
Michael Fidelis Groß

On Time-Resolved 3D-Tracking
of Elastic Waves in Microscale
Mechanical Metamaterials

2023
Dissertation



This document is licensed under a Creative Commons Attribution 4.0 International License  
(CC BY 4.0): https://creativecommons.org/licenses/by/4.0/deed.en







On Time-Resolved 3D-Tracking of

Elastic Waves in Microscale

Mechanical Metamaterials

Zur Erlangung des akademischen Grades eines
doktors der naturwissenschaften

von der KIT-Fakultät für Physik des
Karlsruher Instituts für Technologie (KIT)

genehmigte

dissertation

von

M. Sc. Michael Groß
geboren in Bretten

Tag der mündlichen Prüfung:
Referent:

Korreferent:

22. Dezember 2023

Prof. Dr. Martin Wegener
Prof. Dr. Muamer Kadic





Contents

Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Continuum Mechanics and Metamaterials . . . . . . . . . 7

2.1 Summary on Linear Elasticity . . . . . . . . . . . . . . . 8

2.2 Fundamentals of Elastic Waves in Metamaterials . . . . . . . 15

2.3 Metamaterial Fabrication by 3D Laser Microprinting . . . . . 22

3 Optical Metrology for Displacement Measurement . . . . 29

3.1 Confocal Optical Microscopy . . . . . . . . . . . . . . . . 30

3.2 Digital-Image Cross-Correlation Analysis . . . . . . . . . . 33

3.3 Laser-Doppler Vibrometry . . . . . . . . . . . . . . . . . 36

4 Setup for Time-Resolved Tracking of Elastic Waves . . . . 49

4.1 The Confocal Microscopy Setup . . . . . . . . . . . . . . . 50

4.2 Addition of the Laser-Doppler Vibrometry . . . . . . . . . . 60

4.3 Tracking Elastic Waves at Ultrasound Frequencies . . . . . . . 67

5 Roton-like Dispersion in 3D Metamaterials . . . . . . . . 79

5.1 History and Properties of Rotons . . . . . . . . . . . . . . 80

5.2 A Nonlocal Approach . . . . . . . . . . . . . . . . . . . 81

5.3 Chirality-Induced Roton-Like Dispersion . . . . . . . . . . 90

6 Extremal Cauchy-Elastic Materials . . . . . . . . . . . . 99

6.1 Definition and Properties . . . . . . . . . . . . . . . . . 100

6.2 Polarizing Elastic Waves using a Tetramode Metamaterial . . . 101

6.3 Roton-Like Dispersion in Monomode-Metamaterial Beams . . . 111

7 Summary, Conclusion and Outlook . . . . . . . . . . . . 125

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 131

vii



contents

Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A Supplementary Derivations . . . . . . . . . . . . . . . . . 135

A.1 Derivation of Symmetry of Stiffnes Tensor . . . . . . . . . . 136

A.2 Derivation of LDV Detector Signal . . . . . . . . . . . . . 136

B Components and Calibrations of the Experimental Setup . 137

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . 141

viii



List of Figures

2.1 Schematics to visualize the derivation of the stress tensor. . . . . . 9

2.2 Schematics to visualize the derivation of the strain tensor. . . . . . 12

2.3 1D chain of identical masses and their elastic-wave dispersion. . . 17

2.4 1D chain of two types of masses and their elastic-wave dispersion. 19

2.5 Depiction of a typical workflow to fabricate a 3D microstructure. . 23

2.6 Schematic of the commercial laser printer. . . . . . . . . . . . . . . 25

2.7 Depiction of slicing planes and hatching of a 3D geometry. . . . . . 26

3.1 Schematic of the beam path in an confocal optical microscope. . . 31

3.2 Example of a digital-image cross-correlation analysis. . . . . . . . . 34

3.3 Illustration of relative movement between source and receiver. . . 38

3.4 Simplified layouts for laser-Doppler vibrometers. . . . . . . . . . . 39

3.5 Simulated signal for a heterodyne laser-Doppler vibrometer. . . . . 42

3.6 Block diagram of an in-phase and quadrature demodulator. . . . . 46

4.1 Schematic of the confocal optical back-scattering microscopy setup. 51

4.2 Line pairs of an USAF 1951 resolution test target. . . . . . . . . . . 55

4.3 Measured signal responses when scanning a glass-air interface
axially through the focal plane of the objective lens. . . . . . . . . . 57

4.4 Simulated intensity distribution created by a tilted plane. . . . . . 58

4.5 Simulated intensity distribution and artefact displacement for a
small pinhole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Simulated intensity distribution and artefact displacement for a
large pinhole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Schematic of the experimental setup expanded by a laser-Doppler
vibrometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 Data for the alignment of the vibrometry and imaging branches. . 63

4.9 Setup and sample to calibrate the vibrometer branch. . . . . . . . . 65

4.10 Comparison of the demodulated displacement signal spectra for
two objective lenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.11 Photographs to illustrate the coupling of a metamaterial sample to
a piezoelectric transducer. . . . . . . . . . . . . . . . . . . . . . . . . 68

4.12 Illustration of the data structure for image generation to extract the
in-plane displacement-vector components. . . . . . . . . . . . . . . 71

ix



list of figures

4.13 Three-dimensional displacement raw data extracted at a single
region of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.14 Displacement-vector-component amplitudes along the axis of a
metamaterial beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.15 Wave dispersion reconstructed via Fourier transformation of the
complex displacement-amplitude envelopes. . . . . . . . . . . . . . 76

5.1 One-dimensional toy-model and dispersion relation incorporating
third-nearest-neighbor interaction. . . . . . . . . . . . . . . . . . . . 82

5.2 Blue print of the unit cell for the nonlocal roton metamaterial. . . . 84

5.3 Showcase of the microscale metamaterial sample with nonlocal
couplings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Comparison between measured and calculated roton-like dispersion. 88

5.5 Example for chirality. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Elastic-wave dispersion in a chiral crystal. . . . . . . . . . . . . . . . 91

5.7 Blue print of the unit cell for the chiral roton metamaterial. . . . . 93

5.8 Showcase of the microscale metamaterial sample with extreme
chiral couplings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.9 Experimental dispersion relation results for the chiral metamaterial-
beam sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Blue print of Tetramode unit cell. . . . . . . . . . . . . . . . . . . . . 102

6.2 Static and dynamic properties of the Tetramode metamaterial. . . . 103

6.3 Showcase of the Tetramode metamaterial sample features. . . . . . 105

6.4 Tetramode metamaterial sample in the experimental setup. . . . . 106

6.5 Micrographs of polarizer input and output locations. . . . . . . . . 107

6.6 Polarizer action of the Tetramode metamaterial. . . . . . . . . . . . 108

6.7 Monomode-metamaterial design for the back-folding strategy. . . . 112

6.8 Back-folding strategy in reciprocal-space. . . . . . . . . . . . . . . . 114

6.9 Showcase of the fabricated Monomode metamaterial. . . . . . . . . 117

6.10 Dispersion-measurement results on Monomode-beam samples. . . 120

6.11 Influence of the critical parameter on the dispersion bands. . . . . 121

6.12 Creating saddle points in the dispersion relation. . . . . . . . . . . 122

x



Publications

Parts of this thesis have already been published . . .
. . . in scientific journals:

• J.A.I. Martínez, M.F. Groß, Y. Chen, T. Frenzel, V. Laude, M. Kadic, and M.
Wegener, “Experimental observation of roton-like dispersion relations in
metamaterials”, Science Advances. 7, eabm2189 (2021),

• M.F. Groß, J.L.G. Schneider, Y. Wei, Y. Chen, S. Kalt, M. Kadic, X. Liu, G. Hu,
and M. Wegener “Tetramode metamaterials as phonon polarizers”, Advanced
Materials. 35, 2211801 (2023),

• M.F. Groß, J.L.G. Schneider, Y. Chen, M. Kadic, and M. Wegener, “Dispersion
engineering by hybridizing the back-folded soft mode of monomode elastic
metamaterials with stiff acoustic modes”, Advanced Materials., 202307553

(2023),

. . . and presented at the 17th Metamaterials Congress 2023:

• M.F. Groß, J.L.G. Schneider, Y. Wei, Y. Chen, S. Kalt, M. Kadic, X. Liu, G.
Hu, and M. Wegener “Tetramode metamaterials as phonon polarizers”, 17th
Metamaterials Congress, Greece, Crete, September 2023.

Results in cooperation with J.L.G. Schneider have already been pub-
lished . . .
. . . in a scientific journal:

• Y. Chen, J.L.G. Schneider, M.F. Groß, K. Wang, S. Kalt, P. Scott, M. Kadic, and
M. Wegener, “Observation of Chirality-Induced Roton-Like Dispersion in a
3D Micropolar Elastic Metamaterial”, Advanced Functional Materials., 2302699

(2023),

of whom I had the pleasure of supervising.

1





1
Chapter 1

Introduction

Every time I had to answer questions about my work to friends or family, they
would stumble about the catchy term of a "metamaterial". Logically, I was
prompted to immediately explain this ominous name. I can’t help but feel obliged
to answer this question here at the beginning of my thesis as well.

My first reply mostly was: "Something that goes beyond a material", which is
arguably the most simplistic, yet bland explanation for a metamaterial that I could
come up with. Actually, it is nothing more than the translation from Greek of
the name proposed by Rodger M. Walser [1] in 2001. It is self-evident that my
"audience" would not be satisfied by such meager explanation and demanded more
details on the matter. However, there is to the best of my knowledge no rigorous
definition of the name that could do justice to all instances of metamaterials that
have been designed, discovered or studied so far. Nonetheless, a very appealing
definition was given in 2019:

"Metamaterials are rationally designed composites made of tailored building
blocks that are composed of one or more constituent bulk materials. The meta-
material properties go beyond those of the ingredient materials, qualitatively
or quantitatively."[2]

In my experience, this explanation, albeit phrased somewhat more casually by me,
has resonated well even with people that have little to no background in the field.

Historically, metamaterials arguably made their biggest headlines so far in elec-
tromagnetism and photonics with the advent of a negative index of refraction [3–5]
for electromagnetic waves and all its implications. However, I find examples from
mechanics to be easier to grasp in concept. Among them, auxetic metamaterials
are probably the most illustrative case [6]. An object that, when compressed
axially, contracts laterally instead of expanding is a sufficiently familiar scenario,
yet strange enough behavior to convey a glimpse at the vast capabilities and
design choices we expect from metamaterials. In other words, the motivation
behind metamaterials is to obtain material parameters or behaviors that vastly
differ from any "ordinary" material [7] be it glass, metal, or polymers.
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1 introduction

In contrast to those "ordinary" materials, metamaterials attain their properties
primarily from the artificially and mindfully designed structure of their smallest
building blocks, where the material parameters of their constituent material take
on a secondary role [2]. For mechanical metamaterials, those building blocks are
often times arranged in layers with a spatial periodicity. Thereby, they form an
artificial metamaterial crystal, with the smallest building blocks acting as unit
cells in analogy to basic solid state physics [8].

In this sense, auxetic metamaterials are just a small group of possible mechanical
metamaterials, with plenty more that came up on the heels of their electromagnetic-
metamaterial relatives over the last decades [9, 10]. To this date, mechanical
metamaterials have developed into an ever growing field of research as was
just recently reviewed in [11]. Two noteworthy representatives of the field are
the realization of a new material class, namely pentamode metamaterials in
2012 [12], and the discovery of the mechanical counterpart to optical activity,
namely acoustical activity in chiral metamaterials in 2019 [13]. The experiments on
this elasto-dynamic effect incited, or in the words of the original authors "paved
the road for" further studies to shape and tailor the propagation and polarization
of elastic waves in three-dimensional (3D) mechanical metamaterials.

To observe acoustical activity, the displacement field induced by time-harmonic
elastic waves, which are a superposition of the eigenmodes of the metamaterial,
was tracked optically in two dimensions [13] at a single surface of the metamaterial.
Tying onto those preceding studies, two goals for this thesis are formulated to
expand on such displacement-tracking experiments.

The first goal focuses on the information about the underlying elastic-wave
propagation, which lies encoded within the displacement field of the metamaterial.
To extract this information, the displacement measurement must be expanded
from one to several surfaces of the metamaterial and thus span multiple layers.

The second goal addresses that the displacement field has in general three
components in space [14]. For elastic waves, this corresponds to an arbitrary polar-
ization of the waves, which could not be captured fully in [13]. In order to obtain
a more complete picture by sensing arbitrary wave or displacement polarizations,
the measurement capability must be expanded into the third dimension, thereby
including the so-far missing third displacement component.

As aforementioned, the interesting properties of metamaterials arise from some-
times complex mechanisms that are build into the unit cells. As such, metamaterial
fabrication can be rather challenging. An established fabrication method is 3D
laser microprinting [15]. Due to its enormous design freedom, it enables the
production of almost arbitrary 3D structures and metamaterials [16–21]. While
metamaterial samples can be fabricated along those lines with a sufficiently large
number of a few dozens of unit cells, the unit-cell feature sizes remain on the
microscale as the name of the fabrication method suggests.
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Consequently, interesting elastic-wave behavior is shifted to ultrasound frequen-
cies and the magnitude of the displacement shrinks down to the nanometer scale.
A dedicated wave-tracking setup must thus provide sufficiently fine temporal as
well as spatial resolution in its measurement capabilities. In [13], this was achieved
by stroboscopic illumination of the metamaterial in a wide-field microscope and
subsequent image-processing. How to integrate displacement measurements
along the third dimension elegantly into this approach remains elusive to me.

Therefore, I choose to venture along a different path. In this thesis, I realize a
self-build setup capable of measuring all three time-dependent components of the
displacement field at local regions of interest. At its core, the setup is comprised
of a confocal optical back-scattering microscope with a seamlessly integrated
laser-Doppler vibrometer. While confocal imaging remains two-dimensional in
its displacement-tracking, vibrometry covers the previously unmeasured third
dimension. I circumvent stroboscopic illumination by using the high bandwidth
of an effectively single-pixel detector in a confocal microscope together with
synchronization of elastic-wave excitation and data acquisition. I demonstrate that
this setup is capable of measuring time-resolved nanometer-scale displacements
along all three spatial directions at ultrasound frequencies. Extending those
measurements over a metamaterial through which elastic waves propagate allows
to track those waves by their displacement fields and extract their dispersion
relation. Subsequently, I present how I used this setup to conduct or supervise
experiments on four mechanical metamaterials, each of which incorporate different
mechanisms to tailor a specifically desired elastic-wave propagation.

In three cases, I report the observation of an interesting "roton-like" elastic-wave
dispersion, which features a large frequency range of backward-waves, i.e. a
region of negative refraction, somewhat leading back to [3–5]. Previously, such
a behavior was predicted for sound waves in low-temperature liquid helium
by Landau and Feynman [22–24] and observed in 1961 [25]. With the realized
experimental setup, it is possible to observe such interesting wave behavior and
its tailoring for elastic waves at ambient laboratory conditions. The roton-like
behavior is induced for each instance by very different means, therefore touching
three interesting design choices for elastic-wave control in metamaterials:

1. Nonlocality, where the displacement at a local point does not only depend
on its nearest neighbours but also on sites further away [26].

2. Chirality, lifting the degeneracy of otherwise equivalent metamaterial eigen-
modes and enabling hybridization [27].

3. The back-folding of soft modes in an extremal Cauchy-elastic material, fol-
lowing their definition of Graeme Milton and Andrej Cherkaev in 1995 [28].
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1 introduction

Last but not least, following along the lines of Milton et al., I demonstrate exper-
imentally how such an extremal material can be used as a polarizer device for
elastic transverse waves. A task that becomes orders of magnitude simpler, when
measuring displacements in three spatial directions simultaneously.

Outline of this thesis

Starting in Chapter 2, I give a brief introduction into linear Cauchy-elasticity as
a sub-category of continuum mechanics, since it is the most basic theory to get
into mechanical metamaterials. I focus on the generalized Hooke’s law in three
dimensions, as well as the behavior of elastic waves in simple mass-and-spring
models. The Chapter concludes with a summary on 3D laser microprinting as a
means for microscale-metamaterial fabrication.

In Chapter 3, I provide insight into the optical metrology I employed to measure
displacements in three dimensions. My techniques of choice were confocal mi-
croscopy for in-plane displacement measurement, and laser-Doppler vibrometry
for supplementing the out-of-plane displacement information. Consequently, I
summarize both technologies, namely the data acquisition, data processing and
attainable displacement resolution in detail.

In Chapter 4, I report the home-built experimental setup and describe methods
for calibration of the system. Furthermore, a demonstration of the time-resolved
elastic-wave tracking capabilities is given and extended to band-structure mea-
surements on metamaterial-beam samples. This demonstration encapsulates the
methodology which was used on three of the four metamaterials investigated
during this thesis, the results of which are presented in the following Chapters as
applications of the setup.

In Chapter 5, I present such band-structure-measurement results on two types
of metamaterials that achieve a so-called roton-like dispersion for elastic waves.
Two vastly different mechanisms are introduced to do so. Firstly, nonlocality and
secondly, chirality. For each case, additional theoretic background information is
provided which builds on the preceding Chapters before the experimental results
are addressed.

In Chapter 6, I illuminate the results of experiments on another two mechanical
metamaterials, which are attributed to the class of extremal Cauchy-elastic mate-
rials. It is those extremal properties that were exploited to tailor the dispersion
relation of elastic waves distinctively. In the first instance, a transverse polarizer for
elastic waves, the counterpart to a transverse polarizer in optics is reported. In the
second instance, again a roton-like dispersion relation is achieved and modulated
by combining extremal Cauchy-elastic properties with an intricate back-folding
strategy of dispersion bands.

In closing, Chapter 7 concludes this work with a summary and a brief outlook.

