2022) was conducted to 

determine significant statistical differences between the two classes of decline at various S2 

spectral bands.  

 

https://cran.r-project.org/web/packages/mgcv/index.html
https://cran.r-project.org/web/packages/terra/index.html
https://www.rdocumentation.org/packages/stats/versions/3.6.2
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Figure 4.3   Study workflow: The left side displays the GAM model formation for comparing potential 

decline drivers at individual tree and tree group levels. The right side demonstrates the RS analysis on the 

bare soils of two declining and non-declining tree groups. 
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4.3.  Results 

4.3.1.  Distribution of the environmental variables  

4.3.1.1.  Distribution of environmental variables for declining and non-declining 

individual trees  

Figure 4.4 illustrates the distribution of environmental factors among the non-declining and 

declining individual trees in two groups: those that are healthy (non-declining) and those that are 

declining (slightly, moderately, and severely declining). The distributions indicate differences in 

several environmental predictors between groups. Most apparent were differences in slope and 

aspect distribution between trees that are declining and those that are not declining. Mostly 

declining trees were spread over the medium slope. Differences in the shape of the distributions 

were less pronounced for the remaining variables but visible for bioclimate-04, soil texture, soil 

water content, and IC. For the temperature variable bioclimate-04 (bio-04), the frequency of 

declining trees increases with higher bioclimate-04 values. In relation to soil attributes, areas with 

declining trees were predominantly located in regions featuring moderate clay, sand, and silt 

content. However, the maximum occurrence of trees not experiencing a decline was observed in 

areas with a higher sand content. Nonetheless, as the clay content increased, there was a slight 

decline in the frequency of non-declining trees.  
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Figure 4.4   Density plots of environmental variables for declining (in orange) and non-declining (in green) 

individual trees (topographic, climate, and soil variables as well as FC and IC). 

4.3.1.2.  Distribution of environmental variables for declining and non-declining tree 

groups 

Figure 4.5 depicts the distribution of environmental variables between declining and non-declining 

tree groups. Differences could be observed regarding topography, climate variables, soil factors, 

and FC among the two classes. Declining tree groups were found at lower elevations (less than 

1700 m) and on subtle slopes. The frequency of the non-declining tree groups was higher in the 

areas with higher TWI (values >20). Declining tree groups were more frequently present on soils 
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with high sand content and less frequently associated with soils with high silt content. Declining 

tree groups showed greater soil water content fluctuations, with higher density in lower water 

content areas. Additionally, increasing illumination was linked to the higher density of declining 

tree groups. 

  

Figure 4.5   Density plots of environmental variables of declining (in orange) and non-declining (in green) 

tree groups (topographical, climate, and soil variables as well as FC and IC). 
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4.3.2.  GAM 

4.3.2.1.  GAM for individual tree decline  

The most optimal GAM with the lowest AIC value of 411.7040, used for modeling the categorical 

response variables representing individual tree decline classes, included the slope, TWI, and 

bioclimate-16 as predictors. This model explained approximately 18% of the variance in the data, 

based on a sample size of n = 190. 

Interestingly, the analysis revealed that the lowest level of individual tree decline was observed in 

areas with medium to steep slopes. When considering the response curve of the precipitation in the 

wettest quarter of the year (bioclimate-16), there was an initially inverse relationship, particularly 

for precipitation levels lower than 170 mm (Figure 4.6). However, afterward, it showed a nearly 

linear positive relationship between precipitation and the individual tree decline classes. This 

suggests that in areas with lower precipitation, individual tree decline tends to increase, but beyond 

a certain threshold, higher precipitation is associated with a decrease in individual tree decline. The 

results for all non-significant variables as well as the top five best models are provided in 

Supplementary Material III. 

Table 4.3 The outcomes of the best GAM models: environmental variables as predictors using individual 

tree decline classes as response variables (the significant variables are bold and denoted with asterisks). 

Variable Effective degrees of freedom p-value 

Slope 2.080e+00       0.009* 

TWI 8.747e-05       0.8 

Bioclimate-16 1.467e+00       0.02* 

 

Table 4.4. The outcomes of the best GAM models: tree characteristics as predictors using individual tree 

classes as response variables 

Variable Effective degrees of freedom p-value 

DBH 1.644e-01 0.2 

H 1.411e-04       0.8 
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Figure 4.6   The selected significant variables from top to bottom (slope and bioclimate-16) of the best 

GAM model across different individual tree decline categorical classes. Low values of the y-axis (response) 

indicate lower tree decline. 

4.3.2.2.  GAM for tree group decline 

The analysis conducted at the tree group level revealed that the most effective predictors were a 

combination of slope, SOC, and soil silt content. This combination was indicated by the model 

with the lowest AIC value of 45.59, which accounted for 51% of the total variance. Notably, only 

the effect of SOC was found to be statistically significant (with a p-value of 0.04), while the other 
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variables were considered insignificant, with p-values of 0.16 for slope and 0.97 for silt. This 

suggests that declining tree groups were primarily associated with soils containing lower and higher 

organic carbon contents. So, the lowest decline levels were found in areas where the soil had 

medium values of SOC. 

Regarding models concerning tree characteristics, the GAM provided no significant results. The 

model's ability to explain the variance was relatively modest, at approximately 6%. The results for 

all non-significant variables as well as the top five best models are provided in Supplementary 

Material III. 

Table 4.5 The outcomes of the best GAM models: environmental variables as predictors using tree group 

classes (the significant variables are bold and denoted with asterisks.) 

Variables  Degree of freedom p-value 

Slope   6.424e-01       0.1 

SOC 8.442e-01 0.04* 

Silt   6.780e-06       0.9 

 

Table 4.6 The outcomes of the best GAM model: tree characteristics as predictors using tree group classes  

Variables  Degree of freedom p-value 

DBH 1.5 0.5 

H 0.00014    0.5 

 

Figure 4.7 The selected significant variable (SOC) of the best GAM model across different tree group 

decline binary classes. Low values of the y-axis (response) indicate a low level of tree decline. 
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4.3.3.  Spectral analysis of S2 data over bare soil areas  

The bean plots (Figure 4.8) show the S2 bands of bare soil pixels next to declining and non-

declining regions during four seasons from 2020 to 2022. Figure 4.8 shows differences in the 

spectral values of bare soil between the non-declining and declining tree groups. Throughout all 

seasons, except for winter, which showed some fluctuations, soil areas within or near non-declining 

tree groups consistently exhibited higher spectral values in almost all S2 bands. The distinction 

was particularly noticeable in the visible near-infrared bands (i.e., VNIR-1 and VNIR-2). Table 4.7 

presents the statistical results of the Wilcoxon tests comparing two groups of bare soils. The tests 

were conducted based on the variations observed in the 10 S2 bands. 
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Figure 4.8   Spectral values of the bare soil over declining and non-declining areas using S2 bands during 

the winter (top left), spring (top right), summer (bottom left), and fall (bottom right) seasons of three 

consecutive years (2020–2022). 
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Table 4.7 Wilcoxon test results for two groups of bare soils based on used S2 band differences (significant 

results are denoted with asterisks). 

