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Abstract

The Persistent Scatterer Interferometry (PSI) is a powerful technique to monitor
displacements of the Earth’s surface from space. It is based on identifying and
analyzing Persistent Scatterers (PSs) by applying time series analysis approaches to
stacks of Synthetic Aperture Radar (SAR) acquisitions. PSs dominate the backscatter
of the resolution cells they are located in and are affected by marginal decorrelation
over time. Displacements of such PSs can be monitored with potential sub-millimeter
accuracy if noise sources are properly minimized.

PSI has developed into an operational technology over time in certain applications.
However, challenging applications of the technique still exist. Physical land surface
changes and changes in the acquisition geometry can cause PSs to appear or fade
over time. The number of continuously coherent PSs decreases with increasing time
series length, while the number of Temporary Persistent Scatterers (TPSs) increases
which are only coherent during one or several separated segments of the analyzed
time series. This is why it is desirable to include the analysis of such TPSs into PSI
in order to develop a flexible PSI system which is able to handle dynamic land surface
changes, thus enabling continuous displacement monitoring. Another main challenge
is large-scale monitoring in regions with complex atmospheric conditions, leading
to high uncertainty in the displacement time series at large distances to the spatial
reference.

This thesis deals with modifications and extensions which were realized on the basis
of an existing PSI algorithm with the purpose to develop a robust and flexible PSI
approach that handles the above-mentioned challenges. The first main contribution
is the proposal of a method to fully integrate TPSs into PSI. It is demonstrated in
evaluation studies with real SAR data that the TPS integration indeed enables the
handling of dynamic land surface changes and has increasing relevance for PSI-based
observation networks with increasing time series length. The second main contribution
is the presentation of a covariance-based reference integration into large-scale PSI for
the estimation of spatially correlated noise in interferograms. The method is based
on sampling the noise at reference pixels with known displacement time series and
interpolating it at other PS locations, taking the spatial statistics of the noise into
account. It is shown in a simulation and a real data study that the proposed method
exhibits superior performance compared to alternative methods to remove spatially
correlated noise in interferograms by integrating reference pixels.

The developed PSI approach is finally applied to subsidence monitoring in the Viet-
namese Mekong Delta, which has recently been affected by subsidence and various
other environmental challenges. The estimated subsidence rates feature high variabil-
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Abstract

ity on short as well large spatial scales. Highest subsidence rates of up to 6 cm/yr
are mainly found in urban cities. Furthermore, it can be shown that the largest part
of the subsidence originates from shallow subsurface depths. The proposed method
to reduce spatially correlated noise significantly improves the results in case that
a proper spatial distribution of reference areas is available. In that case, noise is
effectively reduced and independent results from two interferogram stacks agree, which
were acquired from different orbits. The TPS integration leads to considerably larger
number in identified TPSs than PSs across the study area for the analyzed time series
of six years, thus enhances the observation network significantly. A special use case
of the TPS integration is presented which bases on clustering appearing TPSs to
systematically identify new constructions and analyze their initial subsidence time
series.
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Zusammenfassung

Die Persistent Scatterer Interferometrie (PSI) ist eine Methode zur Überwachung von
Verschiebungen der Erdoberfläche aus dem Weltraum. Sie basiert auf der Identifizierung
und Analyse von stabilen Punktstreuern (sog. Persistent Scatterer, PS) durch die
Anwendung von Ansätzen der Zeitreihenanalyse auf Stapel von SAR-Interferogrammen.
PS Punkte dominieren die Rückstreuung der Auflösungszellen, in denen sie sich
befinden, und werden durch geringfügige Dekorrelation charakterisiert. Verschiebungen
solcher PS Punkte können mit einer potenziellen Submillimetergenauigkeit überwacht
werden, wenn Störquellen effektiv minimiert werden.

Im Laufe der Zeit hat sich die PSI in bestimmten Anwendungen zu einer operationellen
Technologie entwickelt. Es gibt jedoch immer noch herausfordernde Anwendungen
für die Methode. Physische Veränderungen der Landoberfläche und Änderungen in
der Aufnahmegeometrie können dazu führen, dass PS Punkte im Laufe der Zeit
erscheinen oder verschwinden. Die Anzahl der kontinuierlich kohärenten PS Punkte
nimmt mit zunehmender Länge der Zeitreihen ab, während die Anzahl der TPS
Punkte zunimmt, die nur während eines oder mehrerer getrennter Segmente der
analysierten Zeitreihe kohärent sind. Daher ist es wünschenswert, die Analyse solcher
TPS Punkte in die PSI zu integrieren, um ein flexibles PSI-System zu entwickeln,
das in der Lage ist mit dynamischen Veränderungen der Landoberfläche umzugehen
und somit ein kontinuierliches Verschiebungsmonitoring ermöglicht. Eine weitere
Herausforderung der PSI besteht darin, großflächiges Monitoring in Regionen mit
komplexen atmosphärischen Bedingungen durchzuführen. Letztere führen zu hoher
Unsicherheit in den Verschiebungszeitreihen bei großen Abständen zur räumlichen
Referenz.

Diese Arbeit befasst sich mit Modifikationen und Erweiterungen, die auf der Grund-
lage eines bestehenden PSI-Algorithmus realisiert wurden, um einen robusten und
flexiblen PSI-Ansatz zu entwickeln, der mit den oben genannten Herausforderungen
umgehen kann. Als erster Hauptbeitrag wird eine Methode präsentiert, die TPS
Punkte vollständig in die PSI integriert. In Evaluierungsstudien mit echten SAR
Daten wird gezeigt, dass die Integration von TPS Punkten tatsächlich die Bewältigung
dynamischer Veränderungen der Landoberfläche ermöglicht und mit zunehmender
Zeitreihenlänge zunehmende Relevanz für PSI-basierte Beobachtungsnetzwerke hat.
Der zweite Hauptbeitrag ist die Vorstellung einer Methode zur kovarianzbasierten
Referenzintegration in großflächige PSI-Anwendungen zur Schätzung von räumlich
korreliertem Rauschen. Die Methode basiert auf der Abtastung des Rauschens an
Referenzpixeln mit bekannten Verschiebungszeitreihen und anschließender Interpo-
lation auf die restlichen PS Pixel unter Berücksichtigung der räumlichen Statistik
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Zusammenfassung

des Rauschens. Es wird in einer Simulationsstudie sowie einer Studie mit realen
Daten gezeigt, dass die Methode überlegene Leistung im Vergleich zu alternativen
Methoden zur Reduktion von räumlich korreliertem Rauschen in Interferogrammen
mittels Referenzintegration zeigt.

Die entwickelte PSI-Methode wird schließlich zur Untersuchung von Landsenkung
im Vietnamesischen Teil des Mekong Deltas eingesetzt, das seit einigen Jahrzehnten
von Landsenkung und verschiedenen anderen Umweltproblemen betroffen ist. Die
geschätzten Landsenkungsraten zeigen eine hohe Variabilität auf kurzen sowie großen
räumlichen Skalen. Die höchsten Senkungsraten von bis zu 6 cm pro Jahr treten haupt-
sächlich in städtischen Gebieten auf. Es kann gezeigt werden, dass der größte Teil der
Landsenkung ihren Ursprung im oberflächennahen Untergrund hat. Die präsentierte
Methode zur Reduzierung von räumlich korreliertem Rauschen verbessert die Ergeb-
nisse signifikant, wenn eine angemessene räumliche Verteilung von Referenzgebieten
verfügbar ist. In diesem Fall wird das Rauschen effektiv reduziert und unabhängige
Ergebnisse von zwei Interferogrammstapeln, die aus unterschiedlichen Orbits aufge-
nommen wurden, zeigen große Übereinstimmung. Die Integration von TPS Punkten
führt für die analysierte Zeitreihe von sechs Jahren zu einer deutlich größeren Anzahl
an identifizierten TPS als PS Punkten im gesamten Untersuchungsgebiet und verbes-
sert damit das Beobachtungsnetzwerk erheblich. Ein spezieller Anwendungsfall der
TPS Integration wird vorgestellt, der auf der Clusterung von TPS Punkten basiert, die
innerhalb der analysierten Zeitreihe erschienen, um neue Konstruktionen systematisch
zu identifizieren und ihre anfängliche Bewegungszeitreihen zu analysieren.
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1. Introduction

1.1. Motivation
Measuring displacements of the Earth’s surface with high accuracy is a fundamental
task in geodesy. The observations are essential input for the study of the underlying
dynamic processes and assessments of related hazards, which in turn can be substantial
for the formulation of countermeasures. Displacements of the Earth’s surface are of
natural and human origin, such as subsidence due to groundwater or gas exploitation,
tectonic movements and earthquakes, landslides, ice flow as well as settlement and
thermal expansion of infrastructure. A prominent example is subsidence in deltas
worldwide, which are inhabited by about 340 Million people (Edmonds et al., 2020).
Syvitski et al. (2009) showed that many deltas are sinking at much higher rates than
the additional and increasing sea level rise, leading to a growing risk of severe flooding.

Geodesy provides different tools to measure surface displacements which are charac-
terized by different accuracy and different temporal and spatial sampling. Besides
the repeated surveying of geodetic networks using pointwise levelling or Global Navi-
gation Satellite System (GNSS) measurements, Interferometric Synthetic Aperture
Radar (InSAR) is an appropriate method to monitor displacements from space with
potential sub-millimeter accuracy (Ferretti et al., 2007). The technique is based
on evaluating phase differences between coherent Synthetic Aperture Radar (SAR)
acquisitions (Massonnet and Feigl, 1998), which correspond to changes in the range
from the sensor to the surface. These range changes are used to derive the surface
topography and displacements over time. Main advantages of the method are the high
spatial sampling which usually is in the order of meters as well as the large swath
width of the acquisitions. The latter is 250 km in case of the Interferometric Wide
Swath acquisition mode of the Sentinel-1 SAR sensor. The revisit time of most SAR
satellites used in science is in the order of several days, which is sufficient for many
applications. Main limitations of the technique are signal decorrelation (Zebker and
Villasenor, 1992) and atmospheric disturbances (Zebker et al., 1997; Hanssen, 2001).

Various Multi-Temporal InSAR (MT-InSAR) techniques have been developed to tackle
the limitations of InSAR. The Persistent Scatterer Interferometry (PSI) (Ferretti
et al., 2001; Kampes and Hanssen, 2004; Hooper et al., 2007) was developed to identify
and analyze point scatterers which dominate the backscatter cell they are located in
and are affected by marginal decorrelation over time. They are usually referred to as
Persistent Scatterers (PSs). The main drawback of the method is that PSs mainly
form on man-made structures. In order to extend the method to natural terrain with
moderate coherence, methods to analyze Distributed Scatterers (DSs) were developed.

1



1. Introduction

DSs are pixels whose signal is formed by many small, random scatterers. DS analysis
techniques can be subdivided into two main approaches. In the first one, the analysis
is restricted to interferogram subsets with small geometrical and/or temporal baselines,
referred to as small baseline subsets (SBASs), in order to minimize the impact of
decorrelation (Berardino et al., 2002; Lanari et al., 2004; Hooper, 2008). The second
one aims at reducing the stochastic noise in DS phase time series by exploiting all
possible interferogram combinations (Guarnieri and Tebaldini, 2008; Ferretti et al.,
2011; Samiei-Esfahany et al., 2016; Ansari et al., 2018). In this case, DSs can be
treated like and jointly be processed like PSs after the noise reduction. DS analyses
are characterized by higher computational cost and more complex parameter handling
compared to PS approaches. Furthermore, they reflect averaged displacements of
among adjacent pixels sharing similar reflectivity as result from multi-looking during
the processing, as opposed to PSI reflecting the displacement of single scatterers. In
summary, both PS and DS approaches are characterized by different advantages and
disadvantages and are utilized depending on the study area and application.

MT-InSAR has developed into an operational technology in certain applications over
the last 20 years. A significant example for continuous, operational displacement
monitoring is the European Ground Motion Service (EGMS) which is funded by
the European Commission and part of the Copernicus Land Monitoring Service
(Crosetto et al., 2020; Costantini et al., 2021; Costantini et al., 2022). It applies
a combination of PS and DS techniques to full-resolution Sentinel-1 acquisitions to
monitor ground deformations over all Copernicus participating countries. The results
are transformed into an absolute geodetic reference frame by integrating them with
GNSS measurements. They are available to the public and will be annually updated.

Despite the progressive example of operational MT-InSAR monitoring by the EGMS,
challenging applications for MT-InSAR still exist. A main challenge in PSI is long-term
monitoring, as physical land surface changes or changes in the acquisition geometry
can cause PSs to fade or appear within the available time series. The number of
continuously coherent PSs decreases with increasing time series, while the number
of such Temporary Persistent Scatterers (TPSs) increases. It is desirable to include
the analysis of TPSs into PSI in order to develop a flexible PSI system which handles
dynamic land surface changes during the time series, thus provides the best possible
PSI-based geodetic measurement network for long-term displacement monitoring.
Standard PSI approaches are not capable of identifying and analyzing TPSs. As a
result, the number of identifiable measurement points decreases with increasing time
series length. Various approaches have been proposed to identify and partially analyze
TPSs (Ferretti et al., 2004; Ansari et al., 2014; Dogan and Perissin, 2014; Hu et al.,
2019), but none of these fully integrated TPSs into PSI including phase unwrapping.
Another main challenge in MT-InSAR in general is large scale monitoring in regions
with complex atmospheric conditions, leading to high uncertainty in the displacement
time series at large distances to the spatial reference. Complex atmospheric conditions
for InSAR are mainly characterized by a high spatial variability of water vapor in the
troposphere. This can be difficult to capture in numerical weather models, which are
mainly used for tropospheric delay modelling. It was shown that the performance of

2



1.2. Scientific Objectives

numerical weather models for tropospheric delay modelling increases with increasing
latitude (Cong et al., 2018) and increasing topography of the study area (Liu et al.,
2009). Several approaches have been developed to correct residual spatially correlated
noise in SAR interferograms by integrating measurements from GNSS networks (Argus
et al., 2005; Neely et al., 2020; Xu et al., 2021; Liu et al., 2022). These methods offer
potential for improvement by taking the spatial statistics of the noise into account.

1.2. Scientific Objectives
This thesis aims at enhancing PSI to a robust and flexible technique for long-term
and large-scale displacement monitoring in challenging areas. The basis for further
developments is the PSI algorithm Multi Small Baseline Subset (M-SBAS), described
in Schenk (2015), which was originally designed to robustly and efficiently monitor
heterogeneous displacements in small-scale urban study areas. The main objectives of
the thesis are summarized in the following:

• Integration of M-SBAS into large-scale PSI and design of a robust method to
estimate residual spatially correlated noise to enable large-scale monitoring with
minimal uncertainty.

• Full integration of TPSs into the PSI algorithm in order to achieve the best
possible PS-based geodetic network for long-term monitoring.

• Test of the proposed algorithm in a suitable study area.

The proposed algorithm is tested by means of land subsidence monitoring in the
Vietnamese Mekong Delta (VMD) using Sentinel-1 data acquired between 2016 and
2022. Subsidence rates of several centimeters per year have been reported recently
for the area, which have been mainly attributed to groundwater over-exploitation
and natural compaction of young Holocene deposits (Erban et al., 2014; Minderhoud
et al., 2017; Zoccarato et al., 2018; Minderhoud et al., 2020). The VMD is suitable for
testing the proposed algorithm for various reasons. The covered area of approximately
250 km× 230 km can be considered large-scale. Furthermore, difficult atmospheric
conditions for InSAR are expected in the VMD due to its low latitude, direct connection
to the sea and flat topography. The time series length of six years is not exceptional
long for InSAR but sufficient to test the relevance of the TPS integration into PSI,
especially due to the recent high construction and land use change activity in the study
area (Minderhoud et al., 2018). Beyond the main objectives of this thesis, subsidence
monitoring in the VMD is essential input for the study of causes of land subsidence,
related hazards and risks as well as for the formulation of countermeasures.

1.3. Thesis Outline
This thesis is organized into seven chapters. Relevant fundamentals of InSAR are
described in Chapter 2. Special attention is paid to SAR and InSAR statistics, which

3



1. Introduction

constitute the foundations of PS and TPS identification, as well as to the composition
of the interferometric phase. The latter has to be adjusted for various contributions
in order that the displacement phase can be extracted.

The fundamentals of PSI are introduced in Chapter 3. The main steps of the PSI
processing are described and special features of the M-SBAS approach are charac-
terized, which is the basis of extensions in this thesis. At the end of the chapter,
further developments and potential improvements of PSI in general and M-SBAS are
presented.

The integration of M-SBAS into robust large-scale PSI is the subject of Chapter 4.
Special focus is put on the reduction of phase noise contributions which are especially
relevant for large-scale displacement monitoring. This includes the presentation of
a covariance-based integration method of reference pixels with known displacement
time series to correct interferograms for residual spatially correlated noise. Reference
pixels could be pixels which GNSS stations are located on or pixels which are located
in stable areas. The method is validated with simulated and real data.

The integration of TPSs into the PSI approach is described in Chapter 5. Innovative
extensions of existing TPS analysis approaches are the refinement of the change dates
of TPSs, which define the onset and ending of their coherent segments, based on
their interferometric phases as well as the joint phase unwrapping of PSs and TPSs.
The temporal datum of those TPSs has to be re-defined whose lifetime does not
include the selected master acquisition. Experimental results based on Sentinel-1 data
acquired over the Vietnamese city of Ca Mau are presented. The relevance of the
TPS integration for PSI-based observation networks as a function of the considered
SAR time series length is analyzed at the end of the chapter.

Chapter 6 presents the application of the proposed approach to subsidence monitoring
in the VMD. Sentinel-1 data acquired in descending and ascending orbits between
April 2016 and April 2022 are analyzed. The results are examined with regard
to the evaluation of the proposed method. This also includes comparisons of the
results with alternative measurements. A special use case of the TPS integration
is presented, which identifies new constructions by clustering appearing TPSs. The
initial subsidence time series of such constructions can be systematically analyzed.

The essential aspects of the thesis are summarized in Chapter 7. The conclusion is
followed by an outlook for further developments.

Parts of the thesis have been submitted or published in various publications. In
the following, paragraphs marked by vertical lines along the text margins originate
from such a publication. Paragraphs from Dörr et al. (2021) are marked in orange,
from Dörr et al. (2022a) in blue, from Dörr et al. (2022b) in green and from Dörr
et al. (2023) in purple. They are printed in the same form as originally submitted or
published, with the exceptional of occasional small editorial changes.
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2. Fundamentals of InSAR

This chapter introduces fundamentals of SAR and InSAR which are relevant in the
context of this thesis. The principles of SAR imaging and statistics are introduced
first, followed by an overview of InSAR and InSAR statistics. Finally, different InSAR
approaches and applications are introduced. Comprehensive literature on SAR is found
in Curlander and McDonough (1992) and Cumming and Wong (2005). Comprehensive
literature on InSAR can be found in Bamler and Hartl (1998), Rosen et al. (2000),
Hanssen (2001), Pepe and Calò (2017), and Minh et al. (2020).

2.1. SAR Imaging
Imaging Radio Detection and Ranging (Radar) systems are active remote sensing
systems which produce two-dimensional radar backscatter maps of an object’s surface,
commonly the Earth’s surface. They emit microwave pulses with a given pulse
repetition frequency (PRF) towards the object while moving and recording the
backscatter. They are employed in a side-looking acquisition geometry to prevent
signal diffraction and backscatter ambiguities in the wave propagation direction, which
is referred to as range direction. The range resolution depends on the wavelength of
the emitted microwaves and is greatly increased by emitting frequency-modulated
chirps and applying pulse compression techniques. The resolution in the moving
direction of the sensor, which is called azimuth, is proportional to the angular beam
width of the antenna, which increases with decreasing antenna size. This is a practical
restriction of Real Aperture Radar (RAR), in addition to the fact that the resolution
is also proportional to the range of the sensor to the illuminated object.

SAR bypasses the limitations of the azimuth resolution of RAR by mimicking a large
antenna along the azimuth direction while actually using a short physical antenna.
SAR systems emit coherent microwave pulses with a high PRF so that scatterers
are illuminated many times during data acquisition. The varying range between the
sensor and a scatterer during transmission of the various pulses leads to a radial
velocity between both, thus to a doppler shift in the recorded data. This allows to
apply compression techniques to focus the data in azimuth direction, with a-posteriori
resolutions in the range of meters. The larger the range between the sensor and a
scatterer, the more often it is illuminated and the longer its specific synthetic aperture.
As a result, the azimuth resolution of SAR systems is, in theory, independent of the
flight altitude of the sensor. The SAR imaging geometry is illustrated in Figure 2.1.

5



2. Fundamentals of InSAR

az
im

uth

ground range

slan
t ran

g
e

hsat
imaged swath

ulse footprint

v sat

Figure 2.1.: SAR imaging geometry. The spacecraft is moving with the velocity 𝑣sat
in azimuth direction at a height ℎsat above the Earth’s surface. An imaged swath is
formed by a number of consecutive pulses. Slant range is the direction of radar signal
propagation, while the direction perpendicular to azimuth on the surface is referred
to as ground range.

The SAR image formation consists of range and azimuth compression, usually carried
out in the frequency domain, with weighting functions applied in order to suppress side
lobes. The parameters of the applied weighting functions affect the final geometrical
resolution of the SAR image. The signal is formed by the 2D convolution of the
reflectivity function over the object with a range dependent phase term and the point
spread function. Assuming ideal focusing conditions and discrete scatterers within
the pixel, the measured signal is the complex sum of all wavelets scattered back by
discrete scatterers in 𝑝 (Bamler and Hartl, 1998; Hanssen, 2001). In this case, the
measured signal of a pixel 𝑝 can be expressed by the complex phasor

𝑧 = 𝐴 exp (𝑖𝜓) =
𝐾∑︁
𝑘=1

𝑥𝑘 + 𝑖𝑦𝑘 , (2.1)

where 𝐴 and 𝜓 are the amplitude and the phase, respectively, 𝐾 the number of
scatterers in the pixel and 𝑥𝑘 and 𝑦𝑘 real and imaginary parts of their backscatter.
The amplitude is defined as 𝐴 =

√
𝐼 with the pixel intensity 𝐼. The amplitudes of the

different wavelets depend on the scatterers’ reflectivity, while their phase depends on
their range and location within the pixel. As a result, the phase 𝜓 of a pixel can be
described as the sum of different contributions:

𝜓 = −2𝜋𝑎 + 𝜓range + 𝜓scatt + 𝜓atmo + 𝜓noise, 𝑎 ∈ N (2.2)
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2.2. SAR Statistics

with 𝑎 denoting the phase ambiguity, 𝜓range the range dependent phase, 𝜓scatt the
phase caused by the unknown pixel-specific scattering, 𝜓atmo the phase due to the
propagation delay induced in the atmosphere and 𝜓noise the phase noise.

2.2. SAR Statistics
SAR scattering is usually distinguished into two extreme cases which are distributed
scattering and point scattering. Distributed scattering describes the case of many
small, random scatterers forming the signal of a resolution cell together (Figure 2.2
(a)). It is assumed that the central limit theorem applies in that case so that the
signal of such a resolution cell is described as a complex circular Gaussian variable,
with real and imaginary parts of the signal being independent Gaussian variables with
the same variance 𝜎2 (Bamler and Hartl, 1998):

𝑧 = 𝐴 exp(𝑖𝜓) = 𝑥 + 𝑖𝑦 =
𝐾∑︁
𝑘=1

𝑥𝑘 + 𝑖𝑦𝑘 , with 𝑥, 𝑦 ∼ N
(
0, 𝜎2

)
𝑧 ∼ CN

(
0, 2𝜎2

)
,

(2.3)

where N and CN denote the univariate Gaussian and complex circular Gaussian
distributions. Under the assumptions made, the joint probability density function
(PDF) of amplitude and phase is derived by applying a transformation to polar
coordinates (Papoulis and Pillai, 2002) in the complex circular Gaussian distribution
(Goodman, 1963):

𝑝(𝐴, 𝜓) = 𝐴

2𝜋𝜎2
exp

(
− 𝐴2

2𝜎2

)
. (2.4)

The marginal PDF of the signal amplitude is the Rayleigh distribution

𝑝(𝐴) =
(
𝐴

𝜎2

)
exp

(
− 𝐴2

2𝜎2

)
, (2.5)

and the marginal PDF of the phase is

𝑝(𝜓) = 1

2𝜋
, (2.6)

i.e. uniform. As a result, the phase of a distributed scatterer is without information
in a single SAR acquisition.

Point scattering occurs when a strong scatterer dominates the backscatter of a
resolution cell, while all other small, random scatterers form the clutter (Figure 2.2
(b)). The signal of such a resolution cell can be considered as a complex deterministic
signal 𝑧𝑝 = 𝜈 exp(𝑖𝜓0) perturbed by clutter which follows the complex circular Gaussian
statistics described before for distributed scatterers. The joint PDF of amplitude and
phase is in this case (Blachman, 1953)

𝑝(𝐴, 𝜓) = 𝐴

2𝜋𝜎2
exp

(
−𝐴

2 + 𝜈2 − 2𝐴𝜈 cos(𝜓 − 𝜓0)
2𝜎2

)
. (2.7)
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Figure 2.2.: (a) Complex phasor of a distributed scatterer. The signal is formed
by many random scatterers visualized by arrows. It follows a complex circular
Gaussian distribution with real and imaginary parts being independent variables
sharing the same variance 𝜎2, which is illustrated by the circle with radius equaling
the standard deviation 𝜎. (b) Complex phasor of a point scatterer. The point scatterer
is characterized by the deterministic signal 𝑧𝑝 = 𝜈 exp(𝑖𝜓0) which is perturbed by
clutter. The clutter is characterized by the same statistics of a distributed scatterer.

The marginal PDF of the amplitude is the Rice distribution (Rice, 1948)

𝑝(𝐴) = 𝐴

𝜎2
exp

(
−𝐴

2 + 𝜈2
2𝜎2

)
𝐼0

(
𝐴𝜈

𝜎2

)
, (2.8)

where 𝐼0 denotes the modified Bessel function of first kind. The signal-to-clutter
ratio (SCR) of a point scatterer is defined as

SCR =
𝜈2

2𝜎2
. (2.9)

The Rice distribution approaches the Gaussian distribution for large SCR values and
the Rayleigh distribution (Equation 2.5) for low SCR values (Goodman, 2015).

The marginal PDF of the phase of a point scatterer is given by (Blachman, 1953)

𝑝(𝜓) = 1

2𝜋
exp

(
− 𝜈2

2𝜎2

)
+ 𝜈
√
2𝜋𝜎

cos(𝜓 − 𝜓0) exp
(
− 𝜈2

2𝜎2
sin2(𝜓 − 𝜓0)

)
ERF

( 𝜈
𝜎
cos(𝜓 − 𝜓0)

)
,

(2.10)

with the error function

ERF(𝑥) = 1
√
2𝜋

∫ 𝑥

−∞
exp

(
−𝑢2
2

)
𝑑𝑢. (2.11)

The PDF approaches the uniform phase density function of a distributed scatterer
(Equation 2.6) for small SCR. For large SCR values, we can assume |𝜓 − 𝜓0 | ≪ 1 and
the PDF approaches

𝑝(𝜓) = 𝜈
√
2𝜋𝜎

exp

(
−𝜈

2(𝜓 − 𝜓0)
2𝜎2

)
, (2.12)
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i.e., a normal distribution about 𝜓0 with standard deviation

𝜎𝜓 =
𝜎

𝜈
. (2.13)

Gaussian statistics are widely assumed in SAR applications to characterize distributed
scattering and clutter (Bamler and Hartl, 1998; Hanssen, 2001; Ferretti et al., 2001; Hu
et al., 2019), including this thesis. However, it has to be noted that the assumptions
necessary to justify the use of Gaussian statistics are violated under certain conditions,
especially when the scatterers in a resolution cell are highly heterogeneous or when
the geometrical resolution of the SAR system is very high, leading to small number of
physical scatterers (Trunk, 1972; Skolnik, 1999). Various non-Gaussian PDFs have
been introduced to account for non-Gaussian SAR backscatter (Anastassopoulos et al.,
1999; Kuruoǧlu and Zerubia, 2004; Eltoft, 2005).

2.3. Interferometric Phase
The scattering phase of a SAR pixel is unknown if the exact position of scatterers
within the pixel is unknown. In addition, the atmospheric conditions at the time
of acquisition are usually unknown. These circumstances prevent the direct phase
analysis of single SAR acquisitions in geoscientific applications. The difference between
two or more acquisitions can, however, lead to the reduction of the unknown phase
contributions. This characteristic is made use of in InSAR, which is described in the
following.

An interferogram 𝑔 is formed by the complex conjugated multiplication of two coreg-
istered SAR acquisitions 𝑧0 and 𝑧1, one of which is called master and the other one
slave:

𝑔 = 𝑧0𝑧
∗
1 = |𝑧0 | |𝑧1 | exp (𝑖 (𝜓0 − 𝜓1)) = |𝑧0 | |𝑧1 | exp (𝑖𝜑) , (2.14)

where (.)∗ denotes the complex conjugate and 𝜑 the absolute phase difference. The
measured interferometric phase 𝜙 is wrapped into the interval [−𝜋, 𝜋)

𝜙 = arg {exp (𝑖𝜑)} = 𝑊{𝜑} = 𝜑 − 2𝜋𝑎 with 𝑎 ∈ N. (2.15)

with the wrapping operator 𝑊 . The interferometric phase is usually described by the
following functional model:

𝜙 = 𝑊
{
𝜑range + 𝜑atmo + 𝜑orb + 𝜑noise

}
= 𝑊

{
−4𝜋
𝜆
(𝑅0 − 𝑅1) + 𝜑atmo + 𝜑orb + 𝜑noise

}
,

(2.16)

with the interferometric phase 𝜑range due to the range difference 𝑅0 − 𝑅1 for both
acquisitions, the phase 𝜑atmo resulting from differences in the atmospheric delays at
the acquisitions, 𝜑orb due to orbital errors of master and slave and phase noise 𝜑noise.
The factor 4𝜋 results from the two-way travel path of the signal.
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Figure 2.3.: Baseline configuration of repeat-pass InSAR. Master and slave orbits
are labelled as M and S. The flight direction of the sensor is into the paper plane.
The baseline 𝐵 denotes the distance between M and S. 𝐵∥ and 𝐵⊥ refer to the parallel
and perpendicular component of the baseline with regard to the line-of-sight (LOS)
direction of the master. P1 is a point at height ℎ above the reference surface. P0 is
located on the reference surface at the same range 𝑅0 to M as P1, thus both points
are located in the same range resolution cell. 𝑅1 is the range between S and P1. The
look angle of the sensor 𝜃0 and the incidence angle 𝜃inc at the surface do not equal
due to the earth curvature and local topography.

The acquisition configuration of an interferogram is displayed in Figure 2.3. Master
and slave are usually acquired from different orbit positions and, in repeat-pass
interferometry, at different times. As a result, the range-dependent interferometric
phase can be split into three parts:

𝜑range = 𝜑flat + 𝜑ℎ + 𝜑defo. (2.17)

The flat Earth phase 𝜑flat accounts for the phase resulting from range differences of
both orbits to a reference surface like the ellipsoid, while the topographic phase 𝜑ℎ is
due to the topography above this reference surface. The deformation phase 𝜑defo is
caused by displacements of the surface between both acquisitions. Summarizing, the
functional model becomes

𝜙 = 𝑊 {𝜑flat + 𝜑ℎ + 𝜑defo + 𝜑atmo + 𝜑orb + 𝜑noise} . (2.18)

The contributions of the model are described in more detail in the following.

Flat Earth and Topographic Phase

The geometrical baseline 𝐵 defines the distance between master and slave acquisitions
(Figure 2.3) and is responsible for different contributions in interferograms. Nonzero
baseline leads to a phase variation in ground range direction and a phase contribu-
tion correlated to the surface topography. Furthermore, the baseline length can be

10



2.3. Interferometric Phase

responsible for geometrical decorrelation (Zebker and Villasenor, 1992), leading to
phase noise (see in description of phase noise below).

The flat earth phase 𝜑flat is caused by range differences of master and slave to a
reference surface like the ellipsoid (Figure 2.3). Using the notation from Figure 2.3,
the phase is

𝜑flat = −4𝜋
𝜆

(
𝑅M,P0

− 𝑅S,P0

)
, (2.19)

where 𝑅X,Y denotes the range between points X and Y. Under the far-field or parallel-
ray approximation for 𝐵 << 𝑅 (Zebker and Goldstein, 1985; Rosen et al., 2000), the
phase can be approximated as

𝜑flat = −4𝜋
𝜆
𝐵∥ , (2.20)

with the parallel baseline 𝐵∥ which is the projection of the baseline vector onto the
LOS. The flat earth phase is visible in interferograms as a phase ramp in ground
range direction, since 𝐵∥ increases with increasing ground range (Rosen et al., 2000;
Hanssen, 2001).

The actual topography ℎ of a pixel above the reference surface leads to an additional
range difference between master and slave acquisitions. It is defined as

𝜑ℎ = −4𝜋
𝜆

(
𝑅M,P1

− 𝑅S,P1
−
(
𝑅M,P0

− 𝑅S,P0

) )
, (2.21)

with 𝑅M,P1
= 𝑅0 and 𝑅S,P1

= 𝑅1. P0 and P1 are located in the same range resolution
cell, thus the equation simplifies to

𝜑ℎ = −4𝜋
𝜆

(
𝑅S,P0

− 𝑅S,P1

)
. (2.22)

Applying the far-field approximation again, the topographic phase can be approximated
as (Zebker and Goldstein, 1985; Hanssen, 2001)

𝜑ℎ = − 4𝜋𝐵⊥
𝜆 sin 𝜃0 𝑅0

ℎ, (2.23)

where 𝐵⊥ denotes the perpendicular baseline and 𝜃0 the satellite look angle at master
acquisition.