6



2
Chapter 2

Continuum Mechanics and

Metamaterials

This Chapter starts with an outline of basic quantities and relations from continuum
mechanics for linear elasticity, which are necessary to understand the behavior of me-
chanical metamaterials. Since the experiments of this work address dynamic elasticity,
an introduction to elastic waves and dispersion relation or band-structure calculations
are given. The Chapter concludes with the description of 3D Laser Microprinting as the
fabrication method for three-dimensional microscale metamaterials.
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2 continuum mechanics and metamaterials

2.1 Summary on Linear Elasticity

Continuum mechanics is the theory to describe the response of bodies upon
which forces are applied. In general, those bodies may be gases, fluids or solids.
Mechanical metamaterials out of a polymer constituent are thus described by
solid mechanics. The most simple response model of a solid material is linear
elasticity [14]. For linear elastic materials, a body (out of a material) will return
into its original shape, when all forces i.e. stresses are removed1. The behavior of
linear elastic materials is captured by the generalized Hooke’s law [29] in three
dimensions. The law connects the forces per area, also called stresses, σ on a body,
with its deformation, known as strain, ϵ by the effective elasticity matrix C. In
the following, I will provide a brief summary of the derivation of those quantities
following the book of Gould [14]. Further insights and more rigorous treatments
can be found in standard textbooks on the topic [30, 31].

For this Chapter, I will represent tensorial and vectorial quantities as upright
bold face symbols, as it is common in the corresponding textbooks. Furthermore,
I will use Einsteins sum-convention where necessary.

2.1.1 The Stress Tensor

In linear elasticity, forces upon a body can be distinguished into two categories.
Forces that act as loads distributed within the volume are called body forces. The
most prominent kind of body force is gravity due to the self-weight of the body.
Loads that act onto the surface of a body are called surface forces. A complete
description of forces on any point of the body is provided by the Cauchy stress
tensor σ. To derive this tensor, it is instructive to perform a gedankenexperiment.
A body is subjected to external forces on its surface. Cutting this body creates a
surface ∆An with unit normal vector n. The forces within the body "emerge" on
the newly created surface2. The magnitude and direction of the forces ∆Fn acting
on the surface ∆An are captured by the traction vector, which is locally defined by
the limit of a vanishing surface area:

Tn = lim
∆An→0

∆Fn

∆An
=

dFn

dAn
. (2.1)

Forming the limit, the resulting traction vector specifies the stresses onto a point,
however, for a given direction n only. Logically, a complete description of stress
on a point independent of n is not yet achieved. Nonetheless, the traction vector is

8



2 .1 summary on linear elasticity
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Figure 2.1: Schematics to visualize the derivation of the stress tensor. (a) An in-
finitesimal cube cut out of some linear elastic material. Each face is acted upon
by a traction vector T. The tripods on each face indicate the components of stress
along the three Cartesian directions e1, e2 and e3. (b) Tetrahedron to derive stress on
arbitrary surface. The top left tetrahedron highlights the back dA1, side dA2 and
bottom dA3 surfaces with tractions T1, T2 and T3. On the bottom right, the front
surface dAn with traction Tn is highlighted in red. The height of dAn from the tip
of the tetrahedron is given by h.

a useful tool to get there. Moving forward, a cube with infinitesimal edge length
is cut out of a body. The orientation of this cube is chosen as such that the surface
normal vectors correspond to the three basis vectors e1, e2 and e3, as depicted in
Figure 2.1(a). The traction vector T1 on the front surface (red outline), can thus be
expressed as:

T1 = σ11e1 + σ12e2 + σ13e3 , (2.2)

or more generally:
Ti = σijej, with i, j ∈ {1, 2, 3} . (2.3)

In this notation, the coefficients σij are the stresses. The first index (i) relates to the
basis vector denoting the face, the second index (j) denotes the direction along
which the stress component acts. The next step is to generalize this consideration
for surfaces, whose surface normal is not aligned with one of the basis vectors ei.
Therefore, the surfaces of an infinitesimal tetrahedron are inspected, as illustrated
in Figure 2.1(b). Again, three traction vectors are considered, acting this time on
the back dA1, side dA2 and bottom dA3 surfaces, with normals each aligned
with one basis vector. The forth surface dAn closing the tetrahedron is at an angle

1 For a polymer constituent, a viscoelastic description that includes damping is more precise, but
is omitted at this point for simplicity.

2 Linear elasticity assumes vanishing moments i.e torques on infinitesimal surfaces.
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2 continuum mechanics and metamaterials

with the basis vectors and has a normal vector n with components ni:

n = n1e1 + n2e2 + n3e3 ←→ ni = n · ei . (2.4)

Since n is not aligned with any basis vector, it is not possible to write down
the components of stress to from the traction vector Tn right away. Instead, the
traction vector has to be derived using Newton’s equations of motion [32]. The
latter state that the sum of all forces onto the tetrahedron must equal the mass
m times the acceleration a. For the following discussion it is sufficient to assume
equilibrium of forces with a = 0:

Tn dAn − T1 dA1 − T2 dA2 − T3 dA3 +

(
h · dAn

3

)
f = 0 . (2.5)

The term with f represents the body forces onto the tetrahedron, for this case as
gravity, and h represents the height of the surface dAn from the opposite tip of
the tetrahedron. The areas of the surfaces are related by

dAi = dAn (n · ei) −→ dAn =
dAi

n · ei
=

dAi

ni
, (2.6)

which simplifies the middle three terms of Equation 2.5 to:(
Tn − Tini + f

h
3

)
dAn = 0 . (2.7)

Applying the limit of h→ 0, yields:

Tn = Tini = T1n1 + T2n2 + T3n3 . (2.8)

With this equation, the components of Tn can now be expressed along the basis
vectors:

Tj = Tn · ej . (2.9)

Entering Equation 2.3 into Equation 2.8 and relabeling some indices, allows to
arrive at the final relation for the components of Tn:

Tj = σjinj , (2.10)

or in explicit vector and matrix form:T1
T2
T3

 =

σ11 σ21 σ31
σ12 σ22 σ32
σ13 σ23 σ33

 ·
n1

n2
n3

 . (2.11)

Therein lies the second order Cauchy stress tensor σ with components σij, which
describe the stresses within the body along any choice of cutting plane.
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2 .1 summary on linear elasticity

A very visually appealing form of this derivation can be found online by Clayton
Pettit [33]. In passing it is stated that the stress tensor in the scope of linear
elasticity is symmetric:

σij = σji . (2.12)

The proof is based on the conservation of angular momentum and the reader is
referred to the corresponding literature mentioned at the beginning of this section.

2.1.2 The Strain Tensor

Strain of a body describes its deformation under any kind of load. For mechanical
metamaterials, strain is especially important, since it is closely linked to the
displacement field, which is measured in the experiments. Therefore, I take
the time to superficially introduce and derive the strain tensor ϵ, following the
literature mentioned above.

The derivation starts with the comparison of a body in two different configura-
tions. The undeformed body is said to be in its reference configuration R0, and the
deformed body is in the current configuration Rc

3. This is shown in Figure 2.2.
Nomenclature may vary between textbooks and authors. I want to use the

convention that any points and quantities referring to the undeformed body in its
reference configuration R0 are expressed with upper case letters. In contrast, for
the deformed body in Rc, lower case letters are used.

Each body is comprised out of material points such as P with position vector X
in R0. The corresponding point p in the current configuration Rc is described by
the position vector x. The position vectors are linked by a bijective, continuous
and smooth (differentiable) function χ, called the position function. It may be
abbreviated as:

χ(X) = x(X) ←→ χ−1(x) = X(x) . (2.13)

A second vector quantity which describes the displacement of point P to p is the
important displacement-field function:

u(X) = χ(X)− X = x(X)− X . (2.14)

At this point, I want to quickly address rigid body motion. As the name implies,
these motions do not deform the body and thus generate zero strain. In the most
general case, the position function takes the form:

x(X) = R · X + c , (2.15)
3 For each configuration, the material points occupy different positions in 3D space, and two

equivalent descriptions of the body can be found. One either focuses on a fixed point in space
and "watches" material points in relation to this point ore one focuses on a material point and
"follow" its trajectory through space during deformation.
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2 continuum mechanics and metamaterials

e1
e2

e3

Undeformed Deformed

dX

dx

u(X + dX)

u(X)

X

x

P

Q

q

p

Figure 2.2: Schematics of undeformed body in reference configuration R0 and de-
formed body in current configuration Rc to visualize the derivation of the strain
tensor. Upper case letters refer to R0 and lower case letters to Rc.

with rotation R of the body and constant shift c. The displacements induced by
rigid body motions are excluded from the discussion here, since the experiments
reported in this work address fixed samples4. More relevant are extensions and
contractions of the body, which do induce a strain. This is equivalent to a change
in distance dX between neighbouring points P and Q to dx for p and q, when
deforming the body (cf. Figure 2.2). Starting of, two possible paths should be
considered when going from the origin to the point Q. The first path is on the left
hand side and the second path on the right hand side of the following equation:

X + dX + u(X + dX) = x + dx . (2.16)

Solving for dx and entering u(X) = x− X equates:

dx = dX + u(X + dX)− u(X) . (2.17)

The last two terms of Equation 2.17 can be substituted with the difference quotient
for the displacement field:

∇u = =
du
dX

=
u(X + dX)− u(X)

dX
. (2.18)

Which also defines the displacement-field gradient. Thus:

dx = dX +∇u dX = (I +∇u)dX = F dX . (2.19)

4 The devil’s advocate may state that in the experiment, thermal drifts of a sample (body) positions
may induce such rigid body motion, which has to be accounted for.
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2 .1 summary on linear elasticity

This equation with identity matrix I defines the so called deformation gradient
F. The latter relates a infinitesimal length before deformation to the length after
deformation with dx = F dX. When comparing lengths of vectorial quantities, the
norms have to be taken:

dx · dx = (F dX) · (F dX) = dX(FTF)dX . (2.20)

Therein, the Right Cauchy-Green deformation tensor is defined as C̃ = (FTF)5.
Expanding Ĉ results in the definition of the strain tensor ϵ̃

C̃ = (FTF) = I +∇u +∇uT +∇uT∇u = I + 2ϵ̃ . (2.21)

Writing ϵ̃ in the components of the displacement field is more instructive:

ϵ̃ij =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi
+

∂ui

∂Xj

∂uj

∂Xi

)
. (2.22)

This symmetric tensor is valid for any magnitude of deformation. However in
many cases, it is sufficient to limit oneself to small displacements, which very well
be true for mechanical metamaterials in the ultrasound regime. Therefore, the
infinitesimal strain tensor neglects the product term of derivatives in Equation 2.22,
effectively linearizing the strain tensor:

ϵij =
1
2

(
∂ui

∂Xj
+

∂uj

∂Xi

)
=

1
2
(
ui,j + uj,i

)
, with ui,j =

∂ui

∂Xj
. (2.23)

Similar to the derivation of the stress tensor, a visually appealing explanation of
this derivation is found in the online lecture by Clayton Pettit [34].

2.1.3 The Constitutive (Hooke’s) law

To complete the description of a body under load, the link between the stresses it
is subjected to, to the strain that captures its deformation has to be made. This is
achieved by the generalized Hooke’s law [29] in three dimensions:

σ = C · ϵ = σij = Cijklϵkl . (2.24)

The quantity C is the stiffness or elasticity tensor. Since both stress and strain
are described by second order tensors, C is of the fourth order and thus has
generally 43 = 81 independent components. However, exploiting symmetries,
several correlations between those components can be made which vastly reduces

5 For Ĉ = I, no lengths change and rigid body motion is present.
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the number of independents. For the sake of brevity, those relations are only
mentioned here.

The symmetry of σij = σji and ϵkl = ϵlk allows to describe each tensor with only
6 instead of 9 independent quantities. Furthermore, this means that C = Cijkl has
to be invariant under the permutation of the first two or the last two indices as
well. Consequently, the number of independent quantities reduces from 81 to
36. The drastic reduction of independent quantities allows for a reduced index
notation, also called Voigt-notation:

σ̂1 → σ11, σ̂2 → σ22, σ̂3 → σ33, σ̂4 → σ23, σ̂5 → σ31, σ̂6 → σ12 , (2.25)
ϵ̂1 → ϵ11, ϵ̂2 → ϵ22, ϵ̂3 → ϵ33, ϵ̂4 → 2ϵ23, ϵ̂5 → 2ϵ31, ϵ̂6 → 2ϵ12 . (2.26)

From the conservation of energy U in an elastic material, it can be shown (see
appendix Section A.1) that C is symmetric, reducing the number of independent
quantities down to 21. Further reductions can be achieved by the use of spatial i.e.
material symmetries. If a material has three orthogonal planes of symmetry, it is
called an orthotropic material. The stiffness matrix simplifies in Voigt-notation to:

Corth =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 . (2.27)

This matrix is among the most general cases and is revisited in Chapter 6 on
extremal Cauchy elastic materials. At this point, the Young’s E modulus along a
Cartesian direction, for example e1 can be identified:

C11 = E11 =
σ̂1

ϵ̂1
. (2.28)

This relation represents the uniaxial Hooke’s law as it is usually first taught at
an introductory level. Another established quantity is the Poisson’s ratio ν. It
describes the ratio of deformation along the Cartesian direction e2 and e3 for
stress applied along e1. Thus, σ1 > 0 while all other components are zero, the
strains compute to:

ϵ̂1 =
σ̂1

E11
, ϵ̂2 = −ν12

σ̂1

E11
, ϵ̂3 = −ν13

σ̂1

E11
. (2.29)

Further simplifications can be made for an isotropic material, where the stiffness
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2 .2 fundamentals of elastic waves in metamaterials

matrix becomes invariant under rotations:

Ciso =


E −E/ν −E/ν 0 0 0
−E/ν E −E/ν 0 0 0
−E/ν −E/ν E 0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

 , (2.30)

and the shear modulus G and the bulk modulus K are introduced [35]. Due to the
isotropic character of the material, all indices for those quantities can be dropped.
Furthermore, they are related to each other:

E = 2G(1 + ν) , G =
E

2(1 + ν)
, K =

E
3(1− 2ν)

. (2.31)

Obviously, for non-isotropic materials, the moduli will retain their directional
dependency and thus indices have to be considered.

In closing, an important remark for the case of mechanical metamaterials has to
be made. The material parameters such as E, K and ν are not the parameters of
the constituent (i.e. polymer) out of which the metamaterial structure is fabricated.
The latter only enter in to the simulation of the microstructure using e.g. finite-
element-methods as it was done for this work by Yi Chen and Yu Wei and will
be coarsely outlined below. The crucial distinction is that for a metamaterial
one always searches for effective material parameters that allow to describe the
metamaterial microstructure as a continuum and Hooke’s law will then be written
with an effective stiffness matrix Ceff.

2.2 Fundamentals of Elastic Waves in Metamaterials

In the discussion above, all accelerations are set to zero. In other words, time-
dependencies are neglected up to here and only static cases were considered. The
transition to the dynamic behavior is made, which gives rise to elastic waves, the
displacement field of which is the core measurement quantity in the experiments
of this work.

The linear equation of motion is derived from Newtons second law [32]. Its
component-wise formulation in integral form can be written as [14]:∫

V

ρai dV −
∫
V

fi dV −
∫
A

Ti dA
(Gauss)
=

∫
V

(
ρai − fi − σij,j

)
dV = 0 , (2.32)

with body forces fi, mass density ρ, traction Ti and nonzero acceleration ai. Here,
σij,j denotes the derivative of σij with respect to Xj (cf. Equation 2.23).
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For the last equality of Equation 2.32, the divergence theorem (Gauss) on the
area integral is used. Obviously, Equation 2.32 is true, when the integrand of the
right hand side vanishes [30], such that the differential form reads:

ρai − fi − σij,j = 0 . (2.33)

Using the constitutive law (Equation 2.24) and inserting the definition for small
strains (Equation 2.23), allows to express this relation in terms of experimentally
accessible displacements following the lines of Hunklinger [36, p.169]:

ρ
∂2ui

∂t2 =
∂σij

∂Xj
= Cijkl

∂2ul
∂Xj∂Xk

= Cijkl · ul,jk . (2.34)

2.2.1 Elastic Waves in Cauchy Continua

An ansatz can be made, to solve Equation 2.34. For an infinite simple cubic
material with its three axis aligned with Cartesian directions ei, a special case is
chosen for demonstration. A wave propagating along the x-axis with wave vector
k = (kx, 0, 0)T has a displacement field of:

u1(x, t) = U1 exp [−i(ωt− kxx)] , u2 = u3 = 0 . (2.35)

Therein, U1 is the displacement amplitude and i is the imaginary unit. The
angular frequency relates to the ordinary frequency as ω = 2π f . For this ansatz,
a longitudinal polarization of the wave is assumed, which means means that
the displacement vector u (for every position x) is parallel to the wavevector k.
Inserting the ansatz into Equation 2.34, yields the dispersion relation, i.e. the
relation between wavenumber and frequency:

ωlong =

√
C11

ρ
· kx = vlong · kx . (2.36)

Here, the proportionality constant between kx and ω is the phase velocity, and in
this simple case identical to the velocity of sound, with which a longitudinal wave
propagates. The same procedure can be followed for a wave propagating along
the x-axis but polarized along the y-axis, i.e. a transverse wave, which propagates
with the corresponding velocity:

ωtrans =

√
C44

ρ
· kx = vtrans · kx . (2.37)

Due to the symmetry of the material, the same result will follow for a wave
propagating along the x-axis and polarized along the z-axis.
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Figure 2.3: 1D chain of identical masses and their elastic-wave dispersion. (a) A
segment of the chain. The masses m (yellow) are labeled with j and connected by
Hooke springs of constant D. The distance between the masses is a, which is also the
length of the unit cell (dashed box). (b) Dispersion relation for elastic waves with
wavenumber k in the first Brillouin zone. For this 1D model, a single acoustic band
is present.

In other words, these solutions to Equation 2.34 are degenerate. Up to this
point, extremely simplified situations were discussed, where the waves propagate
along high symmetry axis of the material. For the more general case of waves
propagating along arbitrary directions with arbitrary polarizations, the propaga-
tion constants will obviously consist of several entries of the stiffness matrix C.
Furthermore, the periodicity of the underlying microstructure is not captured.
However, this is crucial for the description of mechanical metamaterials.

2.2.2 Elastic Waves in Periodic Media

Arguably one of the simplest periodic media one can envision is a linear, one-
dimensional (1D) chain of masses m, connected by massless springs of length a
with Hooke spring constant D. While simple, the model can teach a lot about
the wave propagation in periodic media, which is why it is found in every
undergraduate text book on the topic of solid state physics [8, 36, 37]. The
reason why it is reiterated here, is that it forms an accessible baseline for the
understanding of the metamaterials discussed in Chapter 5.