 

Season 

Band    

 winter spring summer fall 

 Blue 0.019* 4.447462e-08* 5.396698e-05* 1.495838e-04* 

 Green 0.009 * 3.808531e-09* 1.790776e-06* 1.479342e-05* 

 Red 0.007* 2.502013e-10* 7.480984e-07* 2.425030e-06* 

 VNIR-1 0.66 2.952863e-06* 1.030380e-04* 8.593128e-04* 

 VNIR-2 0.37 4.005048e-07* 2.125996e-06* 5.251821e-04* 

 VNIR-3 0.002* 6.937863e-12* 1.151809e-09* 9.022430e-08* 

 VNIR-4 0.03* 9.064574e-11* 7.494382e-09* 5.892351e-06* 

 NIRn 0.09 1.279199e-09* 3.121966e-08* 5.748596e-05* 

 SWIR-1 0.18 1.867500e-12* 5.117691e-09* 8.259254e-07* 

 SWIR-2 0.01* 3.388447e-18* 3.857722e-14* 9.044554e-10* 

 

Table 4.7 shows that the VNIR-3, SWIR-2, red, green, and blue bands were significantly 

different in all seasons. Notably, all 10 bands were also significantly different in the summer and 

fall seasons. In winter, only half of the analyzed S2 bands showed statistical significance when 

comparing the two bare soil groups located within and near declining and non-declining tree 

groups. In addition, the observed p-values for winter were generally higher compared to other 

seasons. 

4.4.  Discussion 

4.4.1.  Environmental variables 

4.4.1.1.  Topography 

The importance of topography on tree and forest decline has been mentioned in several earlier 

studies (Ewane et al., 2023; Najafifar et al., 2019; Assal et al., 2016). For example, Ewane et al. 

(2023) found that topographic convergence, associated with increased precipitation, is a crucial 

predictor of ecosystem productivity and plant responses to drought. The authors pointed out that 

trees on steeper slopes are more likely to suffer from drought because of drainage and stronger 

winds. On the other hand, trees in valleys are better at handling drought since they receive extra 

water from the valley sides. 
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Among topographical factors in our study, slope was found to be strongly associated with 

individual tree decline classes (the highest tree decline was observed in the medium slope values). 

Furthermore, it was selected as an influencing factor in both best-performing GAM models. The 

GAM results showed that slope values were significantly different between declining and non-

declining tree groups, with a p-value of 0.009. Our results thus corroborate previous research 

(Ewane et al., 2023; Solaymani and Jabbari, 2015) in different ecosystem types. In the semi-arid 

Wyoming Basin ecoregion, Assal et al. (2016) determined that high elevation and northern slopes 

significantly reduced tree mortality during droughts. Also, Solaymani and Jabbari (2015), in a study 

on Zagros forests, found that soil erosion and degradation were observed on sloped terrains. They 

also noted that the negative impacts of soil erosion became more noticeable on steeper slopes, 

indicating a strong connection between slope steepness and the severity of oak dieback. 

In a study in semi-arid Zagros forests, Hosseini et al. (2017) found that higher elevations show 

the greatest rates of tree mortality and crown decline. This is somehow in contrast with our density 

plot (Figure 4.4 and Figure 4.5), which suggests that declining tree groups are found in the lower 

elevations (maximum frequency at 1600 m). At the level of individual trees, no differences were 

visible along the elevation gradient. Due to the strong correlation between elevation and climate 

variables (i.e., temperature), elevation was later excluded from our GAM model analysis. 

In another study in the Zagros region, Nourinejad and Rostami (2014) already identified slope 

as having a significant correlation with oak decline, while no correlation was found for elevation. 

They stated that slope in combination with aspect controls the solar irradiation and hence affects 

the water availability and transpiration of the trees, which was in line with Parvaneh et al. (2015), 

who similarly underscored the importance of slope in explaining the prevalence of declining trees. 

In our analysis, aspect was also a selected variable among the best models (third best) of tree 

groups. However, it was not statistically significant in any of the selected models. 

As another topographical variable, hillshade did not show a statistically significant connection 

with the different levels of individual tree or tree group decline in our study. However, it was 

among the fourth and fifth best models in the GAM models of individual tree and tree group classes 

of decline, respectively. These outcomes are partly in line with the findings of Najafifar et al. (2019) 

in a part of Zagros forests. They found that forest dieback was more common in areas with less 

shading, emphasizing the significant impact of hillshade on the drying conditions of oak trees, 

which was even more influential than the aspect of the terrain.   

TWI is an additional parameter indicating soil moisture conditions. TWI can contribute to 

explaining tree and forest decline, yet it is often overlooked in the literature. To our knowledge, no 

study has examined the influence of TWI on tree decline, specifically in arid and semi-arid regions. 

This index is closely correlated with multiple soil properties, including horizon depth, silt 

percentage, and SOC. Our results suggested that TWI was not among the significant variables, but 

it was one of the selected predictors in the best GAM model aiming to differentiate individual tree 

decline classes. Remarkably, the frequencies of the individual tree decline classes and particularly 

declining tree groups were higher when the TWI was lower (Figure 4.4 and Figure 4.5). Thus, this 
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observation supports the idea that tree decline is more likely to occur in dry regions in Zagros, but 

this needs to be further examined since the results were not statistically significant. 

4.4.1.2.  Climatic variables 

Shiravand and Hosseini (2020) identified climate factors related to oak tree dieback in a part of the 

central Zagros region. They found humidity, temperature, and precipitation to be the primary 

variables with a substantial impact on tree dieback. This is also in line with our results, in which 

the precipitation variable was selected in all of the best GAM models as an influential variable 

among four classes of individual tree decline, as well as in the fourth best GAM model as an 

influential variable among two tree group decline classes. Moreover, bioclimate-16 showed 

significant differences among the four tree decline classes (p-value = 0.02). The relationship 

between decline levels and precipitation was initially slightly negative but then turned into a 

positive relationship once precipitation increased to higher levels (Figure 4.6). While this may seem 

counter-intuitive at first, it may be related to higher use intensities in regions with higher 

precipitation, as humans may settle preferably in areas where more water is available. However, 

this hypothesis has to be verified with additional investigations. Alternatively, higher elevations 

(that are also characterized by higher precipitation) may be strongly affected by climate change 

and therefore show a stronger occurrence of decline. It is also worth considering that the spatial 

resolution of the Bioclim variables is quite coarse, covering roughly 1 to 2 km per grid cell. This 

means that all trees within a single tree group (and, in some cases, even in multiple tree groups) 

are likely to have the same Bioclim values. Therefore, the results presented here should not be 

over-interpreted given the relatively small overall study area of less than 165 km2. 