Deformation Phase

A displacement of the surface between master and slave acquisitions can lead to an
additional range difference if the projection of the displacement onto the LOS (𝑑los) is
nonzero. This consequently also means that InSAR is only able to measure projections
of displacements in the LOS direction. The resulting phase is

𝜑defo = −4𝜋
𝜆
𝑑los. (2.24)
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The LOS measurements are sensitive to both horizontal and vertical displacements.
However, they are basically insensitive to horizontal displacements in north-south
direction due to the near-polar orbits of SAR satellites, corresponding to orbit headings
close to the north-south direction (Wright et al., 2004; Fuhrmann and Garthwaite,
2019). It is possible to separate the vertical displacement component from a horizontal
component by assuming the direction of the horizontal displacement and combining
LOS measurements from ascending and descending orbits (Hu et al., 2014; Fuhrmann
and Garthwaite, 2019).

Atmospheric Phase

Radar signals are delayed in media with a refractive index 𝑛 > 1. The resulting
two-way phase delay along the travel path 𝑥 is

𝜓 = −4𝜋
𝜆

∫
𝑥

𝑛(𝑥)𝑑𝑥. (2.25)

The atmosphere can be described as a medium with spatially and temporally hetero-
geneous refractive index, which depends on various atmospheric parameters and is
slightly larger than one (Smith and Weintraub, 1953; Hanssen, 2001). The atmospheric
phase delay contributing to a SAR scene is usually referred to as atmospheric phase
screen (APS). Changes in the refractive index between master and slave lead to an
interferometric phase difference which is determined by the integrated difference in the
refractive index along the signal travel paths at both acquisitions, i.e., the difference
of master and slave APS. Assuming the same travel path at both acquisitions, the
interferometric phase delay is

𝜑atmo = −4𝜋
𝜆

∫
𝑥

(𝑛(𝑥, 𝑡𝑀) − 𝑛(𝑥, 𝑡𝑆)) 𝑑𝑥, (2.26)

where 𝑛(𝑥, 𝑡0) and 𝑛(𝑥, 𝑡1) are the refractive indices along the travel path at master
and slave acquisitions, respectively.

Significantly variable refractive indices are found in the troposphere and the ionosphere
(Tarayre and Massonnet, 1994; Hanssen, 2001). The refractive index in the troposphere
mainly depends on the atmospheric pressure, the atmospheric temperature and
the water vapor content (Smith and Weintraub, 1953). The resulting tropospheric
phase delay is usually divided into the sum of wet and dry delay (Goldhirsh and
Rowland, 1982; Zebker et al., 1997; Hanssen, 2001). The wet delay describes the delay
contribution from the water vapor. It is highly variable in space and time and can
reach pseudo range differences of up to several decimeters in interferograms. The dry
delay accounts for the residual contribution of the atmospheric phase delay, mainly
caused by temperature and pressure. The total dry delay can amount to several
meters in SAR acquisitions (Elgered, 1982), thus is considerably larger than the wet
delay. However, it has much lower impact on the interferometric phase owing to less
spatial and temporal variability (Hanssen et al., 1999).
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Another practical way of decomposing the atmospheric phase delay is to distinguish
between vertically stratified and turbulent delay (Zebker et al., 1997; Hanssen, 2001).
The vertically stratified delay comprises contributions from dry and wet delay, whereas
the turbulent delay is primarily due to the variable water vapor content. Temporal
variations in the stratified atmosphere lead to an interferometric phase delay which
is correlated to surface elevation (Delacourt et al., 1998; Doin et al., 2009). The
turbulent delay is caused by local and large-scale water vapor transport. Examples
of different meteorological phenomena mapped by InSAR were shown in Hanssen
et al. (1999). A deterministic description of these processes is difficult, thus the
interferometric phase caused by the turbulent atmosphere is typically assessed in
a stochastic way with the spatial covariance (Hanssen, 2001; Knospe and Jónsson,
2010) or by means of its spatial power law spectrum, which can be described by
the Kolmogorov turbulence theory (Goldstein, 1995; Williams et al., 1998; Hanssen,
2001). With regard to the temporal and spatial acquisition parameters of InSAR, the
tropospheric phase delay is often considered as spatially correlated and temporally
uncorrelated with regard to the revisit time of SAR satellites. However, it has been
shown that it can be seasonally correlated (Doin et al., 2009).

The ionosphere is characterized by free electrons which arise due to ionization processes
through the interaction of the medium with sun radiation. The interaction of the
traversing radar waves with the free electrons leads to a dispersive delay (Tarayre
and Massonnet, 1994; Belcher, 2008). The refractive index is inversely proportional
to the signal frequency and proportional to the electron density. As a result, the
total ionospheric delay increases with decreasing frequency and depends on the total
electron content (TEC) which is the integrated electron density along the travel
path. The electron density varies with time of day, time of year, latitude and solar
activity (Tarayre and Massonnet, 1994; Snoeij et al., 2001). Differences in the TEC
between master and slave lead to an interferometric phase delay which has decreasing
significance with increasing SAR frequency. The effect is significant for InSAR studies
with P- and L-band SAR (Gray et al., 2000) and partially for C-band InSAR studies,
depending on the latitude and time of day at acquisition (Liang et al., 2019). The
effect is largest in low-latitude areas and larger at dusk than dawn.

Orbit Error Phase

Orbital errors of master and slave propagate into the determination of the interfer-
ometric baseline, thus into the estimation of the flat earth and topographic phase.
The orbit error phase 𝜑orb compensates for these errors in the functional model of the
interferometric phase. Comprehensive descriptions of orbit errors in InSAR and their
estimation are given in Hanssen (2001), Bähr (2013) and Fattahi and Amelung (2014).
They usually generate a spatial phase trend in interferograms, thus are important to
consider for studies of long-wavelength displacements. Fattahi and Amelung (2014)
showed that the impact of orbit errors on InSAR, especially MT-InSAR, has decreased
for new satellite missions like Sentinel-1 and TerraSAR-X, compared to older missions
like ERS-1 and or ENVISAT, due to more precise orbit measurements with on-board
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GPS receivers. They reported orbital uncertainties of maximum 0.5 mm/yr 100 km−1

for TerraSAR-X and Sentinel-1.

Phase Noise

The phase noise comprises all residual phase contributions and is referred to as
decorrelation. Main decorrelation sources are changing scattering characteristics of the
SAR pixels between master and slave, processing noise like coregistration errors and
thermal noise of the SAR instrument. Decorrelation leads to a loss in the magnitude
of the complex coherence 𝛾 of a pixel in an interferogram, which is defined as the
complex correlation of the two SAR signals 𝑧0 and 𝑧1:

𝛾 =
𝐸{𝑧0𝑧∗1}

𝐸{|𝑧0 |2}𝐸{|𝑧1 |2}
, |𝛾 | ∈ [0, 1], (2.27)

where 𝐸{.} denotes the expectation value. The coherence is affected by contributions
of the different decorrelation sources, which are multiplicative (Zebker and Villasenor,
1992):

𝛾 = 𝛾temp × 𝛾geom × 𝛾dopp × 𝛾therm × 𝛾proc. (2.28)

Temporal decorrelation 𝛾temp accounts for physical changes of the pixels between
the acquisitions. Examples are the growth and movement s of vegetation, water
movement and demolition or reconstruction work on man-made buildings. The
temporal decorrelation in vegetated areas is smaller for low frequency compared to
higher frequency SAR systems, since the former are less sensitive to small scattering
changes. Geometrical decorrelation 𝛾geom is caused by varying incidence angles and
increases with increasing geometrical baseline. The critical baseline describes the
perpendicular baseline which pixel scattering becomes completely uncorrelated at.

The Doppler decorrelation 𝛾dopp is caused by differences in the doppler centroid
frequencies between master and slave. This effect is small for SAR systems with proper
antenna steering, such as Sentinel-1. Thermal noise of the sensor during acquisitions
leads to thermal decorrelation 𝛾therm, while processing decorrelation 𝛾proc is caused
by processing errors like coregistration errors. The coregistration requirements are
exceptionally high for Sentinel-1 due to its burst imaging and azimuth beam steering.
For this reason, enhanced coregistration approaches incorporating enhanced spectral
diversity were proposed (Yague-Martinez et al., 2016).

2.4. InSAR Statistics
The previously introduced coherence (Equation 2.27) is a key parameter in the statistics
of InSAR. As described in Section 2.3, it provides a measure of the persistence of the
backscatter signal of a resolution cell, and its absolute value has been shown to be
related to the signal-to-noise ratio (SNR) of the signal (Zebker and Villasenor, 1992):

|𝛾 | = SNR
SNR + 1

. (2.29)
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Furthermore, the marginal PDF of the interferometric phase is a function of the
coherence (Just and Bamler, 1994; Lee et al., 1994)

𝑝(𝜙) = 1 − |𝛾 |2
2𝜋

1

1 − |𝛾 |2 cos2(𝜙 − 𝜙0)

×
(
1 + |𝛾 | cos(𝜙 − 𝜙0) arccos(−|𝛾 | cos(𝜙 − 𝜙0))

(1 − |𝛾 |2 cos2(𝜙 − 𝜙0))1/2

)
,

(2.30)

where 𝜙0 denotes the expected value of the interferometric phase which equals the
phase of the coherence 𝐸{𝜙} = 𝜙0 = arg{𝛾}. The PDF is periodic with 2𝜋. The
joint PDF of interferometric amplitude and phase as well as the marginal PDF of the
interferometric amplitude are given in Bamler and Hartl (1998). Just and Bamler
(1994) showed that the phase variance is independent of 𝜙0 and presented numerical
evaluations of it. Rodriguez and Martin (1992) derived the Cramér-Rao bound for
the phase variance which is given by

𝜎2
𝜙 =

1 − |𝛾 |2
2|𝛾 |2

. (2.31)

This phase variance is useful to describe point scattering with an absolute coherence
close to one.

The coherence estimation is crucial but challenging, thus subject to intense research
(Seymour and Cumming, 1994; Ferretti et al., 2011; Deledalle et al., 2011; Jiang
et al., 2014; Mukherjee et al., 2021; Adam, 2022). The challenge lies in the fact
that no ensemble averaging is possible due to the absence of simultaneously acquired
interferograms. As a result, the coherence is estimated under the assumption of
spatial or temporal stationarity and ergodicity. In the case of distributed scattering,
spatial stationarity is generally assumed within uniform regions, so the coherence
can be estimated by averaging over these regions (Seymour and Cumming, 1994).
Point scatterers, which are the scatterer type of interest in this thesis, are usually
examined in MT-InSAR approaches. Their coherence is estimated assuming temporal
stationarity. For a stack of 𝑁 available interferograms which are denoted as 𝑔𝑛 = 𝑧𝑛0𝑧

𝑛∗
1 ,

the coherence estimator for a point scatterer under this assumption is

|𝛾 | =
��∑𝑁

𝑛=1 𝑔𝑛
��√︃∑𝑁

𝑛=1

��𝑧𝑛0��2 +∑𝑁
𝑛=1

��𝑧𝑛1��2 . (2.32)

Alternatively, Ferretti et al. (2001) introduced the phase coherence

|𝛾𝜙 | =
1

𝑁

����� 𝑁∑︁
𝑛=1

exp (𝑖𝜙𝑛)
����� . (2.33)

Schenk (2015) numerically compared the bias of both estimators and found the
estimator in 2.32 to be characterized by lower bias, especially at high coherence values.
He also showed that the coherence estimation becomes more robust for overdetermined
interferogram stacks, i.e., stacks with permuting master acquisitions.
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2.5. InSAR Approaches and Applications
The composition of the interferometric phase (Equation 2.18) provides an overview
of possible applications of InSAR in earth science. First InSAR studies concerned
topographic mapping of the Earth’s surface (Graham, 1974; Zebker and Goldstein,
1985), followed by studies of surface displacements induced by geophysical phenomena
like seismic events, ice flow, subsidence due to aquifer drawdown and volcanic defor-
mation (Gabriel et al., 1989; Massonnet et al., 1993; Rignot et al., 1995; Galloway
et al., 1998; Hooper and Zebker, 2007). The atmospheric delay is considered as noise
in most InSAR applications. In that regard, the tropospheric delay is a large noise
source (Section 2.3). However, InSAR has also been used for atmospheric parameter
inversions (Hanssen et al., 1999; Meyer et al., 2006; Alshawaf et al., 2015; Fersch et al.,
2022). Other exemplary applications of InSAR include land cover studies (Engdahl
and Hyyppä, 2003; Jacob et al., 2020) and urban damage detection (Arciniegas et al.,
2007; Milillo et al., 2018) based on the coherence.

In this thesis, we apply InSAR to study displacements of the Earth’s surface. Early
displacement studies based on InSAR made use of single interferograms, which is still
done when studying displacements with large amplitudes, e.g. displacements caused by
an earthquake. For this purpose, the interferometric phases have to unwrapped, which
is the process of solving the phase ambiguity modulo 2𝜋 within the interferograms.
In order to reduce unwanted phase contributions in the interferograms, the phase
due to the height is subtracted with the help of digital elevation models (DEMs) and
the interferograms can, if necessary, be filtered. This method is called differential
InSAR (D-InSAR). Main limitations of D-InSAR are decorrelation and atmospheric
noise whose phase contributions often exceed the phase signals of interest by far in
single interferograms, when studying small amplitude displacements.

Several MT-InSAR time series approaches have been developed to tackle the men-
tioned limitations of D-InSAR. A crucial characteristic of MT-InSAR approaches
is their interferogram network, describing which SAR scenes are combined to form
interferograms that are used for the analysis. The goal is to minimize the sum decor-
relation in the data set with the right choice of interferograms. Various interferogram
networks have been proposed for different MT-InSAR approaches and the baseline
configurations of three of the most applied networks are displayed in Figure 2.4: the
single-master, small-baseline and fully connected multi-master networks.

The PSI technique (Ferretti et al., 2001; Kampes and Hanssen, 2004; Hooper et al.,
2007) aims at identifying and analyzing coherent point scatterers. These scatterers
are referred to as PSs which are assumed to be affected by marginal temporal and
geometrical decorrelation over time. As a result, the single-master interferogram
network is usually used for PSI analyses, which permits interferograms with large
perpendicular and temporal baselines. This network is characterized by one master
and all other scenes are slaves. The master is usually selected the way that the sum
decorrelation is minimized (Hooper et al., 2007). The largest limitation of PSI is that
PSs mainly form on man-made structures.
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B
⟂

Acquisition Date Acquisition Date Acquisition Date

Figure 2.4.: Examples of different baseline configurations used in MT-InSAR. The
dots show acquisition dates and corresponding perpendicular baselines 𝐵⊥ with respect
to the master. The lines represent interferogram connections. (Left) Single-master
network, (center) small-baseline network, (right) fully connected multi-master network.

The identification analysis of DSs was introduced in order to include natural surfaces
with moderate coherence into MT-InSAR. As a result of the possibly large temporal
and geometrical decorrelation, the single-master interferogram cannot be used for the
analysis of DSs. DS analysis techniques can generally be divided into two approaches:
The first ones limit the MT-InSAR analysis to coherent interferograms characterized
by small spatial and/or temporal baselines and are called SBAS techniques (Berardino
et al., 2002; Lanari et al., 2004; Hooper, 2008). The latter exploit all available multi-
master interferograms to estimate the wrapped phase time series of DSs (Guarnieri
and Tebaldini, 2008; Ferretti et al., 2011; Samiei-Esfahany et al., 2016; Ansari et al.,
2018), which then can be treated like and jointly processed with PSs. PS analyses are
characterized by significantly lower processing times and simpler parameter handling
than DS approaches. Moreover, they reflect the displacement at a certain singular
scatterer, while DS approaches provide averaged displacements among several pixels.
This is why PSI is still widely applied in geophysical and geodetic research, depending
on the study area and the research question (Crosetto et al., 2019; Tomás et al., 2019;
Aslan et al., 2020).

SAR interferograms have an integer phase ambiguity modulo 2𝜋 due to unknown
absolute atmospheric and ionospheric conditions, tidally induced displacements and
plate motions. Even if there are first approaches to recover the absolute phase
history of interferogram stacks (Xu and Sandwell, 2020), InSAR is mostly applied as
a double-differential method in space and time. The unwrapped phase observations
are referenced in time to a selected SAR scene and in space to one or several reference
pixels in order to remove the integer phase ambiguity of the interferograms. Obviously,
variations of atmospheric delays and other long-wave noise contributions within
interferograms remain as noise, which increases with increasing distance to the reference
(Fattahi and Amelung, 2015; Parizzi et al., 2021). These effects should be removed as
much as possible in order to increase the InSAR performance. The spatial reference
is in most cases selected at a region with known displacements, e.g. in presumably
stable areas. A datum connection can be carried out if displacement measurements in
an absolute geodetic datum are available for certain pixels, for example when corner
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reflectors or active transponders are connected to GNSS antennas (Mahapatra et al.,
2018).
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In this chapter, the foundations of PSI in general and the main PSI approaches
are described. The M-SBAS approach, proposed in Schenk (2015), is described
individually as it is subject to adaptations and extensions in this thesis. Further
developments of PSI and potential improvements of PSI in general and M-SBAS are
given at the end of the chapter.

3.1. General Procedure
The PSI approach was first introduced by Ferretti et al. (2001) as a MT-InSAR
approach to overcome the main limitations of D-InSAR, which are temporal decorrela-
tion and atmospheric disturbances. Similar approaches and adaptions were proposed
shortly after in Werner et al. (2003), Adam et al. (2003), Kampes (2005), and Hooper
et al. (2007). The goal of the approach is to identify and analyze point scatterers in a
coregistered stack of SAR acquisitions which are characterized by marginal decorrela-
tion during the time series of interest. They are referred to as permanent scatterers
in the original approach and persistent scatterers (PSs) in most following works. The
phase time series of these PSs, which is characterized by low phase noise, can be
analyzed by means of time series analysis approaches. The goal of PSI is to estimate
the displacement time series of PSs with the highest accuracy possible. Ferretti et al.
(2007) showed that sub-millimeter accuracy is possible for PSs with high SCR when
atmospheric noise is effectively removed.

The pre-processing of PSI includes the generation of the interferometric data stack. All
available SAR acquisitions are coregistered onto a master acquisition. Subsequently,
interferograms between the master and each slave are computed in order to derive an
interferometric phase time series per pixel. The choice of the master is non-trivial,
since noise in this acquisition can propagate into the coregistration procedure of the
slaves and into the interferometric phases. For this reason, the master should minimize
the sum decorrelation of all interferograms (Hooper et al., 2007). Another part of
the pre-processing is the subtraction of known phase contributions, which are the flat
Earth phase (Equation 2.20) and the topographic phase (Equation 2.23), which can
be simulated on basis of an available DEM. Residual errors in the DEM remain in
the interferometric phase and will be estimated later.

The main PSI procedure can be roughly divided into following steps:

(i) selection of Persistent Scatterer Candidates (PSCs)
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(ii) phase noise estimation for PSCs

(iii) selection of PSs

(iv) unwrapping

(v) estimation of spatially correlated signals

The single steps and differences in various approaches are described in the following.
A review of different PSI approaches is found in Crosetto et al. (2015).

Selection of PS Candidates

PSs are point scatterers with low phase noise. In order to get an estimate of a
pixel’s phase noise, the different contributions in the interferometric phase of the
pixel (Equation 2.18) have to be estimated and reduced. The phase noise estimate
is then used to accept or reject a pixel as PS. The estimation of the phase noise is
computationally expensive and needs long-wave phase contributions to be removed
a-priori. The prior selection of PSCs can help to address both challenges. On the
one hand, it considerably reduces the number of pixels to be tested for PS behavior,
because it is expected that a superior number of pixels do not meet the requirements
imposed on PS, depending on the study area on the used SAR sensor. On the other
hand, the estimation of the long-wave phase contributions can be made more robust
if a pre-selection of possibly stable pixels has been made. Lastly, the PSC selection
can be used to establish a hierarchy of reliability levels among the selected pixels, as
done in the Delft implementation of PSI (DePSI) algorithm (Leijen, 2014).

PSC selection methods are mainly based on amplitude statistics (Ferretti et al., 2001;
Adam et al., 2005; Kampes, 2005). Ferretti et al. (2001) used in their original PSI
approach the amplitude dispersion 𝐷𝐴 as phase noise proxy. The phase standard
deviation of a point scatterer with high SCR (Equation 2.13) can be approximated
on basis of a stack of SAR scenes using the approximation

𝜎𝜓 =
𝜎

𝜈
≃ 𝜎𝐴

𝜇𝐴
= 𝐷𝐴, (3.1)

where 𝜎𝐴 and 𝜇𝐴 denote the standard deviation and mean of the amplitude of a
pixel, respectively. The approximation of the phase noise by means of the amplitude
dispersion is reasonable for point scatterers with high SCR. The amplitude dispersion
approaches ∼ 0.5 for low SCR, i.e., the estimation of the phase noise becomes less
accurate with decreasing SCR (Ferretti et al., 2001), leading to a high false-positive
PSCs selection rate for increasing 𝐷𝐴 thresholds (Hooper et al., 2007).

Alternative exemplary PSC selection methods are based on the estimation of pixels’
SCRs assuming equal clutter power in the pixel of interest and its surrounding pixels
(Adam et al., 2005; Kampes, 2005), via maximum likelihood estimation of the Rice
distribution parameters (Ansari et al., 2014) or maximum likelihood estimation of the
SCR based on the interferometric phase PDF (Shanker and Zebker, 2007).
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Phase Noise Estimation

After the PSI pre-processing, the interferometric phase of PSCs is the sum of various
contributions:

𝜙 = 𝑊 {𝜑ℎ + 𝜑defo + 𝜑atmo + 𝜑orb + 𝜑noise} , (3.2)

where 𝜑ℎ denotes the phase due to the residual height ℎ of the pixel above the DEM
used for the topographic phase reduction1. The goal is to estimate and split off each
of the contributions but 𝜑noise in order to be able to classify a PSC as PS or non-PS.

The first step of the phase noise estimation is the subtraction of long-wave phase con-
tributions. Various contributions of the interferometric phase are spatially correlated
with different correlation lengths (see Section 2.3). Orbital errors are mostly visible
as spatial trends in interferograms, i.e., have long correlation lengths (Fattahi and
Amelung, 2014). Atmospheric disturbances are also spatially correlated, usually with
correlation lengths assumed to reach up to kilometers (Hanssen, 2001; Hooper et al.,
2007). Errors in DEMs are assumed to be partly spatially correlated as well (Hooper
et al., 2007). Lastly, deformations of the Earth’s surface can be spatially correlated,
depending on the study area.

Potential differential movements on short spatial scales are considered either as
signal of interest or noise in different PSI approaches. This distinction is one of
the fundamental differences in PSI approaches and is handled depending on the
study area and the research question. The Stanford Method for Persistent Scatterer
Interferometry (StaMPS) algorithm proposed by Hooper et al. (2007) was designed
to study spatially correlated deformation phenomena, and differential movements on
short scales are considered as noise. Other approaches like the original PSI approach
(Ferretti et al., 2001), DePSI (Kampes, 2005) or PSI-GENESIS by the German
Aerospace Center (DLR) (Adam et al., 2003) do not assume all deformation of interest
to be spatially correlated, and the uncorrelated deformation is not considered as noise.
In this case, uncorrelated deformation has to be accounted for after the subtraction of
long-wave phase contributions.

Two main approaches have been proposed to subtract spatially correlated phase
contributions. Hooper and Zebker (2007) used an adaptive filter to split off spatially
correlated phases, which is based on the filter presented in Goldstein and Werner (1998).
The alternative approach is the calculation of phase differences between neighboring
pixels, which is carried out along edges of a triangulation network (Ferretti et al., 2001;
Adam et al., 2003; Kampes, 2005). Accounting for residual spatially uncorrelated
deformation, the residual phase 𝜙 is

𝜙 = 𝑊
{
𝜙ℎ + 𝜙defo + 𝜙noise

}
, (3.3)

where 𝜙 denotes the spatially uncorrelated part of a phase contribution.

1 In Section 2.3, we used the notation ℎ for the height of a scatterer above the reference surface. We
assume that the phase due to a reference DEM was subtracted in the PSI pre-processing and use,
out of simplicity, the notation ℎ for the height deviation of the scatterer from the reference DEM
consistently in the following of this thesis.
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The estimations of the residual phase contributions 𝜙ℎ and 𝜙defo need the assumption
of a functional model which describes the relationship of the residual height and
deformation with the phase. The former is given in Equation 2.23, while the latter is
often approximated by a linear model:

𝜙defo = 𝜙𝑣 = −4𝜋
𝜆
𝜏𝑣, (3.4)

where 𝜏 denotes the temporal baseline of an interferogram and 𝑣 a linear displacement
rate in LOS. The assumption is that the deformation model sufficiently describes the
deformation time series. Model deficiencies lead to an overestimation of the phase
noise and possibly a false rejection of PS. The use of more complex deformation
models can help to decrease false negatives in the PS selection (Kampes, 2005; Van
Leijen and Hanssen, 2007).

The additional consideration of phases due to thermally induced displacements 𝜙𝛼
as part of the deformation phase can improve the PS selection on infrastructure
like bridges and skyscrapers when there are significant temperature differences at
the acquisitions. Furthermore, it provides additional physical information on pixels
(Monserrat et al., 2011; Fornaro et al., 2013). The related phase can also be described
by a linear model

𝜙defo = 𝜙𝑣 + 𝜙𝛼,

𝜙𝛼 = −4𝜋
𝜆
𝜗𝛼,

(3.5)

where 𝜗 denotes the thermal baseline of an interferogram, i.e. the temperature
difference at both acquisitions involved, and 𝛼 the thermally induced displacement
rate in LOS.

The estimation of the topographic and deformation phase, which are described by
linear functional models, is non-linear since the phases are still wrapped module 2𝜋.
Various approaches to solve this nonlinear inversion have been proposed. Most of them
are based on maximizing the objective function calculated from 𝑁 interferometric
phases

𝛾𝜙 =
1

𝑁

����� 𝑁∑︁
𝑛=1

exp
{
𝑖

(
𝜙 − 𝜙ℎ − 𝜙defo

)}����� , (3.6)

where 𝜙ℎ and 𝜙defo are the estimates of the topographic and deformation phase.
Hooper et al. (2007) solved this problem with a rough grid search followed by a linear
inversion around the maximum of the rough search. Spectral analysis methods also
can be used to solve the inversion of the squared objective function, which is referred
to as periodogram. The Fourier transform can be used for this purpose, however
an equidistant spacing of the observations is needed for this. The singular value
decomposition (SVD) can be applied to solve the inversion on irregularly spaced
observations and was used in Fornaro et al. (2005), Zhu and Bamler (2010b), and
Schenk (2015) in this context, while Zhu and Bamler (2010a) and Rebmeister et al.
(2021) proposed compressive sensing approaches to solve the inversion. An alternative
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approach for the parameter estimation is the use of the integer least-squares estimator
(Teunissen, 1995), which was adapted for PSI in DePSI (Kampes and Hanssen, 2004)
and PSI-GENESIS (Gernhardt, 2011).

After the parameter estimation, the phase contribution of the parameters are sub-
tracted from the high-pass filtered phase observations to get the estimate of the phase
noise

𝜙noise = 𝑊
{
𝜙 − 𝜙ℎ − 𝜙defo

}
. (3.7)

PS Selection

The noise estimate is used for the final selection of PSs. In Ferretti et al. (2001), a
fixed phase coherence threshold 𝑇𝛾 was used to classify PSCs as PS or non-PS:

𝛾𝜙 =
1

𝑁

����� 𝑁∑︁
𝑛=1

exp
(
𝑖𝜙noise

)����� PS
≷

non-PS
𝑇𝛾 . (3.8)

Hooper et al. (2007) empirically determined variable thresholds for PSC bins with
different amplitude dispersion values by analyzing the probability density of the phase
coherence in the different bins. This way, points with high amplitude dispersion can
be accepted as PSs even if their phase coherence is lower than that of PSs with low
amplitude dispersion.

Phase Unwrapping

The goal of phase unwrapping after the PS selection is to solve the spatial and
temporal phase ambiguity modulo 2𝜋 of the PSI interferogram stack. A requirement
for correct unwrapping is that the phase difference between adjacent points in the
spatial and temporal space is less than 𝜋, otherwise the point connection constitutes a
discontinuity. For this reason, it is favorable to reduce all known phase contributions
from the interferometric phases to get interferograms as smooth as possible. The
task of an unwrapping algorithm is to identify residual discontinuities and find
reasonable integration paths for the unwrapping. Many unwrapping algorithms have
been proposed, ranging from sparse unwrapping (Ferretti et al., 2000) to interpolated
unwrapping (Hooper et al., 2007) and from 2D+1D unwrapping (Hooper et al., 2004;
Devanthéry et al., 2014) to advanced 3D unwrapping (Hooper and Zebker, 2007;
Liu et al., 2020) using the full amount of observation information. Deep learning
approaches have also been proposed to solve the unwrapping problem (Zhou et al.,
2022).

Estimation of Spatially Correlated Noise

Phase disturbances affect the performance of PSI-based displacement monitoring,
as described in Section 2.3. The impact of the various contributions increases with
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increasing size of the study area, as a result of their limited spatial correlation and
the acquisition geometry of SAR. Even if phase variations of the contributions are
negligible across the study area, their absolute interferometric offsets can lead to phase
ramps in ground range direction due to the mapping onto the local LOS, which is
characterized by increasing incidence angle along the ground range direction.

In the original PSI approaches, spatially correlated nuisance terms were reduced from
the unwrapped interferometric phase observations by means of spatio-temporal filters.
Atmospheric and orbital errors are assumed to be spatially correlated while temporally
uncorrelated. On the contrary, deformations are mostly assumed to be temporally
correlated. By applying a combination of a temporal high-pass and a spatial low-pass
filter, the spatially correlated noise (SCN) can be estimated and subsequently reduced
from the interferometric phase observations.

A disadvantage of spatio-temporal filters for atmospheric phase estimation is the
nontrivial selection of the filter parameters, which should be based on the statistical
properties of the atmosphere (Gong et al., 2015). Furthermore, a filter of such kind
is not able to estimate the tropospheric delays properly when the SAR sampling
leads to aliasing of daily and seasonal tropospheric variations (Doin et al., 2009).
Eventually, the temporal correlation length of atmospheric delays and displacements
can overlap so that it is not possible to separate both signals by means of a temporal
filter. As a consequence, alternative approaches have been proposed to account for
different noise sources in InSAR and PSI. Examples are the estimation of the stratified
atmosphere delay based on the correlation between interferometric phase observations
and elevation (Wicks et al., 2002; Bekaert et al., 2015a; Murray et al., 2021) and
using regional numerical weather models to model the atmospheric delay (Jolivet
et al., 2011; Bekaert et al., 2015b; Yu et al., 2018). In the latter approaches, weather
parameters which are influencing the radar propagation velocity are extracted from
models like ERA-5 (Hersbach et al., 2020) to do a forward calculation of the delay.
The parameters of interest are temperature, air pressure and parameters describing
the water vapor content in the atmosphere. The performance of these methods is
depending on the latitude of the study area, since the weather models can model
water vapor variability better in high latitude than in low latitude areas (Cong et al.,
2018). Furthermore, the methods perform worse in study areas with flat topography
compared to mountainous areas (Liu et al., 2009).

Further SCN contributions are, for example, tidally induced displacements (Dicaprio
and Simons, 2008; Parizzi et al., 2021) and ionospheric delays (Gomba et al., 2016;
Liang et al., 2019). They are discussed in more detail in Section 4.4. In case that
phase disturbances are modelled using auxiliary data, they can be subtracted prior to
the phase unwrapping to increase the unwrapping performance.
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Table 3.1.: Substitution of parameters and baselines for a uniform description of the
one-dimensional parameter estimation problems [in M-SBAS]. © 2022 IEEE.

Parameter 𝑘∗ 𝑣 ℎ 𝛼

Baseline 𝑘 𝜏 𝐵⊥ 𝜗

circular freq. 𝜔(𝑘) 4𝜋
𝜆
𝜏 4𝜋

𝜆 sin 𝜃 𝑟0
𝐵⊥

4𝜋
𝜆
𝜗

3.2. Multi-Small-Baseline Subset Approach
The PSI approach which this work is based on is the M-SBAS approach described
in Schenk (2015). This approach was designed as an efficient PSI approach which is
characterized by a robust identification and parameter estimation of PSs in small,
heterogeneous urban areas. The approach combines and extends elements of previously
described PSI approaches, but is extraordinary in that it uses the fully overdetermined
multi-master interferogram stack for a sequential parameter estimation instead of
single-master interferograms for a simultaneous parameter estimation, as usually done
in PSI. The approach covers only the steps (i) to (iii) of the standard PSI approach
(Section 3.1), i.e., the steps from PSC selection to PS selection, and does not include
phase unwrapping.