Infinite Chain of Identical Masses

A segment of an infinite 1D chain comprised of identical masses is depicted in
Figure 2.3(a). I chose superscripts for the mass-numbering to avoid confusion
with vector components, even though this is a 1D i.e. scalar problem.
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2 continuum mechanics and metamaterials

To derive the dispersion for elastic waves, the equation of motion according
to Newton has to be solved. To do so, only the forces F(j) applied onto the
mass j by its direct neighbors j + 1 and j− 1 are considered. Furthermore, the
time-dependent displacement u(j)(t) of each j-th mass is defined as relative to the
rest position6. Thus,

F(j) = m · ü(j) = D
(

u(j+1) + u(j−1) − 2u(j)
)

, (2.38)

where ü(j) is second derivative of u(j) with respect to time. For the solution, the
ansatz is made:

u(j) = U · exp [−i(ωt− k · j · a)] , (2.39)

with amplitude U. Inserting Equation 2.39 into Equation 2.38 yields the dispersion
for the elastic waves:

ω(k) =

√
4D
m
·
∣∣∣∣sin

(
ka
2

)∣∣∣∣ , (2.40)

which only shows a single (acoustic) band and is plotted in Figure 2.3(a). Tech-
nically, Equation 2.40 is valid for k → ±∞. Léon Brillouin [38] showed that it is
sufficient to only inspect a limited range of k. This zone is called the first Brillouin
zone (BZ). The size of the latter, is defined by the size of the primitive unit cell,
highlighted as dashed box7 in Figure 2.3(a). The bands that exceed the first BZ can
be back-folded due to the symmetry of the crystal. Such back-folding is revisited
in Chapter 6 of this thesis.

Finally, it becomes apparent that when taking into account the micro structure
of the body or material, a vastly different dispersion relation for elastic waves will
follow (cf. Equation 2.40 to Equation 2.36). It is only for small values of k, where
the linear relationship between k and ω recovers in Equation 2.40.

Infinite Chain of Two Differing Masses

Obviously, the 1D consideration of a chain with identical masses falls short of
an accurate description of a sophisticated mechanical metamaterial. A unit-cell
in a metamaterial is comprised of much more than a single point of mass. The
first expansion to be made, is to let every second mass M be larger then the
original masses m. This model is illustrated in Figure 2.4(a). Naturally, the lattice
periodicity has now changed from a to 2a.

6 The argument of u(j)(t) is dropped at this point for the sake of readability.
7 Other choices of the unit cell will only alter the corresponding representation in k-space.

However, the physics of wave propagation will remain invariant.
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Figure 2.4: In analogy to Figure 2.3, but for two types of masses and their elastic-
wave dispersion. (a) A segment of the chain with masses M > m, connected by
Hooke springs of constant D. The length of the unit cell (dashed box) is twice the
distance a between neighboring masses. (b) Dispersion relation for elastic waves with
wavenumber k in the first Brillouin zone. An additional optical band (magenta) is
formed, which is higher in frequency than the acoustic band (blue).

A coupled set of equations of motions results:

mü(j) = D
(

u(j+1) + u(j−1) − 2u(j)
)

, (2.41)

Mü(j+1) = D
(

u(j+2) + u(j) − 2u(j+1)
)

, (2.42)

which is solved using the ansatz with complex amplitudes A and B:

u(j) = A · exp [−i(ωt− k · j · a/2)] , (2.43)

u(j+1) = B · exp [−i(ωt− k · (j + 1) · a/2)] . (2.44)

Herein, two solutions, i.e. two bands appear in the dispersion relation:

ω2
opt = D

(
1
M

+
1
m

)
+ D

√(
1
M

+
1
m

)2

− 4
mM

· sin2
(

ka
2

)
, (2.45)

ω2
ac = D

(
1
M

+
1
m

)
− D

√(
1
M

+
1
m

)2

− 4
mM

· sin2
(

ka
2

)
. (2.46)

The two bands are plotted in Figure 2.4(b). The lower band is called an acoustic
band, while the upper band is termed an optical band. In short it can be stated
that for every mass (i.e. atom) in the unit cell, and for every degree of freedom
of such mass, an additional band emerges. The chirality-induced interplay and
admixture of optical and acoustic bands is revisited in Chapter 5.
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The solution of the coupled equations of motion above mathematically require
the computation of an eigenvalue problem. Intuitively, the complexity and di-
mensionality of the matrices and vectors involved, increases dramatically when
generalizing to real world samples. Therefore, the computation is generally
performed using numerical means, which are outlined in the next section.

Summary

A very important conclusion for the methodology and experiments of this thesis
can be drawn from the consideration above. Since metamaterial samples in the
real-world are finite in dimension, the boundary conditions of these models have
to be changed8. As a consequence, the propagating elastic waves will form a
standing wave pattern from the superposition of waves propagating with k and
back-reflected waves at the end of the sample, propagating with −k. The real
part of the solutions for the corresponding equation of motion with the respective
boundary conditions allow to compute an amplitude envelope of the finite chain
(or metamaterial sample). For the case of the 1D chain of identical masses, this
yields the amplitude envelope:

u(r = a · j, t) = 2U · sin(k · a · j) · sin(ωt) , (2.47)

from which the time-dependency sin(ωt) can be separated without loss of gener-
ality. Fourier transformation of this amplitude envelope with respect to the spatial
coordinate r = a · j reveals the mode content at the frequency ω. Repeating this
procedure for a range of frequencies ω extracts the band structure or dispersion
relation of the chain.

Generalizing the u(r, t) to a body comprised of points in 3D space that can
be displaced along all three spatial directions, yields the three-dimensional dis-
placement field uk,n(r) with wave vector k and band index n of the elastic waves.
It is exactly this displacement field that is sampled by the experimental setup
I build for this thesis and that is described in Chapter 4. Spatial Fourier trans-
formation of the displacement field along the direction of wave propagation in
the metamaterial samples reveals the underlying elastic-wave dispersion or band
structure and provides the information about the propagating elastic waves within
the metamaterial.

8 E.g. fixed masses with zero displacment at the first and last mass, or considering a ring of
masses instead (cf. [8])
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2.2.3 On Numerical Band-Structure Calculations

When modeling simple linear and 1D chains as described above, it is relatively
easy and straightforward to find analytic solutions for the propagation of elastic
waves and their respective displacement fields. For more sophisticated structures,
like mechanical metamaterials, analytic solutions may be next to impossible to
derive and numerical methods such as finite-element-analysis (FEA) have to be
used. For the materials investigated in this thesis, this analysis was carried out
by Yi Chen and Yu Wei who are co-authors and collaborators in the correspond-
ing publications. They used the commercially available COMSOL Multiphysics
package and the MUltifrontal Massively Parallel sparse direct Solver (MUMPS)
to arrive at their results. Since the author himself did not perform any such
analysis, only the governing equations that were solved are reported in short
summary and for the sake of integrity. In order to find the eigenfrequencies ωk,n,
with Bloch wavevector k and integer band index n, the rewritten linear elasticity
Equation 2.33, now:

E
2(1 + ν)(1− 2ν)

∇ (∇uk,n (r)) +
E

2(1 + ν)
∇2uk,n (r) = −ρω2

k,nuk,n (r) , (2.48)

is solved. The Bloch wavevector k is linked to the assumption of a certain type of
wavefunctions for the displacement field, the Bloch waves ψk,n(r). These functions
comprise of a lattice periodic function uk,n with

uk,n(r) = uk,n(r + R) , (2.49)

and a complex phase factor such that [39]:

ψk,n(r) = exp (ikr) · uk,n(r) , (2.50)

and thus
ψk,n(r + R) = exp (ikR) ·ψk,n(r) . (2.51)

Therein, R is a real-space vector that shares the same lattice periodicity as the
underlying structure. In words, the eigenmodes of a periodic system will differ
between equivalent sites at r and at r + R only by a complex phase factor. This
requirement is used as a boundary condition in numerical computation along a
direction, where the sample is assumed to be infinite9. Consequently, ψk,n is fully
defined when a solution for uk,n is found.

Furthermore, the time-harmonic response of a metamaterial sample is computed
for an excitation with angular frequency ω using:

E
2(1 + ν)(1− 2ν)

∇ (∇uω (r)) +
E

2(1 + ν)
∇2uω (r) = −ρω2uω (r) . (2.52)

9 These boundary conditions are also known as Floquet-boundaries.
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In these equations, the material moduli according to Equation 2.28 and Equa-
tion 2.31 of the constituent material (polymer) enter. Damping due to visco-
elasticity of the polymer can be modelled by an imaginary part of E. Both
Equation 2.48 and Equation 2.52 were solved by Yu Wei and Yi Chen to predict
the behavior of the metamaterials investigated in the scope of this thesis and
addressed in Chapter 5 and Chapter 6.

2.3 Metamaterial Fabrication by 3D Laser Microprinting

To investigate any digitally-designed metamaterial experimentally, a translation
device from the digital domain into the real world is needed. In principle, two
pathways can be chosen. Well established subtractive manufacturing techniques,
such as milling or cutting, which create the desired structure out of a raw material
using computer numerical control, may come to mind first. However, a distinct
peculiarity of 3D Metamaterials is their often highly complex geometry. This
makes them challenging or even impossible to fabricate in such a manner. The
milling head or cutter may simply not reach out to some of the positions where
material should be removed, since they may be obstructed to the instrument by
desired geometrical features.

In contrast to this methodology stands additive manufacturing with its several
instances of 3D printers. For the mechanical Metamaterials investigated in this
work, direct 3D laser printing was chosen. This technology is well established
in the field [15] and allows to produce almost arbitrary 3D microscale polymer
structures in sufficient quantity to form photonic [40, 41] or phononic crystals [42].
Therefore, this technology will be summarized in the following text.

2.3.1 Principle and Workflow of 3D Laser Printing

The technique of 3D Laser printing can conceptually be explained in very few
words. A Laser beam is focused into a liquid negative-tone photoresist and
induces a polymerization reaction [43, 44]. This phase-transition from liquid to
solid creates a volume element, also called "voxel" following the style of "pixel" for
two-dimensional images. The voxel is by definition the smallest building block a
given 3D printer can realize. Scanning the laser focus in three dimensions through
the photoresist builds up the structure one wants to realize. Finally, the residual
photoresist needs to be washed away to reveal the structure. This workflow is
depicted in Figure 2.5.
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(a)

Substrate

(b) (c) (d)

Photoresist

Figure 2.5: Depiction of a typical workflow to fabricate a 3D microstructure. (a)
Liquid photoresist on a glass substrate. (b) A laser beam (red) is focused tightly into
the photoresist. This exposure induces a 2-photon polymerization reaction at the
focal region which additively builds the structure. (c) The printed microstructure,
in this case a unit cell from [45], is still submerged in liquid photoresist. (d) Final
microstructure after the unpolymerized photoresist is washed away using appropriate
solvents. Inspired and adapted from [46, 47].

The intuitive question is now to ask about size of the structures and the speed
with which they can be fabricated using this technology. In other words, what
is the size of such voxels, and how quickly can these voxels be produced and
connected. The answer to this question depends on various factors such as the
photoresist system, the power and wavelength of the laser light source, the scan
speed of the laser focus, and the optical components used in the printer. However,
what is common about state-of-the art 3D laser printers is the use of two-photon
absorption [48]. Using a non-linear process, instead of a single-photon absorption
to trigger the polymerization response from the photoresist drastically reduces
the voxel size and allows for even finer geometrical features to be realized [41]. At
first glance, building up any structure sequentially out of tiny blocks may appear
inherently slow. However, a laser focus can be scanned extremely fast. For this
task, a common choice are galvanometric scanners. These devices are limited by
the inertia of the mirrors and mechanics but nonetheless achieve extremely high
focus velocities of > 0.1 m s−1 in the writing plane, which places such printers
among the fastest devices in the field. An overview and benchmarking of the
multiple techniques and devices can be found in work of my colleagues [49]. As a
summary, commercially available 3D laser printers are up to the task to fabricate
metamaterial structures with hundreds of unit cells resulting in centimeter sized
samples in a few hours while maintaining a minimum geometrical feature size of
only a few micrometers [49, 50].
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2.3.2 Commercial Laser Printer

The metamaterial samples I investigated in this work were fabricated with a com-
mercially available 3D laser printer, the Photonics Professional Galvo Technology
(PPGT, Nanoscribe) in conjunction with the 3D Microfabrication Solution Set
Medium Features (3D MF, Nanoscribe).

The layout of the printer is shown in Figure 2.6. As standard issue for the PPGT,
a pulsed frequency doubled erbium fiber laser with a pulse width below 100 fs, a
repetition rate of 80 MHz and an emission wavelength centered at 780 nm is used.
The laser power is controlled with an acousto-optic modulator. The maximum
average laser power at the back-focal plane of the objective lens is 50 mW. The
laser beam is focused onto a indium-tin-oxide (ITO) coated substrate by a 25×
objective lens with a numerical aperture of NA = 0.8 (LCI Plan-NEOFLUAR,
Zeiss). The ITO coat increases the refractive index contrast between photoresist
and substrate, which facilitates to find the interface between photoresist and
substrate. To fabricate metamaterial structures with the 3D MF, a commercially
available photoresist (IP-S, Nanoscribe) is used. The printer features a "DIP-in"
operation mode, in which the objective lens is directly immersed into the liquid
photoresist. For the 3D MF, the writing field over which the laser focus can be
scanned laterally by the galvanometric mirrors while maintaining has a diameter
of 400 µm. If the structure exceeds this area, an xy-stage can translate the substrate
laterally and stitching of the structure is required. The lateral size limit is hence
given by the substrate size of 25 mm× 25 mm. Axial scanning of the laser focus
is achieved by a microscopy z-drive, which moves the objective lens closer or
further away from the substrate. The maximum height of the printed structure is
limited by the travel range of the drive at about 8 mm (depending on substrate
holder). In this configuration, the printer achieves a voxel size of 500 nm with
a focus velocity of 100 mm s−1 are possible, resulting in a voxel rate of about
200000 s−1. All specifications of the printer can be found on the website of the
manufacturer [51].

2.3.3 Sample Fabrication

For the better understanding of the overall metamaterial fabrication procedure,
I want to summarize crucial steps to arrive at a physical metamaterial sample
from a numerical computer generated file. The metamaterials I investigated in my
thesis were designed using the commercial COMSOL Multiphysics by Yi Chen or
Yu Wei. The software provides the geometry data within an STL-file that has to be
processed further.
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Figure 2.6: Schematic of the commercial laser printer (PPGT, Nanoscribe). The system
resembles a confocal microscope in the inverse configuration. A femtosecond-pulsed
laser beam (red) is focused by a microscope objective lens into a liquid photoresist, to
induce a polymerization reaction via a nonlinear two-photon process. To adjust the
laser power, an acousto-optic modulator (AOM) is used. The laser beam is scanned
through the writing (x, y)-plane at the substrate surface using a galvanometric (Galvo)
scanner. A microscope z-drive can be used (not shown) to move the objective lens
axially. The printing process can be observed in real time with a build-in camera.
Reproduced and adapted after [47, 51].

Machine Code Generation

To control the laser printer, the STL-file is translated into machine code with the
commercially available DeScribe software (Nanoscribe). This code consists of
trajectories along which the laser focus is scanned to polymerize the photoresist.
To do so, the geometry is sliced into layers separated by the slicing distance
dslice. The resulting layers are hatched in-plane with trajectory lines spaced by
the hatching distance dhatch. These parameters can have a major influence on
sample quality and printing time and are usually optimized for each type of
metamaterial individually. A depiction of dslice and dhatch is shown in Figure 2.7(a).
Furthermore, it may be necessary to dissect the geometry into smaller parts and
slice these individually. Doing so allows for control over the order in which the
parts are printed. If a structure features larger overhanging parts, or parts that
are not initially connected when printing from the ground up, this method is
indispensable to arrive at a well defined sample. In general, for each metamaterial
a dedicated printing strategy has to be chosen. Last but not least, depending on
the geometry, another important compensation step has to be taken into account.
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2 continuum mechanics and metamaterials

Figure 2.7: (a) Depiction of slicing planes (red) of a 3D geometry (black outline)
through which the laser focus is scanned. The inset shows one such plane where the
green lines represent the hatching lines i.e. the trajectories for the laser focus. The
slicing distance dslice and hatching distance dhatch are marked. (b) Correction of the
geometry to compensate for the asymmetry of the voxel along the z-axis. The light
blue frame shows the uncompensated structure. The red lines are analogous to (a).
The figure was inspired by Jonathan Schneider.

Voxel Compensation

In 3D printing, the voxels are elongated along the axis of the laser beam [52].
As a consequence, certain thin features which consist of only a few voxels may
share the same elongation. Therefore, before generating machine code for the
printer, the geometry data has to be scaled along this axis to precompensate for
the voxel asymmetry. For most metamaterials I investigated in my thesis, this
compensation was essential to arrive at a sample with high fidelity to its intended
design. An illustration of the intended structure and a compensated structure is
shown in Figure 2.7(b). Essentially, the geometry (or each component separately)
is compressed along the axis of the laser beam.

Sample Developement

After printing, the sample is still submerged in unpolymerized photoresist. An ap-
propriate method to remove the resist is either a bath of mr-Dev 600 (Micro Resist
Technology) or alternatively propylene glycol methyl ether acetate (PGMEA) as a
solvent. For the samples subject to this work, the submersion duration was at least
20 min, before the samples were transferred to either a bath of acetone or ethanol.
Very delicate structures may be damaged when removing the sample from the
bath due to capillary forces when air drying. To circumvent damage, supercriti-
cal point drying in CO2 with a commercial device (EM CPD300, Leica) is necessary.
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2 .3 metamaterial fabrication by 3d laser microprinting

This concludes the fabrication process of a metamaterial sample. For the sake of
integrity, I will state the fabrication parameters for each metamaterial investigated
in this work in the corresponding Chapter. Tobias Frenzel and Jonathan Schneider
performed the steps of designing a printing strategy and handled the voxel
compensation for three out of the four metamaterials I investiagted.
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3
Chapter 3

Optical Metrology for

Displacement Measurement

To the human being, tracking any kind of object movement is done first and foremost
visually. In more scientific terms, we track changes in position of an object, also called
displacements, through optical means. In terms of mechanical metamaterials, as has been
discussed in Chapter 2, the time-dependent displacement encodes the information about
the dispersion relation of elastic-wave propagation in the material. In this Chapter, I
introduce the methods from optical metrology I used to measure displacements in three
dimensions. Therefore, I start with a brief introduction on confocal microscopy, as such a
microscope forms the backbone of the experimental setup. Then, I summarize the image-
processing algorithm used to extract in-plane displacement information well below the
optical resolution limit. Lastly, I introduce and explain laser-Doppler vibrometry as a
technology to provide the out-of-plane displacement information.
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3 optical metrology for displacement measurement

3.1 Confocal Optical Microscopy

The term confocal connotes "having the same focus". In the simplest case, this
is meant with points in space in mind, which are imaged onto each other by
a lens. In addition, there is either a slit or a pinhole involved that suppresses
light originating from neighboring i.e. out-of-focus points. This increases image
contrast significantly and results in the spatial sectioning for which the confocal
imaging technologies are know.