4.4.1.3.  Soil 

Soil is another important factor that needs to be considered to understand forest and tree decline, 

especially in arid and semi-arid areas. When analyzing tree group decline classes using GAM, we 

found that SOC emerged as one of the most important variables, particularly among tree groups 

(being selected and significant in all up to the fifth-best models) and even in the individual tree 

decline classes (being among the variables selected in the third-best model). In tree groups of 

decline, SOC was statistically significant, with a p-value of 0.04. Notably, higher SOC values were 

observed in the non-declining class in comparison to the declining classes (Figure 4.5). This could 

be because the presence of SOC contributes to enhancing soil structure, which, in turn, increases 

the soil's water-holding capacity, as suggested by Zhao et al. in 2022b. A fairly similar trend was 

observed for soil moisture, although no statistically significant differences were identified in 

comparisons among the declining groups. 

In a study in the semi-arid forests of China, Zhang et al. (2023) pinpointed climate and soil 

factors as the dominant and constraining factors influencing how vegetation responds to drought. 

In the tree group analysis, silt content was among the selected variables of the best GAM model, 

while it was influential in the second-best class at the individual tree decline level. However, it was 
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not significant. Also, clay content was among the influencing factors of the best GAM model for 

different tree groups of decline (as one selected predictor of the third-best model, p-value = 0.9). 

Also, for the tree group classes of decline, clay was selected in the third-best model as an 

influencing variable but not statistically significant (p-value = 0.9) (for more information, see Table 

4.8 and Table 4.9 in Supplementary Material III). 

Moreover, from the visual inspection of the soil texture results (i.e., clay, silt, and sand, see 

Figure 4.5), the declining tree groups were mainly found in areas with higher amounts of sand. 

This could be because sandy soils are not able to hold enough water, increasing the likelihood of 

soil drought in a region like Zagros. In contrast, fine soils containing a higher proportion of silt and 

clay have a higher capacity to hold water (Giap et al., 2021). The results indicated that the non-

declining trees were more frequently found in areas with relatively higher amounts of silt (Figure 

4.4 and Figure 4.5) which would confirm the assumption that trees in the Zagros region survive 

better on soils with better water-holding capacity (e.g., Žížala et al., 2019). It is important to 

acknowledge that the spatial resolution of the soil dataset used in our study, with a pixel size of 

approximately 250 m, is coarser than the scale of other predictor variables in our study. This 

difference in resolution could potentially limit the interpretability of our results and should be taken 

into consideration. Furthermore, it is worth noting that the digital soil mapping product used may 

not have undergone evaluation specifically for the Zagros area. The validation of digital soil 

mapping products is crucial (e.g., Döpper et al., 2022) due to potential variations in soil properties 

influenced by topography, geology, and vegetation. Thus, future research should include a focus 

on local soil characterization and validation to prevent potential inaccuracies in the analysis. This 

could involve field surveys, soil sampling, and laboratory analyses to create a reliable soil dataset 

tailored to the Zagros region. These efforts would improve the accuracy and usefulness of soil data 

for forest and tree decline analysis research. 

4.4.1.4.  Tree density 

Reduced growth rates in trees facing competition from neighboring trees (i.e., on a 5-m 

neighborhood scale) can jeopardize the survival of trees in arid and semi-arid ecosystems (Dohn et 

al., 2017). Tymi'nska-Czaba'nska et al. (2022) found that the probability of tree mortality is notably 

impacted by stand density. However, this observation confirms the patterns seen in denser forests, 

where light plays a central role as a limiting factor for tree growth, sparking active competition 

among trees for sunlight (e.g., Dormann et al., 2020). Hosseini et al. (2017) surprisingly observed 

increased tree mortality rates in regions of the patchy semi-arid Zagros area characterized by higher 

tree density and shallow soils. This occurred despite the trees being widely spaced with ample 

access to light, making the presence of competition in this context unexpected. Even if we did not 

find any significant results, the visual interpretation (Figure 4.5) of the density plots for forest 

density was different for our study. We found more declining tree groups at lower forest densities 

in the individual tree decline classes as well as in the tree groups (12–17% cover). The cause of 

this may be attributed to either the decline itself, which leads to a reduction in tree cover, or to 
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higher stress levels caused by reduced shading from neighboring trees or by more challenging site 

conditions. The importance of site conditions in oak tree decline was also emphasized in previous 

studies (e.g., Haavik et al., 2015). Therefore, competition does not seem to be a significant factor 

in our study area, as contrary to previous studies on tree competition in other ecosystems or regions 

(e.g., Ozendaal et al., 2020; Dohn et al., 2017; Hosseini et al., 2017). 

4.4.1.5.  Illumination 

Illumination, as a combination of topography and sun position, may affect the decline of forests 

and trees by influencing irradiation and possibly evapotranspiration rates. Illumination is often 

disregarded in literature. To our knowledge, no study has investigated the impact of illumination 

as a contributing factor to tree decline, particularly in arid and  semi-arid regions. We examined 

this factor in our analysis, but it was not statistically significant in the overall analysis. However, 

we observed a higher prevalence of the declining tree group classes in well-illuminated areas, 

potentially due to higher drought and water scarcity resulting from increased illumination and 

decreased shading. Also, IC was selected as an important predictor in some of the best GAM 

models but was not statistically significant. Given that illumination is an integrated variable that 

combines slope, aspect, and sun position, it may further increase its significance if other 

topographical variables are not integrated into the model. 

4.4.2.  Tree characteristics  

There was no significant difference in tree height as well as DBH (i.e., tree age) between declining 

and non-declining individual trees or tree groups. However, in our analysis before examining the 

spatial autocorrelation, the DBH showed significance in the GAM models (p-value = 0.0008) fitted 

for tree group decline classes. In general, both tree height and DBH had low p-values. However, 

the p-value of DBH was always lower, showing more significance compared to tree height. 

Additional, more detailed information on site conditions or forest growth rates (i.e., tree ring 

analysis) would be required to fully understand this result. 

In contrast to our research, tree heights, and DBH have been identified as significant factors in 

studying forest decline (e.g., Tymi'nska-Czaba'nska et al., 2022; Etzold et al., 2019; Schroeder, 

2010; Akkuzu et al., 2009). Etzold et al. (2019) found that older and larger trees (larger DBH) 

experienced an increase in mortality in Swiss forests, while smaller trees (smaller DBH) tended to 

have lower mortality rates. The findings of Etzold et al. (2019) align with Shifley et al. (2006), who 

demonstrated that the most valuable risk factors for predicting oak mortality at the stand level in 

the temperate forests of the Missouri Ozark Highlands were typically related to the crown class 

and diameter of individual oaks. Oaks with a DBH greater than 25 cm, including the black and 

scarlet oak species, exhibited increased mortality rates. Additionally, Assal et al. (2016) conducted 

a study within the semi-arid Wyoming Basin ecoregion, indicating that a greater number of larger 

trees (DBH > 20 cm) experienced higher mortality rates. However, a significant number of small 

and medium-sized trees also showed signs of mortality. In semi-arid Zagros forests, the literature 
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indicates widespread documentation of severely declining or dead Persian oak trees belonging to 

different size classes. A wide range of tree sizes was examined (DBH from around 5 to 75 cm). 