The PSC and PS selections in steps (i) and (iii) are realized by means of amplitude
dispersion and temporal coherence thresholds, respectively. For step (ii), the approach
considers the residual height ℎ, the linear displacement rate 𝑣 and the thermally
induced displacement rate 𝛼 of PSCs as parameters to be estimated. By estimating
the displacement rate and including thermally induced displacements of single PSCs,
it is designed for urban areas characterized by heterogeneous displacements on small
scales. The parameters are estimated using the method of periodograms (Ferretti
et al., 2001) by means of a truncated singular value decomposition inversion (Fornaro
et al., 2005; Zhu and Bamler, 2010b). However, instead of estimating the parameters
simultaneously, as usually done, they are estimated sequentially in M-SBAS to reduce
the computational cost from O3 to 3O. The one-parameter periodograms can be
expressed as

𝛾(𝑘∗𝑟 ) =
1

𝑁

����� 𝑁∑︁
𝑛=1

exp ( 𝑗𝜙) exp
(
𝑗𝜔

(𝑘)
𝑛 𝑘∗𝑟

)�����2 , (3.9)

where 𝜙 denotes the interferometric phases which have been adjusted for spatially
correlated nuisance terms, 𝑘∗ the particular parameter (ℎ, 𝑣 or 𝛼), 𝑘 the parameter-
specific baseline (spatial baseline 𝐵⊥, temporal baseline 𝜏 or thermal baseline 𝜗) and
𝜔(𝑘) the circular-frequency describing the functional model between the parameter
and the phase (see Table 3.1). The goal of the parameter estimation is to find the
value 𝑘∗0 which maximizes the periodogram

𝑘∗0 = argmax
𝑟

𝛾(𝑘∗𝑟 ). (3.10)

The problem of solving the parameter estimation sequentially is that the signal
components which are not determined in the particular case are included in the
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estimation as errors. The algorithm provides two approaches to tackle this problem
and enable the sequential parameter estimation. The first approach is to exploit
different small-baseline subsets of all available multi-master interferograms for each
of the three parameter estimations. As an example, interferogram subsets which are
characterized by a small variability in 𝐵⊥ and 𝜗 are selected for the estimation of the
displacement rate. In other words, one restricts the selection of interferograms to a
connected subset in the 𝜏-𝐵⊥-𝜗 diagram. By restricting the selection to small-baseline
interferograms, the algebraic correlation between the parameters is reduced for the
sequential estimation. Since only the bandwidth of the baselines within the subsets
is important and not their absolute position in the 𝜏-𝐵⊥-𝜗 diagram, it is possible to
build several subsets for each parameter estimation, calculate the periodograms for
each of them and stack the periodograms to increase the signal-to-noise ratio. As a
result, all multi-master interferograms are exploited [...].

The second approach to correct residual errors in the sequential parameter estimation
is the use of an iterative estimation procedure. In every step of the iteration, the
three parameters are estimated.The index of the estimated parameter 𝑘∗ is sought
whose reduction from the phase observations maximizes the a-posteriori temporal
phase coherence. The modelled phase due to the given parameter is reduced from the
signal and the next iteration step is initiated. The estimated values of a parameter
are cumulated if the correction of the given parameter maximizes the coherence in
various iteration steps.

M-SBAS uses the averaged phase of reliable reference PSCs in each of the multi-master
interferograms to split off the long-wave phase contributions prior to the parameter
estimation. This averaged phase is referred to as reference phase in the following. The
averaging allows for a fast computation of the reference phase for fully overdetermined
multi-master interferogram stacks. On the other hand, this also leads to the fact the
approach is only applicable to small study areas of few square-kilometers, as the single
reference phase is incapable of capturing spatial variations in the atmosphere. In a
first step, pixels with low amplitude dispersion are selected as reference PSCs and the
reference phase of the interferogram formed by acquisitions 𝑛 and 𝑚 is estimated by
complex averaging of the interferometric phase of 𝐾 reference PSCs:

𝜙ref
𝑛𝑚 = arg

{
1

𝐾

𝐾∑︁
𝑘=1

exp
(
𝑖𝜙𝑘𝑛𝑚

)}
. (3.11)

The reference phases are subtracted from the particular interferograms. Subsequently,
the parameters of the reference PSCs are estimated and the corresponding phase
contributions subtracted from their phase observations. Reference PSCs with large
parameter values are rejected and the adjusted phases of the remaining 𝐾 reference
pixels are used to recalculate the reference phase of the interferograms:

𝜙ref
𝑛𝑚 = arg

{
1

𝐾

𝐾∑︁
𝑘=1

exp
(
𝑖

(
𝜙𝑘𝑛𝑚 − 𝜙𝑘

ℎ̂,𝑛𝑚
− 𝜙𝑘

�̂�,𝑛𝑚
− 𝜙𝑘

�̂�,𝑛𝑚

))}
. (3.12)
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The parameter estimation of all other PSCs is finally carried out after the subtraction
of the refined reference phase.

Schenk (2015) tested the M-SBAS algorithm with a TerraSAR-X data set over a
small urban area which was partly affected by large uplift movements during the
acquisition of the data stack. The test also included a comparison with results from
the StaMPS algorithm. The M-SBAS approach identified 36 % more stable PS pixels
than StaMPS, while its processing time was only about 23 % of the processing time of
StaMPS. Furthermore, the StaMPS analysis underestimated the uplift rates, contrary
to the M-SBAS analysis, which was found in a comparison to levelling measurements.
The underestimation of the displacement rates in StaMPS was traced back to the
low-pass filtering of interferograms during the PSI analysis and inconsistencies in the
phase unwrapping. This could be anticipated due to the fundamental differences in
both PSI approaches. StaMPS was primary designed to study spatially correlated
displacements. The main advantage of the approach is that no deformation model
has to be assumed during the phase noise estimation process. On the other hand,
considerable small-scale variations in the displacement field can lead to problems for
the PS identification and phase unwrapping. The M-SBAS algorithm was designed
to study displacement fields which are potentially characterized by large small-scale
variations. A displacement model has to be assumed for the phase noise estimation in
this case.

3.3. Developments and Potential Improvements in
PSI and M-SBAS

Various improvements and extensions of the original PSI approaches have been
proposed. An essential claim of many developments is an improved PS identification.
Examples of modified PS selection approaches are the PS Pairs (Costantini et al.,
2008), Quasi-PS (Perissin and Wang, 2012), Cousin-PS (Devanthéry et al., 2014)
and phase similarity (Wang and Chen, 2022) methods as well as non-gaussian PS
detectors (Huang and Zebker, 2022). Another approach to achieve an improved PS
identification is based on polarimetric optimization in multi-polarized InSAR stacks
(Navarro-Sanchez and Lopez-Sanchez, 2012; Sadeghi et al., 2018). Meanwhile, the use
of deep learning also found its way into PSI and in particular the identification of
PSs, as shown in Tiwari et al. (2020) and Aguiar et al. (2022).

Another PSI extension is the SAR tomography, which aims at reconstructing the
reflectivity profile along the elevation axis of SAR acquisitions in order to enable
the identification and analysis of multiple scatterers within resolution cells (Fornaro
et al., 2005; Zhu et al., 2016; Rebmeister et al., 2021). This allows to produce very
high-resolution 4-D point clouds and is especially relevant for applications in urban
environments. DS approaches can also be considered as important extensions of PSI.
The goal is to loosen the coherence requirement of pixels to be analyzed, in order to
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3. Persistent Scatterer Interferometry

include DSs into the time-series analysis. A short introduction on DS approaches was
given in Section 2.5.

Challenging applications of PSI still exist. PSs can fade or appear in periods of
the available SAR time series due to physical changes in the scene or changes in
the acquisition geometry (Ferretti et al., 2004; Perissin and Ferretti, 2007). It can
be assumed that the number of TPSs increases with increasing SAR time series as
result of ongoing land surface changes, while the number of continuously coherent
PSs decreases. It is desirable to include the analysis of such TPSs into PSI in order
to develop flexible PSI systems which handle dynamic land surface changes, thus
provide the best possible PSI-based geodetic measurement networks. This is especially
important for long-term displacement monitoring, which is increasingly in demand
in times of long-term SAR missions like Sentinel-1. TPS identification approaches
were presented in Ferretti et al. (2004), Ansari et al. (2014), Dogan and Perissin
(2014), and Hu et al. (2019), however none of these fully integrated TPSs into PSI
including unwrapping. Furthermore, the mentioned approaches to identify TPSs and
their coherent lifetime segments are solely based on amplitude statistics. It will be
shown in Section 5.3 that the consideration of the interferometric phase improves the
estimation of their coherent lifetime segments. The full integration of TPSs into PSI
including phase unwrapping and a phase-based detection of their coherent lifetime
segments will be the subject of Chapter 5.

Another main challenge of InSAR and PSI is large-scale monitoring in areas with
complex atmospheric conditions. Spatially correlated phase noise has to be robustly
estimated and subtracted to enable accurate displacement measurements at long
distances. A promising approach of reducing long-wave phase disturbances including
atmospheric noise is the fusion of InSAR with other geodetic measurements such as
from GNSS networks. Various approaches have been proposed to reduce SCN in single
interferograms (Argus et al., 2005; Lundgren et al., 2009; Neely et al., 2020) or in
estimated displacement rates (Hooper et al., 2012; Parizzi et al., 2020) based on GNSS
measurements. The methods are based on sampling the SCN at the GNSS stations and
removing an interpolated noise screen from the observations. The reduction of SCN in
single interferograms is essential to reduce the uncertainty in estimated displacement
time series. None of the proposed methods to reduce SCN in single interferograms
considers the spatial statistics of the noise for interpolation. A covariance-based
integration of reference points into PSI to reduce SCN in interferograms will be
presented in Section 4.5.

The PSI basis of the mentioned improvements is the M-SBAS algorithm. As stated
before, the approach was designed for small-scale study areas and does not include
phase unwrapping. For this reason, its extension to a full PSI approach which can be
applied to large-scale problems and includes phase unwrapping will be described. The
extensions developed for this purpose are described in Chapter 4.
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4. Integrating M-SBAS into Robust
Large-Scale PSI

This chapter covers modifications of M-SBAS which extend it to a full PSI approach
which includes unwrapping and robustly handles large-scale displacement monitoring.
At the beginning of the chapter, an improved estimation of long-wave phase contribu-
tions in multi-master interferograms of small spatial size is presented, which enables
an enhanced coherence estimation and PS identification. This way, the applicability
of M-SBAS is expanded to rural areas where only few PSs are located and areas
which are characterized by largely heterogeneous displacements. Afterwards, large-
scale M-SBAS is presented, which is based on running the algorithm in small spatial
patches and merging the results afterwards. The phases and estimated parameters
of identified PSs are imported into the StaMPS software environment (Hooper et al.,
2007) to make use of its unwrapping algorithm. Phase noise contributions which are
relevant for large-scale displacement monitoring are discussed and the modelling of
the tropospheric delay, tidally induced displacements and plate motion is described.
At the end of the chapter, a method to reduce residual SCN in interferograms is
presented, based on a covariance-based integration of reference pixels with known
displacement time series.

4.1. Reference Phase Adjustment
In M-SBAS, a single reference phase value is used in each of the multi-master inter-
ferograms to split off long-wave phase contributions, as described in Section 3.2. It is
estimated by averaging the interferometric phase of automatically selected reference
PSCs, as shown in Equation 3.12. Phase triangularity is expected to hold true in the
multi-master stack for this averaged phase. However, the phase triangularity condition
using the interferogram average is not true in reality when the reference phase is
decorrelating due to diverging temporally correlated signals among the reference
PSCs, such as diverging displacement rates. In this case, averaging is not an accurate
estimate of the long-wave phase contributions in interferograms, leading to limited
performance of the parameter and coherence estimation of PSCs. This is why it is
desirable that reference pixels are selected which share similar displacement rates.
However, this requirement cannot be ensured in heterogeneous study areas with largely
heterogeneous displacements on small scales.
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Figure 4.1.: Results of the reference phase estimation simulation study. (a) Differences
between the true and estimated reference phases by complex averaging, described by
means of the measure 𝛾ref, with regard to length of the considered time series and
the standard deviation of the linear displacement rate 𝜎𝑣 of the reference PSCs. (b)
Same as (a) with integer rounding adjusted reference phase estimation.

We illustrate the above problem by means of following simulation study. We simulated
2000 reference PSCs in a study area of 2 × 2 km2, a radar wavelength of 5.5 cm
and pixel size of 10 × 10m2. The atmospheric delay was simulated as temporally
uncorrelated and spatially correlated with the power-law characteristics described in
(Hanssen, 2001) using the software SyInteferoPy (Gaddes et al., 2019). The mean of
the atmospheric delay was drawn from a uniform distribution in the range [−𝜋, 𝜋]
for each SAR acquisition. We simulated reference PSCs with a SCR of 8 and their
linear displacement rate was drawn from normal distributions with varying standard
deviations 𝜎𝑣 for different simulation runs. Their height was drawn from a normal
distribution with a standard deviation of 5m, and we used a typical perpendicular
baseline distribution of Sentinel-1 SAR stacks. The number of simulated single look
complexs (SLCs) with a revisit time of 6 days was changed for different simulation
runs. We then compared the true interferogram average 𝜙ref

𝑛𝑚 with the estimated
reference phase 𝜙ref

𝑛𝑚 for all 𝑁 (𝑁 − 1)/2 multi-master interferograms formed with 𝑁

SAR acquisitions, using the following measure:

𝛾ref =
2

𝑁 (𝑁 − 1)

�����𝑁−1∑︁
𝑛=1

𝑁∑︁
𝑚=2,𝑚>𝑛

exp
(
𝑖

(
𝜙ref
𝑛𝑚 − 𝜙ref

𝑛𝑚

))����� . (4.1)

The measure equals one for accurately estimated interferogram averages and decreases
with increasingly false estimations. We carried out 20 simulation runs for each of the
time series length and linear displacement rate settings. The medians of the measure
𝛾ref for the runs are shown in Figure 4.1(a). It is striking that the estimation error is
considerable already for short time series lengths. This is due to individual phase noise
of the reference PSCs as well as their displacement and height induced phases. For
increasing time series length, the error stays approximately the same for the runs with
all reference PSCs sharing the same displacement rate, while it increases for simulation
runs with diverging displacement rates among them. Here, the error increases with
increasing standard deviation of the displacement rates. The reason behind lies in
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4.1. Reference Phase Adjustment

the increasingly decorrelated signals of the PSCs in wrapped interferograms with
increasing temporal baselines. An approach to enhance the reference phase estimation
is described in the following.

4.1.1. Integer Least-Squares Adjustment

We formulate the above-mentioned problem by stating that the expectation of the
mean phase of an interferogram can be written as

𝐸

{
𝜙ref
𝑛𝑚

}
= 𝑊

{
𝜙ref
1𝑚 − 𝜙ref

1𝑛

}
, (4.2)

where the index 1 indicates the master acquisition. This condition is referred to
as expected phase triangularity in an overdetermined interferogram network. The
reference phases 𝜙1𝑛 can be inverted using the integer least-squares (ILS) approach
(Teunissen, 1995). Subsequently, the multi-master reference phases can be re-calculated
on the basis of 𝜙1𝑛. The problem is an analogue to the single-master phase estimation
of DS from multi-master interferometric phases described in Samiei-Esfahany et al.
(2016). The following description and notation of the ILS inversion are based on that
work.

An alternative notation of Equation 4.2 is given by introducing an integer ambiguity
term 𝑑𝑛𝑚:

𝐸

{
𝜙ref
𝑛𝑚

}
=


𝜙ref
1𝑚 − 𝜙ref

1𝑛 + 𝑑𝑛𝑚 (2𝜋) if 𝑛, 𝑚 ≠ 1

𝜙ref
1𝑚 if 𝑛 = 1

−𝜙ref
1𝑛 if 𝑚 = 1.

(4.3)

Since the 𝜙 terms are wrapped phases, the value of the phase differences is between
−2𝜋 and 2𝜋 so that 𝑑𝑛𝑚 ∈ {−1, 0, 1}. This system of equations can be reformulated in
matrix notation as

𝐸





𝜙ref
12
...

𝜙ref
1𝑁
...

𝜙ref
𝑛𝑚
...

︸︷︷︸
y



=



0 . . . 0
...

. . .
...

0 . . . 0
2𝜋 0

. . .

0 2𝜋

︸            ︷︷            ︸
𝐷


...

𝑑𝑛𝑚
...

︸︷︷︸
d

+



1 0
. . .

0 1
...

−1 . . . 1
...

︸               ︷︷               ︸
𝐶


𝜙ref
12
...

𝜙ref
1𝑁

︸︷︷︸
c

. (4.4)

It is a hybrid system of linear equations with real unknowns 𝜙1𝑛 and integer unknowns
𝑑𝑛𝑚. In the following, the integer ambiguity estimation to solve the problem is
introduced. Comprehensive descriptions of ILS estimators are found, for example, in
Teunissen (1995), Kampes (2005), and Leijen (2014). The idea of the ILS estimation
is to decompose the objective function

d̂, ĉ = argmin
d∈Z,c∈R

∥y − 𝐷d − 𝐶c ∥2𝑊 (4.5)
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into a sum of three 𝐿2-norm components (Samiei-Esfahany et al., 2016)

∥y − 𝐷d − 𝐶c ∥2𝑊 = ∥y − 𝐷ď − 𝐶č∥2𝑊 + ∥ď − d∥2𝑊𝑑
+ ∥č|d − c∥2𝑊𝑐

(4.6)

where č|d is the conditional least squares estimate of c, conditioned on d, and 𝑊 is
a weight matrix which can, for example, be defined as the inverse of the variance-
covariance matrix of the observables. The weight matrices 𝑊𝑑 and 𝑊𝑐 are defined
as

𝑊𝑑 = �̄�
𝑇𝑊�̄�, where �̄� = 𝐷 − 𝐶

(
𝐶𝑇𝑊𝐶

)−1
𝐶𝑇𝑊𝐷,

𝑊𝑐 = 𝐶
𝑇𝑊𝐶.

(4.7)

The three problems are solved sequentially. The first component is solved using
standard weighted least squares, ignoring the integer constraint of d and leading to
so-called float solutions ď and č. The second component in Equation 4.6 is minimized
by mapping the float solution of 𝑑 to the nearest integer vector in the metric of matrix
𝑊𝑑 to obtain d̂. Various mapping approaches exist which account for the correlations
in 𝑊𝑑 to different degrees. The integer rounding does not consider correlations in 𝑊𝑑

at all, i.e. assumes 𝑊𝑑 to be a diagonal matrix. The integer bootstrapping approach
accounts for some correlations among the float solutions, while the ILS estimator
accounts for all of them. However, the ILS problem cannot be solved directly so
that the Least-squares Ambiguity Decorrelation Adjustment (LAMBDA) method by
Teunissen et al. (1995) is a two-step ILS estimator. In the last step, the fixed solution
of 𝑐 is derived by calculating

ĉ =
(
𝐶𝑇𝑊𝐶

)−1
𝐶𝑇𝑊

(
y − 𝐷d̂

)
. (4.8)

Since the matrix 𝑊𝑑 is very close to diagonal in the given problem, we only tested
integer rounding in the simulation. We used the following weights as diagonal elements
in the weight matrix 𝑊 :

𝑤 =
2𝛾2𝑛𝑚

1 − 𝛾2𝑛𝑚
, (4.9)

adapted from the Fisher information index, which was suggested as weight in the
ILS approach in Samiei-Esfahany et al. (2016). We estimated the coherence of the
interferograms 𝛾𝑛𝑚 assuming spatial stationarity among all reference PSCs. The results
for the integer rounding derived reference phases in the simulation study for the two
highest standard deviations of the displacement rates are shown in Figure 4.1(b).
It can be seen that the reference phase estimation error for the integer rounding is
negligible for short time series and consistently smaller compared to the complex phase
averaging. As an example, the integer rounding based coherence measure is about
0.72 for a time series length of 1080 days and a displacement rate standard deviation
of 10 mm/yr, compared to 0.41 for the phase averaging. For a large displacement rate
standard deviation of 15 mm/yr, the integer rounding based results do not show much
improvement for long time series compared to the phase averaging. This indicates
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Figure 4.2.: (a) Comparison of the a-posteriori coherence of reference PSCs in a real
data study based on Sentinel-1 data over the Vietnamese city of Can Tho for the
complex averaging and integer rounding least squares adjustment (IR) of the reference
phase for different time series lengths. (b) Comparison of the a-posteriori coherence
histograms of all PSCs for both methods in the real data study with a time series
length of three years.

a disability to reconstruct the reference phase by means of the integer rounding for
largely decorrelated signals of reference PSCs, caused by the diverging displacement
rates and long temporal baselines. However, such a large spread in the displacement
rates within small study areas of few square kilometers is unlikely in reality.

4.1.2. Real Data Study

The improvement achieved by the presented reference phase adjustment was also
studied with a real data set. We used Sentinel-1 data acquired over the Vietnamese
city of Can Tho (Figure 6.1) with a study area size of about 5 km2. We applied the
standard M-SBAS approach with phase averaging to estimate the reference phase of
the interferograms as well as the modified approach with the integer rounding least
squares adjustment of the reference phase. The a-posteriori phase coherence of the
automatically selected reference PSCs was used as a measure to compare the results.
It denotes the phase coherence after reduction of the reference phase and phases due
to the estimated parameters from the observed interferometric phases. We compared
the results for different time series lengths of up to three years, corresponding to 174
SAR scenes.

The results are displayed in Figure 4.2 (a). The integer rounding adjustment leads to
increased coherence of PSCs already for a short time series of half a year compared
to the phase averaging. Both results exhibit an increased coherence for a time series
length of one year compared to half a year, which is probably caused by a more robust
parameter estimation due to an increased amount of observations. The coherence
for longer time series decreases for both methods, however the coherence approaches
about 0.75 for the integer rounding while it steadily decreases for the phase averaging
to be less than 0.58 for a time series length of three years. The standard deviation of
the estimated displacement rate of the reference PSCs is about 8mm/yr, thus the
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4. Integrating M-SBAS into Robust Large-Scale PSI

comparing results of the simulation study are represented by the red and yellow lines
in Figure 4.1. The significant coherence difference, which is increasing with increasing
time series length, was suggested by the simulation study. The a-posteriori coherence
of all PSCs for a time series length of three years is compared for both methods in
Figure 4.2 (b). Clearly, the overall coherence of all PSCs, not just the reference PSCs,
is increased by means of the integer rounding based reference phase adjustment.

Concluding, the reference phase adjustment based on integer rounding least squares
adjustment allows to enhance the estimation of the reference phases which are sub-
tracted from interferograms to split off spatially long-wave phase contributions. The
gain provided by the reference phase adjustment was illustrated in a simulation study
and a real data study. The reference phase adjustment leads to increased a-posteriori
coherences of PSCs in the real data study. This indicates that long-wave phase contri-
butions are better estimated, leading to a more robust parameter and phase noise
estimation of PSCs. As a result, the identification of PSs is considerably improved.

4.2. Large-Scale M-SBAS
The M-SBAS algorithm was designed for small-scale study areas. The reference
phase is represented by a single value per interferogram to account for spatially
long-wave phase contributions. This allows for a fast computation of the reference
phase for multi-master interferogram stacks, but is only applicable to study areas of
few square-kilometers in size.

In order to enable large-scale processing, the algorithm has to be adapted to sufficiently
account for spatial undulations in the long-wave phase contributions, such as the
atmosphere. This could be realized by implementing a spatial filter, as done in Hooper
et al. (2007), or by studying phase differences between triangulated PSCs as done in
Ferretti et al. (2001) and Kampes (2005). However, instead of changing the reference
phase estimation, we keep the structure of the original M-SBAS approach and adapt
it for large-scale problems in an alternative way. The study area is subdivided into
small patches and the algorithm is run within each of these patches (Figure 4.3), as
also done in Hou et al. (2021). An advantage of this approach is that the processing
can be easily parallelized. A necessary step after running the algorithm in each patch
is the spatial integration of the estimated parameters. The reason behind is that
these only represent relative values with respect to the average of the reference PSs
in each particular patch. Since we do not expect spatially correlated errors with
large magnitudes in modern DEMs and also no spatially correlated thermally induced
displacements, we here only integrate the estimated displacement rates. However,
the height and thermally induced displacement rates could be integrated analogously
to the method below. The estimated displacement rate of pixel 𝑖 in patch 𝑎 can be
expressed as

𝑣𝑎𝑖 = 𝑣
total
𝑖 − 𝑣ref,a, (4.10)
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Figure 4.3.: Flowchart of large-scale M-SBAS. The study area is partitioned into
small patches and M-SBAS is run separately in each patch. Afterwards, the estimated
parameters linear displacement rates 𝑣, height ℎ and thermally induced displacement
rate 𝛼 of identified PSs are integrated spatially.

where 𝑣total
𝑖

denotes the total displacement rate of the pixel including spatially long-
wave displacements and 𝑣ref,a the average total displacement rate of all reference PSs
in patch 𝑎. The goal is to derive 𝑣total

𝑖
by estimating and subtracting 𝑣a,ref from

𝑣𝑎
𝑖
. This is accomplished by estimating differences in 𝑣ref in a network of connected

patches and integrating them spatially by using the following weighted least-squares
approach

vref =
(
𝐴𝑇𝑊𝐴

)−1
𝐴𝑇𝑊Δvref, (4.11)

where vref denotes the vector containing the reference displacement rates of all patches,
Δvref the vector which contains the differences in vref between connected patches and
𝐴 the design matrix which describes the patch connections. 𝑊 contains weights of
the patch connections used for the integration. The integration is characterized by
a datum deficiency, which we handle by solving the integrating with regard to an
arbitrary patch. This means that 𝑣total can only be estimated with a constant offset
among all pixels. If there are reference pixels in the study area with ground truth
displacement rates, the estimated rates can subsequently be adjusted with regard
to these pixels. However, the goal of the integration is to remove discontinuities at
patch boundaries, while the absolute value of the displacement rates is not relevant at
this point. The modelled phases due to the estimated parameters are removed prior
to the subsequent unwrapping to remove small-scale phase variations, thus improve
the unwrapping performance. After the unwrapping, the phases are re-referenced
to PSs with known displacement time series (Section 4.5.1) and the parameters are
re-estimated with respect to these reference pixels.

There are different possibilities to estimate the differences in vref along the edges of
patch connections. A simple approach would be to subdivide the study area into
overlapping patches and calculate the averaged differences in estimated displacement
rates at common PSs in the patch overlaps (Hou et al., 2021). However, various
disadvantages characterize this approach. Pixels in the overlaps are examined multiple
times by the PSI algorithm, leading to dispensable computational cost. Furthermore,
the method does not work properly if there are disconnected patch groups without
common overlap PSs, as visualized in Figure 4.4 (a). In that case, the integration
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Figure 4.4.: Two possible approaches to estimate differences in displacement rates
between neighboring patches, which are needed for the parameter integration in
large-scale M-SBAS. (a) Difference estimation based on overlap PSs. The upper left
patch does not have common overlap PSs with neighboring patches, leading to a rank
deficiency in the integration problem. (b) Difference estimation based on differences
in the patch reference phases. No overlap is needed in this case.

becomes a mixed-determined inversion problem (Tarantola, 2005) and has to be
regularized with methods such as the truncated SVD or imposing a smoothness
constraint (Jónsson et al., 2002).

We implemented an alternative approach to estimate Δvref along patch connections,
which is not depending on overlapping patches. The approach estimates the differences
between patches on the basis of differences in their references phases, which have been
used before in M-SBAS to split off the spatially long-wave phase contributions in
interferograms (Sections 3.2 and 4.1). The reference phases are the averaged phases of
all reference PSs, thus comprise the phases due to the averaged displacement rate of
the reference PSs and overlaying stochastic noise. Consequently, the differences in the
reference phases between connected patches contain phases due to differences in their
vref. As a result, the differences in vref between connected patches can be estimated
analogous to the parameter estimation of single PSs in M-SBAS (Equations 3.9 and
3.10). The difference in the vref between patches 𝑎 and 𝑏, for example, is estimated
based on 𝑁 wrapped reference phase differences Δ𝜙ref,𝑎,𝑏 using

Δ𝑣ref,𝑎,𝑏 = argmax
𝑣

𝛾(𝑣), with

𝛾(𝑣) = 1

𝑁

����� 𝑁∑︁
𝑛=1

exp
(
𝑗Δ𝜙ref,𝑎,𝑏

)
exp

(
𝑗
4𝜋

𝜆
𝜏𝑛𝑣

)�����2 . (4.12)

The estimation is implemented analogously to the parameter estimation in M-SBAS,
i.e., with dedicated small-baseline interferogram subsets. As a result, this approach
represents a consistent modification of M-SBAS and was easily integrated into the
algorithm. In practice, each patch is connected to its eight nearest patches and the
differences in vref along each edge are estimated. The a-posteriori coherence of the
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Figure 4.5.: Results of the large-scale M-SBAS simulation study. (a) Linear dis-
placement field of 10000 simulated PSs in a study area of 10 km × 10 km. (b)-(c)
Estimated linear displacement rates of identified PSs before and after the integration,
respectively. The black lines represent the borders between separated patches. (d)
Differences between estimated and true linear displacement rates.

residual reference phase differences along the edges are estimated and used as weights
in the parameter integration.

We tested the proposed large-scale M-SBAS algorithm in a simulation study. We
simulated 10000 PSs with SCR values between 1.5 and 10, whose occurrence was
described by an exponential distribution, in an area of 10 km × 10 km and 50 SAR
scenes with a revisit time of 6 days. The sensor and acquisition characteristics of the
Sentinel-1 mission were realized, i.e., a radar wavelength of 5.5 cm and a pixel size
of 2m in ground range and 14m in azimuth. As for the simulation study in Section
4.1, the tropospheric delay was simulated as spatially correlated with the power-
law characteristics described in (Hanssen, 2001) using the software SyInteferoPy
by Gaddes et al. (2019). The mean of the tropospheric delay was drawn from a
uniform distribution in the range [−𝜋, 𝜋] for each SAR acquisition. We only studied
the identification of PSs and the estimation and integration of the estimated linear
displacement rate. For this purpose, a linear displacement field was simulated which
is characterized by a blob with large displacement rates of up to 30mm/yr in the
center of the scene, an overlaying spatial trend as well as small individual deviations
at each PS (Figure 4.5 (a)). No heights and thermally induced displacement rates
were simulated. The results of large-scale M-SBAS applied to the simulated data are
displayed in Figure 4.5. The patch size was set to 2 km× 2 km, resulting in 25 patches.
More than 97 % of the simulated PSs were identified by the algorithm. The overlooked
PSs were the ones with the lowest simulated SCR. The estimated linear displacement
rates featured large discontinuities at the patch borders prior to the integration,
which were removed after the parameter integration. The estimated displacement
field represents a reasonable estimation of the true simulated displacement field. The
differences between true and estimated displacement field are normally distributed
with a standard deviation of 1.6 mm/yr and feature a slight spatial trend. The spatial
trend in the differences was caused by incidental temporal correlations in the simulated
tropospheric delays. As stated before, long-wave residuals are not diminishing the
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performance of the method at this point because they do not affect the unwrapping.
They are estimated and reduced after the unwrapping (Sections 4.4 and 4.5).

4.3. M-SBAS-2-StaMPS
The M-SBAS algorithm does not include phase unwrapping of identified PSs. In most
geoscientific cases, however, it is preferable to estimate their full displacement time
series instead of only displacement rates. This enables the study of the temporal
evolution and nonlinear displacements. We extended the algorithm to a full PSI
algorithm, including phase unwrapping, by integrating it into the StaMPS software
environment. This is why the adapted algorithm is referred to as M-SBAS-2-StaMPS.

The first part of M-SBAS-2-StaMPS is the data import of the M-SBAS results into
the StaMPS software environment. The data import was implemented in the way that
no StaMPS functions had to be adapted. The estimated parameters of the selected
PSs and additional metadata of the data stack and the PSs are saved into the StaMPS
Matlab format. Additionally, the complex interferometric measurements of the PSs
are saved in a Matlab file. The interferogram network, which is used from this point
on, can be selected freely, e.g. as single-master network or small-baseline network
with specific baseline thresholds. The master acquisition is selected to be the scene
with the lowest estimated mean phase variance, which is estimated at the end of the
original M-SBAS approach in each patch. After the M-SBAS import into StaMPS,
the full functionality of StaMPS is available. This also includes StaMPS add-ons like
the Toolbox for Reducing Atmospheric InSAR Noise (TRAIN) toolbox (Bekaert et al.,
2015b) which features various tropospheric correction methods.

StaMPS provides different two- and three-dimensional unwrapping approaches, which
are described in Hooper et al. (2004) and Hooper and Zebker (2007). The default
unwrapping algorithm for PS time series is a stepwise three-dimensional unwrapping
algorithm which first unwraps the data in the time dimension and subsequently
optimizes the initial unwrapping solution in the two spatial dimensions. The spatial
unwrapping makes use of the Statistical-Cost, Network-Flow Algorithm for Phase
Unwrapping (SNAPHU) which was described in Chen and Zebker (2001). The phases
have to be gridded onto a regular grid prior to the phase unwrapping with SNAPHU.

It is preferable to reduce spatially uncorrelated phase contributions from the interfer-
ometric observations prior to unwrapping in order to spatially smooth the phases to
be unwrapped, thus improve the unwrapping performance. The phase contribution
can be added back after unwrapping for a final parameter estimation. The different
assumption of the spatial correlation length of displacements is one of the fundamental
differences between M-SBAS and StaMPS. In StaMPS, spatial correlation in displace-
ments is assumed, so only the residual height of PSs is estimated and reduced prior
to unwrapping. In contrast, displacements are not required to be spatially correlated
in M-SBAS and linear displacement rates of PSs are estimated. We implemented the
reduction of the phases due to all estimated parameters in M-SBAS, i.e., the residual
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Figure 4.6.: Flowchart of the proposed M-SBAS-2-StaMPS algorithm.

height, linear displacement rate and thermally induced displacement rate, prior to the
phase unwrapping. The residual phase 𝜙res is

𝜙res = 𝑊
{
𝜙 − 𝜙ℎ − 𝜙𝑣 − 𝜙𝛼

}
= 𝑊 {𝜙nlin + 𝜙atmo + 𝜙orb + 𝜙noise} , (4.13)

where 𝜙nlin denotes the phase due to nonlinear displacements. The phase due to the
estimated linear displacement rate is added back after the unwrapping to have the
full displacement time series of PSs.

In the following sections, two approaches to decrease the uncertainty of the unwrapped
displacement time series in large-scale applications are covered. This first consists
of the modelling of different large-scale phase noise contributions and secondly of
a covariance-based reference integration method for the estimation of residual SCN.
The flowchart of the full approach is displayed in Figure 4.6.