The idea to use confocality for imaging dates back to Hans Goldmann in
1940 [53], who used a confocal system to increase the quality of images from the
human eye. This concept was expanded by M. Minsky in 1955 with the invention
of the first confocal scanning microscope [54, 55]. In such a system, there are
in fact three points that fulfill the criterion of confocality. The first point is the
light source illuminating the sample, the second point lies behind a microscopy
objective lens and hence on the sample under investigation, and the third point
is situated on a pinhole right in front of a photodetector. The latter records the
light originating from the focal point on sample. This principle is depicted in
Figure 3.1. To achieve the conjugation of all three points, the beam path has to
be unfolded by a beam splitter. The previously mentioned pinhole in front of
the detector strongly suppresses light originating from points that are not in the
focus of the objective lens. The suppression increases dramatically with increasing
axial distance from the focal spot of the objective lens. Shrinking the diameter of
the pinhole enhances this suppression even further, but also reduces the overall
available optical signal power, calling for sensitive photodetectors. So far, only
light from a single point is detected efficiently. To generate two-dimensional
sectioning images of a sample, the illumination has to be scanned through the
focal plane of the objective lens. Recording the spatially resolved intensity profile
during scanning allows to reconstruct images from the sample.

In principle, a confocal microscope can operate in two modes. In the first mode,
the illumination excites a light source such as a fluorophor in the sample volume.
The Stokes-shifted fluorescence light serves as the signal from which image
contrast is generated. Usually, a wavelength selective beam splitter separates the
illumination light from the fluorescence light. This application is widely spread
in biology for cells and living tissue [56]. The second mode simply uses the
back-reflected light from the sample surfaces. Image contrast is thus generated
by the refractive index difference between either air (or immersion oil) and the
sample.
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Figure 3.1: Schematic of the beam path in an confocal optical microscope. The
illumination is provided by a laser. A beam splitter (BS) directs the laser beam (green)
towards an objective lens which focuses the light onto a sample (light blue squares).
Back-reflected light from the focal plane (P1) of the objective lens is collected and
collimated by the same lens and focused through a pinhole. The light that passes
through the pinhole falls onto a detector. Back-reflected light (red) from sample layers
beyond the focal plane of the objective lens (P2) is not collimated by the objective lens.
This creates a defocus in the plane of the pinhole which leads to a strong reduction
in transmission and hence suppression of the background signal. The inset shows a
magnification of the objective lens focal region.

Components

The scanning of the focus was historically first implemented by moving the sample
with respect to the objective lens [55]. With the advent of lasers as light sources,
providing highly directed beams, a lens scanning technique was employed [57].
Nowadays, galvanometric scanners are the preferred choice [58] to scan the laser
beam over the sample. Similar to in a 3D laser printer, they enable much faster
scanning of the laser focus. A larger scan speed poses some requirements on the
detector. The photodecetor must provide a sufficiently large analog bandwidth,
to keep up and capture the fast intensity fluctuation of the optical signal when
the laser focus is scanned. Additionally, the detector must be sensitive enough to
detect even small optical signals, which are common when using small pinhole
diameters. Photodetectors, such as photomultiplier tubes (PMT) or avalanche
photodiodes (APD) are up to the task by providing a build-in amplification of
even small optical signals while offering a high analog bandwidth on the order
of several megahertz [59]. This fast response is essential for the methodology
introduced in this thesis within the following Chapter.
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Resolution of an Confocal Optical Microscope

In microscopy, two criteria for the resolution are common. On one hand, there is
E. Abbes criterion from 1873 for illuminated gratings [60]. It states that in order to
recover the grating period correctly, the opening angle of the observing (objective)
lens must at least collect the zeroth and the first order diffracted beam. On the
other hand, the Rayleigh criterion considers self-luminous objects [61] which is an
intuitive match for fluorescence microscopy.

However, an experimentally more accessible quantity to judge the resolution of
an confocal microscope is the point-spread function (PSF). This function describes
how the intensity distribution of an ideal point size light source is altered when
viewed through the lens system. Even for an ideal lens system with no aberrations,
the intensity distribution will be enlarged along all three spatial directions due
to diffraction [62]. A metric to consider here is the full-width at half maximum
along lateral FWHMlat and axial FWHMax cuts through this function. Objects that
are closer together than the respective FWHM cannot be resolved by the imaging
system. Strictly speaking, these quantities are defined for self-luminous objects1.
Nevertheless, their scaling law with respect to illumination wavelength λ and
numeric aperture NA of the objective lens are identical to both Ernst Abbes and
Rayleighs criteria. Instead of looking at absolute widths in space, it is convenient
to use the Airy disk diameter dAiry to set the scale along the lateral direction. This
length is also known as Airy unit (AU):

dAiry = 1 AU = 1.22 · λ

NA
. (3.1)

Expressing the pinhole diameter dPh in AU facilitates the comparison of different
imaging conditions and confocal microscope setups. To do so, dAiry must be
multiplied with the total microscope magnification, in order to obtain the correct
value of one AU in the pinhole (or image) plane, since Equation 3.1 is valid for
the focal plane of the objective lens. For a pinhole diameter that is several times
larger than the Airy unit (in the plane of the pinhole), say dPh > 3 AU, the lateral
and axial resolution of the confocal microscope resembles that of a conventional
wide-field system:

FWHMlat =
0.51 · λ

NA
, (3.2) FWHMax =

0.88 · λ
n−

√
n2 −NA2

, (3.3)

with refractive index n. For a vanishing pinhole diameter, or at least dPh < 0.25 AU,
the values of the FWHM will decrease by a factor of 1/

√
2 [63].

1 Self-luminous point sources are (reflecting) gold nanoparticles or (fluorescent) quantum dots.
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Hence, the theoretical limit for the resolution yields:

FWHMlat =
0.37 · λ

NA
, (3.4) FWHMax =

0.64 · λ
n−

√
n2 −NA2

. (3.5)

With a light source in the visible spectrum, such as a frequency doubled solid-state
laser with an emission wavelength of λ = 532 nm and the use of an air objective
lens (n = 1) with NA = 0.6, the resolution computes to FWHMlat = 0.3 µm and
FWHMax = 1.7 µm.

Summary

Confocal laser scanning microsopy is an optical imaging technology with spatial
sectioning due to the collection of light through a pinhole. A practical measure for
the resolution of a confocal microscope is the FWHM of the PSF. A smaller pinhole
diameter enhances the resolution of the system at the cost of optical signal intensity.
Furthermore, the diameter of the pinhole dictates the stray-light suppression from
out of focus sample planes, which increases contrast and thus the quality of
optical images. A smaller pinhole diameter leads to a stronger suppression and
therefore to finer sectioning. In theory, the finest sections can be obtained for
a vanishing diameter of the pinhole. Obviously, this is be accompanied by a
vanishing transmission through the pinhole and hence no photodetector signal
at all. Even when using highly sensitive detectors such as photomultiplier tubes
or avalanche photodiodes, the choice of the pinhole diameter remains a trade-off
between stray-light suppression and available signal power.

Besides, choosing a too-fine optical sectioning can have additional drawbacks,
depending on the subsequent image processing. This problem is elaborated on in
Chapter 4, where digital-image cross-correlation analysis for image data obtained
with an optical sectioning technique is addressed.

3.2 Digital-Image Cross-Correlation Analysis

In the investigation of microscale mechanical metamaterials, digital-image cross-
correlation (DIC) analysis [64] has become an indispensable tool to extract the
displacement field in two dimensions [13, 17, 19, 20, 65, 66]. The magnitude of
the local displacement-field components, depending on the situation, are on the
order of only a few nanometers. Hence, they are well below the resolution limit of
a conventional optical microscope operating in the visible regime, as calculated
with Equation 3.4. However with DIC, depending on signal-to-noise ratio of the
images, a measurement accuracy of down to 1/100 of the pixel size [18], or even
to the atomic-scale is possible [67].
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Figure 3.2: Example of a digital-image cross-correlation analysis. (a) A photograph
of the author (taken by Alex Vogt) is shown as a base image I1. The red square
outlines the kernel K(x, y) which contains the image feature (helmet) that should
be tracked in I1. (b) False-color plot of the resulting normalized cross-correlation
function C(∆x, ∆y). For the computation, both I1 and K were converted to grayscale
images. The maximum of C(∆x, ∆y) = 1 occurs for a shift of ∆x = ∆y = 0, which
corresponds to a perfect match between kernel and base image. If the feature moves,
the maximum of C(∆x, ∆y) occurs at a nonzero shift, yielding the displacement of
the feature.

Therefore, DIC analysis is employed within this work to obtain the in-plane
displacement-field components from optical images. A description of the proce-
dure and how to obtain sub-pixelsize displacement information is given below.

3.2.1 General Principle

The principle of digital-image cross-correlation analysis is the comparison of two
images. Those images are discretized in pixels with coordinates x = nx p and
y = ny p. Thereby, p is the pixel size and nx,ny are the integer numbering of the
pixels. Commonly, one image I1 is significantly larger i.e. has a larger number of
pixels and is called the base image or in the scope of this thesis, region of interest
(ROI). The second image is referred to as the kernel K and has significantly less
pixels. The kernel contains the image feature or object that should be located in
the base image, or tracked in other images. The metric for comparison of I1 and K
is the two-dimensional (normalized) cross correlation function:

C(∆x, ∆y) =
x2∫

x1

y2∫
y1

I1(x, y)K(x + ∆x, y + ∆y)dxdy . (3.6)
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3 .2 digital-image cross-correlation analysis

The integration is calculated over the region covered by K, that is from x1 to x2
and y1 to y2. C(∆x, ∆y) is a function of the shift (∆x, ∆y) between the kernel and
the base image. Figuratively speaking, to compute C(∆x, ∆y) the kernel is shifted
pixel-wise across the base image along x and y. For each shift (∆x, ∆y), the images
K and I1 are multiplied and summed up. Doing so yields a larger value of C, the
greater the resemblance between the image features of I1 and K. The result of
this method is illustrated in Figure 3.2. Since in this example, K is correlated with
the base image I1, i.e. the image it is cropped out of, the maximum of C occurs
for a zero shift at ∆x = ∆y = 0. If the feature contained in K was to be moved,
i.e. a different image I2 is used to calculate C(∆x, ∆y), the global maximum of
C(∆x, ∆y) will occur at a nonzero shift, which is equal to the displacement of the
feature.

In Figure 3.2(b), several side-maxima and edge-effects are visible. To minimize
any additional extrema of C(∆x, ∆y), it is important to carefully choose the kernel
such that a sharp and at best an unique feature with good contrast is included.
Otherwise, a clear discrimination between the global maximum and local maxima
may not easily be possible and the displacement measurement accuracy will suffer.
In the scope of this work, the built-in MATLAB function normxcorr2 was used to
compute C(∆x, ∆y).

3.2.2 Subpixel Precision with Digital-Image Cross-Correlation Analysis

As stated above, the value of the shift is an integer of the pixel size. In most optical
imaging systems, depending on the magnification, the pixel size may be on the
order of the half-wavelength to satisfy the Nyquist-Shannon sampling theorem [68].
This may be to coarse to capture nanometer-scale (and certainly sub-nanometer)
displacements. Subpixel accuracy can still be achieved, when investigating a
3× 3 region around the global maximum of C(∆x, ∆y). The MATLAB build-in
function findpeak_dic fits a 2D-parabola to this grid and determines the maximum
which may lie at non-integer values of ∆x and ∆y. This is crucial to achieve the
aforementioned resolution of 1/100th of the pixelsize p and to provide sufficient
nanometer-scale amplitude resolution to investigate the displacement field of
mechanical metamaterials.

Tobias Frenzel and Julian Köpfler have pushed this methodology further in their
work, showing that the measurement error on the displacement can be brought
down even below one Ångström [67]. To achieve this limit, averaging is needed
which presupposes that the displacement field is uniform i.e. constant over a
sufficiently large area. This is however not usually the case for the metamaterials
studied in this thesis. Nonetheless, DIC analysis forms the backbone to measure
the in-plane displacement-field components in this work, since displacement
accuracy on the Ångström-scale is not necessary.
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3.3 Laser-Doppler Vibrometry

Laser-Doppler vibrometry and anemometry are techniques to sense velocities
using the frequency change of light upon reflection from moving objects. The
foundation for the technique was provided by the Austrian mathematician Chris-
tian Doppler and his work on the color of stars in our universe in 1842 [69]. He
discovered that the perceived color of stars changes periodically, and that the
pattern of change is linked to a changing relative movement between the observer
on earth and the stars in outer space. This observation was made decades before
Albert Einstein published his theory of relativity in 1905 [70] which provides the
theoretical explanation of the phenomenon nowadays known as the Doppler shift.

Quite some time passed from the discovery of the Doppler-effect to the ex-
ploration of laser-Doppler techniques in the laboratory. The field of vibrometry
picked up momentum shortly after the advent of coherent radiation emitters, also
known as lasers, foremost realized by Maiman in 1960 [71]. First experiments
were published on fluid flow-patterns four years later [72] using a helium-neon
laser spectrometer, arguably one of the first laser-Doppler anemometers.

To the date of this thesis, laser-Doppler vibrometry has made its way into a
multitude of technological and scientific areas. Especially the non-destructive and
non-contact measurement capabilities of laser-Doppler Vibrometers (LDV) are
widely appreciated. Commercial-grade LDV [73] are used as tools for the calibra-
tion of accelerometers [74] medical research [75], and modal analysis in aerospace
as well as automotive [76, 77] industries. It is this modal analysis that forms
the bridge between industry and the investigation of elastic waves in mechanical
metamaterials, which is at the core of this thesis. At this point, a distinction should
be made. Previous work by others in the field [78, 79] (to name a few) was mainly
concerned with macroscale metamaterials with centimeter-sized dimensions and
not on microscale mechanical metamaterials.

In the following text, I summarize the equations for the longitudinal Doppler
shift created by a moving mirror and explain the basic operation principle of a
LDV. Furthermore, I will derive the equations describing the detector-signal and
discuss the resolution of an LDV, which is important for the small displacement
amplitudes common for microscale metamaterials. Finally, I describe the digital
demodulation scheme used to retrieve the displacement amplitude from the
Doppler-signal. A more in-depth discussion can be found in several books on the
topic. Here, I will follow the lines of Rembe [80, 81], Castellini [82], Chiarotti [83]
and their respective co-authors.
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3.3.1 The Longitudinal Doppler shift from a Moving Mirror

The simplest case in which a Doppler shift of optical frequencies occurs is depicted
in Figure 3.3(a). A receiver detects the optical frequency fr of optical radiation
from a source in constant collinear motion towards the receiver and emitting at fs.
The equation linking the two frequencies is derived from special relativity [70]:

fr =

√
c− v
c + v

· fs , (3.7)

where c is the speed of light in vacuum and v the velocity of the source. According
to relativity, it is equivalent to consider either the receiver or the source in motion,
thus v should be understood as the relative velocity between the two participants.

To arrive at Equation 3.7, a Lorentz transformation from the source frame to
the receiver frame of the corresponding electrical fields and laws of reflection is
necessary. The mathematical tools for this task can be found in basic work on
the topic [84]. Expanding this consideration to laser-Doppler vibrometry means
that source and receiver coincide and the reflection on a mirror moving at velocity
vm has to be considered, cf. Figure 3.3(b). The mirror basically is the sample
surface under investigation by a LDV. One way to treat this scenario rigorously is
to compute two Lorentz-transformations. The first treating the mirror as a receiver
when transforming from the source frame into the mirror frame and the second
treating the mirror as a source emitting at a Doppler-shifted frequency.

Alternatively, derivations directly from the constant speed of light postulate and
basic principles of wave optics are also possible [85]. A third and very illustrative
way to look at the problem is to understand the mirror as a plane of symmetry, as
it is shown in Figure 3.3(c). This means to think of an image source, the velocity
of which v′s is calculated by the relativistic formula for collinear velocity addition:

v′s =
vm + vm

1 + vm·vm
c2

=
2vm

1 +
( vm

c
)2 . (3.8)

Inserting v′s into Equation 3.7 yields the received optical frequency:

fr =
c− v
c + v

· fs . (3.9)

In practical applications of laser-Doppler vibrometry, the velocity of light far
exceeds the velocity of the object under investigation, hence the approximation
of v≪ c and (c + v) ≈ c are valid. Subsequently, the Doppler shift fD computes
from the resulting frequency difference between source and receiver:

fD = fs − fr =
2vm

c + vm

(vm≪c)
≈ 2 fs

vm

c
, (3.10)
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Figure 3.3: Illustration of collinear relative movement between source and receiver.
(a) A resting receiver (eye) observes a source (star) moving at velocity vs and emitting
radiation at frequency fs. The receiver detects the Doppler-shifted frequency fr.
(b) Situation comparable to a laser-Doppler vibrometer. Source and receiver are
combined and thus are both at rest. The target is a mirror moving at velocity vm = vs.
(c) Analogy to (b) but a image source moving at velocity v′s > vm is considered.

which emphasizes that the shift in optical frequency is directly proportional to the
velocity of the object under investigation.

3.3.2 Working Principle of a single-point Laser-Doppler Vibrometer

From Equation 3.10 it becomes clear that measuring fD directly yields information
about the velocity of the object under investigation. In practice, wavelengths
used in LDV lie in the visible or near infrared regime. Consequently, the optical
frequencies amount to several gigahertz, far transcending the accessible range
of conventional semiconductor-photodetectors [59]. The solution is provided by
interferometric means, that is overlaying the back-reflected laser beam with a
second reference beam. Due to the Doppler shift, both beams exhibit a different
optical frequency, giving rise to a beating in time of the resulting interference
pattern. The frequency of this beating is exactly the frequency of the Doppler
shift.