However, among these classes, the highest occurrence of such incidents was found in trees within 

the DBH range of 15–25 cm (the highest dead trees). This observation was reported by Hosseini et 

al. (2017), who emphasized the significance of DBH in Persian oak mortality dynamics. 

Furthermore, Colangelo et al. (2017) showed that smaller trees in partly similar Mediterranean 

areas with dry summers grow slower and are at a higher risk of mortality than larger trees. They 

concluded that there is a negative correlation between the size of the tree, whether in height or 

diameter, and the probability of tree mortality. The study highlights the complex interplay of factors 

affecting tree survival, noting that in arid regions, forest areas with fewer trees tend to experience 

higher mortality rates. Meanwhile, a study on Mediterranean oak forests found that declining trees 

had reduced height and radial growth rates compared to their non-declining counterparts (Ripullone 

et al., 2020). 

Baguskas et al. (2014) noted that taller trees intercept more fog than smaller trees in south-

central California, featuring a Mediterranean climate, which counteracts drought stress and 

improves survival rates. They pointed out that the increased vulnerability of trees could be due to 

their smaller root-to-shoot ratio in contrast to larger trees, which may limit their access to deeper 

soil water reserves. These findings suggest that tree characteristics, particularly tree height, are not 

reliable indicators across multiple sites and ecosystems since the findings in the literature are highly 

variable (Sherwood et al., 2021). 

4.4.3.  Spectral analysis of bare soil using S2 

We observed higher values across almost all the S2 bands for every season within non-declining 

regions compared to the declining ones (see Figure 4.8). This observation poses a challenge in the 

interpretation given the expected correlation between higher soil moisture and reduced reflectance 

across all wavelengths (Loshelder and Coffman, 2023; Tian and Philpot, 2015). However, it is 

important to acknowledge that soil reflectance is influenced not solely by soil moisture but also by 

variables such as soil texture (sand, silt, and clay), soil surface roughness, and organic matter 

content. These factors are intricate variables that are interconnected (Žížala et al., 2019). As such, 

the complex relationship between soil texture type, water content, and spectral reflectance remains 

unresolved, as emphasized by Tian and Philpot (2015). In our case, we presume that soil moisture 

in the upper part of the soil will be very low, particularly during spring, summer, and parts of 

autumn. Hence, the observed higher reflection values of non-declining areas within this temporal 

range are most likely related to finer grain sizes. This would be plausible since finer grain sizes 

may indicate a better water-holding capacity in these areas and would also corroborate our results 

related to the soil variables from the SoilGrids dataset, where we observed higher sand fractions 

for the declining forest patches. The partly reversed trend observed for winter, on the other hand, 

may at least partly relate to increased surface soil moisture, given that more precipitation is 

expected for these months. 
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4.5.  Conclusion 

In this study, we examined a range of factors that may contribute to the decline of semi-arid Zagros 

forests, including environmental variables and the characteristics of trees at both individual and 

group levels. Our findings reveal several important insights: 1) Environmental factors, such as 

slope and precipitation (measured using bioclimate-16), were found to be related to the decline, 

particularly at individual tree levels. 2) Within the context of forest decline among tree groups, soil 

variables, specifically SOC, emerged as an important factor, followed by soil silt and clay content. 

3) DBH and tree height were not related to tree decline. 4) Additionally, we performed a spectral 

analysis on bare soil in areas where forest decline was observed and compared them to areas 

without signs of decline. Our analysis consistently demonstrated decreased spectral values in all 

10 S2 bands utilized in bare soils within areas experiencing decline compared to non-declining 

areas. The VNIR-3, SWIR-2, red, green, and blue bands of S2 demonstrated significant differences 

(performed by the Wilcoxon test) between the two groups of bare soil across all seasons. We 

hypothesize that these differences in reflectance values are related to differing dominant grain sizes 

in the soils, which are known to also determine the water-holding capacity of the soils.  

This study enhances our comprehension of the intricacies related to the decline of trees and 

forests in the semi-arid Zagros region. It highlights the significant role played by environmental 

factors as well as introduces the spectral analysis of bare soil for decline assessment in semi-arid 

regions, which may contribute to a better understanding of the spatial variability of forest decline 

in the region. While the selected variables were consistent with general expectations and previous 

research, it remained difficult to get a clear picture of the direct drivers based on observed 

relationships between environmental factors and tree decline, stressing the need for further 

research. For future studies, we recommend exploring the use of a higher-resolution DEM, such as 

TanDEM-X at 12 m, to enhance the quality of topographical variables that have been shown to 

play a very important role in tree and forest decline. Additionally, when dealing with a relatively 

small study area like ours (approximately 165 km2), it is recommended to obtain more refined soil 

and climate data, possibly connected with additional field surveys, which may enable a more 

comprehensive understanding of tree decline. Moreover, expanding field sampling to other Zagros 

sub-regions can provide a more comprehensive understanding of forest decline in the entire Zagros. 
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4.6.  Supplementary Materials III 

The covariation between the examined environmental variables 

In order to uncover the relationships or correlation between the examined environmental variables, 

we created correlation plots using the corrplot function in R (Figure 4.9) for both response variables 

(individual tree and tree group decline classes). Notably, we observed that FC and IC exhibited a 

negative correlation of approximately 43% among tree groups and 53% among individual tree 

classes. Bioclimate-16 and aspect also displayed relatively high negative correlations, standing at 

78% and 46% among tree groups and individual tree classes, respectively. Hillshade and IC 

showcased a positive correlation exceeding 80% in both correlation plots, which is not surprising 

since both variables are derived from DEM. Furthermore, hillshade and soil water content 

demonstrated a substantial negative correlation of -65% and -39 among individual tree and tree 

group classes, respectively. Among the soil variables included in both correlation plots, clay, and 

sand stood out with the most prominent positive and negative correlations with precipitation 

(bioclimate–16), exceeding 50% in magnitude, respectively.  