4.4. Modelling of Phase Noise
Phase noise affects the performance of InSAR-based displacement monitoring [, as
described in Section 2.3 and 3.1]. Relevant SCN contributions are tropospheric and
ionospheric delays [...], orbital errors [...] and surface displacements which are not
the target in the specific displacement monitoring. The latter include tidally induced
displacements [...], plate motions [...] and possibly displacements due to atmospheric
pressure loading and pole tides. Even if phase variations of these effects are negligible
across the studied area, their absolute offsets in interferograms can lead to significant
phase ramps in ground range direction due to the mapping onto the local LOS.

We implemented the modelling of three phase noise terms in addition to the existing
functionality in StaMPS. They include an improved tropospheric delay modelling
based on the ERA-5 weather reanalysis, as well as the consideration of tidally induced

39



4. Integrating M-SBAS into Robust Large-Scale PSI

displacements and tectonic plate motions. They are described in the following
subsections. The estimation of orbital errors is not considered as their impact for
MT-InSAR has significantly decreased for new satellite missions like Sentinel-1 and
TerraSAR-X, compared to older missions, due to more precise orbit measurements
with on-board GPS receivers. Fattahi and Amelung (2014) reported maximum orbital
uncertainties of 0.5 mm/yr 100 km−1 for TerraSAR-X and Sentinel-1. We also do not
consider the displacement signal due to atmospheric pressure loading and pole tides, as
we expect these to be insignificant for PSI. Ionospheric effects are also not estimated
here, even though they can have a significant impact on C-band and longer-wavelength
SAR interferometry. Liang et al. (2019) showed that ionospheric effects on MT-InSAR
can be strong for ascending data acquired in low-latitude areas, while descending data
is largely unaffected. They mainly lead to long-wave phase trends, which can reach
up to several phase cycles over hundreds of kilometers. They can also lead to spatial
ramps in the estimated velocity field in the order of few mm/yr as result of temporal
correlations. Methods to account for the ionosphere are the range split-spectrum
method (Rosen et al., 2010; Gomba et al., 2016) and modelling based on TEC maps
(Eineder et al., 2011; Yunjun et al., 2022). The estimation of ionospheric effects is the
subject of future work. In this thesis, all unconsidered or insufficiently modelled phase
noise terms are summarized as residual noise and considered later in our strategy to
reduce residual SCN, described in Section 4.5.

4.4.1. Tropospheric Delay

The application of spatio-temporal filters to reduce SCN, which is mainly induced by
the tropospheric delay, has been replaced more and more by alternative methods. The
reasons behind are described in Section 3.1. The StaMPS add-on toolbox TRAIN
contains alternative state-of-the-art correction methods which are compared in Bekaert
et al. (2015b). It includes the correction of tropospheric delays based on numerical
weather models, spectrometer observations if available and phase-based approaches
assuming linear or power-law relationships between the phase and topography in the
study area.

The tropospheric delay modelling in TRAIN based on numerical weather models is
developed on integrating the modelled tropospheric phase delay along the zenith path
from the surface and back-projecting the integrated value onto the local LOS. The
assumption behind this simplified approach is that the troposphere is isotropic, which
is expected to be not always the case. For this reason, we implemented the method
proposed by Hu and Mallorquí (2019) which integrates the modelled delay along the
actual LOS of the satellite, avoiding modelling errors by anisotropic tropospheric
features. For this purpose, the weather parameters temperature 𝑇 , partial pressure of
dry air 𝑃 and water vapor partial pressure 𝑒 from the ERA-5 reanalysis are interpolated
onto integration points along the LOS path. The two-way tropospheric delay is then
modelled using the expression

𝜓atmo =
−4𝜋
𝜆

10−6
∫ rsat

rsurf

𝑛(r)𝑑r = −4𝜋
𝜆

10−6
∫ rsat

rsurf

𝑘1
𝑃

𝑇
+ 𝑘2

𝑒

𝑇
+ 𝑘3

𝑒

𝑇2
𝑑r, (4.14)
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where 𝑘1 = 0.776KPa−1, 𝑘2 = 0.716KPa−1, 𝑘3 = 3750K2Pa−1, rsurf the location of a
pixel on the Earth’s surface and rsat the satellite location. In practice, the integration
is only performed up to a maximum altitude which affects the relative tropospheric
phase delay. It is usually set to a maximum altitude of 30 km (Hu and Mallorquí,
2019). After the integration, the interferometric delays are computed by subtracting
the delays from master and slave scenes. Hu and Mallorquí (2019) showed that their
proposed method improves the performance of the delay modelling based on numerical
weather models, especially in areas with large topography gradients.

4.4.2. Tidally Induced Displacements

Tides are caused by gravitational forces of the moon and sun as well as orbiting-
induced forces. Solid earth tides (SETs) describe the resulting elastic deformation of
the solid Earth’s surface, while ocean tides describe the water redistribution of the
oceans. Ocean tides do not have direct impact on InSAR, but the mass redistribution
also leads to deformations of the solid Earth’s surface. This effect, which is strongest
in coastal areas, is called ocean tide loading (OTL). Both considered effects can have
an impact on InSAR analyses, depending on the location and the size of the study
area (Dicaprio and Simons, 2008; Parizzi et al., 2021; Peng et al., 2020).

We implemented a phase correction method to account for both considered kinds
of tidally induced displacements. The SET and OTL induced displacements in the
interferograms are modelled based on the programs solid (Milbert, 2018) and SPOTL
(Agnew, 2012), respectively. The modelled 3D tidal displacements dtide are projected
onto LOS of the SAR satellite, described by the LOS unit vector elos

𝑑tide,los = dtide · elos, (4.15)

converted to phase and finally removed from the interferograms.

4.4.3. Tectonic Plate Motions

Earth’s tectonic plates are characterized by rigid motion which can be described by a
rotation about a pole, called Euler pole, with angular rotation rates in the order of
a degree per million years (Bullard et al., 1965; D. P. McKenzie and R. L. Parker,
1967). The resulting plate velocity varies over large SAR swaths due to varying
distances to the pole. As for the tidally induced displacements, the projection of
the velocities onto the LOS leads to additional phase ramps in interferograms along
the ground range direction, even if the velocity variations within a swath are small.
Bähr et al. (2012) and Stephenson et al. (2022) showed that plate motions can lead
to spatial ramps in InSAR-derived velocity fields of several millimeters per year over
hundreds of kilometers. As we are interested in intraplate displacements, we consider
this signal as noise and want to subtract it from the InSAR observations.

The interferometric phases due to plate motion can be modelled using Euler pole
information from the International Terrestrial Reference Frame 2014 plate motion
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model (Altamimi et al., 2017) or the NNR-MORVEL56 model by Argus et al. (2011),
for example. The linear velocity vector v𝑝 (r) due to plate motion at any point r on a
plate can be derived as (Stephenson et al., 2022)

v𝑝 (r) = 𝜔 × r, (4.16)

where 𝜔 denotes the angular velocity vector in the Earth-centered, Earth-fixed reference
frame and × the cross product. This velocity vector is transformed into the local
east-north-up system at r, projected onto the LOS of the satellite and finally used to
calculate and subtract interferometric phases.

4.5. Reference Integration for Spatially Correlated
Noise Estimation

Residual SCN persists in interferograms due to insufficient noise modelling and
unconsidered noise signals. The former can be due to the limited performance of
numerical weather models based tropospheric delay modelling, which is depending
on the location of the study area (Liu et al., 2009; Cong et al., 2018). It decreases
with decreasing latitude, decreasing topography in the study area and increasing
proximity to the coast due to higher water vapor content and variability in the
atmosphere.Unconsidered noise signals have been listed in Section 4.4.

Various strategies have been proposed to account for SCN in interferograms or
estimated displacement fields. One approach is to fit and subtract linear or quadratic
spatial functions (Pritchard et al., 2002; Fournier et al., 2011), but this is not applicable
if large-scale displacements are of interest. Alternatively, ground truth or reference
displacement measurements such as from GNSS can be exploited to constrain the
noise (Argus et al., 2005; Lundgren et al., 2009; Parizzi et al., 2020; Neely et al., 2020;
Xu et al., 2021; Liu et al., 2022). The idea is to sample the SCN at the reference pixels
with known displacement time series, interpolate it onto the PS locations and subtract
the interpolated noise screen from the observations. In Argus et al. (2005), Neely
et al. (2020), and Liu et al. (2022), the sampled SCN in interferograms is interpolated
using surface fitting, while nearest neighbor interpolation is used in Xu et al. (2021).
We adapt the general approach by interpolating the noise, taking its spatial statistics
into account. The approach shares the basic idea of the covariance-based InSAR and
GNSS fusion method presented in Parizzi et al. (2020). Their method, however, is
used to calibrate estimated displacement rates with GNSS measurements, taking the
spatial statistics of the displacement rate error into account. Our approach aims at
reducing SCN in single interferograms, thus reducing the uncertainty in derived PS
displacement time series. In the following, we assume that a phase-to-displacement
conversion has already been carried out in the interferograms.
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Figure 4.7.: Flowchart of the reference integration for residual SCN noise estimation
in interferograms.

4.5.1. Method Description

As introduced in Section 2.5, reference pixels are necessary in InSAR in the first place
to resolve the unknown phase ambiguity of interferograms. In the standard approaches,
the displacement of one reference pixel or the average of several is subtracted from
the interferograms, leading to relative displacements with regard to these reference
pixels (Hooper et al., 2007). This is why it is desirable to select reference pixels which
are presumably stable in the study period or whose displacement time series has
been estimated a-priori by means of alternative geodetic methods such as GNSS. In
the latter case, the InSAR estimates can be transformed into an absolute terrestrial
reference frame using datum connection (Mahapatra et al., 2018). In case that there
are several reference pixels with ground truth (or assumed) displacement time series
and distributed across the study area, they can be exploited to estimate the residual
SCN screen in interferograms.

The flowchart of our proposed method to correct for residual SCN in single interfero-
grams is displayed in Figure 4.7. The first step is to sample the unknown interferogram
SCN at reference pixels with known displacement time series. The ground truth dis-
placement 𝑑gt

𝑛𝑘
of reference PS 𝑘 in an interferogram 𝑛 can be computed by subtracting

the PS’s ground truth position r𝑘 (𝑡) at the involved acquisitions 𝑡𝑛0 and 𝑡𝑛1 and
projecting it onto the LOS of the SAR satellite:

𝑑
gt
𝑛𝑘

= [r𝑘 (𝑡𝑛0) − r𝑘 (𝑡𝑛1)] · elos. (4.17)

The SCN screen 𝑟𝑛𝑘 in the interferogram can then be sampled by calculating the resid-
uals between the ground truth displacement and the interferogram LOS displacement
𝑑PSI
𝑛𝑘

at that position:
𝑟𝑛𝑘 = 𝑑

PSI
𝑛𝑘 − 𝑑gt

𝑛𝑘
. (4.18)

In case of GNSS stations used as reference, the residuals are commonly calculated
between their displacement and the mean displacement of PSs located in a radius
around. If presumably stable regions are selected as reference, it is assumed that
𝑑

gt
𝑛𝑘

= 0, thus that the interferogram observations of PSs located in these regions equal

43



4. Integrating M-SBAS into Robust Large-Scale PSI

the residual SCN. The unevenly sampled SCN is then interpolated, taking its spatial
statistics into account, in order to get an estimate of the SCN screen 𝑟𝑛 at each PS
location. The variance-covariance matrix 𝐶ref of the sampled SCN at 𝐾 reference
pixels has to be estimated for this purpose, which is defined as

𝐶ref = diag
{
𝜎2

gt,1, ..., 𝜎
2
gt,𝐾

}
+ diag

{
𝜎2

PSI,1, ..., 𝜎
2
PSI,𝐾

}
+ 𝐶scn (xref, xref) , (4.19)

where 𝜎2
gt,𝑘 and 𝜎2

PSI,𝑘 denote the variances of the ground truth and PSI derived
displacements, respectively, and 𝐶scn the covariance of the SCN at the reference PSs
xref. We implicitly assume in this definition that the variances 𝜎2

gt and 𝜎2
PSI are

independent and not spatially correlated. The ground truth variance depends on
which kind of reference is used. In case of GNSS stations being used as reference,
the ground truth variance 𝜎2

gt is the variance of their displacement estimates. In
contrast, the ground truth variance can be assumed to be zero if regions are selected
as reference which are presumably stable during the study period. The variance of
the PSI derived displacements of the reference PSs used to calculate the residuals
between the ground truth and the PSI results (Equation 4.18) can be estimated by
means of their estimated temporal coherence [, e.g. by applying Equation 2.31].

The covariance estimation of the residual SCN is carried out under the assumption
of spatial stationarity after the subtraction of modelled tropospheric delays and
tidally induced displacements. The same assumption was also made in Gonzalez et al.
(2018) and Parizzi et al. (2020). In this case, the covariance matrix 𝐶scn(𝑖, 𝑗) is only
depending on the distance Δ𝑖 𝑗 between PS pixels 𝑖 and 𝑗

𝐶scn(𝑖, 𝑗) = 𝐶scn(Δ𝑖 𝑗 ), (4.20)

and can be described by the variogram Γ(Δ𝑖 𝑗 ). In general, the number and spatial
distribution of reference pixels across the study area are too poor for a robust estimation
of the SCN variograms. Instead, we average variograms between all available PS
pixels in many interferograms with small temporal baselines. The average variogram
is automatically fitted with a variogram model, which represents the mean covariance
of the SCN in all interferograms. Interferograms with small temporal baselines are
used to minimize displacement induced phases of examined PS pixels which do not
belong to the set of reference pixels. The residual SCN is expected to be on the order
of the magnitude of a centimeter, thus to constitute the dominant signal in such
small-baseline interferograms. For the short revisit times of modern SAR satellites,
which are down to six days in case of Sentinel-1, displacement rates would have to
reach several decimeters per year to affect the variogram calculation of the SCN
(Parizzi et al., 2020). The impact of potential high-magnitude displacement events on
short time scales is suppressed by averaging variograms of several interferograms.

The sampled SCN can be interpolated onto the PS locations using ordinary kriging
as soon as its variance-covariance matrix has been estimated. The kriging method
is, however, referred to as error cokriging since the measurement variances of the
sampled SCN are considered in 𝐶ref (Chilès and Delfiner, 2012; Chilès and Desassis,
2018). The goal of the kriging interpolation is to invert the weights of the sampled
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SCN at each reference PS for the interpolation at each other PS location, taking its
variance-covariance matrix into account. We refer to the locations to be interpolated
as query points. The kriging system for the interpolation at query point 𝑥0 is given
by:

(𝐶ref − 𝜇I)w = 𝐶scn (xref, 𝑥0)
𝐾∑︁
𝑘=1

𝑤𝑘 = 1,
(4.21)

where 𝜇 denotes the Lagrange multiplier, I the identity matrix, w the weight vector
for the interpolation at pixel 𝑥0 and 𝐶scn (xref, 𝑥0) the covariance model evaluated at
the distances between all reference PS pixels xref and 𝑥0. The Lagrange multiplier
and the weights are simultaneously inverted by means of a least-squares inversion.

The interpolation is a linear combination of the weighted sampled SCN

𝑟𝑛 (𝑥0) =
𝐾∑︁
𝑘=1

𝑤𝑘𝑟𝑛𝑘 . (4.22)

The interpolated SCN screen 𝑟𝑛 is finally subtracted from the interferograms to get
the adjusted displacements 𝑑PSI,adj

𝑛 :

𝑑
PSI,adj
𝑛 = 𝑑PSI

𝑛 − 𝑟𝑛. (4.23)

One of the advantages of the proposed method, besides considering the spatial statistics
during interpolation, is that the prediction variance-covariance of the interpolation is
known. The variance is given by

𝜎2
ck(𝑥0) = 𝐸

{
(𝑟𝑛 (𝑥0) − 𝑟𝑛 (𝑥0))2

}
= 𝜇 + 𝐶scn(0) − w𝑇𝐶scn (xref, 𝑥0) (4.24)

and depends on the location of 𝑥0 with regard to the reference pixels, the covariance of
the SCN and the variances of the sampled SCN. For increasing measurement variances
𝜎2

gt +𝜎2
PSI at all reference pixels with regard to the covariance of the SCN, the weights

of the reference pixels increasingly align at each query point. In the special case that
the measurement variance is similar at all sample points and much larger than the
covariances of the SCN, the interpolation approaches the mean of all 𝐾 samples with
estimation variance (𝜎2

gt + 𝜎2
PSI)/𝐾 at each query point.

The prediction covariance between query points 𝑥0 and 𝑥1 with weight vectors w0 and
w1 and Lagrange multipliers 𝜇0 and 𝜇1 is

𝐶ck(𝑥0, 𝑥1) = 𝐸 {[𝑟𝑛 (𝑥0) − 𝑟𝑛 (𝑥0)] [𝑟𝑛 (𝑥1) − 𝑟𝑛 (𝑥1)]}
= 𝜇1 + 𝐶scn(Δ𝑥0𝑥1) − w1

𝑇𝐶scn (xref, 𝑥0)
= 𝜇0 + 𝐶scn(Δ𝑥0𝑥1) − w0

𝑇𝐶scn (xref, 𝑥1) .
(4.25)

The equation elucidates that the residual noise in interferograms after subtraction of
the interpolated SCN screens 𝑟𝑛 is no longer stationary, but has a covariance which
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is depending on the particular location of the considered pixels with regard to the
reference PSs.

The consideration of the uncertainty propagation of the sampled SCN in the proposed
referencing method allows to give an approximation of the final covariance matrix of
the PSI derived displacement results of all 𝐿 pixels:

𝐶final = diag
{
𝜎2

PSI,1, ..., 𝜎
2
PSI,𝐿

}
+ 𝐶ck (4.26)

where 𝐶ck is the prediction variance-covariance matrix of the error cokriging. We refer
to the diagonal of this matrix as the estimated displacement variance �̂�2

𝑑
= 𝜎2

PSI + 𝜎
2
ck.

The variances 𝜎2
PSI could again be approximated based on the estimated coherence

of the pixels, for example. However, it has to be kept in mind that phase deviations
from the functional model assumed in the PSI phase noise estimation step [(Section
3.1)] lead to inaccuracies in the coherence estimation. Further inaccuracies in 𝐶final
are unconsidered unwrapping errors, a falsely assumed stationarity of the residual
SCN and insufficient modelling of the spatial covariance based on the mean variogram
of small-baseline interferograms.

In case that displacement rates 𝑣 are estimated by means of a least-squares inversion,
the variance of the displacement estimation can be used to derive the variance of the
rate estimation 𝜎2

𝑣 for each pixel using the following expression:

�̂�2
𝑣 =

(
𝐴𝑇 �̂�−2

𝑑 𝐴

)−1
, (4.27)

where 𝐴 denotes the design matrix of the inversion which contains the temporal
baselines of the interferogram network. Note that no temporal covariance is estimated
and included in the stochastic model. The variance of the displacement rate estimation
is underestimated when temporal correlations persist in the residual SCN.

4.5.2. Simulation Study

We conducted a simulation study to test the applicability and performance of the
proposed method. We simulated randomly distributed PSs characterized by variable
phase noise in 30 interferograms covering an area of 100 km× 100 km. The wavelength
was set to 5.5 cm in order to simulate a C-band SAR system like Sentinel-1. The
atmospheric delay was again simulated as temporally uncorrelated and spatially
correlated with the power-law characteristics described in Hanssen (2001) with a
standard deviation of 3 cm at the longest wavelengths, using the software SyInteferoPy
(Gaddes et al., 2019). No displacements were simulated in the interferograms.

An example of a simulated interferogram is displayed in Figure 4.8 (a). It mainly
consists of spatially correlated atmospheric noise with amplitudes of up to 3 cm and to
a much smaller degree of individual pixel noise. The single variograms and the mean
variogram of the simulated interferograms are plotted in Figure 4.8 (b). The single
variograms are characterized by increasing variogram values with increasing distances
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Figure 4.8.: (a) Example of a simulated interferogram mainly consisting of spatially
correlated atmospheric noise. The black dots represent the reference PSs used for
the SCN interpolation example shown in Figure 4.9. (b) Single variograms and mean
variogram of the interferograms of the simulation study in Section 4.5.2.

and almost all asymptotically approach a flat level which is usually referred to as
sill. The mean variogram represents the estimated average covariance characteristics
of the interferogram noise, even if there are variograms with much higher values
at all distances. As stated before, we want to reduce the impact of possible short-
time displacements with high amplitudes in practice by averaging variograms of
small-baseline interferograms.

An exemplary set of interpolations of the sampled SCN in the interferogram in Figure
4.8 (a) and the associated prediction variances are displayed in Figure 4.9 for different
ground truth variance scenarios. The results in Figure 4.9 (a)/(d) and (b)/(e) are
based on the interpolation of the sampled SCN with the ground truth variance of all
reference pixels set to 𝜎2

gt = 0 and 𝜎2
gt = 1 cm2, respectively. The subfigures (c)/(f)

display the results of the last interpolation run when the ground truth variance was
set to 𝜎2

gt = 2 cm2 for half of the reference pixels and 0 cm2 for the others. The
interpolation results in (a) are a proper prediction of the true atmosphere in Figure
4.8 based on the set of reference PSs. The prediction variance is overall low and
obviously lowest in the vicinity of references. The interpolation results in (b) represent
a worse prediction, which is smoothed compared to the results in (a). The prediction
variance is overall larger compared to those in (d), also in the vicinity of the reference
PSs. The reason behind is the large ground truth variance at all reference PSs which
leads to similar interpolation weights of all references at each query location, i.e. an
interpolation result similar to the mean of the sampled SCN. The results of the last
simulation run represent a combination of the former two. The interpolation results
represent a good prediction of the true simulated atmosphere near the reference PSs
with zero ground truth variance, whereas they are strongly smoothed in the southern
part of the study area where a large ground truth variance of the reference PSs
was simulated. This is also visible in the prediction variance, which is low near the
reference PSs with zero ground truth variance and large in the southern part of the
area.
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Figure 4.9.: (a)-(c) Interpolated SCN of the simulated interferogram shown in Figure
4.8 with different ground truth variance scenarios. The size of the black dots indicates
the ground truth variance of the particular reference pixel. (d)-(f) Prediction variances
of the scenarios in (a)-(c).

In order to compare the proposed method to existing referencing methods, we calcu-
lated the root-mean-square error (RMSE) of the different predictions of the SCN in
the interferograms as function of the number of reference PSs and two ground truth
variance scenarios. The referencing methods are: referencing to the sampled SCN
at a single reference PSs, to the mean sampled SCN, referencing based on quadratic
polynomial surface fitting of the sampled SCN (Neely et al., 2020) and our proposed
referencing method using error cokriging interpolation. The ground truth variances
were simulated as 𝜎2

gt = 0 and 𝜎2
gt = 1 cm2 for all reference PSs in the two scenarios.

The results are displayed in Figure 4.10. The RMSE is largest for the single PS
referencing in both scenarios. The RMSE of the mean referencing is approximately
9.5mm in both scenarios and for all tested numbers of reference PSs. The RMSE of
the surface fit is large for a small number of reference PSs but decreases with increasing
number of reference points and approaches about 8 mm in both scenarios. The RMSE
of our proposed method is lowest in both scenarios. It decreases to less than 5mm
and about 6mm, respectively, at a reference PS number of 120, corresponding to an
improvement of 40% and 25% compared to the surface fitting approach. It can be
seen that the RMSE of our proposed method is increased in the second scenario, since
the ground truth variance of all reference PSs is in the same order as the covariances
of the SCN at large distances. As stated before, the kriging interpolation approaches
the mean with increasing ground truth variances of all reference PSs.
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Figure 4.10.: (a) Comparison of the RMSE of the SCN prediction in all simulated
interferograms for different referencing methods as function of the number of reference
PSs and a ground truth variance of 𝜎2

gt = 0 for all reference PSs. (b) Same as (a)
with 𝜎2

gt = 1 cm2 for all reference PSs. The referencing methods are referencing to
the sampled SCN at a single reference PS (Sinlge PS), to the mean sampled SCN
(Mean), referencing based on quadratic polynomial surface fitting of the sampled SCN
(Neely et al., 2020) (Surface) and our proposed referencing method based on kriging
interpolation (Kriging).

The proposed referencing method shows a superior performance in the simulation
study with regard to the compared referencing methods. In the following, a real data
study is carried out to test and compare the proposed method with a real Sentinel-1
SAR data stack.

4.5.3. Real Data Study

For the real data study, we used 30 Sentinel-1 SAR scenes acquired in ascending orbit
over the northwestern part of the Vietnamese Mekong Delta (Figure 6.1 (b)). The study
area is about 100 km×80 km and characterized by several large solid rock outcrops being
embedded in the sedimentary delta. We applied the M-SBAS-2-StaMPS algorithm to
the data stack and corrected the interferograms for modelled tidal displacements and
tropospheric delays (Section 4.4). Variograms of LOS phases, which were converted
to displacements in interferograms with short temporal baselines, before and after
the correction are displayed in Figure 4.11. It can be seen that variogram values at
large distances are reduced in some interferograms, but the mean variogram is not
improved considerably at most distances. It is 5.8 cm2 and 5.56 cm2 at 80 km without
and with correction, respectively. There is a considerable variogram gain provided by
the corrections at larger distances so that the mean variogram is 8.2 cm2 and 5.9 cm2

at 90 km, respectively. Still, the corrections do not reduce the uncertainty at large
distances to a reasonable magnitude. The reason behind is probably a low performance
of the atmospheric delay modelling based on the ERA-5 model due to the low-latitude
location of the study area, direct connection to the sea and flat topography, leading
to a high water vapor variability in the troposphere.
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Figure 4.11.: Empirical variograms of interferograms with short temporal baselines,
described in Section 4.5.3, prior to (a) and after (b) correction of modelled tidal and
atmospheric noise.

We compared our proposed method to reduce residual SCN in the interferograms with
the mean and surface referencing methods. For this purpose, we assumed that the
solid rock outcrops are stable in the considered time series and selected PSs on them
as reference PSs with presumably zero displacements 𝑑gt(𝑡) = 0 and zero ground truth
variance 𝜎2

gt = 0. The spatial distribution of reference pixels was good in north-south
direction, while quite bad in east-west direction as a result of the location of the
solid rock outcrops. Variograms of interferograms with short temporal baselines after
applying the different methods were used for comparison. However, as the residuals
are no longer stationary after referencing (see Section 4.5.1), we only calculated
variograms between pairs of non-reference and reference PSs to get a measure of the
residual SCN as a function of the distance to reference PSs. The single and mean
variograms are displayed in Figure 4.12. The mean variogram after referencing to the
mean sampled SCN is 6.6 cm2 at 90 km, while there are single variograms reaching
up to 31 cm2 at large distances. The variograms after referencing based on quadratic
polynomial surface fitting of the sampled SCN(Neely et al., 2020) are on average
increased at most distances, compared to the variograms after referencing to the
sampled mean, and feature a hole effect, i.e. non-monotonic behavior. The mean
variogram approaches 9.3 cm2 at 90 km, while there are single variograms reaching
up to 67 cm2 at large distances. The mean variogram after applying our proposed
referencing method approaches about 2 cm2 at large distances, with single variograms
reaching up to 8.1 cm2.

In order to provide a proper quantitative comparison of the surface fitting and our
approach with regard to referencing to the mean sampled SCN, we use the mean
variogram gain from Parizzi et al. (2021)

𝐺 (Δ) = 10 log10

(
Γ̄(Δ)
Γ̄ref(Δ)

)
, (4.28)

where Γ̄(Δ) is the mean variogram at distance Δ after applying one of both former
methods and Γ̄ref the reference variogram which is in this case the mean variogram after
referencing to the mean sampled SCN. The mean variogram gain for the surface fitting
undulates between -1.5 and 4 dB but is positive at most distances. This indicates a
worse performance of the referencing based on quadratic polynomial surface fitting
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Figure 4.12.: Single and mean empirical variograms for pairs of non-reference and
reference PSs after interferogram referencing based on (a) the mean sampled SCN,
(b) quadratic polynomial surface fitting of the sampled SCN (Neely et al., 2020) and
(c) our proposed kriging interpolation. (d) Mean variogram gains of (b) and (c) with
respect to (a).

compared to referencing to the mean sampled SCN in the real data study. The reason
behind is probably the modest spatial distribution of the reference PSs across the
study area, leading to a bad conditioning of the quadratic polynomial fit. The mean
variogram gain of our proposed method is consistently negative with a negative trend,
reaching its minimum pf −7.6 dB at 78 km. This indicates a superior performance of
our proposed method over the compared ones.

Residual SCN in interferograms might not only be spatially correlated but also
temporally correlated, propagating into the estimation of displacement rates of PSs.
In order to study this, we compared the RMSE of the estimated displacement rates
at reference PSs in the solid rock outcrops, which are presumably stable in the study
period, for the different methods. It is 2.8 mm/yr for referencing to the mean sampled
SCN, 2.1mm/yr for the surface fitting approach and 1.4mm/yr for our proposed
approach. Consequently, there is indeed residual SCN in the interferograms which is
not only spatially but temporally correlated and most effectively mitigated by our
approach. The proposed method leads to reduced uncertainty in the displacement
time series of PSs and to a correction of noise in the estimated displacement rates as
well.

4.6. Conclusion
In this chapter, extensions of M-SBAS were presented which integrate the approach
into robust large-scale PSI. At the beginning of the chapter, an improved estimation
of long-wave phase contributions in multi-master interferograms of small spatial size
was presented. We showed on the basis of a simulation and a real data study that
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the proposed method improves the estimation of long-wave phase contributions in
interferograms considerably up to a standard deviation of the displacement rates of
reference PSs of 15 mm/yr. The latter scenario is unlikely to occur in real applications
with study area sizes of few square-kilometer. The coherence estimation of PSCs is
significantly improved by means of the proposed method, thus the PS identification.
This way, the applicability of the approach is extended to areas which are characterized
by diverging displacements and to rural areas where only few PSs are located in.

Subsequently, the expansion of M-SBAS to large-scale areas was described, which
is based on running the algorithm in small spatial patches and merging the results
afterwards. Integrating the estimated displacement rates spatially across all patches is
necessary for the latter step. The integration is implemented as a weighted least-squares
adjustment in a network of connected patches. For this purpose, the displacement
differences along the connecting edges have to be determined, which is carried out
on the basis of the interferogram reference phases, which represent long-wave phase
contributions of the patches. We tested the proposed large-scale M-SBAS algorithm
in a simulation study. Nearly all simulated PSs were identified, and the simulated
displacement field could be properly estimated.

An essential part of full PSI approaches which are applied for geoscientific research is
phase unwrapping, which is necessary to derive displacement time series of identified
PSs. The original M-SBAS approach was developed to study small-scale urban
displacements and did not include phase unwrapping. We extended M-SBAS into a
full PSI approach by integrating the results into the StaMPS framework to make use
of its unwrapping algorithm.

At the end of the chapter, the focus was put on the minimization of SCN in interfero-
grams, which is especially relevant for large-scale displacement monitoring. The SCN
is the sum of various contributions. We implemented the subtraction of modelled
phase noise due to tropospheric delays, tidally induced displacements and tectonic
plate motions. The estimation and subtraction of ionospheric delays was not consid-
ered in this thesis and is the subject of future work. Afterwards, a covariance-based
integration method of reference pixels with known displacement time series to estimate
residual SCN in interferograms was proposed. The method is based on sampling the
residual SCN at the reference pixels and interpolating it onto the PS locations. Error
cokriging is applied for the interpolation, which considers the spatial covariance of
the sampled SCN. We compared the proposed method to alternative methods, which
aim at reducing SCNs by integrating reference pixels, in a simulation and a real data
study. Our proposed method showed superior performance of reducing residual SCN
over the compared methods in both studies. An additional advantage of the method
is that the prediction (co)variance of the interpolation is provided, which can be used
to estimate the final subsidence time series (co)variance. A requirement for proper
performances of the method is a good distribution of reference pixels across the study
area.
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Physical changes of the land surface and changes in the acquisition geometry can cause
PSs to fade or appear in periods of the available SAR time series (Ferretti et al., 2004;
Perissin and Ferretti, 2007). Such scatterers are referred to as TPSs which are coherent
in one or several segments of the time series. Simulated amplitude and phase time
series of different kinds of TPSs are displayed in Figure 5.1. Fading TPSs fade during
the considered SAR time series, which could be caused by a teardown of a building,
while the construction of buildings on formerly natural surfaces can trigger appearing
TPSs. Visiting TPSs appear and fade during the time series, whereas recurring TPSs
repeatedly appear and fade, or vice versa. The latter could be periodically inundated
PSs in coastal and recurringly flooded areas.

It is desirable to integrate TPSs into PSI algorithms in order to establish flexible
displacement measurement systems which are able to handle land surface changes
during the time series, thus provide the best possible PSI-based measurement point
networks. It can be assumed that the number of TPSs increases with increasing
time series length as result of ongoing land surface changes, while the number of
continuously coherent PSs decreases. For this reason, the integration of TPSs into PSI
is a necessary add-on of PSI for long-term and continuous displacement monitoring,
which is increasingly in demand in times of SAR missions which were designed for
long-term operations, such as Sentinel-1.