Layout and Components

Either a Michelson-configuration [86] or a Mach-Zehnder-configuration [87, 88]
are generally chosen for the layout of the interferometer. These two options are
illustrated in Figure 3.4. In both cases, a continuous wave laser with a large
coherence length is employed. The laser beam is split into two arms by a beam
splitter. The beam of one arm, the sample arm, is directed onto a reflective
sample. The back-reflected light is overlayed with the beam in the second arm,
the reference arm, onto the senstive area of a photodetector, such as a (avalanche)
photodiode. The resulting photodiode current is converted into a voltage by one or
more electronic amplifier stages. In practice, several additional lenses, polarizers
or waveplates may be necessary to ensure the best possible efficiency of the system
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Figure 3.4: Simplified layouts for laser-Doppler vibrometers (LDV). (a) Homodyne
LDV in a Michelson interferometer configuration, with a single beam splitter (BS)
in the center. The reference arm lies between BS and the mirror at the top. The
sample, a moving mirror, is on the right. The intensity created by the overlaying
beams is detected by a photodiode (PD) at the bottom. (b) LDV in a Mach-Zehnder
configuration. An acousto-optic modulator (AOM) in the reference arm turns the
LDV into a heterodyne system.

but are omitted here for clarity.
The experienced reader may already recognize the similarity between the beam

path of a Michelson interferometer and a confocal microscope as show in Fig-
ure 3.1. Hence at this point, it may seem intuitive to combine the two systems in
such a manner. However, for the detection of small displacements and velocities,
heterodyning techniques are useful [80]. To do so, one of the laser beams, typi-
cally the beam of the reference arm, is shifted in frequency by an acousto-optic
modulator (AOM), cf. Figure 3.4(b). In practice, a Mach-Zehnder configuration is
arguably easier to align, since no double-pass of the AOM is needed. Therefore,
the Mach-Zehnder configuration is most common in commercial devices [83] and
is chosen for the experiments in this work. Heterodyning enables for shot-noise
limited detection of the optical signal. At the same time, it causes the beating of
the intensity at the detector, and thus the detector signal, to be shifted to a higher
frequency which has to be considered in the subsequent signal demodulation.

3.3.3 Detector-signal and Resolution

To derive the photodiode current i(t) induced by the optical intensity on its
sensitive surface, one has to consider the interference pattern generated by the
electric fields from the sample arm and the reference arm of the interferometer.
The most intuitive approach is to express those fields as plane waves which are
solutions to the wave equation in vacuum [89]:

∂2E
∂t2 = c2 ∂2E

∂x2 . (3.11)
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Considering all fields share the same polarization, the vectorial problem turns
scalar with the fields in complex notation:

Er(t) = Er,0 · exp [i(2π frt− φr)] , (3.12)
Es(t) = Es,0 · exp [i(2π fst− φs)] . (3.13)

Thereby, Er,0 is the field amplitude for the reference arm and Es,0 is the field
amplitude for the sample arm. The optical path length of the two interferometer
arms is captured by the phase terms φs and φr. The optical frequency of the laser
radiation is f . For a heterodyne system, as described above, the frequency for the
reference arm is shifted by the Bragg-frequency fB of the AOM i.e.

fr = f + fB .

For the beam of the sample arm, the optical frequency is Doppler-shifted according
to equation Equation 3.10, thus

fs = f + fD .

The total electric field Etot at the detector is the sum of both fields:

Etot = Er(t) + Es(t) , (3.14)
Etot = Er,0 · exp [i(2π( f + fB)t− φs)] + Es,0 · exp [i(2π( f + fD)t− φr)] . (3.15)

The output current of the photodiode is proportional to the absolute square of the
total electric field:

i(t) ∝ |Etot|2 , (3.16)

∝ E2
r,0 + E2

s,0 + 2Er,0Es,0 cos(2π( fB + fD)t + φs − φr) . (3.17)

More arithmetic steps can be found in the appendix Section A.2. The key aspect is
that the optical frequency f disappears in this expression. As aforementioned, the
photodetector cannot follow the optical frequencies directly. Consequently, this
also holds true for the sum frequency and the detector acts as a low-pass filter
giving rise to a constant (DC) output of E2

r,0 + E2
s,0. The latter is either removed

by balanced detection using two detectors or alternate-current (AC) coupling of a
single detector.

With Equation 3.17, a key benefit of heterodyning becomes apparent. Recalling
Equation 3.10, states that the frequency shift is proportional to the velocity v. Since
the signal is spectrally centered around fB, the sign of the Doppler shift encodes
the direction of movement which can be extracted as well.
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Movement towards observer, v > 0, fSignal = fB + fD .

Movement away from observer, v < 0, fSignal = fB − fD .

The audible sound of a passing ambulance siren follows the exact same logic,
where the frequency of the siren is the equivalent to the carrier frequency of the
vibrometer signal. For an approaching ambulance, the pitch of the siren will
increase while for a departing ambulance, the pitch will lower.

Detector Signal for a Vibrating Mirror

Strictly speaking, only a mirror or sample moving at a constant speed has been
discussed so far. In the typical application of a LDV, the mirror i.e. the sample is
vibrating. Therefore, an important modification to Equation 3.17 must be made,
which is seldom elaborated in great detail within textbooks. A more general form
of the detector current induced by the interference term reads:

i(t) ∝ 2Er,0Es,0 cos

2π

t∫
t0

fI(t′)dt′

 , (3.18)

in which fI(t) is the instantaneous frequency of the oscillation. Since a trigonomet-
ric function evaluates a phase, the integration has to be performed first, in order
to get the instantaneous phase φI at a point in time t. A time-harmonic oscillation
at frequency fm can be expressed by:

v(t) = v0 · cos(2π fmt) . (3.19)

Using Equation 3.10, the instantaneous phase (normalized to 2π) is found:

φI/(2π) =

t∫
t0

fI(t′)dt′ =
t∫

t0

(
fB + fD(t′)

)
dt′ (3.20)

=

t∫
t0

(
fB + 2

f
c

v(t′)
)

dt′ =
t∫

t0

(
fB + 2

f
c

v0 · cos(2π fmt′)
)

dt′ , (3.21)

= fB · (t− t0) + 2
f
c
· v0

2π fm
· (sin(2π fmt)− sin(2π fmt0)) . (3.22)

This equation can be simplified when introducing the laser wavelength λ = c/ f ,
and recalling that the spatial amplitude s0 is linked to velocity amplitude with
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v0 = s0 · 2π fm. Additionally, absorbing constant terms (not dependant on t) into
φ0 yields:

φI/(2π) = fB · t +
2s0

λ
· sin(2π fmt) + φ0/(2π) . (3.23)

Finally, the detector signal for a vibrating sample follows:

i(t) ∝ 2Er,0Es,0 · cos
(

2π fBt +
4πs0

λ
· sin(2π fmt) + φ0

)
. (3.24)

A convenient observation here is to notice that the phase of the i(t)-oscillation is
directly linked to the displacement of the sample. Therefore, phase-demodulation
(PM) techniques can directly provide the information about the movement of the
sample along the direction of the laser beam.

Furthermore, the frequency spectrum of such signal can be expressed in Bessel
functions of the first kind and first order, when using the Jacobi-Anger expan-
sion [90]. What follows is, a central peak at the Bragg- i.e. carrier frequency fB
with several side-lobes, the number and magnitudes of which depend on the mod-
ulation parameters v0, or s0 and fm. An example of a simulated signal u(t) and its
spectrum are shown in Figure 3.5. It is possible to link the displacement-resolution
limit of the vibrometer to the number of detectable side-lobes.
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Figure 3.5: Simulated signal for a heterodyne LDV. (a) Amplified voltage signal
u(t) at carrier frequency fB = 80 MHz detected by a photodetector. The sample is
oscillating at fm = 100 kHz and a displacement amplitude of 50 nm. (b) Spectrum
obtained through Fourier transformation of u(t), showing side-lobes with the central
peak at the carrier frequency fB. The spacing of the lobes is equal to the modulation
frequency fm.
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3 .3 laser-doppler vibrometry

Resolution limit

The displacement information of the sample is encoded in the instantaneous phase
of the detector signal. To deduce the amplitude resolution limit of a LDV, the
occurring noise sources on that signal have to be compared. In general, there is
thermal (Johnson) noise, quantization noise in the digitization of the signal and
optical shot noise [81]. The latter poses the fundamental physical limit due to the
quantum nature of light. A peculiarity of a heterodyne system is that shot-noise
limited acquisition can be achieved relatively straight forward. This becomes clear
when comparing the scaling of the noise sources with power. The exception to
this is quantization noise, which can be minimized by using the full range of the
subsequent analog-digital converter. As it is common, noise budget discussions
are performed in terms of power, which is why mean-squared quantities over the
time constant of the photodetector are considered.

For thermal noise of a detector with load resistor R, the mean-square noise
contribution to the detector signal computes to:

i2
th =

4kB · T · B
R

, (3.25)

with Boltzmann’s constant kB, temperature T and detector bandwidth B. Notably,
this quantity is independent of the signal power, i.e. the electric field amplitudes.
The mean-square shot noise current of the detector is given according to [81] by

i2
sh = 2 · K · q · B · (Ps + Pr) . (3.26)

In this equation K = ηq/h f is the sensitivity of the photodiode, h is Planck’s
constant, η the quantum efficiency and q the elemental charge. The electric fields
at the detector have furthermore been converted into signal powers over the
sensitive detector area with using the vacuum impedance Z0 =

√
µ0/ε0. With

φsig(t) = 2π fB · t +
4πs0

λ
· sin(2π fmt) + φ0 , (3.27)

the complete detector current with AC and DC component can be rewritten as:

i(t) = K ·
(

Pr + Ps + 2κ
√

PrPs · sin
(

φsig(t)
))

, (3.28)

where κ is the heterodyning efficiency which lies between 0 and 1 to accommodate
for aberrations or residual misalignment in the system. The only two quanti-
ties scaling with the optical powers P are the shot noise and the signal itself.
Calculating the signal-to-noise (SNR) ratio of Equation 3.26 and Equation 3.28

yields:

SNR = i2 / i2
sh =

η · κ2 · Pr · Ps

h · f · B · (Pr + Ps)
. (3.29)
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Several important conclusions can be drawn from this. Both the signal power and
the shot-noise power depend linearly on PR. When increasing the reference beam
power such that Pr ≫ Ps, Equation 3.29, will reduce to:

SNR ∝
Ps · Pr

Ps + Pr
→ SNR ∝ Ps . (3.30)

Consequently, the SNR becomes independent of the reference beam power Pr and
no increase in SNR can be achieved for larger Pr. However, the SNR will lay well
above any thermal noise contributions, creating a shot-noise limited system [81].

At this point, a consideration about the influence of quantization noise should
be made. Usually, the photocurrent is converted into a voltage signal using one
or more transimpedance amplifiers with feedback resistance RTIA. Let’s consider
that this voltage signal is directly digitized by an analog-digital-converter (ADC)
with full scale input range Ur. For ideal performance, it is wise to chose RTIA so
the amplified signal matches the ADC input range, hence Ur = 4RTIAKκ

√
PsPr.

The quantization noise on that signal for an ADC with nb bits and a sampling rate
fADC following [83] is:

u2
qn =

1
12

(
Ur

2nb−1

)2 2B
fADC

=
4(RTIA · K · κ)2 · PsPr

3 · 22nb−1
2B

fADC
. (3.31)

To maintain shot-noise limited acquisition, a high enough sampling rate and
number of bits have to be chosen. In other words, when calculating a SNRqn from
Equation 3.28 and Equation 3.31, the value of SNRqn should always exceed the
SNR calculated with Equation 3.29.

In closing, it is crucial to understand that the limiting factor on the SNR is the
reflectivity of the sample under investigation

SNR ∝ Ps = P0 · r2,

with P0 as laser power emitted into the sample arm and r as the Fresnel coefficient
of reflection [61] of the sample. This explains why in the application, surfaces that
offer a high back-scattering of the optical radiation are preferred or intentionally
generated with the use of reflective tape, such that r ≈ 1. In the case of mechanical
metamaterials, fabricated with a polymer constituent, the reflectivity is much
lower. The commercial photoresist IP-S (Nanoscribe) has a refractive index of
≈ 1.5 [91]. Hence, the reflectivity is on the order of only 4 % for perpendicular
incidence of the laser beam on the air-polymer interface. This detriment of small r
carries over to the discussion of the smallest displacement-amplitude a LDV can
detect.
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3 .3 laser-doppler vibrometry

Revisiting the spectrum of a Doppler-signal in Figure 3.5(b), for extremely small
displacements on the order of a fraction of the laser wavelength, the amplitude of
the side-lobes reduces. While in theory there is an infinite number of side-lobes,
in practice the detection limit lies at the point where the closest side-lobes to
the central peak are equal to the noise floor of the system. Thereby, only the
central peak with amplitude J0 centered at fB and the first pair of side-lobes with
amplitudes J1 centered at fB± fm are present. A good approximation is made with
J0 = 1 and J1 = 0.5∆φ [81]. This condition corresponds to setting SNR = 1/

√
2 in

Equation 3.29, since two side-lobes with uncorrelated noise contribute. For phase
modulated signals, it can be shown that the phase noise ∆φ of the Doppler-signal
relates to the SNR for small displacements of the sample as:

∆φ =
4π

λ
· ∆s ≈ 2√

SNR
. (3.32)

Solving for ∆s yields the smallest detectable displacement amplitude. It is common
practice to normalize this ∆smin over the square-root of the detection bandwidth B.
This eases the comparison between different LDV. Using common parameters for a
LDV with λ = 633 nm, η = 0.8, κ = 0.8, PR = 1 mW, PS = 0.1 mW a displacement
per square-root bandwidth of

∆s′ = 4.024 · 10−15 m/
√

Hz

can be measured. For a detector with a bandwidth B = 100 MHz, a displacement
resolution of ∆smin = 40 pm is viable in theory. However, the consideration so
far does not attribute further electronic noise sources such as electronic cross
talk and spurious noise peaks, as well as the already mentioned low reflectivity
of the metamaterial samples. The latter has the most dramatic influence and
may deteriorate the resolution to ∆smin = 0.2 nm. Countermeasures are either
averaging the signal when observing time-periodic processes, or limitation of the
detection bandwidth. Nonetheless, the sub-nanometer displacement resolution
is comparable with the resolution provided by DIC. Consequently, an LDV is a
adequate tool, to extract the out-of-plane displacement and as such can complete
the 3D displacement-field measurement on mechanical metamaterials.

3.3.4 Signal Demodulation

As mentioned before, the detector current is usually converted into a voltage by a
transimpedance amplifier. From Equation 3.28 follows:

u(t) = RTIA · i(t) . (3.33)
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unwrapatan(Q(tn)/I(tn))
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Figure 3.6: Block diagram of an in-phase and quadrature (IQ) demodulator for a
digitized Doppler-signal S(tn) at sample points tn. The signal mixers are drawn as
circles with crosses. A local oscillator (LO) provides the reference for demodulation
with angular frequency ωD = 2π fD. The low-pass and data decimation stages are
enclosed by dashed boxes. The output of the demodulator is the phase φ(tn) which
can be converted into a displacement by the factor λ/(4π). Figure from supporting
material of [92] and adapted under (CC BY 4.0)

It is the phase of this this voltage signal u(t) that encodes the displacement infor-
mation of the sample. This retrieval process is called decoding or demodulation.
Historically in the 20th century, analog demodulation schemes with phase-lock-
loops or lock-in techniques were used [93]. These analog demodulators offer the
largest velocity ranges and fastest DC response. A downside to analog technology
is the susceptibility to device degradation, thermal drifting and nonlinearities.
Digital demodulation schemes do not suffer from this issue and offer a flexible way
to integrate sophisticated data processing and filtering. To the date of this thesis,
digital demodulation is the new standard for LDV [81]. A common type of digital
demodulation is the digital counterpart to a lock-in amplifier and also known as
in-phase quadrature (IQ) demodulation. The block diagram of this procedure is
printed in Figure 3.6. The continuous analog voltage signal u(t) is digitized by
an ADC with sample rate fsam and converted into the discrete time-series S(tn)
at sample time points tn. Moving through the block-diagramm, the time series is
multiplied with a numerically generated sine and a cosine (NCO), the frequency
of which is chosen to match the carrier- i.e. Bragg-frequency of the AOM.2

From this point on, two signals are considered, the in-phase I(tn) and the
quadrature Q(tn) component. The mixing generates sum and difference frequen-
cies. Since the signal features the same center frequency as the sine and cosine
used for mixing, the signal is down-converted into the baseband for fD − fD = 0.

2 In analog technology, the sine and cosine are provided by a local oscillator (LO) and a π/2
phase shifter. For digital demodulation, the representation can be calculated in advance.
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3 .3 laser-doppler vibrometry

Additionally, a higher harmonic with 2 fD will arise numerically. The mathematics
look somewhat similar to the mixing of two electric fields from Equation 3.17 or
appendix Section A.2. The high frequency components are subsequently removed
from I and Q by low-pass filtering and data-decimation. Specifically for this
process, moving average filters are applied to I and Q. For a moving average
window of N sample points, only every N-th data point carries new information.
The other data points can be decimated, conveniently reducing the data size at
the same time. This process is also known as digital down conversion (DDC). The
phase of the signal S(tn) is finally recovered by computing the arctangent (atan, cf.
Figure 3.6) of I and Q. A peculiarity to digital demodulation is that the underlying
phase of the carrier signal, onto which the displacement information is encoded, is
not known right away. Depending on the instantaneous phase difference between
NCO and signal for t0 = 0, the amplitude of Q and I will vary. Therefore, phase
unwrapping is needed to reconstruct the correct signal phase:

φ(tn) = arctan
Q(tn)

I(tn)
+ mπ, with m = 0, 1, 2, 3, ... (3.34)

This step eliminates the original amplitude of the signal u(t) or S(tn) in which lies
major benefit of the phase (or frequency) modulating properties of laser-Doppler
vibrometry. The procedure is sensitive to phase (or frequency) and not to a
absolute amplitude. The displacement data is finally obtained by rescaling φ(tn):

s(tn) =
λ

4π
φ(tn) . (3.35)

For the sake of integrity, a possible artefact should be mentioned. After the signal
demodulation, it may be possible that the displacement raw data shows a drift
with a constant velocity. The cause of this artefact is a small mismatch between
the AOM frequency fB and the assumed 80 MHz of ≈ 100 Hz, thus on the order
of 1.25 ppm only. The drift can be removed by least-square fitting a linear slope
to the data and subtracting the result. As aforementioned, the cause of this
artefact lies in the unmeasured frequency of the AOM. If the AOM frequency
and phase were known exactly, the NCO could be set accordingly and both the
phase-unwrapping as well as the drift-subtraction are unnecessary. However,
measuring the AOM frequency is not always possible3 (for some devices) or at
least occupies another channel of the data acquisition unit which adds complexity
to the system. Anyways, the artefact can be compensated for as mentioned by
numerical means.