 

Figure 4.9 Correlation plots (from left to right) of tree groups and individual tree decline to environmental 

factors (including the response variables (resp), slope (slo), aspect (Asp), hill shading (hill), TWI, SOC, 

soil-water content (water), sand, silt, clay, bioclimate-16 (bio-16), IC, and FC). 
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Distribution of the examined variables based on declining and non-

declining individual trees  

The box plots compare the values of several variables across different individual tree decline 

classes (the non-declining class is called “healthy”, the slightly declining class is called “low”, the 

moderately declining class is called ”moderate" and the severely declining class is called "severe." 
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Figure 4.10   Boxplots: comparing values of topographical variables across different individual tree decline 

classes (The settings of the calculated hill-shading (i.e., Sun’s elevation and azimuth) were taken from the 

PlanetScope images of September (hillshade 1) and February (hillshade 2) 
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Figure 4.11  Boxplots: comparing values of climatic variables across different individual tree decline 

classes (since the results of bioclimate-07 (bio-07) and -10 were very similar, we only showed the 

bioclimate-07) 
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Figure 4.12   Boxplots: comparing values of climatic variable (i.e. Bioclimate-17) and soil variables across 

different individual tree decline classes 
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Figure 4.13 Boxplots: comparing values of FC, IC, H, and DBH across different individual tree decline 

classes  

 

Statistical analysis  

GAM 

Some of the results of the best GAM models for non-significant variables are shown in Figure 4.14 

and Figure 4.15. 
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Figure 4.14 The selected non-significant variable (DBH) of the best GAM model across different 

individual tree decline categorical classes. The lower y-axis (response) values indicate a lower level 

of decline. 

 

Figure 4.15 The selected non-significant variable (slope) of the best GAM model across different 

tree group binary classes. The lower y-axis (response) values indicate a lower level of decline. 
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Detailed information on the best GAM models (the first five) with the lowest AIC is shown in 

Table 4.8 

Table 4.8  The outcomes of the five best GAM models: environmental variables as predictors using 

individual tree classes (the significant variables are bold and denoted with asterisks). 

Model 

Number 

AIC Variable Effective degrees of freedom p-value 

1 AIC: 411.7040 

 

Slope 2.080e+00 0.009* 

TWI 8.747e-05 0.8 

Bioclimate-16 1.467e+00 0.02* 

2 AIC: 411.7044 

 

Slope 2.080e+00 0.009* 

Silt 1.268e-04 0.6 

Bioclimate-16 1.467e+00 0.02 * 

3 AIC: 411.7047 

 

Slope 2.080e+00 0.009* 

SOC 1.461e-04 0.8 

Bioclimate-16 1.467e+00 0.02 

4 AIC: 411.7049 

 

Slope 2.080e+00 0.009* 

Hillshade 1.909e-04 0.8 

Bioclimate-16 1.467e+00 0.02 * 

5 AIC: 411.7054 

 

Slope 2.080e+00 0.009* 

Aspect 1.834e-04 0.4 

Bioclimate-16 1.467e+00 0.02 * 

 

Table 4.9 The outcomes of the five best GAM models: environmental variables as predictors using tree 

group classes (the significant variables are bold and denoted with asterisks). 

Model 

Number 

AIC Variable Effective degrees of freedom p-value 

1 AIC: 45.59518 

 

Slope 6.424e-01 0.1 

SOC 8.443e-01 0.04* 

Silt 6.780e-06 0.9 

2 AIC: AIC: 45.59518 

 

Slope 6.424e-01 0.1 

Aspect 9.852e-06 0.6 

SOC 8.443e-01 0.04 * 

3 AIC: AIC: 45.59519 

 

Slope 6.424e-01 0.1 

SOC 8.443e-01 0.04* 

Clay 9.341e-06 0.9 

4 AIC: 45.5952 

 

Slope 6.424e-01 0.1 

SOC 8.443e-01 0.04* 

Bioclimate-16 1.493e-05 0.6 

5 AIC: 45.59521 Slope 6.424e-01 0.1 
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 Hillshade 9.959e-06 0.4 

SOC 8.443e-01 0.04* 

GEE scripts 

 

S2 data 

https://code.earthengine.google.com/9129c63509509d1563530d32cbe5d215 

 

Bioclim data 

https://code.earthengine.google.com/993713a946f36488f05e9a1d48c8f6da 

 

TWI 

https://code.earthengine.google.com/30338b1d044e39068acf0861c9000fc4 

 

IC 

https://code.earthengine.google.com/cef723b924827d7f73cb25b92ae07186

https://code.earthengine.google.com/9129c63509509d1563530d32cbe5d215
https://code.earthengine.google.com/993713a946f36488f05e9a1d48c8f6da
https://code.earthengine.google.com/30338b1d044e39068acf0861c9000fc4
https://code.earthengine.google.com/cef723b924827d7f73cb25b92ae07186
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5.  Synthesis and outlook 

5.1.  Synthesis 

5.1.1.  Research summary 

Forest decline is a global phenomenon, also affecting trees in fragile arid and semi-arid ecosystems. 

Thus, it is essential to improve methods that enable the detection, mapping, and understanding of 

this phenomenon, especially in arid and semi-arid areas where RS faces limitations due to very 

bright soil backgrounds and cast shadow effects. This thesis established a baseline in remote 

sensing-assisted forest decline studies by 1) presenting a workflow to estimate FC employing 

purely remotely sensed data (devoid of field data) as a preliminary step to detect forest decline, 2) 

documenting the challenges of global FC products in arid and semi-arid regions, in which they 

serve as input for several environmental studies without being properly validated, 3) examining 

various time-series methods on Landsat images to identify forest decline and discussing the 

obstacles related to detecting and mapping forest decline in arid and semi-arid forests, and 4) 

conducting a driver analysis to examine the causes of forest decline in a specific area of the Zagros 

forests in order to gain greater insight into the contributing factors. As part of the driver analysis, 

the spectral values of the bare soil within both declining and non-declining tree groups were 

analyzed using S2 imagery. 

5.1.2.  Research questions  

5.1.2.1.  Is it possible to use S2 and VHR imagery to map FC for the vast semi-arid 

Zagros forests? How does the spatial grain of the S2 in the analysis affect the 

model quality? 

In the second chapter of this thesis, the capability of S2 imagery to map FC in the extensive Zagros 

region using RF regression was evaluated. The result of this chapter demonstrated the unreliability 

of global FC products in arid and semi-arid areas. For example, Hansen's global FC product showed 

an enormous underestimation of the FC of the Zagros region. This is only one example that shows 

that the accurate quantification of woody cover from satellite imagery over arid and semi-arid 

ecosystems with sparse vegetation cover (Soleimannejad et al., 2018; Yang et al., 2012) and often 

limited amounts of field reference data (Bai, 2010) remains a challenge. For instance, Fagan (2020) 

indicates that the use of the current global FC product for estimating the afforestation potential in 

arid and semi-arid areas may lead to a significant overestimation as the true FC is substantially 

underestimated. Through their study in arid areas with VHR imagery, Bastin et al. (2017) 
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demonstrated that the global tree cover products might show 40–47% lower FC than the actual 

cover of global drylands. The findings of the first study (Chapter 2) were also consistent with prior 

research (Fagan, 2020; Smith et al., 2019; Bastin et al., 2017) on underestimation of the global FC 

data (i.e., Hansen Global FC and TanDEM-X) in arid and semi-arid areas like Zagros. Before this 

background, the first study presented a workflow that combines VHR images from Google Satellite 

and Bing Map with S2 satellite data to create a reliable FC map for the vast semi-arid Zagros 

forests. This workflow is particularly valuable because it does not necessitate expensive in-situ 

data collection. It is straightforward and not time-consuming to implement and can prove beneficial 

for estimating FC in other semi-arid areas. 