In this chapter, the full integration of TPSs into the M-SBAS-2-StaMPS algorithm is
presented. The detection of TPSs and their change dates is based on the approach by
Hu et al. (2019). Subsequently, the initially estimated change dates are iteratively
refined during the phase noise estimation process, using a newly developed phase-
based change detection method. The phases of identified PSs and TPSs are jointly
unwrapped in a modified version of the unwrapping algorithm in StaMPS. At the end,
the temporal datum of those TPSs has to be re-defined whose coherent lifetime does
not cover the selected master scene. The proposed method is tested with a Sentinel-1
data stack acquired over city of Ca Mau, which is located in the VMD (see Figure
6.1) and affected by considerable land subsidence. The high construction activity in
the VMD makes the city a suitable test area for studying TPSs. At the end of the
chapter, the relevance of the TPS integration for long-term monitoring is examined
by analyzing the ratio of identified numbers of TPSs to PSs in Sentinel-1 time series
as a function of the covered time series length in two urban and two rural areas in the
VMD. Furthermore, the lifetime of identified TPSs is analyzed to study their actual
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Figure 5.1.: Simulated amplitude (a-d) and phase (e-h) time series of different types
of TPS: (a), (e) appearing TPS, (b), (f) fading TPS, (c), (g) visiting TPS, (d), (h)
recurring TPS. The red parts of the time series mark the coherent periods of the
pixels. © 2022 IEEE.

contribution to the geodetic observation network. This chapter includes material
which was published in Dörr et al. (2022a), marked in blue, and Dörr et al. (2022b),
marked in green.

5.1. Related Work
The identification of the coherent interval(s) of TPSs can be described as a change point
estimation problem. The change point estimation of Temporary Persistent Scatterer
Candidates (TPSCs) is a crucial part of incorporating TPSs into PSI algorithms
because it should be avoided to include noisy interferometric phase observations into
the parameter and coherence estimation. Various approaches have been proposed
to identify the coherent interval(s) of TPSCs based on the SAR amplitude and/or
phase. The motivation of using solely the amplitude time series is the assumption
that abrupt changes in the phase of a pixel correspond to abrupt changes in its
amplitude (Ferretti et al., 2004; Perissin and Ferretti, 2007). Compared to coherence
analyses, amplitude analyses do not depend on additional error-prone processing
steps and are computationally faster. Ferretti et al. (2004) applied a Bayesian step
detector assuming Gaussian statistics for the amplitude returns. Brcic and Adam
(2013) presented different parametric change point estimators for TPSs and concluded
that the Gaussian maximum-likelihood estimator was the most suitable among the
considered estimators regarding performance and speed. Ansari et al. (2014) used a
Bayesian TPS identification and change point estimation assuming that DS and PS
periods in amplitude time series follow Rayleigh and Rice distributions, respectively.
Dogan and Perissin (2014) detected change points in the TPS amplitude time series
using the analysis of variance (ANOVA) technique. Hu et al. (2019) applied a 𝜒2-test
for TPS identification and a stepwise F-test for change point estimation under the
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assumption that the DS and PS periods are characterized by significantly different
Rayleigh distribution parameters. The proposed F-Test showed more robust results
compared to ANOVA. A coherent change detection for PS and DS considering
amplitude and phase was presented in Monti-Guarnieri et al. (2018). Yang and
Soergel (2018) identified TPSs and their change date by splitting the time series in
different subsets, running a PSI algorithm for these and examining the differences in
phase coherence between the subsets. Zhang et al. (2011) chose an image-pair based
method in which they identify TPSs by means of pixel offset statistics.

The purpose of identifying TPSs and their change points includes change detection
(Ansari et al., 2014; Yang and Soergel, 2018; Monti-Guarnieri et al., 2018) and
increasing the PS density for displacement monitoring (Hu et al., 2019). For the
latter, the incorporation of TPSs into a PSI algorithm is necessary. Hu et al. (2019)
presented a method of incorporating TPSs into the integer least-squares algorithm
DePSI (Kampes and Hanssen, 2004) to jointly estimate the linear displacement rate of
PSs and TPSs. To our knowledge, there has not been any publication on incorporating
TPSs into a PSI approach [... including] unwrapping to receive displacement time
series.

5.2. TPS Detection
The TPS detection approach and initial change point estimation used in this work
was proposed by Hu et al. (2019) who test if parts of the amplitude time series of
SAR pixels can be described by different Rayleigh distributions. Even though the
amplitude of PSs can be best described by Rice distributions, it still is expected
that the amplitudes of incoherent and coherent periods of TPSs can be described by
Rayleigh distributions with significantly different Rayleigh parameters. Additionally,
the change point estimation of Rayleigh parameters within a time series is much
faster and less complex than identifying multiple segments following different Rice
and Rayleigh distributions within a time series, because the parameter estimation
of the Rice distribution is very costly (Brcic and Adam, 2013). The PDF of the
Rayleigh distribution is [... given in Equation 2.5]. The unbiased estimator of 𝜎2 for
an amplitude time series with 𝑀 independent observations is

�̂�2 =
1

2𝑀

𝑀∑︁
𝑚=1

𝐴2𝑚 . (5.1)

Hu et al. (2019) use a sequential F-test to find change points in a time series which
separate segments following different Rayleigh distributions. Given a pixel’s time
series of length 𝑀, the approach successively tests each acquisition 𝑚 as a potential
change point. The null hypothesis 𝐻0 is tested that the two segments follow the same
Rayleigh distribution against the alternative hypothesis 𝐻1 that they follow different
Rayleigh distributions. Under the null hypothesis, the ratio of the scale parameters 𝐹
follows a central F-distribution with 2𝑚 and 2𝑀 − 2𝑚 degrees of freedom. This is used

55



5. Fully Integrated Temporary Persistent Scatterer Interferometry

Figure 5.2.: Change point detection of a Sentinel-1 SAR pixel. (a) Normalized
amplitude time series. (b) F-Test for the whole time series with the threshold shown
as red line. A change point is identified and the time series is separated at that point
into two segments. (c) and (d) F-Test for the two segments. Another change point
is identified in the first segment. The last part of the change point estimation is
not displayed, in which the first segment is again separated into two sub-segments
which are searched for further change points. No further change points were identified.
© 2022 IEEE.

to compute the threshold 𝐹𝛼, given a significance level 𝛼, which has to be exceeded in
order that 𝐻0 is rejected, i.e. that this potential date is selected as change point:

𝐹 =
�̂�2
1

�̂�2
2

𝐻1
≷
𝐻0

𝐹𝛼 . (5.2)

If the F-Value series exceeds the threshold at more than one potential change point,
the date which yields the highest F-Value is selected as change point.

The test is a recursive test in order to enable the detection of multiple change points
in a time series. If a change point is detected, the time series is split at this point into
two smaller segments, which are then again searched for further change points. This
process is repeated until no further change points are detected. A pixel is selected as
TPSC if at least one change point has been detected in its time series.
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The procedure of the TPSC detection and change point estimation is displayed in
Figure 5.2 using the example of a real SAR pixel. The amplitude time series (Figure
5.2 (a)) can be visually segmented into three parts, in which the second part is
approximately located between the 90th and 154th acquisition and characterized by
an increased amplitude. The maximum F-value for the whole time series (Figure 5.2
(b)) is located at the 154th acquisition and above the threshold. As a result, this pixel
is classified as TPSC and the 154th acquisition is identified as the first change point.
The time series is split into two shorter segments at this change point and further
change points are searched in the two shorter segments with adapted thresholds
(Figure 5.2 (c), (d)). One more change point is identified in the first segment at
acquisition 92. The last iteration of the change point estimation is not shown in
Figure 5.2, in which the first segment was again split into two smaller segments and
these sub-segments were searched for further change points. No further change points
were identified in this example.

5.3. Incorporation of TPSs into the PSI Algorithm
The incorporation of the identified TPSs into our PSI algorithm is described in the
following. The flowchart of the proposed method is shown in Figure 5.3. The main
parts are the parameter estimation of TPSs, the phase-based change date refinement,
the joint unwrapping of PSs and TPSs and the phase inversion and temporal datum
reformulation for certain TPSs.

5.3.1. Parameter Estimation

The parameter estimation of a TPS based on periodograms (Equation 3.9) must be
limited to the interferograms inside the TPS lifetime. In order to efficiently estimate
the parameters of PSs and TPSs jointly, we introduce a weight 𝑤 into the periodogram
[(Equation 3.9)], as done in (Perissin and Wang, 2012):

𝛾(𝑘∗𝑟 ) =
1

𝑁

����� 𝑁∑︁
𝑛=1

𝑤𝑛 exp ( 𝑗𝜙) exp
(
𝑗𝜔

(𝑘)
𝑛 𝑘∗𝑟

)�����2 . (5.3)

The weight is zero for interferograms outside and one for interferograms inside the
lifetime of TPSs.

5.3.2. Change Point Refinement

The change point estimation solely based on amplitude statistics can be inaccurate.
We found that the amplitude-based F-Test sometimes detects the construction start
of new buildings as appearing date, while the coherent lifetime of TPSs on those
buildings begins with the completion of the buildings. An example of a falsely
estimated change point of an appearing TPS is displayed in Figure 5.4. The TPS is
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Figure 5.3.: Flowchart of the proposed method to fully integrate TPSs into the PSI
approach. © 2022 IEEE.
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Figure 5.4.: Visualization of the need to refine the initial change point estimation at
the example of a TPS in a development area in Ca Mau City, Vietnam. (Top Row)
Optical imagery of the development area. The left image was acquired before the
construction start in 2018, the center image in 2018 during constructions and the right
image in 2019 after completion of the constructions. (Upper Center Row) Amplitude
time series of a TPS pixel in the development area. The red line indicates the location
of the change point estimated by the F-Test. (Lower Center Row) Interferometric
phases of the TPS between temporally sequential SAR acquisitions. The red line
indicates the location of a change point detected using the phase-based likelihood
ratio test (LRT). (Bottom) Test statistic of the phase-based LRT for change point
detection. Imagery data: Google Earth, © 2021 Maxar Technologies. © 2022 IEEE.

located in a development area which was in construction during 2018 and finished
in late 2018. The change point estimated by the amplitude-based F-Test is located
at the beginning of the construction phase in 2018 when the amplitude of the pixel
increased considerably (Figure 5.4 (b)). However, the coherent phase of the TPS
only starts at the completion of the constructions in late 2018. This can be seen in
the plot of the phases of time-sequential interferograms which are characterized by
a considerable gain in coherence after completion of the constructions. In this case,
the assumption that abrupt changes in the coherence of a pixel are accompanied by
abrupt changes in its amplitude still holds true, but there is a temporal offset between
both events. This temporal inconsistency demonstrates the need to refine the initial
change point estimates on the basis of the phase coherence of TPSs.

The reason why we initially estimate the change points based on amplitude statistics
is that the interferometric phases can, prior to the parameter estimation, be disturbed
as shown in Equation 2.16 so that the coherent and non-coherent segments of a TPS
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cannot be separated in interferometric phases. We here present a method to iteratively
update the change point estimates during the iterative parameter estimation in the
M-SBAS approach. After each parameter estimation step, the change point estimates
are refined with the goal to avoid noisy phase observations in the following parameter
estimation steps and subsequent unwrapping.

The marginal PDF of the interferometric phase [... is given in Equation 2.30].We use
this PDF to construct a likelihood ratio test (LRT) to test if two sets of interferometric
phases are characterized by significantly different coherent values, given that the
expected phases are known.

A set of phases 𝝓0 = (𝜙1, 𝜙2, ..., 𝜙𝑀) can be separated into two segments 𝝓1 =

(𝜙1, ..., 𝜙𝑙) and 𝝓2 = (𝜙𝑙+1, ..., 𝜙𝑀) at point 𝑙. The absolute coherence values |𝛾0 |, |𝛾1 |
and |𝛾2 | for the whole set and the two segments, respectively, can be estimated using
the temporal coherence estimator (Ferretti et al., 2001)

|𝛾 | = 1

𝑁𝑖

����� 𝑁𝑖∑︁
𝑛=1

exp ( 𝑗𝜙𝑛)
����� , (5.4)

where 𝑁𝑖 denotes the number of phase measurements in the particular set or segment.
The LRT tests the null hypothesis 𝐻0 that the two segments are characterized by
the same coherence against the alternative hypothesis 𝐻1 that they have significant
different coherence values. The logarithmic LRT can be expressed as

𝐿 (𝑛) = log
(
𝑝

(
𝝓0 |𝛾0, 𝝓0

0

))
−
[
log

(
𝑝

(
𝝓1 |𝛾1, 𝝓0

1

))
+ log

(
𝑝

(
𝝓2 |𝛾2, 𝝓0

2

))]
= log(𝑝0) − (log(𝑝1) + log(𝑝2))

𝐻0
≷
𝐻1

𝑇, (5.5)

where 𝑝(𝝓𝒊 |𝛾𝑖, 𝝓0
i
) = 𝑝𝑖 is the likelihood that the observations in 𝝓𝒊 can be described

by coherence 𝛾𝑖 with a given expected phase vector 𝝓0
i

and 𝑇 is some threshold. We
construct a phase-based change point detection algorithm based on the LRT similar
to the amplitude-based F-test change point detection. We take every acquisition of
a SAR time series as a potential change point and separate the phase time series at
that change point into two segments. We then form interferograms within the two
segments and apply the LRT. If the LRT series is below the threshold at more than
one potential change point, the date which yields the lowest LRT value is selected as
change point. The test is implemented iteratively like the amplitude-based F-Test to
detect multiple change points, i.e. if one change point is identified, the phase time
series is split at this point into two smaller segments which are then again searched
for further change points.

The choice of interferograms to use for the LRT is crucial in the test. Interferometric
phases are usually disturbed, as shown in Equation 2.16. We have to suppress the
phase contributions due to the considered parameters as much as possible to be able
to properly estimate the coherence of TPSC segments. Furthermore, we want to be
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able to get an estimate of the expected value of the phases 𝝓0 which is necessary
to evaluate the PDF in Equation 2.30. For these purposes, we integrate the LRT
into the parameter estimation in M-SBAS to iteratively refine the change points
of TPSCs after each parameter estimation iteration. In the following, we assume
that the initial change point estimation is sufficiently accurate, which means that
there are significantly more coherent than noisy interferograms exploited in the first
iteration of the parameter estimation. After a parameter estimation step, we reduce
the phase contribution due to that parameter from the phase observations. We then
build small-baseline interferograms within the segments with regard to the parameters
not yet estimated. For example, if the height of a TPSC was estimated in the first
parameter estimation step, we reduce the phase due to the estimated height and
subsequently build interferograms with small temporal and thermal baselines in the
segments to apply the LRT. This way, the phase contributions due to the parameters
height, linear displacement rate and thermally induced displacement rate are reduced
as much as possible for the coherence estimation. Additionally, the expected phase of
these interferograms is assumed to be zero.

In theory, it would be desirable to use a redundant small-baseline network for the
coherence estimation (Schenk, 2015), but this is too costly in the change point detection
algorithm. We instead use a minimum spanning tree (MST) to find appropriate small-
baseline interferograms. For this purpose, we have to define a weight (distance metric)
for each multi-master interferogram depending on the baselines, which have to be small
in the particular case. We can use the Euclidean distance between the acquisitions in
the baseline space as weight, but we first have to define a ratio between the axis units
of the particular baselines. We follow the approach of Pepe and Lanari (2006) and
just divide the baselines by their range, for example 𝐵′⊥ = 𝐵⊥/(max(𝐵⊥) −min(𝐵⊥)).
Obviously, the weights could also be defined in a different way, depending on the
SAR sensor and the conditions in the study area. The MST selects the path of
interferograms with the minimum total weight. As soon as two parameters have been
estimated in the iterative parameter estimation process, the MST equals the set of
sequential interferograms with regard to the given remaining baseline.

The threshold 𝑇 of the LRT can be determined using simulations of interferometric
phases or by applying the test to phases of PS points in real SAR stacks and setting
the threshold with regard to a maximum number of false positive change detections.
In order to make the threshold independent of the time series length, we normalize
the LRT by the number of phase observations 𝑁𝑖 in the segments:

𝐿 (𝑛) = log(𝑝0)
𝑁0

− log(𝑝1) + log(𝑝2)
𝑁1 + 𝑁2

𝐻0
≷
𝐻1

𝑇, (5.6)

where 𝑁0 = 𝑁1 + 𝑁2 for non-redundant interferogram networks like in the MST
approach described above.

The presented test provides change points dividing segments of significantly different
coherence values. However, we still have to decide whether a segment is accepted as a
coherent segment. The test could, for example, identify a change point between two
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segments which both do meet the requirements of a coherent segment. In this case,
we want to decide that both segments are coherent and combine both again. For this
purpose, we estimate the coherence of the TPSCs in each of their segments and apply
a coherence threshold to decide if the segment is coherent or not.

The coherence threshold depends on the time span of the segments. Decorrelation
effects lead to a loss of coherence over time both in segments which are considered
as incoherent or coherent, which is why the coherence value should be defined to
decrease with increasing segment length. We use an empirical, data-driven approach
to estimate the relationship between segment length and coherence threshold. We
assume that we observe both coherent and incoherent segments with the same segment
length. The empirical PDF of the coherence of segments with a given length is thus
the weighted sum of the PDF of coherent segments 𝑝𝑐 ( |𝛾 |) and the PDF of incoherent
segments 𝑝𝑖𝑐 ( |𝛾 |) of that length:

𝑝( |𝛾 |) = 𝑤𝑝𝑐 ( |𝛾 |) + (1 − 𝑤)𝑝𝑖𝑐 ( |𝛾 |), (5.7)

where 0 ≤ 𝑤 ≤ 1. If we are able to describe both PDFs separately in a mathematical
way, we can derive the probability 𝑃𝑐 that a segment with that length and a given
estimated coherence value belongs to the coherent population:

𝑃𝑐 ( |𝛾 |) =
𝑤𝑝𝑐 ( |𝛾 |)
𝑝( |𝛾 |) . (5.8)

This approach is similar to the coherence threshold determination in Hooper et al.
(2007). The adaptive coherence threshold estimation allows to set the LRT threshold
the way that the false positive change detection rate is significantly higher than the
false negative change detection rate as adjacent segment of the same type are again
merged later.

In practice, we bin the TPSC segments in bins with a certain time span in order to
get a critical mass of segments to derive the relationship between segment length
and coherence threshold. Normalized histograms of the estimated coherence values
for TPSC segments with a time span between 200 and 320 days and between 680
and 800 days for TPSCs in a Sentinel-1 data stack are displayed in Figure 5.5.
It can be seen that the probability densities in both cases can be described by the
sum of two scaled probability densities, as expected, and that the coherence values
are generally higher for the shorter segments. We fit a Beta mixture model to the
observed coherence values to describe the probability densities of incoherent and
coherent segments and their weights. The Beta distribution is a flexible two-parameter
distribution defined on the interval (0,1) which we consider suitable to describe the
probability density of the observed coherence values. It has been used before to
describe InSAR coherence statistics (Zhang et al., 2016). For each segment bin, we
fit the mixture model to the observed coherence values and use Equation 5.8 to find
the particular coherence threshold under a defined probability 𝑃𝑐. The estimated
thresholds for bins of different segment time spans for the study case based, demanding
a probability 𝑃𝑐 = 0.5, are also displayed in Figure 5.5. They are decreasing with
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Figure 5.5.: Normalized histograms of estimated coherence values for TPSC segments
with a time span between 200 and 320 days (left) and between 680 and 800 days
(center) for TPSCs in a Sentinel-1 data stack. The two single densities of the fitted
Beta mixture models are plotted in red (coherent segments) and black (incoherent
segments). The estimated coherence thresholds for bins with different time spans are
shown on the right with a weighted exponential fit.

increasing segment length and approximately approach a coherence value of 0.2 at
long segment lengths in the given example. We fit an exponential function to the
estimated coherence thresholds to get a description of the relationship between the
segment length and the coherence threshold using weighted nonlinear regression. The
weights of the bins are the integrated differences between the empirical and the fitted
cumulative distribution functions.

In case that the initially and refined change points differ for a TPSC, we estimate its
coherence for the differently estimated coherent intervals and choose the set of change
points leading to the larger coherence value. For the example in Figure 5.4, the test
statistic of the LRT is minimized in early 2019 after the end of the constructions. The
TPS segment was identified to be coherent from this date on. The appearing date of
the particular TPS was shifted by more than nine months, leading to an avoidance of
50 noisy SAR scenes in the following steps of the PSI analysis.

5.3.3. TPS Selection

After the parameter estimation, we select TPSs accordingly to the PS selection
procedure based on the phase coherence thresholds we determined before. However,
the coherence is now estimated using all available multi-master interferograms inside
the lifetime of the TPSCs.

5.3.4. Unwrapping

As mentioned in Section 3.2, we make use of the unwrapping algorithm implemented
in the StaMPS software (Hooper, 2010) in the M-SBAS approach. The incorporation
of TPSs into the PS unwrapping with the purpose to jointly unwrap PSs and TPSs
is described in the following. After the selection of PSs and TPSs, we export their
interferometric phases and metadata into the StaMPS specific Matlab format. We
include a mask which flags the interferograms outside the TPS lifetime.
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Figure 5.6.: Visualization of the phase gridding before the unwrapping. (Left) Only
PS points were considered in the original PSI approach. (Right) PSs and TPSs are
now considered for the unwrapping, leading to a densification of the observation point
network. If there are grid cells which are only occupied by TPSs that are all not active
in certain interferograms (red grid cell), the particular grid cells are interpolated in
these interferograms by filled grid cells using nearest neighbor interpolation. © 2022
IEEE.

The incorporation of TPSs into the unwrapping requires the unwrapping of multi-
master interferograms like small-baseline interferograms and a subsequent phase
inversion. The reason behind is that the use of single-master interferograms would
rigorously exclude TPSs whose lifetime does not cover the selected master scene. The
use of multi-master interferograms allows every TPS, including those which are not
active at the selected master scene.

The unwrapping algorithm in StaMPS works with spatially gridded phases (Hooper,
2010) which are formed by summing up the phases of PSs located within the grid
cells. We modify this by also adding the phases of TPSs which are located in the grid
cell and active in the given interferogram. This is easily done by multiplying the TPS
mask, which flags the interferograms outside the TPS lifetime with a zero, with the
TPS phases and also passing them to the gridding algorithm.

Grid cells which are exclusively occupied by TPSs might be empty in certain inter-
ferograms when these interferograms are outside the lifetime of all contained TPSs.
We refer to these grid cells as partly empty cells. They are interpolated in the given
interferograms by filled grid cells using nearest-neighbor interpolation (Figure 5.6).
All other interferogram phases of the concerned grid cells are conventionally formed by
summing up the coherent TPS phases. The nearest-neighbor interpolation is carried
out, since we expect the residual signal to be smooth in space after reduction of the
[phase due to the] parameters estimated in M-SBAS. With the help of this approach,
the StaMPS unwrapping algorithm can be utilized to jointly unwrap PSs and TPSs.
The unwrapped values of the interpolated grid cells in the given interferograms will not
be used later, the interpolation is only done in order to enable the joint unwrapping
of PSs and TPSs based on the available unwrapping algorithm.

We conducted the following experiment in order to test if the proposed method is
able to handle partly empty cells influences the unwrapping of neighboring filled grid
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cells. We applied the PSI method presented in Section 3.2 to a Sentinel-1 stack of 225
scenes covering the Vietnamese city of Ca Mau (see Section 5.4) and unwrapped small-
baseline interferograms phases using the StaMPS unwrapping. We then emulated the
presence of partly empty cells for further unwrapping runs and compared the results.
The partly empty cells were randomly chosen, and their share was 5% of the total
number of grid cells. We divided the partly empty cells into two groups which were
characterized by randomly selected appearing and fading dates, respectively. The
selection of cells and appearing/fading dates and subsequent unwrapping was carried
out 50 times. The average relative number of unwrapped phase values diverging from
those from the reference unwrapping run was 0.03%, neglecting the interferograms
outside the lifetime of the partly empty cells. We conclude that the proposed method
to handle partly empty cells has no negative influence on the unwrapping results of
filled neighboring cells. In practice, we expect the incorporation of TPSs to rather
enhance the unwrapping due to a densification of the observation point network
(Figure 5.6).

5.3.5. Single-Master Phase Inversion and Temporal Datum

The unwrapped multi-master interferometric phases 𝝋𝒎𝒎 have to be inverted in
order to get integrated phase time series 𝝋𝒔𝒎 for each PS and TPS with respect to
the selected spatial and temporal reference. The functional model describing the
relationship between 𝝋𝒎𝒎 and 𝝋𝒔𝒎 is given by

𝝋𝒎𝒎 = 𝐴𝝋𝒔𝒎, (5.9)

where 𝐴 denotes the matrix describing the multi-master interferogram network. The
inversion is solved in StaMPSs in a least-squares sense (Hooper, 2008), which is,
however, only feasible if there are no separated interferogram subsets in the network.
We are facing two problems with the TPS phase inversion. First, recurring TPSs are
characterized by separated lifetime segments, i.e. separated subsets in the interfero-
gram network. Second, the flexible handling of TPSs with different lifetimes prevents
the selection of a master scene which is included in the lifetime of all TPSs and thus
the referencing of all PSs and TPSs to a common temporal datum. The approaches to
both problems, which are interconnected, are described in the following. The second
one is treated first for the sake of an easier understanding.

Consider TPSs with a single lifetime which does not include the selected master
scene. We invert the phase of these TPS using their first acquisition of presence
as temporary defining temporal datum. Subsequently, their temporal datum is re-
defined on basis of the displacement time series of neighboring PSs which behave
similarly. In case of spatially correlated displacement fields, one could interpolate the
displacement time series of surrounding PSs onto the TPS positions, e.g. by using
Kriging (Wackernagel, 2013) or Least-Squares-Collocation (Moritz, 1978), and use
the predicted displacement time series for datum definition. As the assumption of
spatially correlated displacements does not necessarily hold true [...], we chose another
approach for datum definition of these TPSs. We compare their time series of TPSs
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Figure 5.7.: Phase time series of a fading TPS whose datum is the first acquisition
and a nearby PS which is referenced to the master acquisition 117. The PS was found
to behave similarly as the TPS by means of the Ljung-Box test. © 2022 IEEE.

with those of neighboring PSs with the purpose to find PSs which show a similar
behavior in the displacement time series, i.e. PSs whose displacement is likely to
be generated by the same process as the displacement of the given TPS. This is
carried out by calculating the difference between the displacement time series of the
TPSs and all of their neighboring PSs and applying the Ljung-Box-Test (Ljung and
Box, 1978). The Ljung-Box test statistically tests if the time series of differences are
stationary with no autocorrelation exhibited by checking the overall significance of
autocorrelation based on a number of lags. It was originally developed to test a lack
of fit in autoregressive-moving average models. The test statistic 𝑄 is defined as

𝑄 = 𝑀 (𝑀 + 2)
𝐿∑︁
𝑘=1

𝜌(𝑘)2
𝑀 − 𝑘 , (5.10)

with 𝑀 denoting the sample size, 𝐿 the number of autocorrelation lags and 𝜌(𝑘) the
sample autocorrelation at lag 𝑘. Under the null hypothesis 𝐻0 that the residuals
exhibit no autocorrelation for the fixed number of lags, the asymptotic distribution
of 𝑄 is the 𝜒2-distribution with 𝐿 degrees of freedom. 𝐻0 is discarded if 𝑄 > 𝜒2

𝐿,1−𝛼
given a significance level 𝛼.

The PSs which meet the null hypothesis are selected as PSs whose displacement are
probably generated by the same underlying process as that of the considered TPS.
The displacement time series of a TPS and a PS which were found to behave similarly
using the Ljung-Box-Test are displayed exemplarily in Figure 5.7. The datum of
the TPS is re-defined by minimizing the difference of the time series of the TPS to
the averaged time series of all selected PSs. In case there are no neighboring PSs
showing similar displacement as the TPS, there is no information on the link of the
TPS displacement time series to the temporal datum. The TPS displacement time
series is then shifted by the mean difference of its displacement time series to that of
neighboring pixels whose lifetimes include the selected master scene.

66



5.4. Experiment with Sentinel-1 Data

The issue of TPSs having separated lifetime segments is approached as follows. One
way of solving the problem of separated subsets in the inversion is to use a regularization
method like the SVD as in the classical SBAS method (Berardino et al., 2002) or
imposing temporal constraints (Doin et al., 2011; Morishita et al., 2020). In our initial
approach presented in Dörr et al. (2022a), we inverted the phases of recurring TPS by
adding the constraint of linear displacements to the inversion, like in the NSBAS (Doin
et al., 2011) and LiCSBAS methods (Morishita et al., 2020). In this case, temporal
gaps in the interferogram network of recurring TPSs are connected assuming a linear
displacement rate. While this constraint might be reasonable for short temporal gaps,
it heavily impacts the inversion of recurring TPSs with long temporal gaps between
their separated lifetimes in a negative way if the assumption of linear displacement
rate does not reflect reality. Instead, we separately invert the segments of recurring
TPSs and separately re-define their temporal datum as described before.

5.4. Experiment with Sentinel-1 Data

5.4.1. Data and Study Area

We applied the proposed method to a stack of 225 VV-polarized Sentinel-1 SAR
scenes, acquired in descending orbit between November 2016 and November 2020 in
the Interferometric Wide Swath Mode over the City of Ca Mau in the Vietnamese
Mekong Delta (Figure 5.8a). The study area is about 9.5× 9 km2. The interferometric
pre-processing included SAR image coregistration to the selected geometrical master
scene by means of Enhanced Spectral Diversity as well as the subtraction of simulated
reference and topographic phase based on the TanDEM-X global DEM with a grid
size of 90m. The Vietnamese Mekong Delta, which is only 0.8m above sea-level on
average (Minderhoud et al., 2019), has recently been affected by subsidence of rates
up to several centimeters per year (Erban et al., 2014; Minderhoud et al., 2020). At
the same time, the region has been characterized by high construction activity and
land use change (Minderhoud et al., 2018) for the last decades, which makes it a
suitable area to evaluate the proposed method.

5.4.2. Results

We carried out three different processing runs to test the proposed method: (i) the
original M-SBAS approach, (ii) M-SBAS incorporating TPSs without change point
refinement, i.e. only using the amplitude-based change date detection from (Hu et al.,
2019), and (iii) the full approach incorporating TPSs with change point refinement.
The thresholds used in the processing were chosen as follows: the amplitude dispersion
threshold for the PSC selection was set to 0.47, the significance level 𝛼 in the amplitude-
based F-Test was 0.001 and the threshold T in the LRT was set to −0.03 − 3.5/𝑁0

where 𝑁0 is the length of the segment to be checked for change points. The asymptotic
threshold of -0.03 was determined using simulation studies. The reciprocal term was
introduced with the goal to suppress noise in the change date detection by requesting
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Table 5.1.: Results of three processing runs with Sentinel-1 data over the city of
Ca Mau: (i) original M-SBAS approach, (ii) M-SBAS incorporating TPSs without
and (iii) M-SBAS incorporating TPSs with change point refinement. The average
coherence was computed using all accepted PSs and TPSs. © 2022 IEEE.

Processing run (i) (ii) (iii)
# accepted PSs 46 553 27 370 27 334
# accepted TPSs - 87 478 93 698
# appearing TPSs - 26 418 27 381
# fading TPSs - 18 265 18 989
# visiting TPSs - 10 513 15 837
# recurring TPSs - 32 282 31 067
Avg. coherence 0.54 0.57 0.6
Avg. coherence TPSs - 0.57 0.61

higher confidence for change dates to be accepted in shorter segments. The coherence
threshold for the (T)PS selection was empirically determined as described in Section
5.3.2. The (T)PS identification and parameter estimation for the three runs took
25min, 97min and 181min, respectively, on a machine with a 12-core CPU (Dual
Intel Xeon X5680 3.3GHz).

The number of accepted measurements points and their average coherence in the three
runs are displayed in Table 5.1. The observation points encompass both PSs and
TPSs. The three approaches yielded 46 553, 114 848 and 121 032 accepted observation
points, respectively. The estimated linear displacement rate in LOS of the identified
observation points in approaches (i) and (iii) are displayed in Figure 5.8. The density
of observation points is increased throughout the whole study area, while the TPSs
are, like the PSs, virtually exclusively located at man-made structures. The spatial
distribution of linear displacement rates is consistent in both results. The block of
buildings, which was built within the exploited time series (Figure 5.4), is a striking
example where no PSs are identified at all, but many TPSs (Figure 5.8 d-f). The
TPSs on the buildings are [...] stable whereas TPSs on the surface ground exhibit
high displacement rates. This is similar to the building south of the new block, which
is stable compared to its surrounding surface ground. Another example of an area
which changed considerably during the time series is displayed in Figure 5.8 g-i, where
buildings were torn down to be replaced by a street. The density of observation points
is increased throughout the whole area, but the increase in identified points can be
seen especially in the mentioned section where the street was built. No PSs but many
fading TPSs were identified here.

In the original approach, 46553 PSs were identified, while in both other approaches
only little more than 27300 PSs were identified. This discrepancy is due to the fact
that a portion of the pixels which were identified as PSs in the original approach were
identified and treated as TPSs in the other two approaches. We refer to these pixels
as Ambivalent Persistent Scatterers (AmPSs). The average a-posteriori coherence of
these was 0.5 in approach (i), thus lower than the average coherence of 0.54 of all PSs
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Figure 5.8.: (a) Mean amplitude of the Sentinel-1 SAR stack in the study area. (b),
(c) Linear displacement rate in LOS for accepted observation points in the standard
M-SBAS and the M-SBAS incorporating TPSs processing runs, respectively. (d)
Optical image of the areas in the white rectangles in (a) from 2017, the beginning
of the considered time series. (e), (f) Linear displacement rate in LOS of accepted
observation points for both processing runs, respectively, in the white rectangles,
overlaid on optical imagery from the end of the time series. (g), (h),( i) same as (d),
(e), (f) for the red rectangle in (a). Imagery data: Google Earth, © 2021 Maxar
Technologies. © 2022 IEEE.
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Figure 5.9.: (Left) Estimate of the a-posteriori coherence of TPSs in the test study
without and with change point refinement. (Center) Shift in the change date of TPSs
whose change dates have been refined. (Right) Shift in the change date of appearing
and fading TPSs whose change dates have been refined. © 2022 IEEE.

in the approach. When applying approach (iii), the average number of acquisitions in
their lifetime decreased from 225 to 170. However, their mean coherence increased
to 0.6. The average coherence of all observation points was 0.54, 0.57 and 0.6 in the
three approaches.