3 Some commercial AOM drivers simply don’t offer a built-in frequency readout and would
require custom modifications.
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Summary

A LDV measures the displacement component parallel to the laser beam of a mov-
ing surface. Commercial LDV are build in a Mach-Zehnder layout. Heterodyning
is used, to lift the sign ambiguity of the surface (sample) velocity. Thereby, the
direction of movement relative to the incident beam is extracted. The displacement-
extraction from the acquired Doppler-signal is most commonly performed in the
digital domain using an IQ demodulation technique. For sufficiently large optical
powers, shot-noise limited reception can be achieved. However, the displacement
resolution of the LDV depends on the amount of back-scattered light from the sam-
ple surface. For metamaterial surfaces with a reflectivity of 4 %, sub-nanometer
resolution is possible which is on par with DIC analysis. Conclusively, a LDV is a
suitable device to track elastic waves in mechanical metamaterials.
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4
Chapter 4

Setup for Time-Resolved

Tracking of Elastic Waves

I dedicate this Chapter to the description and demonstration of the self-built experimen-
tal setup I realized during this thesis, in order to perform experiments on mechanical
metamaterials. The core functionality of the setup is the time-resolved three-dimensional
measurement of the displacement vector at a local position. Automation of the measure-
ment procedure allows to track elastic waves along metamaterial samples by sampling their
displacement-vector field at multiple, deliberately chosen regions of interest. Therefore,
the setup features a confocal-microscopy branch and a laser-Doppler-vibrometry branch. I
will start the description by addressing the confocal-microscopy branch first, and what has
to be heeded when applying digital-image cross-correlation analysis to images acquired
with a sectioning imaging system. Subsequently, I report the addition of the laser-Doppler-
vibrometry branch and describe the necessity of calibration for vibrometers integrated
into microscopes. The Chapter closes with a demonstration of displacement-measurement
performance in three dimensions.
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4.1 The Confocal Microscopy Setup

The section begins with a detailed description of the setup layout and components
of the confocal-microscopy branch. Historically, this is the configuration in which
the setup was first used to perform experiments on metamaterial samples. Con-
sidering the imaging, the arguably full-fledged name for the setup in this state is
a confocal optical laser-scanning back-scattering microscope. The assembly and
programming of the microscope was performed in cooperation with my former
student Jannis Weinacker during his masters thesis, whose contribution I want to
acknowledge at this point. A description of the setup has been published before by
myself and co-authors in the supporting information of [94], and will follow those
lines. Additionally, the implemented imaging i.e. measurement modes are listed
afterwards, and the calibration of the field of view is reported. Subsequently, the
influence of optical sectioning on displacement data recovered by digital-image
cross-correlation (DIC) analysis is discussed quantitatively.

4.1.1 Design of the optical beam path

The beam path for the setup was designed and modeled in Matlab using Gaussian
beam propagation. Additionally, the design was cross-checked with ray-tracing
simulations performed in Zemax OpticStudio. The resulting schematic of the
beam path and components of the confocal back-scattering microscope is depicted
in Figure 4.1. A detailed component table is provided in Appendix B, which lists
the corresponding component models and manufacturers. For the illumination of
the sample, a highly stable, air-fan cooled single-longitudinal mode, frequency
doubled diode-pumped solid-state laser with emission wavelength of 532.3 nm
is used. To maintain the stability of the laser emission, a Faraday isolator is
positioned in front of the laser to block back-reflections, which are inevitable in
any confocal microscopy setup. The laser is emitting linearly polarized light at
200 mW, which is the most stable operation point according to the manufacturer.
To reduce the laser power externally, a half-wave plate (R1) and a polarizing
beam splitter cube (PBS) are used. A second half-wave plate (R2) allows to rotate
the laser beam polarization if required. A clean-up filter for the laser emission
wavelength blocks any potential background laser emission (e.g. at 1064 nm).

The beam path is separated into the illumination path and the detection path
(cf. confocal principle Figure 3.1) by a thin-film beam splitter (TFBS). Per design,
the laser is emitting a beam with Gaussian beam diameter of 0.7 mm. In order to
illuminate the back aperture of the objective lens (OL) with diameter 4.8 mm, and
to compensate the divergence of the laser beam, three 4 f telescopes (TEL1-TEL3)
are used between the laser and the galvanometric scanner.
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Figure 4.1: Schematic of the confocal optical back-scattering microscopy setup. The
beam path of the laser radiation is tinted green. Telescopic lens-pairs are labeled
(TEL1-TEL3). Polarizing beam splitter cube (PBS), and thin film beam splitter (TFBS).
Half-wave retarder plates (R1,R2). Scan lens(SL), tube lens (TL), and objective lens
(OL). Detection lens (DL1). Personal computer (PC) components are enclosed in the
dashed box: data acquisition unit (DAQ1), galanometer scanner control card (RTC6).
Electrical wiring is sketched as black lines. The detailed description is given in the
text. Figure and caption taken from [94] and adapted under (CC BY 4.0), published
by Science Advances 2021.
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TEL1 forms a compact Galilei telescope with f1 = −75 mm and f2 = 200 mm.
TEL2 is a Keppler telescope with f3 = 75 mm and f4 = 200 mm, as well as TEL3
with f5 = 300 mm and f6 = 175 mm.

The scan lens (SL) of the setup is comprised of two achromatic lenses with
respective focal lengths of 250 mm. Arrangement in a Plössl-configuration, follow-
ing the suggestions made in [95], yields an effective focal length of fSL = 125 mm.
The focal point of the SL is chosen to lie exactly in between the two mirrors
of the galvanometric scanner. This minimizes wobble1 of the laser beam when
scanning, since the mirrors are not imaged onto each other. Lastly, the tube
lens (TL) is an achromatic lens with fTL = 200 mm. The telescopes, the scan
lens and the tube lens magnify the beam diameter from 0.7 mm to 4.6 mm. The
residual under-illumination of the OL back-aperture is accepted to account for the
aforementioned beam wobble.

The back-scattered light from the sample is propagating backwards along the
illumination path and enters the detection path at the TFBS. The light is collected
by an achromatic lens of f = 40 mm. The achromat forms the detection lens (DL1)
and focuses the light onto a multimode fiber with 200 µm core diameter, acting
as the pinhole. To the experienced user of a confocal microscope, this may seem
relatively large - and rightfully so. The reason for this relatively large pinhole of
about 10 AU (cf. Equation 3.1) is elaborated in Section 4.1.3.

The choice of optics results in a total magnification of M = 24.9. The multimode
fiber is coupled to an avalanche photodiode module (APD1), which provides an
output photovoltage singal, the magnitude of which is proportional to the incident
light intensity. This photovoltage signal is measured by the data acquistion unit
(DAQ1), which is an peripheral component interconnect express (PCIe) card
within the personal computer (PC).

Scanning of the laser beam is performed by the galvanometric scanner. The
latter is controlled by a real-time controller (RTC6), also installed within the PC as
an PCIe card. The RTC6 card provides a trigger to the auxiliary I/O of DAQ1 and
thus performs the position measurement of the image pixels.

In order to align the sample surface parallel to the image plane of the objective
lens2 a three axis manual tilt-stage is provided. The tilt-stage is mounted to a three
axis xyz-translation stage. The latter is assembled out of three linear stages with
piezo-inertia drives. These linear stages have a travel range of 13 mm, which is
required since the metamaterial samples, for which the setup is intended, exceed
the optical field of view.

1 The wobble is a shift of the beam which depends on the angle of deflection by the galvanometric
mirrors, when they are not imaged onto each other.

2 A detail whose importance will be stressed in Section 4.1.3.
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4 .1 the confocal microscopy setup

The excitation of elastic waves is realized by a piezoelectric transducer that is
driven with a time-harmonic amplified voltage (drive signal). The drive signal
is synthesized by a function generator and an amplifier. The function generator
also provides a synchronization signal, whose relevance will be made clear in the
Section 4.3 on the excitation and tracking of elastic waves.

4.1.2 Imaging Modes and Field of View Calibration

The scanning of the laser beam is implemented with a off-the-shelf galvanometric-
mirror scan system. The system consists of the scan head (IntelliScan 10, Scanlab)
and a digital position encoder realized in the real-time controller (RTC6, Scanlab)
card. Scanning is performed by supplying a coordinate list for the laser focus to
the RTC6 card and executing the list by software control. For this thesis, three
different imaging modes were implemented.

The scan system is originally intended for material processing and used with off-
the-shelf scan objective lenses. If different, or in this case home-built, scan optics
are used, a calibration of the field of view is required to determine correct absolute
displacement measurements. Especially when comparing in-plane displacement
data from images with out-of-plane displacement data obtained via laser-Doppler
vibrometry, calibration is indispensable.

Imaging Modes

The microscope is programmed as such that the user provides a number of
pixels np in one direction and a intended pixel size p. The software generates
a coordinate list for the scanning of the laser beam and calculates the largest
possible scan speed for the laser focus.

fast mode provides the quickest way to obtain images. A linewise or column-
wise scanning is available. Once the RTC6 card verifies that the laser focus
has reached the beginning of a line (or column), a trigger signal is send to
the DAQ1. Thereby, movement of the laser focus along a line (or column)
and acquisition of a photovoltage time-series by DAQ1 start simultaneously.
The scan speed for the laser focus in this imaging mode is calculated con-
sidering the sample rate fADC of DAQ1. The scan speed is set such that the
time difference 1/ fADC between data points of the time-series results in a
sample-point spacing of the pixel size p. Once all np lines (or columns) are
measured, the image is assembled. This fast mode is useful when overview
images are required, for example during sample manipulation with the
xyz-translation stage.
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slow mode is a pixelwise mode. Each pixel of the image is addressed individ-
ually. Once the RTC6 card verifies that the laser focus is at the designated
pixel coordinates, a trigger is sent to DAQ1 and time-series of the photo-
voltage is acquired for that pixel. This enables pixel-wise averaging of the
photovoltage. Once all np × np pixels are measured, the image is assembled.
This mode is significantly slower than the fast mode3. However, it provides
the highest accuracy the scan system can provide for the laser focus and
thus the position measurement of the pixels (data sheet of intelliSCAN se 10,
[96]). Images acquired with this mode are ideal for subsequent DIC analysis.

dynamic mode is the mode for the time-resolved elastic-wave tracking. It
resembles the slow mode. The important distinction is the triggering of
the data acquisition. The latter is synchronised to the drive signal of the
piezoelectric transducer. The mode and the data structure are explained in
more detail in Section 4.3.

Field Of View Calibration

The encoder of the RTC6 card has a 20-bit resolution for the angle of the mirrors
which translates into a defined position-resolution in the focal plane of a corre-
sponding off-the-shelf scan-objective lens. However for this work, self-build scan
optics and a microscopy objective lens are used. To achieve accurate absolute
length and displacement measurements, a calibration of the field of view is nec-
essary, since the effective focal length of the scan lens4 is only estimated by the
inverse sum of it’s two constituent achromatic lenses. Technically, if only relative
lengths are of interest, this procedure can be neglected. As aforementioned, a
meaningful comparison between in-plane and out-of-plane displacements, which
are measured using vastly different techniques, is only possible when the field
of view is calibrated. Naturally, if different objective lenses that are designed for
different tube lenses are used, a calibration is advisable as well as long as the
correct tube lens focal width isn’t known. As mentioned above, the digital encoder
divides the field of view by 20 bits i.e. 220 bit-levels along each image axis. The
goal of the calibration is to determine how many bit levels correspond to the width
of a pixel p. To obtain this conversion factor, a commercially available USAF 1951

resolution test target (R1DS1N, Thorlabs) is used. For the calibration, images using
the slow mode with p = 500 nm of group 6, elements 4 and 3 are acquired. These
distance of the line-pairs, depicted in Figure 4.2, are measured using the open
source software ImageJ or Fiji. Comparing the measured line pairs per millimeter
with the listed values for the imaged elements determines the correct conversion

3 Depending on the chosen number of pixels, the slow mode may be more than ten times slower.
4 The scan lens is comprised of two achromatic lenses in Plössl configuration.
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4 .1 the confocal microscopy setup

Figure 4.2: Line pairs of group 6, elements 4 and 3 of USAF 1951 resolution test target
acquired with the slow mode. For element 4 of group 6, the number of line pairs per
millimeter is 80.6 mm−1. Image (a) before calibration and (b) after calibration for a
Wetzlar PLAN L 50x/0.6 objective lens. Both images are acquired with an intended
pixelsize of p = 500 nm and a field of view of 120 µm. For (a), the calibration factor
is too large, resulting in a wider than intended area scanned by the laser beam.

of length to number of bit-levels. For the originally used objective lens (50x CFI60

TU Plan Epi ELWD, Nikon), the conversion is 1 µm ←→ 600 bit-levels.
For a different objective lens (PLAN L 50x/0.6, Wetzlar), which is used after

the addition of the vibrometry branch, a different conversion of 1 µm ←→ 460
bit-levels must be used. The Wetzlar objective lens is designed for a tube lens of
different focal length, compared to the Nikon objective lens, hence the difference.
The conversion for several objective lenses is supplemented in tabular form within
Appendix B.

4.1.3 Peculiarity of DIC analysis on confocal image data

When applying DIC analysis to images acquired with an optical sectioning tech-
nique, care must be taken when interpreting the in-plane (x, y) displacement
data. The optical sectioning of the confocal microscope together with DIC analysis
can cause a out-of-plane (z) displacement of the object under investigation to be
mistaken for an in-plane displacement, leading to false displacement measure-
ments. This artefact is discussed in the following text since it places a limitation
on the pinhole diameter dPh, as well as the choice of a ROI and kernel for DIC.
Additionally, a quantitative theoretical analysis is presented.

55



4 setup for time-resolved tracking of elastic waves

DIC analysis operates on 2D images and is sensitive to contrast, i.e. the differ-
ence in value of neighbouring pixels. Albeit, the technique is oblivious to how
this contrast is created or changed, for example with time in an image series when
tracking a moving object. Using images acquired with optical wide-field imaging
techniques, and for simplicity assuming a rigid object under investigation that
only shows translations and no deformations within the region of interest, DIC
analysis can be used to track the movement of the object within the image plane.
Displacing the sample out of focus along the optical z-axis, will cause the images
to become blurred, if no telecentric imaging is applied. The blurring may increase
the noise level of the DIC analysis but is not expected to introduce artificial dis-
placements within the image plane. Obviously, this will depend to some extend on
the object size and shape as well as the magnitude of the displacement. However,
for most practical purposes such as the investigation of metamaterials done by J.
Köpfler and T. Frenzel, this held true.

When using optical images acquired with a confocal back-scattering microscope,
one has to take additional care when tracking tilted surfaces or sample features.
An experienced user may recall that when acquiring a z-stack of images from a
tilted surface in a confocal microscope, one can observe a bright fringe passing
through the image plane. This is a direct consequence of the optical sectioning in
which light that is back-scattered within the focal plane is focused directly onto the
detector while light back-scattered from higher or lower planes is diminished. It
is exactly this movement of the fringe that may be picked-up by DIC analysis and
misinterpreted as a lateral movement, even though no displacement in the lateral
direction occured at all. In order to grasp the severity of this artefact, intensity
patterns (showing such a fringe) generated from a tilted plane for several shifts ∆z
along the optical axis are investigated. Due to the tilt, the intensity pattern show
exactly such a fringe which is moving as a function of ∆z.

Rigorously, the movement of the fringe has to be calculated by computing the
convolution of the microscopes point-spread function [62] (PSF) with the height
profile of a tilted plane for different axial displacements ∆z. For this consideration,
the process can be simplified significantly. A suitable substitute for the PSF along
the axial direction is to investigate the signal response when scanning a glass-air
interface through the object lens focal plane [97]. This response is depicted in
Figure 4.3 for two different pinhole diameters.

The intensity patterns of a tilted plane for different ∆z can now directly be
calculated using a fit to the data shown in Figure 4.3 instead of using a convolution.
The height profile of the tilted plane is simply converted point-wise5 into a
intensity using the fit result.

5 Conversion is performed point-wise for each pixel of the image.
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Figure 4.3: (a) Measured signal response when scanning a glass-air interface axially
through the focal plane of the objective lens. A Gaussian fit (red) was performed on
the data points D (blue). The pinhole (fiber core) diameter used in the microscope
was dPh = 20 µm ≈ 1AU). The full width at half maximum computes to about
FWHM ≈ 2 µm. (b) Equivalent to (a) but for a ten times larger pinhole diameter of
dPh = 200 µm, resulting in FWHM ≈ 10 µm.

Three computer generated example images i.e. intensity distributions for three
different axial displacements are shown in Figure 4.4, using the axial response
from Figure 4.3(a). DIC analysis of those images with a kernel taken from the
image center of one of the three images will result in a displacement along the
x-axis, even though the plane was not moved along this direction at all. Therefore,
the otherwise beneficial properties of the optical sectioning can introduce severe
artifacts in the displacement determination using DIC analysis.

However, in Figure 4.4, the axial displacement as well as the tilt angle ϕ were
exaggerated for illustration purposes. An axial displacement comparable to
the FWHM of the axial response depicted in Figure 4.3(a) was chosen. In the
experiments conducted in this work, the magnitude of the displacement-vector
field of a metamaterial sample is on the order of 10 nm ≪ 2 µm. Furthermore,
the sample surface under investigation is aligned as parallel as possible to the
microscope focal plane. Realistic residual angles ϕ are on the order of a few
degrees only. Nonetheless, this can still introduce an artifact displacement along
the x-axis similar in magnitude to the displacement along the z-axis. This effect is
presented in Figure 4.5. An in-plane displacement of almost the same magnitude
as the out-of-plane excitation is detected as an artefact by the DIC analysis. To
suppress this effect, a coarser axial sectioning has to be chosen.
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4 setup for time-resolved tracking of elastic waves

Figure 4.4: Simulated intensity distribution created by a reflective and tilted plane P
with respect to the microscope focal plane. A tilt angle of ϕ = 10◦ around the y-axis
is chosen. Due to optical sectioning, only a single bright fringe is visible. (left) The
plane is displaced by ∆z = −1 µm, (middle) ∆z = 0 µm and (right) ∆z = 1 µm along
the optical (z) axis of the microscope. The intensity distributions were created by
multiplying the height profile of P for three different shifts along the z-axis with a
measured (axial) response of the confocal microscope. The bright fringe is moving
along the x-axis, even though the displacement of the plane along this direction is
zero.