Another objective of the second chapter was to examine how the spatial grain of the analysis 

affects the quality of the FC model. The S2 bands at 10 m pixel size were initially used, followed 

by model runs with downscaled S2 data with pixel sizes ranging from 20 to 120 m in spatial 

resolution. The results showed a decrease in RMSE and an increase in R2 from 10 to 60 m pixel 

sizes. This model improvement at a coarser spatial grain matches our expectations and is in line 

with the findings of previous studies that discussed that coarser resolution resulted in the highest 

model accuracy in FC mapping (e.g., Korhonen et al., 2017 in boreal forests, and Higginbottom et 

al., 2018 in semi-arid forests). The tendency of the models to perform better at coarser spatial grain 

may relate to at least two aspects: First, potential co-location errors between S2 and VHR imagery 

at the sub-pixel scale have less influence at coarser grain. Second, by increasing the spatial grain 

of the analysis, the number of extreme values in the reference data (very high and very low woody 

cover estimates) will decrease.  

According to the results of VSURF-based variable selection, the most frequently selected 

predictor variables included NDVI, bioclimate-12 (annual precipitation), and bands from the visual 

part of the spectrum. This is partially in line with findings by Higginbottom et al. (2018), who 

identified B3 as the second-best individual S2 band for monitoring canopy properties in patchy 

woody vegetation in South Africa. Heckel et al. (2020) and Waśniewski et al. (2020) reported that 

the bands within the visible spectrum significantly aid in estimating FC. The RSR index was one 

of the important predictors in all the models. This alignment with previous studies that investigated 

comparable target variables (e.g., Brown et al., 2000; Zhu et al., 2010) highlights the significance 

of the RSR index. Earlier studies proved that climatic variables are important for mapping woody 

vegetation and can improve RS models (e.g., Liu et al., 2017; Brandt et al., 2018). Based on the 

results of this study, the precipitation variables (bioclimate-12, -15, -16) appeared in almost all 

models.  

Thus, the first study holds importance in its ability to detect and map FC, a crucial aspect for 

assessing  forest ecosystem health, as described by Wang and Cochrane (2005). Additionally, this 

study highlights the existing issues with global FC products, which serve as input for multiple 

environmental studies but lack proper validation. 
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5.1.2.2.  Are established trend analysis approaches (i.e., RF, anomaly detection, and 

Sen’s slope) that have been successfully used to identify and map forest 

disturbances and decline in other ecosystems also suitable for semi-arid areas? 

The second study (Chapter 3) sought to examine whether established approaches that have been 

successfully used to detect and map forest decline in other ecosystems are also suitable for arid and 

semi-arid areas. More precisely, RF classification, anomaly detection, and Sen’s slope were 

examined for detecting and mapping forest decline in the Zagros forests. In this research, the RF 

model demonstrated superior accuracy compared to the other approaches. Interestingly, no notable 

differences in performance were observed among RF models trained with Landsat data from 

different time periods (i.e., 1986–2021, 2000–2021, and 2010–2021 years), despite the reference 

data being collected in 2021 and 2022. This observation was unexpected, as it was expected that 

utilizing more recent data would lead to better results. According to local experts and the previous 

literature (e.g., Yaghmaei et al., 2021), the widespread decline of oak in the study area only arose 

after 2010. This suggests that the subtle spectral differences that were utilized to differentiate 

between declining and non-declining areas in this study may not relate to changes in the spectral 

signal caused by the forest decline but rather to general differences in site conditions. This may be 

related to environmental factors such as varying soil conditions, topography, or their combination.  

The anomaly detection and Sen's slope approaches performed notably worse than RF in the 

study and only achieved marginally better results than a random classification. However, a direct 

comparison between RF and the other two approaches is infeasible because these analyses employ 

distinct methodologies, particularly those involving input data and validation. For model training, 

RF utilizes a supervised classification method that involves a portion of the reference data (70% of 

all reference data). However, in both the anomaly analysis and Sen's slope approach, reference data 

only serves the purpose of validation and accuracy assessment. Therefore, the better performance 

of RF is somewhat anticipated owing to the significantly higher number of predictors in comparison 

to the other two tested approaches that rely on a single VI.  

Moreover, in the third Chapter, the results showed that the type of VI matters a lot for tree 

decline analysis. In all the applied time series approaches, NDMI performed better than other VIs 

like NDVI and GNDVI, which was in line with the results of Francini and Chirici (2022). NDMI 

is a proxy of vegetation water content and was suggested by some recent studies as a wetness index 

to monitor forest decline, particularly in arid and semi-arid regions (e.g., Moreno-Fernández et al., 

2021; Marusig et al., 2020). The NDMI is calculated using both NIR and SWIR bands, both of 

which are known to be directly related to key vegetation properties and are frequently reported to 

be important predictors in studies examining vegetation dynamics using satellite data (e.g., Meyer 

et al., 2019). Further studies by Li et al. (2022), Gu et al. (2008), and Wang et al. (2007) also 

highlighted the high relevance of SWIR bands for detecting forest decline. The results of the second 

study further highlight the challenges of RS-based products in arid and semi-arid regions. Some 

forest decline processes may lead to structural changes below the tree canopy, which are 

challenging to detect from above. Furthermore, biomass losses may not always correspond 



5. Synthesis and outlook 

136 

 

accurately with changes in the canopy cover (Gao et al., 2020). In arid and semi-arid regions, these 

challenges can be exacerbated by the fact that the spectral signal relating to tree cover is heavily 

influenced by the formation of mixed pixels with bright soil backgrounds (Wang et al., 2022; Maier 

et al., 2022). The issue of bright soil backgrounds was addressed to some extent by utilizing blue 

bands along with VIs such as GLI and ARVI. Since the blue band can be informative for 

discriminating between soil and vegetation. However, it is evident that the corresponding 

correction is not flawless. Therefore, detecting forest decline in mountainous and semi-arid regions 

via medium-resolution RS poses multiple challenges, which have been spcifically addressed in 

only a limited portion of the existing literature (e.g., Wang et al., 2022; Maier et al., 2022). 