The number of accepted TPSs for the approaches (ii) and (iii) are 87 478 and 93 698,
meaning that more than three times more TPSs than PSs were identified for the
Sentinel-1 time series of four years length. In approach (iii), 7.1% more TPSs were
accepted as a result of the change point refinement. The change point refinement
can lead to a change of the number of change dates for a TPS, thus potentially to
a change of the TPS type. The change dates of 43.7% of the TPSs were refined in
approach (iii). The number of change dates changed for 53 % of the refined points. It
can be seen that the number of identified recurring TPSs decreased a little bit.

A histogram of the a-posteriori coherence values of all TPSs in approaches (ii) and
(iii) is shown in Figure 5.9. The average coherence of TPSs increased by 7 % and the
standard deviation of the coherence decreased as result of the change date refinement.
The difference between refined and initial change dates of refined TPSs is also displayed
in Figure 5.9. It is between -200 and 200 days with a mean of about zero. If only
considering appearing and fading TPS types, it can be seen that the change dates of
appearing TPSs were postponed in most cases, whereas change dates of fading TPSs
were brought forward in most cases.

The initial and refined change dates of appearing TPSs in the block of new houses
(Figure 5.4) are displayed in Figure 5.10. The initial change dates of many TPSs were
in early or mid of 2018, when the construction was started (see also example in Figure
5.4). The refined appearing dates are much more consistent and mostly shifted to
early 2019, when the constructions were finished. The unwrapped displacement time
series of a PS next to the block and two TPSs within the block are also shown in
Figure 5.10 for the approaches (ii) and (iii). The red TPS is located on a building and
the green TPS is located on the surface ground besides the building. We concluded
their location from their position and estimated height. The PS was linearly moving

70



5.4. Experiment with Sentinel-1 Data

-100

-50

0

D
is

p
la

c
e

m
e

n
t 

in
 L

O
S

 (
m

m
)

Without Refinement

With Refinement

Ground PS

Ground TPS

Building TPS

Jan-2017

Apr-2
017

Jul-2
017

Oct-2
017

Jan-2018

Apr-2
018

Jul-2
018

Oct-2
018

Jan-2019

Apr-2
019

Jul-2
019

Oct-2
019

Jan-2020

Apr-2
020

Jul-2
020

Oct-2
020

Date

-

0

P
h

a
s
e

 (
ra

d
)

Figure 5.10.: (Upper) Appearing dates of TPSs without (left) and with refinement
(right) in a block of buildings which was built during the exploited Sentinel-1 time
series (see Figure 3) and finished in early 2019. (Center) Displacement time series of
a TPS on the building in the study area and a TPS on the surface ground besides
the building in the white rectangle in upper right with and without change point
refinement, as well as a PS on the street next to the building. The master scene was on
22 July 2017. (Lower) Sequential, wrapped phase time series of building TPS shown
in the center subfigure. Imagery data: Google Earth, © 2021 Maxar Technologies.
© 2022 IEEE.

away from the sensor over time. The building TPS was initially estimated to appear in
April 2018. The unwrapping of the red TPS without refinement lead to an undulating
movement away from the sensor and back before the TPS stays almost stable. The
refined appearing date of this TPS is exactly when the stable phase of the TPS
begins. We also plotted the wrapped time series of sequential phases of this TPS
which considerably gains coherence at the refined appearing date of the TPS. The
time series of the TPS in the two approaches are shifted due to the different appearing
date, which are used to re-define the temporal datum of the TPS, since it is not active
at the selected master scene on 22 July 2017. The appearing date of the green TPS
in Figure 5.10 was not changed during the refinement, which leads to the fact that its
estimated displacement time series is identical in approaches (ii) and (iii). The TPS
was moving away from the sensor with a slightly decreasing rate over time.
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5.4.3. Discussion

The proposed method builds on the approach to detect TPSs in Hu et al. (2019) by
incorporating it into our multi-stack PSI method with an iterative phase-based change
date refinement of TPSs and subsequent unwrapping to receive their displacement time
series. The absolute number of identified observation points was increased significantly
from 46553 applying the original PSI approach to 114848 and 121032 by incorporating
TPSs into the PSI approach without and with change date refinement, respectively, in
the Sentinel-1 time series of four years in the Vietnamese city of Ca Mau. Some pixels
which were identified as PSs in the original approach were identified and treated as
TPSs in the proposed method, which lead to a significant increase of 0.11 in their
average coherence. We conclude that they were falsely identified as PSs in the original
approach, probably as their incoherent segment was quite short compared to their
coherent lifetime. The parameter estimation still obtained reasonable results, and their
coherence estimate exceeded the requested threshold. This shows that PSs transform
into TPSs over time, which is why the number of identified TPSs increases with
increasing time series length to compensate for the loss of PSs, as will be also shown
in Section 5.5. In other words, the consideration of TPSs and their incorporation
into PSI allows to critically reject time intervals where a stable backscatter point
is losing coherence. Thus, the incorporation of TPSs is essential for long-term PSI
monitoring in order to keep the network of observation points as dense as possible.
This helps to better detect and understand displacement phenomenons on the Earth’s
surface, especially in heterogeneous displacement scenarios like in urban areas, and
can potentially lead to more robust unwrapping results. We showed two examples of
areas in Ca Mau whose surface characteristics changed considerably in different ways
during the time series, as seen in optical imagery from different years in Figure 5.8. A
new block of houses was built in the first example, and buildings were torn down to be
replaced by a street in the second. Only a few points were identified in the original PSI
approach, but many appearing TPSs could be identified by the proposed method in
the first and many fading TPSs in the second example. This illustrates that different
kinds of TPSs with different appearing or fading dates are jointly examined in the
proposed method. Another advantage of incorporating TPSs is that their change dates
provides additional information, e.g. for the purpose of change detection in the study
area (Yang and Soergel, 2018; Ansari et al., 2014). Appearing TPSs can furthermore
be evaluated to study the initial settlement of newly constructed buildings, which is
important information when trying to separate different causes of displacements.

The proposed change date refinement procedure lead to a considerable [mean] increase
of 7 % in the a-posteriori coherence of TPSs (Figure 5.9) and to an increase of 7 % in
identified TPSs in our experiment, compared to the pure use of the amplitude-based
change date detection from Hu et al. (2019). The change date refinement improves
the quality of the results by avoiding noisy SAR scenes to be falsely included in the
estimated lifetime of TPSs. This potentially leads to an improved parameter and
coherence estimation of TPSs, as indicated by the increased a-posteriori coherence,
and a more robust unwrapping. The early displacement time series of the red TPS
in Figure 5.10 is characterized by undulating movements in LOS when not applying
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the change date refinement. The time series is more or less stable after the refined
appearing date. The wrapped phases of sequential interferograms after reduction of
the estimated parameters indicate that the coherence only increases considerably after
the refined appearing date. We conclude that the unwrapping algorithm outputs an
apparent signal for the noisy input phases which is characterized by long-wave noise
but could be falsely interpreted as a real signal. The refined appearing date, which
corresponds to the completion of the constructions as seen in the optical imagery,
is the exact one after which the signal is almost stable. As a result, the proposed
method yields more reliable results compared to the amplitude-based TPS change
date detection approach in Hu et al. (2019), which in turn was shown to provide more
robust results compared to ANOVA.

It is striking that the appearing date of most refined appearing TPSs was postponed,
while the fading date of most refined fading TPSs was brought forward. We showed an
example of this in Figure 5.4 where the amplitude-based change date detection yielded
an appearing date of a TPS which marked the start of the construction of the block of
buildings, whereas the actual appearing of the TPS was the completion of the block,
as seen in the interferometric phases. We assume that the change date refinement of
fading TPSs could be caused by the reversed case when a building is torn down. In
that case, the coherence is probably already lost when the demolition work starts, but
the amplitude of the pixels potentially only declines when the building is completely
gone.

The change date refinement can lead to a change in the number of identified change
dates, thus also to a change in the TPS type. The increased coherence of TPSs
by means of the change point refinement indicates that the change dates are more
precisely estimated than before. The decreased number of identified recurring TPSs
hints that the proposed change date refinement is a conservative but reliable approach.
It has to be kept in mind, that the refined change dates are only accepted if the
resulting coherence is increased compared to the coherence estimated from the initial
change dates. In case of doubt, segments which were initially assumed to be coherent
are discarded during the change date refinement. However, the average false positive
and false negative detection rates of the amplitude- and phase-based change detection
approaches cannot be quantified without ground truth. This could be subject in
future research, for example when applying the proposed method to areas which are
periodically inundated, like water reservoirs where the change dates of possible TPSs
could be known based on the fluctuating water level.

Previous TPS approaches which aimed at studying displacements did not include
unwrapping (Hu et al., 2019; Zhang et al., 2011), but only estimated displacement
rates. The proposed unwrapping algorithm allows us to study the displacement
time series of PSs and TPSs, hence deviations of the displacements from the model
assumed during the parameter estimation. This is important when studying causes of
displacements and the effectiveness of countermeasures. The time series of the green
TPS in Figure 5.10 shows, for example, a slight decrease in the displacement time
series over time. The re-definition of the temporal datum for TPSs whose lifetime
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does not include the datum-defining master scene is important in order to consider
their displacement time series in a spatial context and compare them to different
observation points. However, it has to be kept in mind that a time series does not
describe absolute height time series, but displacement time series with respect to the
datum, and the re-definition of the datum is not strictly necessary in this geodetic
application. In the example in Figure 5.10, it can be seen that the datum of the TPSs
is defined depending on their appearing date and the displacement time series of the
neighboring PS points.

In the proposed method, we do not consider recurring TPSs to change their parameters
over time. This could potentially be the case if a building is torn down and a new
building is built at the same place, leading to a recurring TPS to form which is charac-
terized by a different displacement rate, height or thermally induced displacement rate
in its different lifetime segments. In that case, the estimated a-posteriori coherence of
the TPS would be underestimated if only estimating the parameters for all segments
together, leading to a possible rejection of the TPS. Estimating the parameters in
different segments of TPSs and studying its effects on the a-posteriori coherence is a
topic for follow-on research.

The proposed method with change date refinement of TPSs takes almost twice as long
as the method without change date refinement. The major portion of the additional
processing time can be attributed to the identification of the MST interferogram
connection described in Section 5.3.2. While we find the absolute processing time of
3 h acceptable for the size of the study area (about 85 km2) and the SAR stack of 225
scenes regarding the improved results, the change date refinement could also be sped
up in the future by implementing efficient approaches for dynamic MSTs (Cattaneo
et al., 2010) or using alternative small-baseline interferogram selections for the change
date refinement.

The mutual visualization of linear displacement rates over PS and TPS pixels is
non-trivial because the visualized rates are only valid for the differing lifetime of the
scatterers. We displayed the displacement rates of PSs and TPSs together in Figure
5.8 to illustrate the increase in identified observation points by means of the TPS
incorporation, but in general suitable visualization approaches should be developed
to display the displacements of TPSs considering their lifetime, in order to avoid
misinterpretations. This could be done in the form of time-lapse movies where the
displacement rate of observation points is only visible during their lifetime or by
displaying yearly displacement rate maps where only points are shown which were
active most of the time in the particular year. Another aspect to consider is that
the variance of displacement rate estimates depends on the number of scenes in the
lifetimes of TPSs (see Equation 4.27). The rate variances of all (T)PSs should be
displayed in case that their displacement rates are jointly displayed.
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Table 5.2.: Area, number of 1 × 1 km2 patches and average number of identified PSs
per km2 in the one-year time series slices in the four study areas.

Study Area Center Coordinates Area (km2) Nr. of
Patches

Nr. of
PS/km2

Ca Mau 9.172 ◦ N, 105.151◦ E 88.4 121 471
Can Tho 10.027 ◦ N, 105.77◦ E 108.6 143 817
Rural1 10.186 ◦ N, 105.897◦ E 85.1 117 92
Rural2 8.957 ◦ N, 105.093◦ E 78.4 110 72

5.5. Relevance of TPSs for Long-Term PSI
Monitoring

In the preceding section, the TPS integration into M-SBAS-2-StaMPS was presented
and tested with a Sentinel-1 stack covering the time period of 2016 to 2020. Signifi-
cantly more TPSs than PSs were identified with the proposed method: the ratio of
identified TPSs to PSs was 3.2 and 3.4 in the approaches without and with change
date refinement. This section aims at studying the ratio of identified TPSs to PSs
as a function of the length of the considered SAR time series in two urban and two
rural areas in the VMD. The lifetime of identified TPSs is also analyzed in order
to study their actual contribution to the geodetic observation network during the
whole observation period. The identification of lots of TPSs which, however, are all
characterized by really short lifetimes would not improve the observation network
considerably.

The study bases on SAR a data stack consisting of 318 Sentinel-1 SAR scenes which
were acquired between April 2016 and April 2022 in descending orbit over the VMD.
The characteristics of the data and the applied pre-processing coincide with the data
description in Section 5.4.1. The study areas cover the cities of Ca Mau and Can
Tho (Figure 6.1) and two rural areas. The center coordinates and the size of each
study area are given in Table 5.2. The study area Rural1 is located north of Can Tho
and characterized by rice cultivation, while Rural2 is located south of Ca Mau and
characterized by aquafarming. All study areas are rectangular and range from 78.4 to
108.6 km2 in size.

To study the ratio of identified TPSs to PSs with regard to the time series length, we
sliced the available time series into segments with lengths of one to six years, always
beginning and ending in April. We used all possible slices (i.e. 04/2016-04/2017,
04/2017-04/2018, 04/2016-04/2018 etc.) to increase the sample number, resulting in
six one-year slices, five two-year slices, four three-years slices and so on. [... Our PSI]
approach was carried out for each time series slice and study area with and without
the incorporation of TPSs. For the analysis of the ratio of identified TPSs to PSs, we
subdivided the study areas in small patches of 1 × 1 km2 to be able to describe the
results in a proper statistical way. The number of these patches in each study area is
listed in Table 5.2.
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This study is only based on the TPS integration without change date refinement
due to the huge computational cost for analyzing each time series slice separately.
The change date refinement lead to an increase of 7% in the number of identified
TPSs in the study in Section 5.4, so we assume that the numbers of identified TPSs
are consistently slightly underestimated in this study. The change date refinement
partly also lead to considerable changes in the lifetime length of TPSs in the study in
Section 5.4, however the mean change among different kinds of TPSs was negligible
(see Figure 5.9).

5.5.1. Results

We identified PSs, TPSs and AmPSs in each study area and time series slice. AmPSs
are pixels which were identified as PSs in the PS-only processing, but as TPSs in the
joint processing. We assume that they are in most cases TPSs whose lifetime is only
marginally shorter than the available time series so that they could still be identified
as PSs in the applied multi-stack PSI approach, i.e. false positive PSs. Alternatively,
they could also be false positive TPS detections.

The average number of identified PSs per km2 for the six one-year time series slices
in the different study areas is displayed in Table 5.2. It is largest in Can Tho with
817PS/km2 and lowest in Rural2 with 72PS/km2. In order to enable a comparison
of the number of identified PSs, TPSs and AmPSs for the different time series length,
we computed a reference number of TPSs 𝑁ps,ref for each 1 × 1 km2 patch in each
study area. It is the number of identified PSs in the respective patch, averaged over
the six one-year time series slices. We then calculated the ratios of identified PSs,
TPSs and AmPSs in each patch for each time series slice and the respective reference
number. Box plots of the resulting ratios for the two cities and the two rural areas are
displayed in Figure 5.11 and Figure 5.12, respectively. The results are similar for in
the four study areas. The number of identified PSs decreases steadily with increasing
time series length after two years, and the median PS ratio is below 50% for a time
series of six years in all study areas. On the contrary, the number of identified TPSs
steadily increases with increasing observation length. The median TPS ratio is below
90% for a time series of two years and above 220% for a time series of six years in
each area. The number of AmPSs slightly increases with increasing time series length.
The median AmPS ratio is below 45% in each area for a time series length of six
years.

The so far addressed ratios do not provide information on the actual lifetime of the
identified TPSs. For this purpose, we introduce a measure called the effective lifetime
ratio 𝐸𝐿𝑅. We refer to the effective lifetime 𝐸𝐿 as the sum of number of acquisitions
in the lifetime of all 𝐾 available observation points [(PS-only or sum of PSs and
TPSs)] Δ𝑡on divided by the total number of available acquisitions in the time series
𝑀acq:

𝐸𝐿 =

∑𝐾
𝑘=1 Δ𝑡𝑘,on

𝑀acq
. (5.11)
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Figure 5.11.: Ratios of identified PSs (left), TPSs (center-left) and AmPSs (center-
right) to the reference number of PSs and effective lifetime of PS+TPS and PS-only
processing (right) in the cities of Ca Mau (upper) and Can Tho (lower). The outliers
of the boxplots are not plotted. © 2022 VDE.

[...]. For a PS-only processing run, the effective lifetime equals the number of identified
PSs since the lifetime of PSs always equals the number of acquisitions in the time
series. The effective lifetime ratio is the ratio of the 𝐸𝐿 of a given processing result
to the 𝐸𝐿 of the reference PSs:

𝐸𝐿𝑅 =

∑𝐾
𝑘1=1

Δ𝑡𝑘1,on

𝑀acq

/∑𝐾ps,ref
𝑘2=1

Δ𝑡ref
𝑘2,on

𝑀ref
acq

=

∑𝐾
𝑘1=1

Δ𝑡𝑘1,on

𝑀acq𝐾ps,ref
. (5.12)

The effective lifetime ratio of PS-only processing results equals the ratio of identified
PSs to the reference PSs. The 𝐸𝐿𝑅 of PS+TPS runs for the different time series
slices are displayed in Figures 5.11 and 5.12. In order to enable a better comparison
with the effective lifetime of PS-only runs, the median 𝐸𝐿𝑅 of the PS-only results are
also displayed in the Figures. The results show a considerable decrease of the 𝐸𝐿𝑅
with increasing time series length for the PS-only runs, which reflects the decreasing
number of PSs with increasing observation time. In contrast, when considering TPSs
and PSs, the 𝐸𝐿𝑅 first increases to more than 1.5 with increasing time series length
in all study areas and roughly stays at that level in case of Can Tho and Rural1 or
even increases further on in case of Ca Mau and Rural2. It is consistently below 0.5
for the PS-only runs.

5.5.2. Discussion

[... The] number of identified PSs decreases steadily with increasing Sentinel-1 obser-
vation length in urban as well as rural areas in the VMD. Due to location-dependent
differences in urban development and other factors like vegetation growth, the de-
termined ratios are representative for the VMD but can only to a limited extent
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Figure 5.12.: Same as Figure 5.11 in the study areas Rural1 (upper) and Rural2
(lower). © 2022 VDE.

be transferred to other areas. However, the consistent results between urban and
rural areas despite large differences in absolute numbers of identified PSs still suggest
that the number of PSs will also decrease with increasing time series length at other
locations. The main reasons for the decrease in identified PSs are decorrelation,
an insufficient assumption of the PS displacement by a simple linear model and
construction activities.

The number of identified TPSs compensates in all study areas for the loss of identified
PSs with increasing observation lengths. The number of identified TPSs is higher
than the reference number of PSs starting with a time series length of three years.
This results from the fact that not only fading TPSs are identified, which are assumed
to be included in the reference number of PSs, but also other kinds of TPSs which
lead to an increase of the total number of observation points on the Earth’s surface.

The effective lifetime ratio is the ratio of the effective lifetime of all observation points
to the number of reference PSs. It is a measure to describe the relative information
content of an observation network. In contrary to the PS-only runs, it first increases
for the PS+TPS runs with increasing time series and then stays over 1.5 in all study
areas. This shows that the incorporation of TPSs to PSI not only leads to an obvious
increase of observation points, but in fact adds a considerable contribution to the PSI
based geodetic observation network compared to PS-only runs. If only considering
PSs without the AmPSs, the 𝐸𝐿𝑅 drops below 0.5 in all study areas after six-years.
In conclusion, we strongly recommend the incorporation of TPSs into PSI algorithms
in order to maintain the number of observation points and information content at the
highest possible level for long-term monitoring studies.

Depending on the chosen thresholds and confidence levels, there is always a number
of AmPSs, i.e. observation points which occur as PSs in the PS-only runs and as
TPSs in the joint processing. This set of points describes the intersection between PSs
and TPSs where only a small number of acquisitions is discarded. The incorporation
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of TPSs in the PSI framework allows to work with a conservative but more reliable
network of observation points, where points are temporarily discarded in case of doubt
about the temporal coherence.

5.6. Conclusion
TPSs are scatterers which are coherent only in segments of the considered SAR
time series. In this section, a robust method was proposed to fully integrate TPSs
into M-SBAS. The method extends the previously proposed change date detection
algorithms for TPSs, which are solely based on amplitude-statistics, by refining the
change dates using a phase-based LRT. The phases of identified PSs and TPSs are
jointly unwrapping in a modified version of the unwrapping algorithm in StaMPS.
At the end, the temporal datum of those TPSs is re-defined whose lifetime does not
cover the selected master scene, which is realized by referencing them to surrounding
pixels whose displacement is probably generated by the same underlying process.

We tested the proposed method with a Sentinel-1 data stack of four years length,
which was acquired over the city of Ca Mau in the VMD. The integration of TPSs
into the PSI algorithm lead to a significant increase in identified observation points.
The change date refinement lead to an average increase in the a-posteriori coherence
of TPSCs by 0.04 and, in consequence, to an increase of identified TPSs by 7%. It
can be concluded that this step improves the change date detection, thus leads to a
robust suppression of noisy scenes in the examined time series of TPSs. An interesting
finding is that the change dates of appearing TPSs were almost exclusively postponed
by the change date refinement, while those of fading TPSs were almost exclusively
were brought forward. The displacement time series of exemplary TPSs after the
re-definition of the temporal datum were presented and discussed.

The relevance of the TPS integration for long-term PSI monitoring was examined at
the end of the chapter. For this purpose, the ratio of the numbers of identified TPSs
to PSs was analyzed as a function of the time series length. Additionally, the lifetime
of TPSs was included in the analysis in order to study their actual contribution
to the observation point network during the whole observation period. The study
was carried out with a Sentinel-1 stack of six years length, acquired over two urban
and two rural areas in the VMD. The results agreed very well in all study areas.
The number of identified PSs decreased with increasing time series length, while the
number of TPSs steadily increased to exceed the number of PSs by far for a time
series length of six years. The analysis of the lifetime of the identified TPSs showed
that the integration of TPSs not only leads to an increase in identified observation
points, but to a significant improvement of the observation network during the whole
observation period. In conclusion, we strongly recommend the TPS integration into
PSI approaches for long-term monitoring to develop flexible displacement monitoring
systems which handle land surface changes and this way provide the best possible
PSI-based geodetic observation networks.
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Monitoring in the Vietnamese
Mekong Delta

Land subsidence is a global geological phenomenon characterized by a gradual or
sudden sinking of the Earth’s surface. Major causes are of both man-made and natural
origins, namely extraction of fluids leading to sediment and aquifer system compaction
(Poland and Davis, 1969; Galloway and Burbey, 2011), underground mining (Bell
et al., 2000), oxidation and consolidation of organic soils (Stephens et al., 1984; Deverel
and Rojstaczer, 1996), dissolution of carbonate or evaporite rocks leading to sinkholes
(Martinez et al., 1998), natural compaction (Meckel et al., 2006; Teatini et al., 2011)
and thawing permafrost (Nelson et al., 2001). It can have direct consequences in the
form of structural damage (Phien-wej et al., 2006; Wit et al., 2021) as well as indirect
environmental consequences as result of the accelerated relative sea level rise, like an
increased vulnerability of the affected area to salinization of water resources (Don
et al., 2006; Smajgl et al., 2015), flooding (Abidin et al., 2015; Miller and Shirzaei,
2019), erosion (Zou et al., 2016) and finally permanent inundation. Latter problems
particularly concern [low-lying] coastal areas [... affected by subsidence]. Syvitski
et al. (2009) gave an overview of the relative sea level rise and causes of subsidence in
sinking deltas worldwide. Prominent examples are Bangkok, which has been subsiding
for the last couple of decades with peak rates of 12 cm/yr (Phien-wej et al., 2006;
Aobpaet et al., 2013), Jakarta where the rates are up to 10 cm/yr (Abidin et al., 2015)
and the VMD [where rates of up to 5 cm/yr have been reported (Erban et al., 2014;
Minderhoud et al., 2020)].

The geodetic monitoring of surface movements, preferably with a high spatial and
temporal sampling rate, is crucial for investigating the causes and associated risks
of land subsidence and supporting the development and monitoring of reasonable
countermeasures. Measured subsidence time series are used to analyze spatial and
temporal characteristics of the subsidence and help to better understand the underly-
ing geology and drivers of the subsidence. For example, Wit et al. (2021) have shown
that infrastructure with piled foundations is on average characterized by significantly
smaller subsidence than their surrounding surface ground in three cities across the
VMD, indicating shallow soil compaction above the foundation depth. Subsidence
measurements can furthermore be used to enhance, initialize or validate physical subsi-
dence models (Hoffmann and Zebker, 2003; Galloway and Burbey, 2011; Minderhoud
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et al., 2017). Finally, the success of countermeasures can be assessed by studying
progressing subsidence time series, as shown for Bangkok in Phien-wej et al. (2006).

Different geodetic tools have been used to measure subsidence. Galloway and Burbey
(2011) gave an overview of previously used methods and case studies. Most of the
mentioned studies evaluated measurements from levelling (Phien-wej et al., 2006;
Tosi et al., 2009; Wang et al., 2009), GNSS (Tosi et al., 2009; Abidin et al., 2015)
and/or InSAR (Galloway et al., 1998; Hoffmann and Zebker, 2003; Erban et al.,
2014). The preferred method nowadays is spaceborne MT-InSAR such as PSI [or DS
interferometry] as it is characterized by high spatial sampling, large coverage and
usually a sufficiently high temporal sampling rate of several days. Furthermore, there
are several sources of free SAR data, such as data from the Sentinel-1 mission, which
is run by the European Space Agency (ESA) and designed as a long-term monitoring
mission.

Two of the main challenges of PSI have been tackled in this thesis by means of
extensions which enable long-term and large-scale displacement monitoring in areas
with complex atmospheric conditions. In the following, results from the application of
the proposed M-SBAS-2-StaMPS algorithm to subsidence monitoring in the VMD are
presented 1. First, the VMD and regional environmental challenges are introduced.
The exploited data and parameter settings of the algorithm are described in the
following. Subsequently, the results are presented and discussed in detail, as well as
compared to alternative subsidence measurements. At the end of the chapter, a special
use case of the TPS integration is presented, in which new buildings are automatically
detected and their initial subsidence time series systematically analyzed.

6.1. The Vietnamese Mekong Delta
The VMD is a low-lying delta with an average elevation of 0.8m above sea level
(Minderhoud et al., 2019), which has been prograding for more than 4500 years as a
consequence of sediment deposition of the Mekong River into the South China Sea
and the Gulf of Thailand (Van Nguyen et al., 2000). Today it is home to about 17
million people and of large significance for the Vietnamese economy due to the local
rice production and aquafarming (Cosslett and Cosslett, 2014). A satellite image
composite, a map showing the surface normal heights and a land cover/land use map
of the VMD are displayed in Figure 6.1. Almost all of the displayed area is covered
by sedimentary deposits except for few solid rock outcrops in the north-western part
and at the western coast which are elevated above the sedimentary plains. The land
use has been changing considerably in the last three decades across the delta (Phan
et al., 2021). In 1990, the whole delta was used primary for rice production and crops,
while today the delta coast is mainly used for aquafarming.

1 The geodetic monitoring of the subsidence in the VMD was conducted in the scope of the project
ViWaT-Engineering, which was funded by the German Federal Ministry of Education and Research
(BMBF) during the funding period August 2018 - December 2022. The project aimed at studying
the various environmental challenges in the VMD and developing reasonable countermeasures.
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Figure 6.1.: (a) Optical satellite image composite of the VMD with location and
names of important cities. Imagery data: Google Earth, © 2023 Maxar Technologies.
(b) Normal heights in the VMD calculated with the global TanDEM-X 90m DEM
(Rizzoli et al., 2017) and the EGM2008 gravitational model (Pavlis et al., 2012).
The covered area of ascending and descending stacks and the study area used in the
referencing test in Section 4.5.3 are also displayed. (c) Land Use/Land cover map of
the VMD in 2020 after Phan et al. (2021). (d) Estimated subsidence rates between
November 2014 and January 2019 by the company GISAT after an activation of the
Copernicus Emergency Management Service (Copernicus, 2019; Minderhoud et al.,
2020).
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The delta has recently been affected by different environmental challenges, including
a decrease of sediment supply due to climatological causes (Darby et al., 2016) as
well as anthropogenic causes in the form of dam constructions in the upper Mekong
(Kondolf et al., 2014). Further challenges are increased riverbank and coastal erosion
(Anthony et al., 2015), as well as saltwater intrusion into surface- and groundwater
(Gunnink et al., 2021; Eslami et al., 2021). A major problem is land subsidence [with
rates of up to several centimeters per year (Erban et al., 2014; Karlsrud et al., 2020;
Minderhoud et al., 2020)], which has been affecting the VMD for more than 15 years.
This represents a severe environmental hazard considering the low elevation of the
VMD and the additional regional sea level rise of about 3.3 mm/yr (Hak et al., 2016).

Subsidence has been examined based on different methods in order to get the recent
magnitude of subsidence and to carry the study of causes of subsidence forward.
Erban et al. (2014) presented the first delta-wide subsidence estimates by means of
ALOS PALSAR InSAR for the time period of 2006 to 2010 which showed subsidence
rates of up to 4 cm/yr over large regions. They compared the measured InSAR rates
with modelled compaction rates from a 1D hydrogeological model on the basis of
measured hydraulic head drawdown rates in different aquifers, which averaged to
26 cm/yr among the delta. Both results agreed well at head drawdown monitoring
stations, and they concluded that the measured subsidence can be attributed to
groundwater over-exploitation. These findings were supported by Minderhoud et al.
(2017) who developed a delta-wide 3D hydrogeological model with an integrated
subsidence module. Their model showed an average subsidence of about 18 cm across
the delta between 1991 and 2015 with increasing subsidence rates which amounted
up to more than 2.5 cm/yr in 2015. Minderhoud et al. (2018) showed on basis of the
results from Erban et al. (2014) that highest subsidence rates are found in land use
classes with high human impact, further indicating anthropogenic causes of subsidence.

A more recent Sentinel-1 InSAR study with data acquired between November 2014
and January 2019 was conducted by the company GISAT [... following a Copernicus
Emergency Management Service - Mapping activation by the German International
Cooperation Agency GIZ and the German Federal Institute for Geosciences and
Natural Resources (Copernicus, 2019; Minderhoud et al., 2020)]. The results from that
study are displayed in Figure 6.1. They show subsidence rates of up to 5 cm/yr, with the
largest rates mainly found in urban areas. Furthermore, they exhibit more variability of
subsidence rates at short distances compared to the rather smoothed results by Erban et
al. (2014). In general, differential subsidence on short distances can be related to many
factors, including loading of structures, previous land cover/land use, local geology
and different foundation depths of buildings. Wit et al. (2021) studied differential
subsidence in three cities across the VMD and showed that examined buildings with
deep foundations going down to 50 m showed on average lower subsidence rates than
their surroundings. This indicates significant compaction in shallow sediment layers
above the foundation depth of these buildings.

First results from three subsidence monitoring stations on the Ca Mau peninsula
were presented in Karlsrud et al. (2020) which measured depth-dependent soil layer
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settlement with regard to benchmarks situated in 100m depth. The maximum
subsidence rate from these monitoring stations was 31 mm/yr, which is almost three
times larger than the estimated typical settlement rate of ∼13 mm/yr in layers below
100 m. They also attributed the measured subsidence to groundwater over-exploitation.
A further contribution to subsidence has been discussed in Zoccarato et al. (2018) who
showed in a model study that natural compaction rates of young Holocene soil layers
can reach up to 20mm/yr at the coast. This potentially leads to a large additional
amount of subsidence as a result from a reduction of sediment supply by the Mekong
River.

The exact shares of the various contributions to subsidence and their spatial variations
are still not known due to a number of reasons. These include a lack of properly
distributed land subsidence observation wells which measure the depth-dependent
compaction down to deep soil layers, inaccurately known groundwater extraction
rates due to a possible large number of unregistered groundwater extraction wells and
insufficient knowledge on the complex geology.

6.2. Data
This study is based on Sentinel-1 data which was acquired in VV-polarization between
2016 and 2022 over the VMD. The data set contains 315 scenes acquired between April
2016 and April 2022 in descending orbit and 115 scenes acquired between April 2017
and March 2022 in ascending orbit. The mean temporal difference between consecutive
scenes is 7 days in the descending stack and 15.8 days in the ascending stack. Two
consecutive Sentinel-1 swaths, recorded in the Interferometric Wide Swath Mode, were
assembled in each orbit to cover a large part of the VMD. The footprint on land of
both stacks is displayed in Figure 6.1 and is about 250 km×230 km in both stacks. The
incidence angle varied approximately between 30 ◦ and 45 ◦ in the covered area in both
stacks. The SNAP software by the ESA was used for the interferometric preprocessing,
which included coregistration with Enhanced Spectral Diversity (Yague-Martinez
et al., 2016) as well as the subtraction of simulated flat-earth and topographic phase
based on the global TanDEM-X 90m DEM (Rizzoli et al., 2017).