Figure 4.5: (a) Simulated intensity distribution for a tilt of ϕ = 2◦ between sample
plane and focal plane using a pinhole diameter of dPh = 20 µm. The edges appear
darker due to the influence of the pinhole. (b) Displacement data when oscillating the
plane along the optical z-axis. This excitation is drawn as a solid line for comparison
(magenta). A significant displacement along the x-axis is detected by DIC analysis as
an artefact (blue circles). No displacement along the y-axis is detected (red crosses).
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4 .1 the confocal microscopy setup

Figure 4.6: (a) Analogy to Figure 4.5, but for a pinhole diameter of dPh = 200 µm. The
intensity distribution now appears uniform. (b) Displacement data when oscillating
the plane along the optical z-axis. This excitation is drawn as a solid line for
comparison (magenta). Almost no displacement along the x-direction (blue circles)
is detected by DIC analysis anymore, due to the now much coarser axial sectioning.

This is achieved by increasing the pinhole diameter from dPh = 20 µm to 200 µm.
The resulting behavior is given in Figure 4.6. The axial sectioning is now much
coarser with a FWHM of 10 µm of the axial response (cf. Figure 4.3(b)). This
value is significantly larger than the expected displacements and arguably large
for typical confocal microscopes. However, it is still about an order of magnitude
smaller than the lattice constant of the metamaterial samples under investigation
in this thesis. Therefore, this choice is considered a useful trade-off between axial
sectioning capabilities of the microscope and robustness against displacement
artefacts.

Summary

When applying DIC analysis to images acquired with an optical sectioning tech-
nique, only features on flat surfaces parallel to the focal plane should be tracked.
Thus, it is unwise to place the kernel for DIC onto a tilted or sloped object, as axial
movement of the latter will translate into an in-plane movement as an artefact.
The problem can further be mitigated by choice of coarser axial sectioning using
a larger pinhole diameter. As a rule of thumb, the FWHM of the axial response
should be orders of magnitude larger than the expected displacement in the
experiments.
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4 setup for time-resolved tracking of elastic waves

4.2 Addition of the Laser-Doppler Vibrometry

Following the description of the confocal-imaging branch reported above, the
implementation of the laser-Doppler-vibrometry branch is described in this sec-
tion. The addition of the vibrometry branch completes the 3D displacement-
measurement capability of the setup. The section starts with the description of
the additional beam path that makes up the Mach-Zehnder interferometer. The
complete setup with confocal-microscopy branch and laser-Doppler-vibrometry
branch was already published in the supporting information of [92]. Subsequently,
the alignment of the vibrometry measurement point onto the center of the field
of view of the confocal-microscopy branch is accounted for. Lastly, an important
calibration procedure for a vibrometer integrated into a confocal (or any optical)
microscopy setup is discussed.

4.2.1 Design of the optical beam path

The description of the beam path for the laser-Doppler-vibrometry branch focuses
on the components that are added to the already existing confocal-microscopy
branch. The expanded schematic of the setup is illustrated in Figure 4.7. In the
explanation, the distinction is made between the interferometer reference arm
with the reference beam, and the sample arm entailing the sample beam.

The reference arm of the interferometer starts at the thin film beam splitter
(TFBS) and proceeds towards the acousto-optic modulator (AOM). The beam
diameter at the TFBS is 1.87 mm. In order to match the entrance aperture of the
AOM, the reference beam is down-sized by a telescope with f7 = 100 mm and
f8 = 50 mm to 0.93 mm. The angle of incidence onto the AOM is chosen such
that the maximum intensity is diffracted into the first diffraction order. Other
diffraction orders are blocked by an iris diaphragm.

The optical frequency of the transmitted reference beam is shifted by the phonon
frequency of fB = 80 MHz, which forms the baseline for the heterodyning. The
intensity of this first-order diffracted beam can be modulated by a voltage supplied
to the AOM. This sets the heterodyne amplification by adjusting the power of the
reference beam PR and can be used to achieve shot-noise limited acquisition (cf.
Equation 3.29, Equation 3.30).

Subsequently, the reference beam diameter is resized by another telescope
(TEL5) to match the beam diameter of the sample beam, which is back-reflected
from the sample and arrives at the TFBS. The focal lengths of TEL5 are f9 = 50 mm
and f10 = 100 mm. Matching the beam diameter of the reference beam and sample
beam allows to maximize their spatial overlap when overlaying both beams with
detection lens DL2 onto the tip of a multimode fiber.
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Figure 4.7: Schematic of the experimental setup expanded by a laser-Doppler vi-
brometer. Similar to Figure 4.1 but with additional components that make up the
vibrometry branch. Two telescopes (TEL4-TEL5) and beam splitter cubes (BSC1-
BSC2). Acousto-optic modulator (AOM). Additional second detection lens (DL2)
and second data acquisition unit (DAQ2). Figure and caption taken from [92] and
reproduced under (CC BY 4.0), published by Adv. Mat. 2023.
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4 setup for time-resolved tracking of elastic waves

Doing so results in a minimal DC component of the electric-field interference
pattern (cf. Equation 3.17).

The sample arm of the vibrometer starts from the TFBS and leads towards the
sample in the focal plane of the objective lens. Logically, the beam path is simul-
taneously the illumination path for confocal imaging described in Section 4.1.1.
The detection path for the vibrometry branch starts behind the TFBS, at the first
beam-splitter cube (BSC1). This cube splits the beam which is back-reflected
from the sample by a ratio of 50 : 50 with respect to power. The transmitted
beam is used for confocal imaging as described before (see Section 4.1.1). The
reflected beam from BSC1 is the sample beam and overlayed with the reference
beam to create the interference pattern and thus the laser-Doppler vibrometry
signal. For this purpose, a second beam-splitter cube (BSC2) is utilized. Recalling
Equation 3.32 states that the resolution of the vibrometer is limited by the power PS
of the sample beam. Consequently, a 90:10 ratio is used for BSC2 such that 90 % of
the valuable sample beam power is available as contribution to the laser-Doppler
signal at the detector6.

The intensity of the interference pattern is recorded by the second avalanche
photodiode module (APD2). The avalanche photodiode is AC coupled, such that
the analog output voltage signal of the module only follows the time-varying
oscillation of the interference pattern intensity. Subsequently, the (Doppler) voltage
signal is amplified by a radio-frequency (RF) amplifier to better match the input
range of the following data acquisition unit (DAQ2). The latter digitizes the signal
for IQ-demodulation (as described in Section 3.3.4), which is implemented in
software on the personal computer (PC).

Overlaying the Vibrometry and Imaging Branches

It goes without saying that for a sensible measurement of a displacement in three
dimensions, it must be ensured that the displacement data is taken from the same
area on the sample under investigation. For the experimental setup, this translates
that the focal points of the two detection lenses DL1 and DL2 are equivalent
to each other. An axial mismatch on the order of the metamaterial feature
size (several micrometers) could result that an out-of-plane displacement-vector
component is measured by vibrometry from a different plane than the in-plane
displacement-vector components extracted with DIC analysis. Obviously, this can
lead to nonsensical results for the tracking of elastic waves in the metamaterials.
Equivalently, if there is an in-plane shift between the two focal points, the out-
of-plane displacement may be taken from a region where the displacement field

6 Since the beam of the reference arm is not diminished in power compared to the beam of the
sample arm which is reflected upon a low reflectivity polymer surface, the reference beam power
is usually abundant.
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4 .2 addition of the laser-doppler vibrometry

already differs considerably. For thin sample features, it may even be the case that
no sample surface is hit by the laser beam. Such an in-plane shift between the focal
points can be caused by residual (different) tilted incident of the back-reflected
beam into DL1 and DL2.

The equivalence can be verified by two straightforward experiments using
the confocal imaging of the setup, i.e. APD1 and DAQ1. Since the detection
of back-reflected light is fiber coupled, the multimode fiber with its tip in the
focal plane of DL1 can simply be switched over to DL2 when needed. For these
experiments, the reference beam path was blocked in order to not saturate APD1
with a DC-background.

For the out-of plane (z) direction, i.e. the axial equivalence, a glass-air interface
is scanned through the focal plane of the objective lens and the back-reflected
intensity is recorded at DL1 and DL2. The corresponding data is shown in
Figure 4.8(a). By comparison, it can be seen that the overlap of both peaks is
high and the maxima are within 1 µm of each other. Therefore it is ensured that
the vibrometry branch yields displacement data from the same plane as the DIC
analysis.

For verification of the in-plane equivalence, a USAF 1951 resolution test target
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Figure 4.8: Data for the alignment of the vibrometry and imaging branches. (a)
Comparison of signal response when axially scanning a glass-air interface through
the focal plane of the objective lens. The light collected by the first detection lens
(DL1, blue dots) and the second detection lens (DL2, red dots) is used to generate
the voltage signal. (b) Image acquired with the confocal-imaging branch of group
6 elements 3 and 4 from an USAF 1951 resolution test target. The red box encloses
the kernel of 100× 100 pixels which is chosen in this instance for digital-image cross-
correlation analysis. The image was rotated counter-clockwise by 90◦ for readability.
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is used. An image of the group 6 elements 3 and 4 is acquired with the multimode
fiber tip in the focal plane of DL1, as shown in Figure 4.8(b). Subsequently, the
fiber is switched over to DL2 and another image is acquired. Finally, a kernel is
selected from the image taken with DL1 and DIC analysis is performed on the
image taken with DL2. In the following Chapters, the size of the kernel in the
DIC analysis spans 40× 40 pixels with a pixel size of p = 500 nm unless stated
otherwise. A lateral shift should thus be well below the kernel size for both the
x- and the y direction. The DIC analysis yields an in-plane shift of ∆x = −6 nm
and ∆y = 723 nm. This is on the order of the pixel size, well below the size of the
kernel, and therefore within acceptable limits7.

4.2.2 Amplitude Calibration for Laser-Doppler Microscopes

It is established that laser-Doppler vibrometry is amongst the most accurate
measurement technologies available [81]. The origin lies in usually precisely
known wavelength of the laser, which serves as the reference for the displacement
measurement. Therefore, laser-Doppler vibrometers (LDV) are used by national
metrology institutes as primary reference measurement standards8 [98]. The
situation becomes however more complicated, when integrating a LDV into a
(confocal) microscope9 with a high numerical aperture. As mentioned above, the
construction of the setup followed the example of Christian Rembe et al. [100].
Therein, it is derived, how an NA-dependent scaling factor has to be employed, to
retrieve the correct absolute displacement amplitude of the sample. The authors
of [100] attribute this to the Gouy phase shift of a Gaussian beam [101]. The shift
describes the change in phase of the electric field, when passing along the optical
z-axis through the focal plane at z = 0. The Gouy phase shift ζ(z) is usually
calculated in units of the Rayleigh range zR and Gaussian beam radius ω0 in the
focal plane:

zR =
πω2

0
λ

, (4.1) ζ(z) = arctan
(

z
zR

)
. (4.2)

With Gaussian beam propagation it can be shown that the phase of the Doppler
interference signal depends not only on the time-dependent displacement z(t),
but also on the Gouy phase shift. Therefore, Equation 3.27 is modified to:

φD(t) =
4π

λ
· z(t)− 2 arctan

(
z(t)
zR

)
. (4.3)

The contribution of the arctan is most significant for a small Rayleigh range.
7 Naturally, for large discrepancies (≫ p) more careful alignment is necessary.
8 For traceable calibration, ISO 16063-41 standards are defined.
9 The first integration of a LDV into a microscope was performed in 1974 [99].
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Figure 4.9: Setup and sample to calibrate the vibrometer branch. (a) Photograph of the
reflective reference sample, which is an aluminum-oxide coated glass substrate (M),
glued onto a piezoelectric transducer (PL055, Physik Instrumente). The transducer
main axis is aligned with the optical axis using the tilt stage shown below. The
objective lens (OL) can be seen an the top (PL8x/0.18, Wetzlar). (b) Image acquired
from the mirror surface. The uniform illumination is a indicator for good parallel
alignment between optical axis and surface normal. (c) Raw Doppler-signal digitized
by the ADC. Due to the high reflectivity, the full scale of the 14-bit ADC can be used.
The lines connecting points serve visualization only.

Since the Rayleigh range is defined as the distance over which the beam diameter
doubles in area, it is intuitive to understand that the effect is especially pronounced
for strongly focusing objective lenses with large NA. For LDV with stand-off
distances10 in the range of meters, mostly low-NA objectives with NA = 0.01
are used and the influence of the Gouy phase shift becomes negligible. This is
different for a confocal microscope. The NA of the objective lens used in the setup
of this work is equal to 0.6. At a wavelength of 532.3 nm, a Rayleigh range of
about zR ≈ 500 nm results. This is approaching the order of the displacement
amplitudes observed in this thesis and cannot be neglected completely. Albeit, for
small enough time-dependent displacements z(t), a first order approximation can
be made:

φ(t)
(z≪zR)≈ 4π

λ
· z(t)− 2

z(t)
zR

=

(
4π

λ
− 2

zR

)
· z(t) . (4.4)

This imparts the impression that the error can be removed when the Rayleigh range
is known. Rembe et al. tried to verify their model accordingly. To do so, several
objective lenses of different numerical aperture and magnifications were tested on
a reference actuator with well known displacement. They observed vast differences
between the error predicted by theory and the error measured in the experiment.
They speculate that Abbe’s sine-condition [102] was not taken into account in

10 Distance between LDV and sample.
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Figure 4.10: Comparison of the demodulated displacement signal spectra for (a) the
low NA objective lens (PL8x/0.18, Wetzlar) and (b) the high NA objective lens (50x
CFI60 TU Plan Epi ELWD, Nikon). The spectra were calculated using fast Fourier
transformation (FFT) of z(t) with a spectral resolution of 0.2 Hz. The displacement
is generated in both cases by harmonically driving the piezoelectric transducer at
5 kHz with a peak-peak voltage of Upp = 4 V.

their calculations, which may be the cause of that deviation. Gaussian beams
are a paraxial approximation and become inaccurate for high NA systems, while
Abbe’s condition has to be satisfied in non-paraxial cases as well. However, as a
solution they suggest that a calibration should be done for a LDV integrated into a
confocal microscope. In this calibration, a fixed displacement amplitude has to be
measured with a low NA objective lens and subsequently with a high NA objective
lens. Assuming that the displacement amplitude of a piezoelectric transducer is
reproducible within a few percent, one can determine the scaling factor to retrieve
the correct displacement amplitude. One way to avoid this dilemma alltogether
is to only concern oneself with relative displacements, which is mostly possible
for the investigation of mechanical metamaterials. However, when absolute
displacements have to be considered, the calibration is indispensable, equivalently
to the calibration of the microscope field of view (FOV). Otherwise, displacement
amplitudes along the in-plane (x, y) and out-of-plane (z) directions cannot be
compared.

For the sake of integrity, I performed corresponding calibration measurements
of the LDV branch. The piezoelectric transducer is shown in Figure 4.9(a). To
increase the laser-Doppler signal, a glass substrate coated with aluminum oxide is
glued onto the transducer. This self-made mirror serves as calibration target for
the LDV branch. For any calibration procedure with an LDV, it is vital to align the
calibration target surface (air-metal interface) perpendicular to the incident laser
beam. Laser-Doppler vibrometry can only determine the displacement component
along the laser beam axis. As a metric for the alignment, the interface position
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4 .3 tracking elastic waves at ultrasound frequencies

when scanning the target along the z-axis and determining the tilt from their
respective heights. The position measurement is performed by the z-stage of the
setup. To visualize the alignment, it is possible to acquire an image of the target.
For good alignment, the intensity distribution of the back-reflected light over
the FOV should be uniform or at least rotationaly symmetric with respect to the
optical axis, cf. Figure 4.9(b). Using the full scale of the ADC, guarantees the best
possible displacement resolution in the experiment. To calibrate the displacement
measurement, the transducer is driven with a time-harmonic voltage at 5 kHz and
peak-peak amplitude of 4 V. The measurement time per run is 2 seconds, resulting
in a spectral resolution of 0.5 Hz. This ensures that no amplitude error due to
spectral leakage occurs in the subsequent Fourier analysis of the displacement
data. For the low NA case, the PL8x (Wetzlar) with NA = 0.18 is used. However,
the microscope system was designed for an objective lens with a back-aperture
diameter of 4.8 mm. The PL8x features a much larger diameter of 7.2 mm, thus
the effective numerical aperture is NA = 0.12, thus well below the limit of 0.25
proposed by Rembe et al. The high NA lens is the 50x CFI60 TU Plan Epi ELWD
from Nikon with NA = 0.6. The spectra of the displacement data measured with
both lenses is plotted in Figure 4.10. In conclusion, a scaling of 1.93 must be
applied to any displacement amplitudes determined with the Nikon objective
lens. A table with the scaling data for additional objective lenses is included in
Appendix B.

4.3 Tracking Elastic Waves at Ultrasound Frequencies

This section elaborates and demonstrates how the displacement field of elastic
waves is measured in a time-resolved manor. At first, I want to clarify some
terminology. The time-dependent displacement-field 11

u(r, t) ,

is a continuous function of spatial coordinates r on a body or sample. Moving
on from here, I will continue to address this field that describes the entire dis-
placements of a sample as displacement field. When speaking about a localized
displacement, for example in a region of interest (ROI) at spatial coordinates
rROI i.e. where a displacement measurement is conducted, I will speak of the
displacement vector u (rROI, t) with its three time-dependent displacement-vector
components:

u (rROI, t) =
(
ux(rROI, t), uy(rROI, t), uz(rROI, t)

)T . (4.5)

I find this linguistic separation necessary. Strictly speaking, measurement of the
entire displacement field u(r, t) of a sample is extremely time-consuming, data-
11 as defined in Chapter 2 Equation 2.14.
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intensive and sometimes outright not possible, since displacement measurements
in a material volume may be extremely challenging. Overlying material layers
block or scatter the incident illumination and thus lead to poor image quality
through the loss of signal. Nonetheless, the sampling of the displacement field
on surfaces at deliberately chosen regions of interests is nicely possible with the
experimental setup described in this Chapter.