This study advances forest decline detection through RS in sparsely forested mountainous 

ecosystems. It addresses challenges and offers recommendations for overcoming them, 

emphasizing the importance of identifying decline hotspots and prioritizing conservation efforts, 

as highlighted in Moradi et al. (2021). 

5.1.2.3.  What are the main drivers of forest and tree decline in Zagros forests? Is 

there a notable or significant difference in the spectral values of bare soils 

between declining and non-declining tree groups using S2? 

The third study of this thesis (Chapter 4) focused on the analysis of a number of potential drivers 

of tree decline in part of the Zagros region. Among the examined topographical variables, a strong 

association between slope and individual tree decline classes (i.e., non-declining, slightly declining, 

moderately declining, and severely declining) was observed, with the highest tree decline occurring 

in areas with medium slope values. Additionally, slope consistently emerged as an influential factor 

in all the GAM models. Thus, a significant difference was observed in slope values between 

declining and non-declining individual trees (with a p-value of 0.009). These findings align with 

previous research (e.g., Ewane et al., 2023; Parvaneh et al., 2015; Solaymani and Jabbari, 2015) on 

various ecosystem types. In the semi-arid Wyoming Basin ecoregion, Assal et al. (2016) 

demonstrated that high elevations and northern slopes had a notable effect on tree mortality during 

droughts. In another study conducted in the Zagros area, Nourinejad and Rostami (2014) found a 

significant correlation between slope and oak decline. They pointed out that slope, in conjunction 

with aspect, plays a crucial role in controlling solar irradiation and, consequently, impacts water 

availability and tree transpiration. 

The results of Chapter 4 showed that aspect was also an influential variable among the best 

models (third best) of tree group classes (i.e., declining and non-declining). However, it was not 

statistically significant in any of the selected models. Moreover, hillshade did not exhibit a 

statistically significant association with the various levels of decline. However, it was among the 

fourth and fifth best models in the GAM models of individual tree and tree group classes of decline, 

respectively. These results partially align with the findings of Najafifar et al. (2019) in Zagros 

forests, who indicated that forest dieback was more prevalent in areas with less shading, 

underscoring the substantial influence of hillshade on the drying conditions for oak trees. TWI was 
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another topographical factor that did not emerge as a statistically significant variable. However, it 

was included as one of the selected predictors in the best GAM designed to distinguish between 

individual tree decline classes. Interestingly, the frequencies of tree decline classes were higher in 

areas where the TWI was lower. This observation indicates a higher likelihood of tree decline in 

the drier regions of the Zagros area, although further investigation is necessary in the future. 

Concerning the climatic variables, Shiravand and Hosseini (2020) found temperature and 

precipitation to be the primary variables with a substantial impact on tree dieback. This is also in 

line with the results of Chapter 4, where the precipitation (of the wettest quarter) was selected in a 

number of the best GAM models as an influential variable among classes of individual trees (p-

value = 0.02) and tree group decline. According to the GAM results, the relationship between 

decline levels and precipitation (bioclimate-16) initially shows a slight negative correlation. 

However, this correlation becomes positive as precipitation levels increase. While this may initially 

appear counter-intuitive, it could be attributed to higher human settlement and activity in areas with 

greater precipitation, as people may naturally prefer regions with more water availability. 

Alternatively, higher elevations (that are also characterized by higher precipitation) may be 

strongly affected by climate change and therefore show a stronger occurrence of decline. 

Moreover, soil variables, particularly SOC, emerged as the primary influential factors in forest 

decline. This finding suggests that the primary factor contributing to tree decline is the availability 

of water after the vegetation season. Moreover, tree decline appears to be mitigated when soil 

conditions enhance their capacity to retain water, thus highlighting the critical role of soil properties 

in this context. In tree groups, SOC was statistically significant, with a p-value of 0.04. Notably, 

higher SOC values were observed in the non-declining class in comparison to the declining classes. 

This could be because the presence of SOC contributes to enhancing soil structure, which, in turn, 

increases the soil's water-holding capacity (Zhao et al., 2022b). In a study in the arid and semi-arid 

forests of China, Zhang et al. (2023) pinpointed climate and soil factors as the dominant and 

constraining factors influencing how vegetation responds to drought. The results of the third study 

of this thesis show that silt was among the selected variables of the best GAM models, both at 

individual tree and tree group classes of decline. However, it did not attain a significant result. 

Also, clay was among the influencing factors of the best GAM model for different tree groups of 

decline (as one selected predictor of the third-best model). 

Additionally, the declining tree groups were primarily located in areas with higher sand content 

based on soil texture analysis (i.e., clay, silt, and sand). This may be due to sandy soils' inadequate 

water retention capabilities, resulting in increased susceptibility to soil drought in the Zagros 

region. Conversely, soils with a higher proportion of silt and clay have a greater capacity to retain 

water, as indicated by previous research (e.g., Giap et al., 2021). The study found that non-declining 

trees were located in areas with higher levels of silt, supporting the hypothesis that trees in the 

Zagros region thrive on soils with good water retention (Žížala et al., 2019). 

Moreover, FC was examined in this study, where the analysis did not reveal any statistically 

significant results. However, when visually interpreting the density plots for FC in the study area, 
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clear differences were noticed compared to previous research conducted in the Zagros region. In a 

study by Hosseini et al. (2017), higher FC was associated with increased tree mortality, even though 

the trees in those areas had ample access to light. The examination of the results from Chapter 4 

showed that more declining trees were found in areas with lower forest densities, covering 12–17% 

of the area. This suggests that competition might not be a significant factor in the study area, in 

contrast to findings in previous studies on tree competition (e.g. Ozendaal et al., 2020; Dohn et al., 

2017; Hosseini et al., 2017). 

The IC, as another examined factor, was not statistically significant among different decline 

classes. However, it was selected as an important predictor in some of the best GAM models, where 

a higher prevalence of the declining tree group classes in well-illuminated areas was observed. This 

could be potentially due to higher drought and water scarcity resulting from increased illumination 

and decreased shading in these areas. Given that illumination is an integrated variable that 

combines slope, aspect, and sun position, it may further increase its significance if other 

topographical variables are not integrated into the model. 

When looking at tree characteristics, we did not find any significant differences in tree height 

or DBH (which indicates a tree's age) between declining and non-declining individual trees or tree 

groups. However, it is worth noting that, before correcting for spatial autocorrelation, the DBH 

showed significance in GAM fitted for tree group decline classes (p-value = 0.0008), which 

suggests that more research is needed to confirm these observations. 

Taking into account the results of Chapter 4 in this thesis and these observations, it becomes 

clear that tree characteristics, especially tree height, lack consistent reliability as indicators across 

various sites and ecosystems due to the considerable variability found in the literature (Sherwood 

et al., 2021). 