The selected master scenes of descending and ascending stacks are February 1st, 2021
and December 22, 2020, respectively. The mean perpendicular baseline 𝐵⊥ of the scenes
with respect to the master scenes as well as the surface temperature in the city of Can
Tho (Figure 6.1) at the acquisitions, taken from the ERA-5 reanalysis, are displayed
in Figure 6.2. The local time at descending and ascending acquisitions was 5:45 am
and 6:11 pm, respectively. The standard deviations of the interferometric baselines
(Table 6.1) determine the Cramér-Rao Lower Bound (CRLB) of the estimation of
the parameters considered in M-SBAS, which are the residual height ℎ, the linear
displacement rate 𝑣 and the thermally induced displacement rate 𝛼 of (T)PSs. The
functional models of the phase due to these parameters are given in Equations 2.23,
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Figure 6.2.: Mean perpendicular baseline 𝐵⊥ with respect to the master scene and
surface temperature at acquisition of (a) descending and (b) ascending stack in the
city of Can Tho. The temperature was taken from the ERA-5 reanalysis.

Table 6.1.: Magnitude of the expected maximum of the parameters 𝑣, ℎ and 𝛼,
standard deviation of the three associated baselines 𝜏, 𝐵⊥ and 𝜗 in both stacks and
CRLB of the estimations of the parameters for a PS with SNR = 2. The values are
based on sensor parameters and surface temperatures in the city of Can Tho.

Parameter ℎ 𝑣 𝛼

Expected maximum 102 m 102 mm/yr 100 mm/K

Associated baseline 𝐵⊥ 𝜏 𝜗

Standard deviation
of baselines

𝜎DESC
𝐵⊥ = 42.8m
𝜎ASC
𝐵⊥ = 40.5m

𝜎DESC
𝜏 = 567d
𝜎ASC
𝜏 = 512d

𝜎DESC
𝜗

= 1.2K
𝜎ASC
𝜗

= 1.4K

CRLB of parameter
estimation

𝜎DESC
ℎ̂

= 1.6m
𝜎ASC
ℎ̂

= 2.9m
𝜎DESC
�̂�

= 0.08 mm
yr

𝜎ASC
�̂�

= 0.15 mm
yr

𝜎DESC
�̂�

= 0.11 mm
K

𝜎ASC
�̂�

= 0.15 mm
K

3.4 and 3.5. The CRLB of the height estimation of PSs in 𝑀 SAR acquisitions is
given by (Bamler et al., 2009)

𝜎
ℎ̂
=

𝜆𝑅 sin 𝜃0

4𝜋
√
𝑀
√
2SNR𝜎𝐵⊥

, (6.1)

where 𝜎𝐵⊥ denotes the standard deviation of the perpendicular baseline distribution.
The CRLBs of the two other parameter estimations can be derived accordingly, taking
their particular functional model into account. The CRLB of the height estimation
is depending on the pixel location as results of the dependency on the range and
satellite look angle. The CRLB of all parameter estimations are listed in Table 6.1
for a PS with SNR = 2 and the two stacks, considering the sensor parameters as well
as surface temperatures in the city of Can Tho. It is 1.3m and 2.2m for the height
estimation, 0.08mm/yr and 0.15mm/yr for the displacement rate estimation and
0.11 mm/K and 0.15 mm/K for the estimation of the thermally induced displacement
rate, respectively. Relating these values to the anticipated order of magnitude of
each parameter, the estimation of the displacement rate is expected to exhibit the
highest performance. The uncertainties of the height and the thermally induced
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displacement rate estimations are larger due to the small diameter of the orbital tube
of the Sentinel-1 mission and the small temperature variability in the study area.

The estimation of the thermally induced displacement rate in M-SBAS is only necessary
if the phase variance due to thermally induced displacement rates is large so that it
leads to considerable noise and compromises the PS identification if not accounted for.
In our case, the interferometric phase variance due to thermally induced displacements
is small. Considering the standard deviation of 1.4K in the ascending stack and
assuming a pixel with a thermally induced displacement rate of 𝛼 = 1mm/K, the
resulting phase standard deviation would be

𝜎𝜑𝛼
=
4𝜋

𝜆
𝛼𝜎𝜗 = 0.31 rad. (6.2)

The assumed rate of 1 mm/K is a rather large value for thermally induced displacement
rates and only found on large infrastructure with large coefficients of thermal expansion
(Monserrat et al., 2011; Fornaro et al., 2013). This means that the phase standard
deviation due to thermally induced displacement rates is expected to be in the range
between 0 and 0.31 rad. As a result, we do not expect this signal to lead to considerable
noise and substantially compromise the PS identification and neglect its estimation,
resulting in a reduction of the computational costs by 1/3 during the phase noise
estimation.

The first step of reducing SCN in unwrapped interferograms in M-SBAS-2-StaMPS
is the correction of modelled tropospheric delays, tidally induced displacements and
plate motions. Variograms of interferograms with short temporal baselines in both
data stacks before and after the corrections of modelled tropospheric delays and tidally
induced displacements are compared in Figure 6.3. The difference in the variograms
before and after the correction of plate motions is not shown here, as the signals are
negligible at short temporal baselines. The mean variograms applying no corrections
approach 6.7 cm2 and 12.2 cm2 at large distances in the descending and ascending
stack, respectively. Single variograms go up to 93 cm2 and 84 cm2 in the stacks. The
mean variograms after the correction of modelled tidal displacements approach 5.9 cm2

and 11.8 cm2 at large distances, while the mean variograms after the correction of
modelled tidal displacements and tropospheric delays approach 5.2 cm2 and 7.8 cm2

at large distances. Single variograms after the full correction go up to 62 cm2 in
the descending stack, whereas only up to 23 cm2 in the ascending stack. The mean
variogram gain (Equation 4.28) provided by the corrections is displayed in Figure 6.3
(d). It can be seen that while the [... mean] variogram before and after the corrections
is lower at all distances in the descending stack compared to the ascending stack,
the gain provided by the corrections is larger in the ascending stack. The gain from
the full correction reaches about -1.2 and -1.9 dB at 150 km in the descending and
ascending stack, respectively. The larger variogram values in the ascending stack are
probably related to high water vapor content and variability at local acquisition time.
Solar radiation leads to evaporation during the day and the diurnal rain cycle in the
rainy season is usually characterized by an increased frequency of rainfall events in the
evening in the lower Mekong Basin (Kumiko et al., 2008). Additionally, Liang et al.
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Figure 6.3.: Single and mean variograms of interferograms with small temporal
baselines before and after geodetic corrections in the descending and ascending stack,
as well as mean variogram gain provided by the corrections.

(2019) showed that ionospheric effects on MT-InSAR can be strong for ascending
data acquired in low-latitude areas such as the VMD, while descending data is largely
unaffected. The different impact of the ionosphere on the stacks originates in the
different times of day at acquisition. However, a visual inspection of the interferograms
revealed that the residual noise is mainly characterized by smaller wavenumbers than
expected from ionospheric delays. This led us to the conclusion that differences in the
residual noise in both stacks is mainly due to insufficient tropospheric delay modelling.

6.3. Methods and Parameter Settings
The proposed M-SBAS-2-StaMPS algorithm was applied with following essential
parameter settings. The amplitude threshold for PSCs to be selected was set to 0.47.
A minimum duration of 25 consecutive acquisitions was demanded for a coherent or
incoherent TPS segment to be identifiable. The coherence threshold for the PS and
TPS selection was empirically determined as described in Section 5.3.2. For the joint
phase unwrapping of selected TPSs and PS, an unwrapping grid size of 500m was
chosen.
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The unwrapped phases of selected PSs and TPSs were neither filtered nor detrended.
The interferometric phases in LOS were projected to the vertical, making use of
the local incidence angle. This projection was done under the assumption that
displacements in the VMD are exclusively vertical, as also assumed in Erban et al.
(2014) and Copernicus (2019). At the end, the phase time series were converted to
displacement time series as described in Equation 2.24. In the following, downward
vertical displacement is defined as positive subsidence.

6.4. Reference Areas
The considered geodetic corrections, comprising the correction of modelled tidal dis-
placements, tropospheric delays and plate motions, reduce the SCN in interferograms
on average, but not to a reasonable magnitude in order to be able to properly monitor
displacements with an expected maximum magnitude of 10 cm/yr. This is probably
due to a mediocre performance of the tropospheric delay modelling based on the
ERA-5 reanalysis, as a consequence of the low latitude and flat topography of the study
area(Cong et al., 2018; Liu et al., 2009). We presented a method to reduce residual
SCN in interferograms by integrating reference points with known displacement time
series in Section 4.5. However, displacement ground truth is sparse in the VMD.
To our knowledge, there is only one permanent GNSS station located in Bac Lieu
(Vu et al., 2020) whose data is not freely available. Measurements from repeated
levelling campaigns are also not freely available. The only areas with presumably zero
subsidence during the considered time period are solid rock outcrops located in the
north-western part of the delta and a small outcrop island which is called Hon Da Bac
and located at the western coast of the VMD (Figure 6.1). The spatial distribution of
these outcrops is poor, and there are pixels which are located more than 160 km away
from the nearest outcrop. The variograms indicate that points at this distance are
not spatially correlated, i.e. the application of the noise kriging method from Section
4.5 will not improve the uncertainty at these pixels, compared to removing the mean
phase of all pixels located on the outcrops.

For the mentioned reason, we selected additional reference PSs which are located on
large bridges with lengths over 250 m. The motivation behind consists of several
factors:

• Large bridges feature deep piled foundations with pile length of up to 73m
(personal communication from Renck, A., 2021), thus should be only affected by
potential subsidence originating from deeper soil layers. Wit et al. (2021) showed
that buildings with pile foundations are more stable than their surroundings in
three cities in the VMD, indicating a considerable contribution of shallow soil
layer compaction to the total subsidence. It has to be kept in mind that solely
subsidence above the foundation depth of the bridges can be measured if pixels
on these bridges are selected as reference, with zero displacements assumed.

89



6. Application to Subsidence Monitoring in the Vietnamese Mekong Delta

Figure 6.4.: Photograph of a bridge in the VMD featuring the characteristic street
bump at its border. The photograph was kindly provided by Andreas Schenk.

• Relative movements of the bridges at acquisition, e.g. induced by vehicle
crossings, can be canceled out by averaging the sampled interferogram noise over
multiple PSs distributed along the bridges. Residual relative movements as well
as potential unmodelled thermally induced displacements lower the coherence of
PSs on the bridges. As a result, these effects are considered in the stochastic
model of the noise screen estimation in the form of variances of the PSI derived
displacements 𝜎2

PSI of the reference points (Section 4.5.1).

• Subsiding or horizontally moving bridges can be identified in a triangulation
network between all selected reference areas and a combination of ascending and
descending stacks. They are removed from the set of reference bridges.

The fact that many larger bridges are more stable than their surroundings can be
experienced in the field when driving by car onto the bridges. Their onset usually
features a characteristic street bump, which has been caused by the surroundings of
the bridge being subsiding at a higher rate than the bridges themselves. An example
of such a bump can be seen in Figure 6.4. We systematically examined this in a
preliminary study by evaluating the differential subsidence between bridges and their
surroundings. The study was first presented in Dörr et al. (2021) with a preliminary
PSI approach and was repeated with the M-SBAS-2-StaMPS for this thesis.

For the study, (T)PS pixels located on the solid rock outcrops were selected as reference
pixels and only data from the descending stack was used. The location and length of
bridges in the VMD was extracted from Open Street Map (OSM), which provides the
geolocation of bridges as polyline vector features. We extracted bridges with a length
greater than 50 m as we expect those bridges to have a pile foundation. We computed
buffers of 10m around the polyline features with flat end-caps, which we refer to as
bridge polygons [...]. The data set partly covers both roadsides of bridges separately,
which we automatically corrected by dissolving overlapping bridge polygons. Larger
buffers of 500 m were created to define the surroundings of the bridges. (T)PSs located
in the bridge polygons were selected as Bridge-(T)PSs, while (T)PSs located in the
larger polygons with an estimated height of less than 10 m above ground were selected
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Figure 6.5.: Polygons of two bridges and their 500 m radius surroundings on the Ca
Mau Peninsula overlaid by estimated subsidence rates of identified observation points,
referenced to the solid rock outcrops. Map data: Google, © CNES/Airbus, Maxar
Technologies.

as surrounding Ground-(T)PSs. The height threshold was introduced to filter out PSs
on higher buildings which are likely to have a foundation themselves. Two examples of
bridge polygons and their surroundings are displayed in Figure 6.5. Identified (T)PSs
on both bridges feature significantly lower subsidence rates than the mean of their
surroundings.

We only considered bridges which more than three Bridge-PSs were identified on.
The subsidence rate of the bridges was estimated using the weighted median of all
Bridge-(T)PSs, with weights proportionally to the inverse of their distance to the
bridge center. The weighting was carried out because the probability of surrounding
(T)PSs being falsely located within the bridge polygons increases towards the edges
of the polygons. The subsidence of the surrounding ground was calculated using
the median of the identified Ground-(T)PS. We refer to the difference between the
subsidence rates of the bridge and the surrounding ground surface as differential
subsidence rate.

The OSM data set features 52417 bridges in the VMD with 2506 being longer than
50m. 397 bridges were selected for the study of differential subsidence rates, as
more than three Bridge-(T)PSs were identified on these. The estimated subsidence
rates of the bridges and their surroundings as well as a histogram of the differential
subsidence rates are displayed in Figure 6.6. 86 % of the bridges are characterized by
lower estimated subsidence rates than their surroundings. The minimal differential
subsidence rates is -37mm/yr. 72% of the bridges exhibit subsidence rates of less
than 5mm/yr, while this only applies to 17% of bridge surroundings. It has to
be mentioned that the estimated absolute subsidence rate has considerably higher
uncertainty than the differential subsidence rate in most cases due to the distance
of the bridges to the solid rock outcrops. The 5% quantile of the estimated bridge
subsidence rates is -4.1mm/yr, indicating an uplift for some bridges which we do
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Figure 6.6.: (a) Histogram of differences in estimated subsidence rates of selected
bridges and their surrounding ground surface using the solid rock outcrops as reference
areas. (b) Comparison of estimated subsidence rates with respect to bridge length.

not expect in the region. We assume that this is caused by temporally correlated
residual SCN in the data and partially by horizontal movements of the bridges, such
as tilts toward the LOS direction. A few bridges exhibit higher subsidence rates as
their surroundings. Possible reasons for that are: (i) The bridge has no or shallow
foundation and the additional load of the bridge leads to an increased subsidence rate.
(ii) Buildings with deep foundations were included in the set of Ground-(T)PSs which
decreased the averaged subsidence rate of the bridge surrounding. (iii) (T)PSs were
falsely classified as Bridge-(T)PSs.

The observation that most of the bridges are characterized by a lower estimated
subsidence rate than their surroundings fits those from Wit et al. (2021). This
indicates that a substantial part of the total subsidence originates in soil layers above
the foundation depth of the bridges. For this reason, we selected bridges with lengths
longer than 250m as potential reference areas in the following. The median of the
estimated subsidence rate of these bridges is 1.5 mm/yr, while the median subsidence
of their surroundings is 15.4mm/yr. The length threshold was set considering the
trade-off between proper distribution of references in the study area and length of the
bridges, which we assume to be correlated with the foundation depth up to a certain
degree.

For the selection of the final reference (T)PSs on the bridges, various statistical tests
were carried out with the goals to (i) identify and remove (T)PSs which are actually
not located on the bridges or located on parts of the bridges which are actually
moving over time, (ii) identify and remove bridges which are subsiding or moving
horizontally. Parts of the tests were realized in triangulation networks which were
spanned between the potential reference areas. Horizontal movements were studied
by combining measurements from descending and ascending orbits. The detailed list
of the statistical tests is given in the Appendix A.1.

92



6.5. Results

Figure 6.7.: Reference areas in the two referencing scenarios. (a) Referencing scenario
1 only consists of solid rock outcrops. (b) Referencing scenario 2 includes additionally
selected bridges with lengths of more than 250 m. The island Hon Da Bac was removed
from the set of reference areas in the hypothesis tests for referencing scenario 2.

In the following section, the results from two referencing scenarios will be compared.
The reference areas in both scenarios are displayed in Figure 6.7. In referencing
scenario 1, the set of reference areas only comprised the solid rock outcrops, while
selected bridges were added to the reference areas in scenario 2. The observation
points on the outcrop island Hon Da Bac were removed from the set of reference
pixels in reference scenario 2, because they did not pass the statistical tests which
checked the stability of the potential reference areas. This might be related to the
physical origin of the scatterers on the island. They are located on the rocky coast of
the island, which is potentially affected by displacements due to waves, tides or wind.

6.5. Results
The proposed algorithm with the mentioned parameter settings identified a high
density of observations points across the study area. It identified 7 918 109 observation
points in the descending stack, which is the sum of 6 475 848 TPSs and 1 442 261 PSs,
while 5 705 582 measurement points were identified in the ascending stack from which
3 109 055 and 2 596 527 are TPSs and PSs, respectively. The numbers of identified
TPSs with regard to their TPS type are listed in Table 6.2. The share of appearing
TPSs in the total number of identified TPSs is largest in both stacks, which is probably
due to the high construction activity in the VMD. The ratio of identified TPSs to
PSs in the descending stack is comparable with the findings in Section 5.5, which
were based on descending data of six years length in the cities of Can Tho and Ca
Mau and two rural areas. The ratio differs in the ascending stack. We assume that
the difference in the number of identified (T)PSs in both stacks is due to [... three]
reasons. First, the noise level in the ascending stack is on average higher than in
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Table 6.2.: Number of identified PSs, TPSs and specific TPS types in the descending
and ascending data stacks.

Descending Ascending
# PSs 1 442 261 2 596 527
# TPSs 6 475 848 3 109 055
# appearing TPSs 2 531 320 1 755 916
# fading TPSs 1 189 116 948 933
# visiting TPSs 1 399 540 294 934
# recurring TPSs 1 355 872 109 272

the descending stack, which is described in Section 6.2 and potentially leads to a
decreased number of identified observation points. Second, the covered time period
by the ascending stack (April 2017 - April 2022) is one year shorter than that by
the descending stack (April 2016 - April 2022). TPSs which were active only until
April 2017 could not be identified in the ascending stack. About 106,200 fading TPSs
were identified in the descending stack, whose coherent segment only lasted until
April 2017. [... The last reason is that] the ascending stack only consists of 115 SAR
scenes with an average temporal difference of 15.8 days between consecutive scenes,
compared to the descending stack, which consists of [... 315] scenes with an average
temporal difference of 7 days between consecutive scenes. One processing parameter
of the TPS identification is the minimum number of consecutive acquisitions that a
TPS has to be coherent or incoherent in order that the change dates describing this
segment can be identified. This parameter was set to 25 in the analysis. As a result, a
coherent TPS segment has to be, on average, at least 395 days in the ascending stack
in order to be identifiable, compared to 175 days in the descending stack. About 1.3
million TPSs with a total coherent period of less than 395 days were identified in the
descending stack. We assume that the different PS to TPS ratios in both stacks are
also constituted in that fact, since TPSs with short incoherent segments are more
likely to be falsely identified as PSs in the ascending stack compared to the descending
stack.

In the following, the estimated subsidence rates in both stacks are compared. The
temporal evolution of the subsidence rates is examined and exemplary subsidence time
series are shown. Subsequently, a special use case of the TPS integration into PSI is
presented. It is shown that the TPS integration not only significantly improves the
observation point network, but provides additional information by means of change
dates of TPSs, which can be used for change detection. The time series of appearing
TPSs after their appearance is exploited to systematically analyze the initial settlement
of automatically identified new buildings.

6.5.1. Overview of Estimated Subsidence

The estimated subsidence rates in both stacks for the time period between April 2017
and April 2022 are displayed in Figure 6.8, using only the solid rock outcrops as
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Table 6.3.: Basic statistics of the results in the overlapping area of descending and
ascending stack for the two referencing scenarios: (1) referencing solely to solid rock
outcrops and (2) adding selected bridges as additional reference areas. The statistics
of the estimated rates are based on the overlapping time period of April 2017 until
April 2022.

Desc. (1) Asc. (1) Desc. (2) Asc. (2)
5% Rate Prctile (mm/yr) -1.6 -5.4 -1.5 -3.1
Median Rate (mm/yr) 8.6 6.3 8.0 6.8
Mean Rate (mm/yr) 10.8 9.0 10.3 9.1
95% Rate Prctile (mm/yr) 30.5 32.3 29.7 29.2
Mean Std. Rate Est. (mm/yr) 1.2 2.3 0.5 1.2
Mean Std. Sub. Est. (mm) 28.1 35.6 10.9 17.5

reference areas (referencing scenario 1) as well as using the modified reference area set,
characterized by selected bridges as additional reference areas and the removal of Hon
Da Bac from the reference (referencing scenario 2). The estimated standard deviation
of subsidence (Equation 4.26) and rate estimates (Equation 4.27) are also displayed in
that Figure. For the sake of consistency in the displayed results, only (T)PSs which
cover the whole period of April 2017 to April 2022 are displayed. Furthermore, the
observation points were thinned out to a maximum density of 50 points per square
kilometer. Lastly, the points were sorted in the way that those with highest subsidence
rates overlay points with smaller rates. Table 6.3 provides basic statistics of the results
in the overlapping area of ascending and descending stack, in addition to their spatial
visualization.

The estimated subsidence rates are characterized by a high heterogeneity on short
as well large scales. In referencing scenario 1, small-scale variations in the estimated
subsidence fields feature similar characteristics in both stacks, with highest rates of
more than 6 cm/yr mainly found in urban areas such as the cities of Can Tho, Bac
Lieu and Ca Mau. There are, however, significant long-wave differences between the
results of both stacks, which are especially noticeable on the southern peninsula. The
estimated rates of observation points south of 9.18 ◦ N are on average 8 mm/yr larger
in the ascending than in the descending stack. The median and mean estimated
subsidence rates in the whole spatial overlap of both stacks are 8.6mm/yr and
10.8mm/yr in descending and 6.3mm/yr and 9mm/yr in the ascending stack. The
5%- and 95% percentiles of the estimated subsidence rates are -1.6mm/yr and
30.5 mm/yr in the descending and -5.4 mm/yr and 32.3 mm/yr in the ascending stack.
The estimated negative subsidence rates at parts of the observation points suggest
an uplift, which we do not expect in the area. This could be a result of residual
temporally correlated SCN, unwrapping errors or large outliers, leading to a biased
rate estimation. Horizontal movements of sporadic pixels towards the sensor also
potentially contribute to this observation, e.g. caused by tilts of buildings. The
estimated standard deviations of the subsidence estimates increase with increasing
distance from the solid rock outcrops, and their mean is 28.1mm in the descending
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Figure 6.8.: (a)-(b) Estimated subsidence rates between April 2017 and April 2022
in the descending and ascending stack, respectively, using only solid rock outcrops
as reference areas. (c)-(d) Same as (a)-(b) but using selected bridges as additional
reference areas. (e)-(h) Estimated subsidence standard deviations. (i)-(l) Estimated
standard deviation of the subsidence rates. Only (T)PSs which cover the whole period
of April 2017 to April 2022 are displayed in all subfigures.
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and 35.6mm in the ascending stack. The error propagation into the rate estimation
yields mean standard deviations of the rate estimation of 1.2mm/yr and 2.4mm/yr
in the stacks, respectively. The difference has its origin in the different noise levels
and the different number of acquisitions in the stacks.

The estimated subsidence rates in both stacks agree to a much higher degree in
referencing scenario 2 compared to referencing scenario 1. The rates south of 9.18 ◦ N
diverge only by 0.15mm/yr on average between both stacks. The median and mean
estimated subsidence rates in the whole spatial overlap of both stacks are 8.0 mm/yr
and 10.3mm/yr in the descending and 6.8mm/yr and 9.1mm/yr in the ascending
stack. The 5%- and 95% percentiles of the estimated rates are -1.5mm/yr and
29.7 mm/yr in the descending and -3.1 mm/yr and 29.2 mm/yr in the ascending stack.
As a result, the percentage of observation points characterized by negative subsidence
rates decreased by adding the selected bridges as reference areas. The estimated mean
standard deviation of the subsidence estimates is 10.9 mm and 17.5 mm in the stacks,
respectively, and the mean standard deviations of the subsidence rate estimation are
reduced to 0.5mm/yr and 1.2mm/yr, i.e. are approximately halved compared to
referencing scenario 1.

In order to study the difference between the results from both stacks in more detail, we
calculated the difference between gridded subsidence rates for the time period between
April 2017 and April 2022. The gridding was realized by calculating the median
rates of all (T)PSs, which were active in the considered time period, in grid cells of
500m × 500m size. The differences between the estimated rates from both stacks are
displayed in Figure 6.9. The differences feature a linear trend in ground range direction
of the ascending geometry in referencing scenario 1, which ranges from about -8 mm/yr
in the south-west to 10 mm/yr in the north-east and is removed in referencing scenario
2. This indicates that the residual SCN in the data stack in referencing scenario 1
contains temporally correlated signals, leading to a bias of the estimated rates and a
spatial ramp in the differences between the results from the descending and ascending
stack. An alternative reason behind the trend in referencing scenario 1 would be
horizontal movements. A combination of the observations from both stacks to separate
vertical displacements and horizontal displacements in east-west direction (Fuhrmann
and Garthwaite, 2019) would suggest a trend of horizontal displacements ranging from
about -10 mm/yr in the south-west to 7mm in the north-east, which is very unlikely
on these spatial scales in a sedimentary delta after the a-priori reduction of plate
motions. As stated before, the variances of the rate estimation are underestimated if
unconsidered temporal correlations persist in the residual SCN, which explains why
the spatial trend in the differences is outside the estimated 2𝜎 uncertainty interval,
even if the trend is caused by noise. The 2𝜎 uncertainty interval is based on the
estimated standard deviations of the rate difference estimation, which were calculated
by propagating the estimated standard deviations of the rate estimates (Figure 6.8)
into the calculation of the rate differences. They are also displayed in Figure 6.9.

The temporally correlated noise can be effectively mitigated in large parts of the study
area in referencing scenario 2, leading to the removal of the trend in the differences.
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Figure 6.9.: (a)-(c) Differences in estimated subsidence rates from descending and
ascending stack for both referencing scenarios. The rates were spatially gridded by
calculating the median of estimated rates of observation points inside grid cells of
500m × 500m. (d)-(f) Estimated standard deviation of the rate difference estimations
between both stacks in both referencing scenarios. Below: Mean subsidence time
series for all (T)PSs in a radius of 500 m around the six locations indicated by arrows
in (a) in both referencing scenarios.
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However, there are still some locations where the differences between the results in
both stacks are outside the estimated 2𝜎 uncertainty interval in referencing scenario 2,
e.g. on the west- and east-coast. Averaged subsidence time series of (T)PSs in a radius
of 500m around six exemplary locations are displayed in Figure 6.9 for a detailed
visualization of the results from both stacks. The overall trend of the time series agrees
at most locations for both referencing scenarios, while the time series in referencing
scenario 2 are characterized by considerably lower noise. Furthermore, the results
from both stacks agree to a much higher degree in referencing scenario 2 compared
to scenario 1. Location 6 is an exception, where the time series of descending and
ascending stack do not agree in either of the referencing scenarios until the end of
2019. In referencing scenario 2, the differences in the first half of the time series are
even higher than in scenario 1. Here, the differences have to be examined in more
detail in the future, in order to attribute them to processing errors, noise or localized
horizontal movements. At location 2, the noise in scenario 2 is still considerable,
especially in the ascending stack, due to the large distance to reference areas. We
assume that there is temporally correlated SCN at that location in both scenarios,
leading to biased rate estimations in both stacks.

The estimated subsidence time series can be exploited to study the temporal evolution
of the subsidence. The difference between the estimated subsidence rates in referencing
scenario 2 between the periods October 2019 - April 2022 and April 2017 - October
2019 are displayed in Figure 6.10. The estimated standard deviations of the rate
difference calculations are also plotted, which were calculated by propagating the rate
estimation variances in both segments into the difference calculation. In both stacks,
subsidence rate differences have an approximate mean of 0 with standard deviations
of ∼ 8.5mm/yr, and there are locations where the differences agree well (for example
Arrows 1 and 2 in Figure 6.10). However, they diverge in many parts of the delta, with
differences being largely spatially correlated. For example, the results in the ascending
stack indicate a large-scale decrease in subsidence at the most eastern part of the
study area, while those in the descending stack indicate a slight increase in subsidence
in large parts of the same area. The estimated standard deviations of the difference
calculation are largest in that area, with values of up to 4.1 mm/yr and 9.4 mm/yr in
the descending and ascending stack, respectively. However, the rate differences in the
ascending stack are still outside the estimated 2-sigma uncertainty interval, indicating
a significant decrease in subsidence rates over time. This is the same area which
was already examined above, as it features differences in the estimated subsidence
rates between both stacks for the whole time period of 2017-2022. We assume that
temporally correlated noise is responsible for the differently estimated subsidence
rate evolution. The results of referencing scenario 1 are displayed in the Appendix in
Figure A.2. They are characterized by large spatial trends in ground range direction
in both stacks.

In order to study the temporal evolution of the estimated subsidence in both stacks in
more detail, the averaged subsidence time series of (T)PSs in a radius of 500 m around
five locations are displayed in Figure 6.10 (e)-(n) for the two referencing scenarios. The
time series comparison of the two referencing scenarios allows the same conclusions
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Figure 6.10.: (a)-(b) Difference in estimated subsidence rates between the periods Oct.
2019 to Apr. 2022 and Apr. 2017 to Oct. 2019 in the descending and ascending stack,
respectively. (c)-(d) Estimated standard deviation of the rate difference calculation
in (a)-(b). Only (T)PSs which cover the whole period of Apr. 2017 to Apr. 2022
are displayed in (a)-(d). Results in (a)-(d) are based on the referencing scenario 2.
Below: Mean subsidence time series for all (T)PSs in a radius of 500m around the
five locations indicated by arrows in (a) and (b) in both referencing scenarios.
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as the comparison of the time series in Figure 6.9. The time series of both stacks
agree to a much higher degree with considerably lower noise level in the referencing
scenario 2 than in scenario 1. Only at location five, the residual noise is higher for
referencing scenario 2 than scenario 1, which is due to the proximity of the location to
the island Hon Da Bac which was removed from the set of reference areas in scenario
2. The time series of both stacks, however, are characterized by different trends at
that location in scenario 1, which is contrary to the results in scenario 2.

An interesting feature of the results is that the estimated subsidence time series at
location 3 is characterized by apparent undulating movements with an approximate
frequency of 1/yr in referencing scenario 1. These undulations are almost completely
removed in referencing scenario 2, while the overall trend of the time series stays the
same. There are two possible reasons for the observed differences. First, it could
be possible that there are undulating vertical displacements originating in depths
below the foundation depth of the reference bridges, caused by seasonal undulations
of groundwater levels in the aquifers below. However, Duy et al. (2021) studied the
groundwater dynamics across the VMD and found that significant seasonal variations
of groundwater levels in coastal areas are mainly found in the Holocene and upper
Pleistocene aquifers, which are expected to be located above the foundation depth of
the bridges. We rather assume that the differences in both referencing scenarios are
due to seasonally correlated residual SCN in the results of [... referencing scenario
1] at the eastern coast of the VMD, which is effectively reduced in [... referencing
scenario 2].

Summing up, applying our proposed method to reduce SCN in the data with selected
bridges as additional references leads to a significant alignment of the estimated
subsidence rates and a significant reduction in their uncertainties. We assume that
the differences in the estimated subsidence rates between the results in both stacks
in referencing scenario 1 are due to temporally correlated SCN, which is largely
suppressed by adding the bridges to the reference areas. As pointed out before, it has
to be kept in mind that only subsidence originating from above the foundation depth of
the selected bridges is measured this way. However, we see that the averaged differences
between the estimated subsidence rates in the two referencing scenarios are small.
The estimated subsidence rates in the descending stack are on average only 0.5 mm/yr
higher in referencing scenario 1 than in referencing scenario 2, with a standard
deviation of 1.3 mm/yr. The mean difference between both scenarios is 0.12 mm/yr in
the ascending stack, with a standard deviation of 3.6mm/yr. Consequently, there is
no considerable change in the average subsidence rates when adding the bridges as
reference areas, and we conclude that the largest part of the subsidence originates
from depths above the foundation level of the selected bridges. The piled foundations
of all bridges are assumed to be similar due to the similar length of the bridges and
to go down to a maximum depth of 73m (personal communication from Renck, A.,
2021).
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Table 6.4.: Measured subsidence rates in the upper 100 m at two subsidence monitor-
ing stations between February 2017 and July 2019 (Karlsrud et al., 2020) and mean
estimated subsidence rates of all (T)PSs, which were active in the given time period,
in a radius of 200m around the stations in the two referencing scenarios.

Station 1 Station 2
Coordinates 8.89 ◦ N, 104.86 ◦ E 8.09 ◦ N, 105.0 ◦ E
Karlsrud et al. (2020) (mm/yr) 4 24
Desc (1) (mm/yr) 6.4 27.5
Desc (2) (mm/yr) 4.5 25.5

6.5.2. Comparison with Alternative Measurements

There have been various subsidence observations made in the VMD, which were
conducted with different measurement techniques and partly observed subsidence
in different subsurface depths. Minderhoud et al. (2020) give an overview of the
existing observations. Two of the accessible subsidence observations are suitable
to be compared with our subsidence estimates since they describe subsidence in
approximately the same subsurface depths and share a temporal overlap with our
observations. These include measurements from subsidence monitoring stations on the
Ca Mau peninsula (Karlsrud et al., 2020) and the PSI observations from the company
GISAT in the scope of the Copernicus Emergency Service (Copernicus, 2019). These
observations are compared to the results from M-SBAS-2-StaMPS in the following.
At the end of the section, latter results are also compared with results obtained with
the StaMPS algorithm in a representative part of the VMD.