In addition to the decline driver analysis, Chapter 4 included a spectral analysis which was 

performed on bare soil in areas where forest decline was observed and compared to areas without 

signs of decline. Consistently, decreased spectral values were demonstrated in ten S2 bands utilized 

in bare soils within areas experiencing decline compared to non-declining areas. The VNIR-3, 

SWIR-2, red, green, and blue bands of S2 showed significant differences (as confirmed by the 

Wilcoxon test) between the two groups of bare soil across all seasons. It is hypothesized that these 

differences in reflectance values are mostly linked to variations in the dominant grain sizes in the 

soils, which also affect soil water-holding capacity. This observation poses a challenge in the 

interpretation given the simultaneously expected correlation between higher soil moisture and 

reduced reflectance across all wavelengths (Loshelder and Coffman, 2023; Tian and Philpot, 2015). 

However, it is important to acknowledge that soil reflectance is influenced not solely by soil 

moisture, but also by variables such as texture, surface roughness, and SOC, among others. These 

factors are complex, diverse, and interconnected (Žížala et al., 2019). 

Chapter 4´s findings show that improved soil water retention helps alleviate tree decline. 

Despite some remaining gaps, this research aligns with expectations and previous studies, 

enhancing our understanding of the complex link between environmental factors and tree decline. 
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This study may contribute to effective mitigation strategies, forest sustainability, and policymaking 

(Anderegg et al., 2012). 

5.2.  Outlook 

This thesis delves into RS applications in semi-arid regions to study forest decline. Yet there is still 

a broad spectrum of factors potentially affecting decline that still remains unexplored. This 

underscores the need for additional research. In this concluding section, we identify avenues to 

enhance our understanding of the challenges facing Zagros forests. 

When studying arid and semi-arid areas and their forest decline through RS, future research 

should explore technical improvements to overcome potential challenges that might affect study 

results. An often-overlooked factor is the impact of tree shadows on spectral signals, which can 

negatively affect data quality and influence vegetation monitoring. In low-density forests, this issue 

can introduce signal biases and affect interpretation. To address this, researchers have proposed 

shadow removal algorithms, such as those by Larsen and Salberg (2010). Therefore, introducing 

algorithms to measure and correct cast shadow effects could enhance the accuracy of mapping and 

characterizing sparse arid and semi-arid forests using RS, as highlighted by Ghasemi et al. (2023). 

Another technical issue is that Landsat archives exhibit spectral band offsets between Landsat 4-7 

and 8, causing minor spectral discrepancies unrelated to actual forest changes. Landsat 8's red, 

NIR, and SWIR bands are narrower than their 4–7 counterparts (Maier et al., 2022). Ideally, all 

satellite images should use consistent technology and acquisition conditions, including uniform 

solar positioning. Since retroactive standardization is impractical, one solution to mitigate these 

variations in the time series analysis is applying correction factors through radiometric calibration, 

geometric correction, atmospheric correction, and data fusion. 

Monitoring forest decline in arid and semi-arid ecosystems through multispectral VIs is 

currently limited (David et al., 2022). Some studies have reported weak connections between NDVI 

and the canopy in arid and semi-arid forests (David et al., 2022). Also, VIs like the NDMI and the 

GLI are more proficient in detecting subtle shifts in spectral patterns within arid and semi-arid 

forests than other indices. Studies indicate that NDMI has proven effective in forest decline 

detection in arid and semi-arid regions, as notified by Francini and Chirici (2022) as well as in the 

third chapter of this thesis. Therefore, there is a need for refining specific vegetation indices tailored 

for the Zagros region. This issue received only limited attention in previous literature (e.g., Fakhri 

et al., 2022). 

Based on the results of the third study, slope, precipitation, and SOC were among the most 

important variables in individual tree and forest decline occurrences. However, there are still 

opportunities for improving related driver analyses. For future studies, one option worth 

considering is the adoption of higher-resolution DEMs, such as those derived from TanDEM-X 

data. These approaches can significantly enhance the quality of topographical variables. 

Furthermore, forthcoming research endeavors could extend their field sampling efforts to 
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encompass additional sub-regions within the Zagros, thereby cultivating a more comprehensive 

comprehension of forest decline across the entire Zagros region. 

Additionally, when dealing with a relatively small study area (i.e., 165 km2), it would be 

worthwhile to consider obtaining more refined soil and climate data. Access to in-situ soil and 

climate data can enhance the accuracy of assessing tree decline. This significance becomes evident 

in cases like the third study, where the data used had a limited spatial resolution. 

As a final remark, our field campaigns have underscored the critical necessity of addressing the 

management-related challenges facing the Zagros region. Issues such as illegal logging, 

unsustainable forest-based agriculture, and overgrazing are likely to be among the primary 

contributors to forest decline in this region but could not adequately be accounted for in this thesis. 

To combat these threats effectively, it is imperative to reduce the local people´s reliance on forests. 

This goal can be accomplished through an approach that prioritizes social and economic 

development. This multifaceted strategy encompasses the establishment of alternative income 

sources, enhancing educational opportunities, and launching campaigns or joint projects to increase 

international awareness. 
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Abbreviations and acronyms 

 

Additional abbreviations of the used VIs are provided in Table 3.1. 

AIC                     Akaike information criterion 

BFAST               The Breaks for Additive Seasonal and Trend  

BIO1                   Annual Mean Temperature 

BIO4                   Temperature Seasonality  

BIO7                   Temperature Annual Range  

BIO10                 Mean Temperature of Warmest Quarter 

BIO12                 Annual Precipitation 

BIO15                 Precipitation Seasonality  

BIO16                 Precipitation of Wettest Quarter 

BIO17                 Precipitation of Driest Quarter 

CCDC                The Continuous Change Detection and Classification 

cm                       Centimeter 

DBH                   Diameter at breast height 

DEM                   Digital Elevation Model 

ES                       Ecosystem Services 

FC                       Forest Cover 

GAM                  Generalized Additive Model 

GEE                    Google Earth Engine 

GLCM                Gray-level co-occurrence texture metrics  

KDE                    Kernel Density Estimation 

      km2                               Square Kilometer 

IC                        Illumination Condition 

LandTrendr       Landsat-based detection of Trends in Disturbance and Recovery 

LC                       Land Cover 

m                         Meter 

nm                      Nanometer 

NIR                     Near infrared 

R2                        Coefficient of determination 

RF                       Random Forest 

RMSE                 Root Mean Square Error 

RS                       Remote Sensing 

SOC                    Soil Organic Carbon 

S2                        Sentinel-2 

SWIR                 Short-wave infrared 

TWI                  Topographic Wetness Index 

VHR                 Very High Resolution 

VI                      Vegetation Index 

VIs                    Vegetation Indices 

VNIR                Visible Near infrared 

VSURF             Variable Selection Using Random Forests 

https://en.wikipedia.org/wiki/Diameter_at_breast_height