Comparison with Subsidence Monitoring Stations

Karlsrud et al. (2020) presented measurements from three subsidence monitoring
stations on the Ca Mau peninsula which were founded at 100m depth, thus were
only able to measure subsidence in the upper 100m of the subsurface. For the three
stations, which are approximately located at 8.89 ◦ N, 104.86 ◦ E, 8.09 ◦ N, 105.0 ◦ E and
9.177 ◦ N, 105.10 ◦ E, subsidence rates of 4, 24 and 31 mm/yr were measured between
February 2017 and July 2019. Since there are inconsistencies in their publication
between the specified subsidence rate and plotted subsidence time series at station
3, we excluded that station from the comparison. We compared the rates with the
median subsidence rate of all (T)PSs in the given time period which were identified
in a radius of 200m around the stations. We solely considered the results from the
descending stack, since only this stack completely covers the given time period. The
results are shown in Table 6.4. Our estimated subsidence rates at location 1 are 6.4
and 4.5 mm/yr for the two referencing scenarios with estimated standard deviations of
the rate estimate of 2.5 and 1.6mm/yr, respectively. At location two, our estimated
rates are 27.5 and 25.5 mm/yr with estimated standard deviations of 3 and 0.9 mm/yr.
Consequently, our results agree with those from the subsidence monitoring stations,
with deviations of 2.4 and 0.5 mm/yr at station 1 and 3.5 and 1.5 mm/yr at station 2
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for both referencing scenarios, respectively. The fact that the results from referencing
scenario 2 better fit their observations is expected to be related to two factors. First,
both observations only measured subsidence in the upper subsurface, while the results
in referencing scenario 1 provide an estimate of the total subsidence. In case that part
of the subsidence originates from depth below the foundation depth of the bridges and
the subsidence monitoring stations, it is only measured in our results from referencing
scenario 1. The second factor is the reduced temporally correlated noise in scenario 2
compared to scenario 1.

Comparison with PSI-Measurements by Copernicus Emergency Service

The company GISAT studied land subsidence in the VMD using Sentinel-1 data
acquired in descending orbit between November 2014 and January 2019. The study
was initiated by an activation of the Copernicus Emergency Management Service and
the processing and the results were described in Copernicus (2019) and Minderhoud
et al. (2020). The PSI processing was carried out with the SARPROZ software
(Perissin et al., 2011). A spatial low-pass filter was applied in order to estimate
spatially correlated signals in interferograms after the subtraction of estimated linear
displacement rates. The estimated LOS displacements were converted into vertical
displacements, and spatial trends in the estimated velocity field were estimated
and subtracted. No detailed information of the low-pass filter and final detrending
operation was given. The processing was realized in spatial patches which were merged
later, and the displacements were referenced to the available solid rock outcrops, as
done in our referencing scenario 1.

They identified 668710 PSs across the VMD in the study area shown in Figure 6.1 (d).
They compared their results with unpublished results from data acquired in ascending
orbit over parts of the VMD. The estimated subsidence rates diverged by 7.07 mm/yr
on average, which is significantly larger than the differences between our results from
descending and ascending orbits. We compared our results from the descending orbit
in referencing scenario 2 with their results in the overlapping time period of April
2016 to January 2019. For this purpose, we extracted their estimated subsidence time
series in the given time period and estimated subsidence rates. The same was carried
out for all (T)PSs in our results which were active in the overlapping time period.
The estimated rates from both approaches were spatially gridded by calculating the
median of estimated rates of observation points inside grid cells of 500m × 500m.

The differences between the gridded subsidence rates of the GISAT analysis and
our approach are displayed in Figure 6.11. The differences are characterized by a
mean of 2.14 mm/yr and a standard deviation of 4.9 mm/yr, indicating slightly larger
subsidence rates in the results by GISAT, on average. The differences are mainly
spatially correlated, and larger differences are primarily situated at the margin of the
study area, where uncertainties in both results are largest. An exemplary patch of
differences of more than 10 mm/yr is located on the southern Ca Mau peninsula. The
patch features slight discontinuities to adjacent areas, which correspond to specific
range and azimuth lines in the SAR geometry. As this patch is also characterized
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Figure 6.11.: (a) Subsidence Rates estimated with our approach for the time series
between April 2016 and January 2019 based on data from the descending orbit and the
referencing scenario 2. The rates were spatially gridded by calculating the median of
estimated rates of observation points inside grid cells of 500m × 500m. (b) Difference
between gridded subsidence rates from the analysis by GISAT and our analysis. (c)
Histogram of differences.

by discontinuities to neighboring areas in the estimated height error in the GISAT
analysis, we assume that there are slight spatial inconsistencies in their results which
originate in the PSIs patch processing and subsequent merging.

Summing up, the comparison showed a substantial consistency between our results
and those from the company GISAT. Differences between gridded subsidence rates
are spatially correlated in large parts. They are most considerable at the margins of
the study area, which might be caused by the large distances to the outcrops, which
were used as reference in the analysis by GISAT. We assume that the differences in a
patch in the southern peninsula are processing artifacts in the analysis by GISAT. An
advantage of our results is that no filtering and detrending was performed, which is
contrary to the GISAT analysis. In the latter, displacement signals of interest might
have been filtered out and the spatial detrending prevents the analysis of large-scale
displacement phenomena.

Comparison with Results from StaMPS

Finally, we compared our results with results achieved with the StaMPS software. Due
to computational reasons, the comparison was only realized in a representative patch of
the study area with a size of about 30 km× 30 km centered around the city of Can Tho
(Figure 6.12). Furthermore, we compared only results from the descending data stack
between April 2016 and April 2022. The phase noise estimation and identification
of PSs was carried out with default parameters. For the subsequent unwrapping, we
tested different parameter settings and here present results with an unwrapping grid
size of 100m. The grid size is 5 times smaller compared to the unwrapping grid size
we used in our approach, resulting in considerably higher computational cost of the
unwrapping. The results were supposed to be referenced to the selected reference
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Figure 6.12.: (a)-(b) Estimated subsidence rates using M-SBAS-2-StaMPS and
StaMPS, respectively, around the city of Can Tho, based on data from the descending
orbit between April 2016 and April 2022. (c)-(d) Mean estimated subsidence time
series of all (T)PSs in a radius of 100m around the locations in the red and black
circles in (b), respectively. Imagery data: Google Earth, © 2023 Maxar Technologies.

bridges in the study area. However, a building which was identified as stable in our
results was finally used as reference in this comparison, as the identified PSs on the
reference bridges were affected by large unwrapping errors in the StaMPS analysis.

The StaMPS approach identified 228 738 PSs in the study area, while our approach
identified 665 925 observations points which comprise 116 574 PSs and 549 351 TPSs.
The ratio of identified TPSs to PSs in our approach for the time series length of six
years meets the findings in Section 5.5. Considering the similar ratios of identified
PSs and AmPSs in a time series of six years length in Section 5.5, we assume that the
number of identified PSs would be the similar in both analyses without the integration
of TPSs.

The estimated subsidence rates in both analyses are displayed in Figure 6.12. Solely
the rates of PSs are shown for our analyses for the sake of temporal consistency in
the displayed results. It is striking that the estimated subsidence rates are much
higher in our results than in the results derived from the StaMPS analysis. The
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estimated subsidence rates in our analysis are on average 10.68mm/yr higher than
those in the StaMPS analysis. This is caused by severe unwrapping errors in the
latter, as shown in two exemplary subsidence time series in Figure 6.12 (c)-(d). It can
be observed that the subsidence time series agree well around the master acquisition
on February, 1st 2021. However, the differences increase with increasing temporal
distance to the master. The time series from the StaMPS analysis are characterized
by unwrapping errors, shifted by a multiple of 𝜆/2 from the time series in our results.
The results meet the findings of the M-SBAS and StaMPS comparison in Schenk
(2015), which was shortly described in Section 3.2. The StaMPS algorithm bases on
the assumption of spatial correlation in the displacement field. The advantage of
this is that no deformation model has to be assumed during the PSI processing. No
displacements of single PSs are estimated and subtracted prior to the unwrapping.
This leads to problems for the phase unwrapping when small-scale variations in the
displacement field prevail, as in the example in the city of Can Tho. The phases
due to varying displacements on short spatial distances increasingly diverge with
increasing temporal baselines, leading to large phase differences on short spatial scales
which are difficult to unwrap. The M-SBAS algorithm, on the other hand, estimates
displacement rates of all (T)PSs and reduces the phases due to these displacements
prior to the unwrapping. This leads to smooth interferograms which can be robustly
unwrapped. The unwrapping grid size can be chosen much larger in that case, since
phase variations inside the grids are greatly reduced.

Concluding, the PS identification shows similar performance in both approaches,
whereas the TPS integration obviously leads to a considerable increase in identified
observation points. The StaMPS algorithm is characterized by an incapability to
properly unwrap interferometric phases due to small scale variations in the displace-
ment field, while the unwrapping results in our approach do not feature unwrapping
errors. This result could be expected based on the different applications which the
approaches were designed for. The StaMPS algorithm was designed to study spatially
correlated displacement phenomena, while the M-SBAS was designed to study dis-
placement fields which are potentially characterized by large small-scale variations.
This is why the latter is much better suited to study subsidence in the VMD. Another
advantage of the M-SBAS algorithm is the faster parameter estimation in the phase
noise estimation step of PSCs. The PS identification in M-SBAS including parameter
estimation only took 23% of the processing time in StaMPS in the study by Schenk
(2015). It has to be noted that the StaMPS results could probably be improved by
choosing a small-baseline interferogram network to be analyzed and unwrapped, which
is actually intended for the inclusion of DSs in the algorithm (Hooper, 2008).

6.5.3. Systematic Analysis of Initial Subsidence of New
Buildings

The integration of TPSs into PSI not only leads to a flexible PSI monitoring system
which analyzes point scatterers in their coherent lifetime segments, but leads to
additional information in the form of change dates of TPSs. This information can be
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used for land surface change detection, as done in Yang et al. (2017). We here present
a special use case of the TPS integration which is based on clustering appearing TPSs
based on their location, estimated subsidence rate and appearing date in order to
identify newly built constructions. Their initial subsidence time series is systematically
analyzed with the goal to assess potential load-induced settlement and its contribution
to the measured total subsidence in the VMD. The study was initially published
in Dörr et al. (2022c). The updated analysis with the final results of this thesis is
described in the following. The analysis is solely based on the results in the descending
stack due to the longer time series and lower noise level compared to the ascending
stack.

We used Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
(Ester et al., 1996) to cluster appearing TPSs based on their location including their
estimated residual height above the used reference DEM, appearing date and estimated
subsidence rate. A minimum number of 3 points within a cluster was demanded. The
data matrix was whitened prior to the clustering operation and the weights of the
single parameters for the clustering were slightly adjusted in order to optimize the
clustering results, according to personal observations. For example, the weight of the
estimated height of the points was reduced due to its limited estimation accuracy (see
Section 6.2).

An example of clustered appearing TPSs is displayed in Figure 6.13, which covers an
area at the eastern border of the city of Can Tho. Several industrial buildings were
constructed in that area during the covered time series. The identified observation
points are shown in Figure 6.13 (c), which mainly consist of appearing and visiting
TPSs. It is assumed that most identified visiting TPSs were interrupted by ongoing
construction activities and will probably re-appear as recurring TPSs in the future.
Identified clusters of appearing TPSs are shown in Figure 6.13 (d). The different
clusters are mainly distributed on new constructions, partly also on newly sealed land
surface areas. Few buildings triggered various clusters, which is caused by different
parts of the particular buildings being affected by differing displacements, as also
observed in a PSI study by Schneider and Soergel (2021), for example. The large red
cluster in the center of the area covers three adjacent buildings which look alike, were
built at the same time and probably share a similar construction. In Figures 6.13
(e)-(g), the subsidence time series of three exemplary clusters are displayed, which are
located on the three western buildings in the covered area. It is striking that two of
the three clusters are characterized by a strong initial settlement of about 30 mm/yr,
which decreases considerably after approximately 1.5 years at one of them and one
year at the other. It is assumed that this is caused by load-induced settlement of
shallow soil layers. On the contrary, the third house is subsiding at a nearly linear
rate of about 30 mm/yr, which is only slightly decreasing over the covered time period.
Either there is not a significant contribution of load-induced settlement to the total
subsidence at this building, or it takes longer for the shallow soil layers to be fully
consolidated at this place, so that the decrease in initial settlement only set in after
the end of the time series. Differences in the initial displacement time series of new
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Figure 6.13.: (a)-(b) Satellite images over part of Can Tho city in 2017 (a) and 2021
(b) (Google Earth, © 2023 Maxar Technologies). (c) Location and scatterer type of
identified (T)PS pixels. (d) Clusters of appearing and visiting TPS pixels, identified
using DBSCAN clustering based on the location, appearing date, height and mean
subsidence rate of the pixels. Points displayed in a common color belong to the same
cluster. (e)-(g) Mean vertical displacement time series of three clusters with respect
to the selected master scene on February 2nd, 2021. The colors identify the location
of the clusters in subfigure (d).
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Figure 6.14.: Subsidence statistics in Can Tho (a)-(c) and Ca Mau (d)-(f). (a)/(d)
Histograms of the subsidence rate of PSs and subsidence rate of appearing TPSs in
their first year. (b)/(f) Histograms of the subsidence rate of PSs and fading TPSs.
(c)/(f) Histogram of differences in first and second year subsidence rate of appearing
TPS clusters and differences in subsidence rates of PSs in 2017 and 2018.

buildings might be due to differences in the type of constructions, foundation depths,
local geology and land use/land cover history.

We systematically studied initial settlements of appearing TPSs in the cities of Can
Tho and Ca Mau. We only studied appearing TPSs with a lifetime of more than
two years. The histogram of estimated subsidence rates of PSs and those of TPSs
in the first year after their appearance are shown in Figure 6.14. A higher portion
of appearing TPSs exhibits high subsidence rates compared to PSs in both cities. In
Can Tho, 15% and 9% of the appearing TPSs are subsiding at a rate of more than
40 mm/yr in the first year after appearance and in their total lifetime, respectively. On
the contrary, only 6 % of the PSs are subsiding at a rate of more than 40 mm/yr. The
particular percentages are 16%, 10% and 5 % in Ca Mau, respectively. The results
show that a portion of appearing TPSs in both cities is subsiding at an exceptional
high initial subsidence rate after appearance, which is decreasing over time, as found
for scatterers on two buildings in the example in Figure 6.13. We attribute this signal
to load-induced initial settlement of new constructions. In order to test a systematic
bias in the subsidence rate estimation of TPSs, we also compared the estimated
subsidence rates of fading TPSs and PSs in Figure 6.14. No significant differences
are visible between the subsidence rates of both scatterer groups in both cities, i.e. a
systematic bias in the subsidence rate estimation of TPSs can be ruled out.

In order to study the temporal evolution of the subsidence of new buildings in more
detail, the estimated subsidence rates of clusters of appearing TPSs were calculated
in the first year and second year after their appearance. The clusters are expected
to represent new constructions or built-up areas. The mean subsidence time series
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in both cities was removed in order to reduce temporal changes in the large-scale
subsidence field in the cities. The results for both cities are presented in Figure 6.14
(c)/(f). Appearing TPS clusters have a slight tendency of decreasing subsidence rates
between the first and second year after their appearance. The mean difference in
subsidence rates is 2.5mm/yr and 2.1mm/yr in Can Tho and Ca Mau, respectively.
We also compared the subsidence rates of PSs for the exemplary years 2017 and 2018.
The histograms of the subsidence rate differences are plotted in Figure 6.14 (c)/(f).
The mean subsidence rate differences are -0.1mm/yr and 0.4mm/yr.

Summing up, the TPS integration into PSI not only leads to a flexible monitoring
system which is able to handle dynamic land surface changes during the time series, but
provides additional information in form of change dates of identified TPSs, which can
be used to carry out change detection. We here identified new buildings by clustering
appearing TPSs based on their location, appearing date, height and displacement rate
and systematically studied their initial displacement. We found that the portion of
appearing TPSs with high initial subsidence rates is larger than the portion of PSs
and fading TPSs with high subsidence rates in the cities of Ca Mau and Can Tho.
New buildings are on average characterized by a slightly decreasing subsidence rate in
the first two years after appearing. We attribute part of their measured subsidence to
loading-induced initial settlement of the shallow (sub)surface and expect settlement of
this kind to contribute noticeably to the measured total subsidence across the VMD,
especially due to the recent high building activity (Minderhoud et al., 2018).

6.6. Conclusion
In this chapter, the proposed M-SBAS-2-StaMPS approach was applied to subsidence
monitoring in the VMD. Sentinel-1 data acquired in descending orbit between April
2016 and April 2022 and in ascending orbit between April 2017 and April 2022 were
evaluated for this purpose. Both stacks are affected by high residual noise after the
subtraction of modelled phase disturbances, which is probably mainly tropospheric
noise caused by the insufficient performance of the tropospheric delay modelling,
due to the low latitude location of the study area and direct connection to the sea.
The ascending data stack is characterized by an even higher noise level than the
descending data stack, which we assume is caused by larger atmospheric noise due to
its acquisition time at dusk, compared to the acquisition of the descending stack at
dawn.

The algorithm identified a high density of observation points across the study area.
Considerably more TPSs than PSs were identified in both stacks. The ratios of
identified TPSs to PSs confirm the findings in Section 5.5 in the descending stack.
The ratios are different in the ascending stack, which is mainly caused by the much
lower number of acquisitions in this stack compared to the descending stack. The
share of appearing TPSs in the total number of TPSs is highest among all TPS types
in both stacks, which we assume to be a result of the high construction activity in the
VMD. The results confirm the applicability of the proposed TPS integration method
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in Chapter 5 in large scale problems, which provides a significant densification of the
observation point networks.

The estimation of residual SCN with the proposed method in Section 4.5 was realized
in two different referencing scenarios. In the first scenario, only solid rock outcrops
were selected as presumably stable reference areas. They are mainly located in the
north-western part of the study area, leading to an insufficient spatial distribution for
a reasonable SCN estimation all across the study area. This is why large bridges with
deep foundations were selected as additional reference areas in referencing scenario 2,
which are well distributed across the study area. It must be pointed out that only
subsidence originating from above the foundation depth of the selected bridges can be
measured this way. The results from both data stacks and both referencing scenarios
were compared in detail.

The results feature subsidence rates which are up to 6 cm/yr in urban areas and
are characterized by high spatial variability on short and large spatial scales, which
is probably due to numerous reasons, including different foundation depths of con-
structions. We found that the proposed method to reduce residual SCN significantly
improves the results in referencing scenario 2, demonstrating that the method robustly
removes SCN in case that the reference network is characterized by a proper spatial
distribution. This has been noted in that the estimated rates in both stacks as well
as exemplary subsidence time series agree to a much higher degree in referencing
scenario 2 than in scenario The estimated mean standard deviations of the subsidence
estimates are decreased from 28.1mm and 35.6mm to 10.9mm and 17.5mm in the
descending and ascending stack, respectively. As a consequence, the estimated mean
standard deviations of the rate estimates are approximately halved to 0.5 mm/yr and
1.2 mm/yr. Still, there are differences in the estimated subsidence time series between
the descending and ascending stack, which are outside the estimated 2𝜎 uncertainty
interval and have to be studied in more detail in the future. We assume that the
standard deviation of the subsidence rate estimation might be underestimated at
locations with large distances to reference areas due to residual temporally correlated
SCN in the subsidence time series. This was noted in the comparison of subsidence
rate differences between both stacks in both referencing scenarios. The differences are
characterized by a large spatial trend in scenario 1, which is removed in scenario 2.
As we do not expect horizontal displacements of this spatial scale after the reduction
of plate motions, we attribute this observation to temporal correlations in the residual
SCN in referencing scenario 1, which are largely removed in scenario 2. A robust
approach to estimate the temporal covariance of the residual SCN should be developed
in the future in order to enable its integration into the stochastic model.

The averaged differences between the estimated rates in both referencing scenarios
are small, resulting in the conclusion that most of the subsidence indeed originates
in depths above the foundation of the bridges, which we expect to be about 70m
deep. The validation of the estimated subsidence rates is difficult as a consequence of
a sparsity of ground truth measurements. However, the independent results from the
descending and ascending stack agree well in referencing scenario 2. Furthermore, the
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estimated subsidence rates were compared with sparse alternative measurements. They
agree with subsidence rate measurements at two subsidence monitoring stations on the
Ca Mau peninsula, which were presented in Karlsrud et al. (2020). They also agree
well on short spatial scales with PSI results by the company GISAT, with averaged
differences of 2.14 mm/yr and a standard deviation of 4.9mm/yr. Larger magnitude
differences in the comparison are mainly spatially correlated and might be due to
diverging temporally correlated SCN in both results. The results by GISAT were
filtered and detrended with unknown processing parameters, leading to the fact that
displacement differences at large distances exhibit a high uncertainty. Our proposed
PSI approach does not rely on spatio-temporal filters and detrending operations. For
a last comparison, the StaMPS algorithm was applied to a representative spatial patch
around the city of Can Tho. It turned out that the standard StaMPS approach for
PS processing is not suitable to study subsidence in the VMD in the long-term due to
the large subsidence rate variations on short spatial scales. The estimated subsidence
time series exhibit large unwrapping errors for interferograms with medium to long
temporal baselines, which is contrary to our results.

At the end of the chapter, a special use case of the TPS integration was presented.
The TPS integration not only leads to a significant increase in identified observation
points, but provides additional information in the form of the change dates of TPSs
which can be exploited to do change detection. New constructions were identified by
clustering appearing TPSs and it was found that a higher portion of them is subsiding
at an exceptional high rate in the first year after their appearing, compared to PSs and
fading TPSs. Furthermore, their subsidence rate was on average decreasing within
the first two years after appearance. We attribute these findings to loading-induced
initial settlement of buildings, which contributes to the measured total subsidence.
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PSI has developed into an operational technology in certain applications to monitor
displacements on the Earth’s surface from space. However, long-term and large-scale
displacement monitoring with PSI still represent challenging applications. In this
thesis, an extended PSI approach was presented which is able to robustly and flexibly
handle these challenges. The approach is based on the M-SBAS approach described
in Schenk (2015). The essential extensions of the approach are listed in the following.

• Integration into Large-Scale PSI
The M-SBAS algorithm was originally designed to robustly and efficiently monitor
heterogeneous displacements in small-scale urban study areas. The approach did
not include phase unwrapping. Various modifications were developed to extend
the approach to a full PSI approach which includes unwrapping and robustly
handles large-scale displacement monitoring. The approach is referred to as
M-SBAS-2-StaMPS, since the results are imported into StaMPS to make use
of its unwrapping algorithm. Great focus was put on the reduction of phase
noise contributions which are especially relevant for large-scale displacement
monitoring. This includes in a first step the modelling of the tropospheric delay,
tidally induced displacements and plate motion. Additionally, a covariance-
based reference integration method was presented to reduce residual SCN in
interferograms. Reference pixels with known displacement time series could be
located around permanent GNSS stations or located in areas which are stable
during the considered time series, for example. The SCN is sampled at these
pixels and interpolated on all other pixels, making use of error cokriging which
takes the estimated covariance of the sampled SCN into account. The method
showed superior performance in the reduction of residual SCN in a simulation
and a real data study, compared to other methods which are based on reducing
SCN on basis of reference pixels.

• Fully Integrated Temporary Persistent Scatterer Interferometry
Physical changes of the land surface and changes in the acquisition geometry
can cause PSs to fade or appear in periods of the SAR time series. The number
of continuously coherent PSs decreases with increasing time series, while the
number of such TPSs increases. Standard PSI approaches are not able to identify
and analyze TPSs. A method to fully integrate TPSs into M-SBAS-2-StaMPS
was presented in order to establish a flexible PSI system which handles dynamic
land surface changes during the analyzed time series, thus provides the best
possible PSI-based geodetic observation network for long-term monitoring. The
detection of TPSs and an initial estimation of their change dates is realized
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with the amplitude-based approach by Hu et al. (2019). The initially estimated
change dates are iteratively refined during the phase noise estimation process,
using a newly developed phase-based change detection method. The phases
of identified PSs and TPSs are jointly unwrapped in a modified version of the
unwrapping algorithm in StaMPS. No previous TPS approach included phase
unwrapping to our knowledge. At the end, the temporal datum of those TPSs is
re-defined, whose coherent lifetime does not cover the master scene.

Experimental results based on Sentinel-1 data acquired over the Vietnamese city
of Ca Mau showed that the change date refinement significantly increases the
average coherence and number of identified TPSs. The relevance of the TPS
integration for PSI-based observation networks as a function of the considered
SAR time series length was analyzed in another small-scale study. It could be
shown that the TPS integration leads to an increasingly significant improvement
of the observation network with increasing time series length both in urban and
rural areas in the VMD.

The proposed algorithm was finally applied to subsidence monitoring in the VMD,
based on Sentinel-1 data acquired between 2016 and 2022 in descending and ascending
orbits. The algorithm identified a high density of observation points across the study
area. The number of identified TPSs exceeded the number of identified PSs in both
stacks, indicating a highly significant contribution of the TPS integration to the
observations, as found before in the small-scale studies. The results confirm that the
proposed method shows high performance in large-scale problems. The estimation of
residual SCN was realized in two different referencing scenarios, one of which included
only solid rock outcrops as reference areas. In the second, large bridges with deep
foundations were selected as additional reference areas to achieve a proper spatial
distribution of reference areas across the study area. We found that the proposed
method to reduce residual SCN significantly improved the results in referencing
scenario 2, demonstrating that the method robustly removes SCN in case that the
reference network is characterized by a proper spatial distribution. The inclusion
of the bridges as reference areas in scenario 2 led to a decrease of the estimated
mean standard deviations of the subsidence estimates from 28.1mm and 35.6mm
to 10.9mm and 17.5mm in the descending and ascending stack, respectively. As
a consequence, the estimated mean standard deviations of the rate estimates were
approximately halved to 0.5mm/yr and 1.2mm/yr. The method does not rely on
filtering and detrending operations.

The validation of the estimated subsidence rates is difficult due to sparse ground truth.
However, the results from both orbits showed good agreement in referencing scenario 2.
Furthermore, the results showed good agreement with measurements at two subsidence
monitoring stations and an alternative PSI analysis which was carried out in the scope
of the Copernicus Emergency Service. A last comparison demonstrated a superior
performance of our approach compared to the StaMPS algorithm for subsidence
monitoring in the VMD, because the estimated subsidence time series by StaMPS
feature a lot of unwrapping errors, which is contrary to our results.
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Lastly, a special use case of the TPS integration was presented. The TPS integration
not only leads to a significant increase in identified observation points, but provides
additional information in the form of the change dates of TPSs which can be exploited
for the purpose of change detection. It was exemplarily demonstrated that new con-
structions can be identified by clustering appearing TPSs, whose initial displacement
time series can be systematically analyzed afterwards. In the case of the VMD, this
method was used to find that load-induced initial settlement of new constructions
contributes to the measured total subsidence.

The estimated subsidence rates in the VMD are highly heterogeneous on short and
large spatial scales, and highest rates of up to 6 cm/yr are mainly found in urban
areas. It could be demonstrated that the largest part of the subsidence originates from
shallow subsurface depths of less than approximately 70m. As a result, subsidence
heterogeneity on short spatial scales are largely induced by varying foundation depths
of infrastructure. It must be noted that the results of the subsidence monitoring in the
VMD were mainly examined with regard to the evaluation of the proposed method.
It is desirable that the achieved results are geologically evaluated in detail by experts
on land subsidence. This way, the results could contribute to the understanding of
causes of land subsidence in the VMD.

The proposed approach offers potential for improvements, which should be considered
in future developments:

• Estimation of Ionospheric Noise
Ionospheric effects can lead to significant noise in large-scale InSAR studies which
base on C-band or longer-wavelength SAR data (Liang et al., 2019). This noise
is not estimated and subtracted in our approach, but treated as residual noise,
which is estimated and subtracted in the proposed reference integration method.
As the latter method depends on a proper spatial distribution of reference areas
across the study area, all estimable phase contributions should be estimated
and removed a-priori. Methods to account for the ionosphere are the range
split-spectrum method (Rosen et al., 2010; Gomba et al., 2016) and modelling
based on TEC maps (Eineder et al., 2011; Yunjun et al., 2022). One of these
should be implemented in M-SBAS-2-StaMPS in the future.

• Spatial Statistics of Residual SCN
A fundamental step of the reference integration method to reduce SCN in
interferograms is the estimation of the spatial covariance of the residual SCN.
This is achieved by averaging isotropic variograms in interferograms with small
temporal baselines. However, Knospe and Jónsson (2010) showed that the
atmospheric noise in InSAR is often anisotropic. Following their study, it should
be tested in various study areas whether the covariance description of the residual
SCN by means of anisotropic variogram models could further improve the SCN
estimation method.

• Uncertainty of Estimated Displacement Rates
Temporally correlated signals can persist in the residual noise, even after the
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subtraction of modelled phase disturbances and the reference integration method
to estimate and remove residual SCN. They are not considered in the stochastic
model of the rate estimation in M-SBAS-2-StaMPS, potentially leading to biased
rate estimations and underestimated rate uncertainties. Robust methods should
be developed to model the spatio-temporal covariance of the residual SCN and
consider it in the PSI approach.

• TPS Visualization
The TPS integration leads to a flexible PSI system which analyzes point scatterers
in their coherent lifetimes. Estimated displacement rates are only valid in the
differing lifetime of the scatterers, leading to potential inconsistencies in joint
visualizations of displacement rates. Suitable visualization approaches should
be developed which consider the lifetime of each scatterer in the visualizations,
in order to avoid misinterpretations. Examples of such approaches could be
time-laps movies which only display the displacement rate of TPSs during their
particular lifetimes. Another aspect to consider for visualizations is that the
variance of displacement rate estimation depends on the number of acquisitions
in the particular lifetime of each TPS.
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A. Appendix

A.1. Statistical Tests for the Selection of Reference
Areas

Large bridges with deep foundations were selected as additional reference areas
in referencing scenario 2 in the application of M-SBAS-2-StaMPS to subsidence
monitoring in the VMD, described in Section 6.4. Bridges with length larger than
250m were selected as potential reference areas. Afterward, various statistical tests
were carried out with the goals to (i) identify and remove (T)PSs which are actually
not located on the bridges or located on parts of the bridges which are actually moving
over time, (ii) identify and remove bridges which are subsiding or moving horizontally.
The tests are summarized in the following.

The selection of (T)PSs on potential reference bridges included the following require-
ments and steps:

• Reference bridge (T)PSs are located within estimated bridge polygons.

• There must be more than two potential reference (T)PSs identified within bridge
polygons in order that this bridge is further considered as a potential reference
bridge.

• The linear displacement rate of a potential reference (T)PS, which was estimated
in the phase noise estimation step in M-SBAS, must not deviate more than 1.5
of the mean absolute deviation (MAD) of all potential reference (T)PSs on the
same bridge. The weights are computed by multiplying the normalized inverse
distance from the bridge center with the estimated coherence.

• The displacement standard deviation of a potential reference (T)PS must not
exceed the double of the MAD of all potential reference (T)PS on the same
bridge after subtraction of the weighted median phase time series of all potential
reference points on the bridge.

After the selection of the reference (T)PSs on potential reference bridges, reference
bridges which are subsiding with regard to surrounding potential reference bridges
were identified and dropped. Subsiding bridges were identified in a triangulation
network between all potential reference areas. For this purpose, the average differ-
ential subsidence time series along edges of connected potential reference areas were
calculated, and differential rates were estimated. Bridge connections which featured
an estimated differential rate above a threshold were removed. The threshold was
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A. Appendix

Figure A.1.: Exemplary double differential subsidence time series between ascending
and descending stack and along edges of connected reference areas in a triangulation
network. The two subfigures show three time series along connections to a dropped
bridge, respectively.

empirically determined as a function of the edge length, in order to account for
potentially increasingly biased rate estimations with increasing edge length due to
temporally correlated noise in the data. At the end, bridges without connections to
other bridges were dropped from the set of potential bridges.

In a last step, the remaining reference areas were tested for horizontal movements
by combining observations from the descending and ascending stacks. We spanned
a triangulation network between all remaining potential reference areas, including
solid rock outcrops and potential reference bridges, with the purpose to identify
horizontally moving areas or (T)PSs on them. First, weighted mean subsidence time
series of each potential reference area in both the descending and ascending stacks
were computed. Then, subsidence time series differences were computed along each
edge in the triangulation network to get an estimate of the differential subsidence time
series between connected potential reference areas. We assumed that the differential
subsidence time series should be similar in the ascending and descending stack if
none of the involved reference areas is moving horizontally. In order to test this, we
interpolated the differential subsidence time series 𝑑𝑧 between the reference areas in
descending and ascending stacks onto common time instances and subtracted them.
Subsequently, we applied the Ljung-Box-Test (Equation 5.10), as done for the TPS
datum reformulation in Section 5.3.5, to test if the differences are stationary without
any autocorrelation exhibited. If the null hypothesis was rejected, we concluded that
one of the involved bridges is moving horizontally and the edge between the two was
removed. At the end, isolated bridges without connections to others were dropped
from the set of reference areas. Double-differential subsidence time series between the
results of both stacks and along connections of two dropped bridges to neighboring
reference areas are displayed in Figure A.1. The time series of both bridges feature
significant temporal trends, indicating horizontal movements.
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A.2. Temporal Evolution of Estimated Subsidence in Referencing Scenario 1

A.2. Temporal Evolution of Estimated Subsidence in
Referencing Scenario 1

Figure A.2.: (a)-(b) Difference in estimated subsidence rates between the periods
Oct. 2019 to Apr. 2022 and Apr. 2017 to Oct. 2019 in the descending and ascending
stack, respectively, in referencing scenario 1. (c)-(d) Estimated standard deviation of
the rate difference calculation in (a)-(b). Only (T)PSs which cover the whole period
of Apr. 2017 to Apr. 2022 are displayed in (a)-(d).
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