The following section starts with a description on how elastic waves are excited
and how they can be coupled into metamaterial samples. Due to the microscale of
the metamaterials and the elastic properties (Young’s modulus) of the constituent
material, the elastic-wave temporal frequencies lie in the ultrasound regime.
Therefore, the measurement technique is described, with which the bandwidth
of the photodiode and synchronization of the data acquisition allow to capture
the time-resolved displacement-vector components at those frequencies. Lastly, a
demonstration is provided, where the displacement vector on a metamaterial-beam
sample is measured and plotted for several ROIs along the beam axis.

Transducer 
assembly

(a) (b) (c)

1 cm 5 mm5 cm

SampleAluminum 
cuboid

Sample

xyz-Stages

Fibers
Piezo PiezoFiber

Fiber
Handle

Figure 4.11: Photographs to illustrate the coupling of a metamaterial sample to a
piezoelectric transducer. (a) Setup for gluing the metamaterial sample onto a (piezo-
electric) transducer assembly. Manual xyz-translation stages allow to manipulate
glass fibers to move or fixate a metamaterial sample. (b) Closer-view of the trans-
ducer assembly, where both the sample and the transducer (piezo) can be seen. An
aluminum cuboid serves as an elbow piece. (c) View from the top through a binocular
microscope under yellow-light illumination. The visible sample was printed in one
piece onto a bottom plate with a small handle. The latter can be seen sticking out
from the aluminum cuboid. Figure taken from [92] and adapted under (CC BY 4.0),
published by Adv. Mat. 2023.
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4.3.1 Excitation of Elastic Waves

For the excitation of elastic waves in the ultrasound frequency range, a fast and
controllable source of mechanical displacements is required. Naturally, this can be
best achieved with piezoelectric crystals. Piezoelectric transducers are commer-
cially available as off-the-shelf products. For this work, longitudinal multilayer
transducers are chosen (PL055.31 PICMA®, Physik Instrumente), with a dimen-
sion of 5× 5× 2 mm3. In principle, these transducers react with a displacement
which is proportional to the (not too large12) voltage applied to the device and
oriented along the electric field between the layers. When driving the transducer
with a time-harmonic voltage, the main mode of displacement-oscillation is a so-
called thickness mode along the smallest physical dimension [103]. This direction
is called the transducer axis throughout this work.

To transfer the piezo-electrically induced displacements onto a metamaterial
sample, mechanical coupling is required. This can be achieved by gluing the
sample onto the actuator directly. However in the scope of this thesis, it turned
out to be beneficial to introduce an additional layer such as a glass substrate or an
aluminum cuboid as mediator. Such mediators average the displacement of the
transducer to a certain degree over its cross-section. The displacement over the
transducer cross-section can be non-uniform for several reasons. The transducer
has a dead-zone at two sides due to the contacting of the electrodes. Those break
the symmetry of the transducer. Furthermore, mounting of the transducer by
gluing may not be perfectly uniform. These asymmetries can cause the actuator to
also show significant displacements along different directions than its main axis.
The same holds true for the mass-loading of the transducer which is introduced
by these mediators. Therefore, the substrates and cuboids are cut to the size of the
transducer cross-section, to ensure mostly symmetric mass loading.

An example for a transducer assembly with a metamaterial sample is shown
in Figure 4.11. Additionally, the setup which is used for gluing the metamaterial
sample to the transducer assembly is depicted. The metamaterial samples in this
work are printed onto a bottom plate with a small handle. This handle can be
grabbed with tweezers to coarsely position the sample onto the aluminum cuboid
of the transducer assembly. More precise positioning is achieved with two glass
fibers which can be manipulated by manual xyz-translation stages. For gluing, the
fibers push onto the bottom plate and fix the sample in place.

A drop of glue (UHU, Plast Spezial) is applied next to the sample by a syringe.
The bottom plate features a channel system which sucks in the glue through
capillary action. During the gluing, the process can be monitored through a
binocular microscope.

12 For too-large voltage, the linear regime of the piezoelectric effect is exceeded.
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Thereby, it can be assessed if the gluing and thus the coupling between the meta-
material sample and the transducer assembly is successful. Insufficient amounts
of glue or non-uniform distribution of glue between bottom plate and transducer
assembly may lead to poor coupling. Consequently, small displacements of the
elastic waves in the metamaterial may result, which lie even below the sensitivity
limit of the experimental setup. In truth, there is no quantitative metric to judge
the success of this process or the efficiency of the coupling and one has to rely on
the experience of the experimentalist.

4.3.2 Displacement Extraction at Ultrasound Frequencies

To capture or track the displacement field of elastic waves at ultrasound frequencies
above 20 kHz, it is clear that any measurement setup must provide a sample rate of
at least twice the highest frequency under observation [68]. For an imaging setup,
this calls for a frame-rate only achievable with high-speed cameras. However, there
are other methods to circumvent such expensive devices. A common practice in
the context of metamaterials is stroboscopic illumination, which down-mixes the
fast mechanical oscillations into a frequency range compatible with conventional
cameras operating at several tens of frames per seconds. This has been used
extensively by my collegueas Tobias Frenzel and Julian Köpfler. However, in their
work, they used wide-field microscopy setups.

For a confocal microscope, the situation is different. The limit on the frame-rate
is imposed first and foremost by the velocity with which the laser focus can be
scanned over the sample surface. As an order of magnitude, only a few frames
per second are achievable. However, as has been mentioned in Chapter 3 and Sec-
tion 4.1.1, confocal microscopes feature fast single-pixel detectors like avalanche
photodiodes with high analog bandwidths of around 10 MHz [59]. Combining
such detectors with appropriately synchronized data acquisition, allows to avoid
both stroboscopic illumination and high framerates altogether. A essential premise
is that the displacement field is time-periodic, which is the case for the experiments
performed for this thesis.

The procedure to obtain the in-plane displacement-vector components at a
single region of interest (ROI) was already published in [94] and is recapitulated
here with minor changes to resemble the state of the setup at the time of writing.
Elastic waves are excited in the metamaterial sample by a piezoelectric transducer
which is actuated by an amplified time-harmonic voltage at frequency fm, called
the drive signal. The laser focus is moved to the first pixel of the ROI by the
galvanometric scanner. Once the RTC6 card confirms the position of the laser
beam, it arms the DAQ1 by enabling its trigger through its auxiliary I/O port.
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Figure 4.12: Illustration of the data structure for image generation to extract the
in-plane displacement-vector components for a single region of interest. (a) Time-
domain signals governing the experiment. Elastic waves are induced by a piezoelec-
tric transducer (not shown) which is driven by the time-harmonic drive signal. The
latter is synchronised to the synchronization (sync) signal, which also serves as a
trigger for the data acquisition unit digitizing the photovoltage (red). The data points
of the resulting time-series are depicted as blue squares and belong to a single pixel
in real-space. (b) Illustration of a dataset for one ROI at one excitation frequency.
The data structure can be thought of as a cuboid. The lateral x- and y-directions
indicated by the tripod are the real-space pixel coordinates of the image plane. The
third direction is the time axis t. The numbered (from 1 to Z) and blue-shaded front
left column of the cuboid represents the time-series data points acquired for the
corresponding pixel. When arranging the time-series for every pixel in such a manner,
image data for DIC analysis is reconstructed by taking slices through the cuboid, as
highlighted by the green shading. (c) Two exemplary slices are shown, consisting
of every 4th and 6th data point of the time-series. The depicted displacement of a
cross-shaped marker is exaggerated for the purpose of visualization. Figure taken
from [94] and adapted under (CC BY 4.0), published by Science Advances 2021.

For triggering, a rectangular voltage signal is used, also called the synchroniza-
tion (sync) signal. It is generated by the same frequency generator that provides
the drive signal for the transducer. Both signals share the same frequency fm
and thus have a fixed temporal phase relation to each other - a vital requirement
for the following reconstruction of images discussed below. The photovoltage
acquisition by DAQ1 starts on a falling edge13 of the sync signal.

13 Originally in [94], rising edges were used. However, it was necessary to employ a temporal gate
to the trigger signal, which renders the rising edge of the gated sync signal unstable. Thus, a
transition to falling edges was made.
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When measuring the photovoltage, the high analog bandwidth of the APD1
together with the 10 MS s−1 rate of DAQ1 ensure that the oscillation-induced
variations in the photovoltage are captured in the acquired time-series. The
sampling theorem [68] is satisfied. Herein lies the key aspect that renders high
frame-rates or stroboscopic illumination unnecessary in this confocal imaging
setup.

In total, a time-series of Z data points is acquired for the currently illuminated
pixel14. As soons as the acquisition is complete, the laser beam is shifted to the
next pixel of the ROI and the process repeats until equivalent time-series for each
pixel of the ROI are recorded.

The next step is to reconstruct images out of the set of time-series. For the sake
of comprehensibility, the data structure can be imagined as a cuboid. This concept
is depicted in Figure 4.12. Such reasoning is meaningful, since the synchronization
of the data acquisition to the drive signal guarantees that all time-series are
triggered at an equivalent overall temporal phase in the mechanical oscillation of
the sample. In other words, the synchronization signal serves as a global phase
reference for the experiment. The lateral dimensions of the cuboid represent pixel
coordinates, while the third dimension incorporates the time axis. Taking slices
(orthogonal to the t-axis) out of this cuboid reconstructs images of the ROI at
a defined time-point in the mechanical oscillation. From this image data, the
time-resolve in-plane displacement-vector components can be extracted using DIC
analysis. Naturally, the number of images is identical with the number of data
points Z of a time-series.

For the analysis in the experiments, a ROI size of 60× 60 pixels, a kernel size
of 40× 40 pixels and a pixel size of p = 500 nm is chosen. This concludes the
measurement of the in-plane displacement-vector components.

The remaining out-of-plane displacement-vector component is measured with
the laser-Doppler-vibrometry branch described previously. The procedure for this
setup was also published in [92]. The measurement point is in the center of each
ROI. Equivalently to the measurement of the photovoltage, DAQ2 is triggered by
the same synchronization-signal edge to preserve the temporal phase information
of the displacement data when sampling the Doppler-signal from APD2.

Digital signal processing of the Doppler-signal is implemented in software
(MATLAB) using an IQ-demodulation approach discussed in Chapter 3 and
visualized in Figure 3.6. The sample rate of DAQ2 is set to 500 MS s−1. A time-
series of 219 data points is acquired. For the demodulation, a numerical oscillator
(NCO) frequency of 80 MHz is set. Low-pass filtering and data-decimation are
performed with a moving average with a window-width of 64 data points.

14 Depending on the experiment, either Z = 1024, Z = 2048 or Z = 4200 is chosen.
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This results in an effective sample rate of 7.8125 MS s−1, which satisfies the
Nyquist-Shannon sampling theorem [68] for the ultrasound mechanical oscilla-
tions.

To extract the Displacement-vector-component amplitudes from the raw data,
either a least square fit of a sine function or Fourier analysis can be performed on
the raw displacement data. The Fourier analysis [104] is performed in MATALB
and uses the built-in fast Fourier transform (FFT) algorithm fft [105], based on [106].
When performing Fourier analysis, it is recommendable to truncate the length of
the time-series in such a way that the FFT resolution equals an integer fraction of
the frequency of the drive signal. Doing so minimizes spectral leakage [107] by
providing a FFT bin for the frequency fm.

4.3.3 Example for Tracking of Elastic Waves in a Metamaterial

To conclude this Chapter, an example for the measurement capability of the ex-
perimental setup is provided. To do so, a cross-shaped marker on the bottom
of a metamaterial sample is chosen as a region of interest. The markers pro-
vide sharp edges and thus good image-contrast which benefits the DIC analysis
(cf. Section 3.2). At the same time, the surface is smooth enough, to provide a
specular reflection for the laser-Doppler vibrometry. The sample is coupled to a
piezoelectric transducer assembly as explained in Section 4.3.1 and positioned in
the focal plane of the microscope objective lens such that the marker is imaged.
Figure 4.13(a) shows a raw image of the ROI containing the marker as it is recon-
structed from the first (or topmost) slice of the data-structure cuboid introduced in
Figure 4.12(b). A kernel is selected as indicated by the red box. This kernel is then
used for DIC analysis of the other images (slices) from the dataset. The extracted
time-resolved raw data for the in-plane displacement-vector components can be
seen in Figure 4.13(b). Additionally, the raw-data for the out-of-plane component
provided by vibrometry is included as well. The displacement raw data resembles
the real part of the complex ansatz from Equation 2.39, but expanded to three
dimensions:

ul(rROI, t) = U′l · exp [−i(ωt− krROI)] , l ∈ {x, y, z} , (4.6)

which is to be expected. No filtering is applied to the data up to this point, which
emphasizes the high data-quality the experimental setup can provide. To extract
the displacement amplitudes for each component, Fourier analysis is employed as
mentioned above.
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Figure 4.13: Three-dimensional displacement raw data extracted at a single region
of interest. (a) Raw image with 60× 60 pixels of a single ROI, centered on a cross-
shaped marker to enhance image contrast. The red square encloses the 20× 20 pixels
kernel for the DIC analysis. (b) Time-resolved raw data for the three displacement-
vector components ux, uy from DIC analysis and uz from vibrometry. The excitation
frequency is set to 275 kHz. All three displacement-vector components are nicely
captured by the experimental setup.

Expanding this procedure from a single ROI to several periodically spaced ROI
along the axis of a metamaterial-beam sample allows to extract its amplitude
envelope for a given excitation frequency. For a metamaterial beam with lattice
constant a and its axis parallel to the y-direction, the ROI have to be spaced

rROI = (0, ja, 0)T.

Therein, j is an integer designating a mass in the linear chain models from
Section 2.2.2, or a unit cell in case of a metamaterial. The amplitude envelope arises
in analogy to the discussion on elastic waves in periodic media (see Chapter 2).
A standing-wave pattern forms as a superposition of two elastic waves. The first
wave is excited by the transducer and propagates "upwards" along the beam, while
the second wave originates from the reflection at the end of the finite metamaterial
beam and propagates "downwards".

The displacement-vector amplitudes Ul with l ∈ {x, y, z} of this superposition
are measured on dedicated ROI along the beam axis. The result is given in
Figure 4.14. The amplitudes Ul incorporate the spatial phase factor (ikrROI)
from Equation 4.6 and thus form the amplitude envelope from which the time-
dependency can be separated (cf. Equation 2.47).
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Figure 4.14: Displacement-vector-component amplitudes along the axis of a metama-
terial beam. The beam consists of 2× 40× 1 unit cells (along x, y, z) and can be seen
on the left. The displacement vectors are measured at regions of interest (ROI) which
follow in their spacing the a = 300 µm periodicity of the microstructure along the
beam axis. On the right, the amplitudes Ux, Uy and Uz of the displacement-vector
components ux, uy and uz are plotted. The displacement amplitudes are extracted
by Fourier analysis from the respective displacement-vector component. Conse-
quently, Ux, Uy and Uz are plotted versus unit-cell layer number Ny of the beam.
Horizontally dotted lines serve as guides for the eye, connecting the ROI position
to the corresponding displacement amplitude data for the 1st, 20th and 40th layer.
The ROI for the zeroth layer is situated on the bottom plate (close to the tripod).
The excitation frequency in this example is 275 kHz, albeit the time-dependency is
separated from the data in analogy to the amplitude envelope, which is derived for a
one-dimensional chain in Equation 2.47. It is possible to understand this depiction as
a three-dimensional snapshot of the samples amplitude envelope at the aforemen-
tioned frequency. The shown metamaterial-beam sample is discussed in more detail
in Chapter 6.
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It is the real part of this amplitude envelope that is plotted on the right side
of Figure 4.14 for all three spatial dimensions. The ROI on the zeroth unit-cell
layer of the metamaterial-beam sample corresponds to the position shown in
Figure 4.13(a). The correct phase relation between the amplitudes of different
layers is ensured by the synchronization of the drive signal to the data acquisition.

Acquiring amplitude envelopes for different temporal frequencies forms the
baseline to determine the dispersion relation of elastic waves in the metamaterial
samples. Fourier transformation of the amplitude envelope with respect to the
spatial coordinate yields information about the present elastic waves. Thus, acquir-
ing amplitude envelopes for different temporal frequencies allows to assemble the
underlying elastic-wave dispersion relation or band structure of the metamaterial.
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Figure 4.15: Wave dispersion reconstructed via Fourier transformation of the complex
displacement-amplitude envelopes and depicted as false-color plot with normalized
amplitude |Ã(ω, ky)|. From left to right, the displacement-vector components ux, uy
and uz were used for frequencies from 10 kHz to 600 kHz in increments of 5 kHz. As
discussed in the text, the Fourier transformation with respect to space of amplitude
envelopes for different frequencies reveals the dispersion relation for elastic waves.
Here, several bands are visible. The details of the individual bands are elaborated
on in greater detail in Chapter 6. The distinction with respect to the propagation
direction of the elastic waves can be made when comparing the left half of the
dispersion relation (ky < 0) to the right half (ky > 0). It is obvious that the bands
are more pronounced for ky > 0 as for ky < 0. This means that the displacement
amplitude of the waves propagating "upwards" in the beam is larger than the
returning waves. This can be explained by damping in the structure.
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To mitigate edge-effects, a Hann-windowing [107] is applied to the amplitude
envelope before Fourier transformation. Two notable quantities govern the resolu-
tion when determining the band structure of such a metamaterial-beam sample.
The number of unit cells (and thus number of ROI) govern the wavenumber
i.e. k-space resolution of the experiment. Analogously, the frequency step size,
i.e. frequency increment ∆ f of fm determines the frequency resolution of the
band-structure measurement.

Such experiments were conducted on three different types of metamaterials
and are discussed in Chapter 5 and Chapter 6. A notable consequence of the fact
that all phase information is maintained in the experiment is that the propagation
direction of the waves making up the amplitude envelope can be resolved as well.
This becomes apparent when Fourier transforming the complex displacement
amplitudes (i.e. amplitude envelopes), which is shown in Figure 4.15. For the
band-structure measurements conducted for the publications during this thesis,
my co-authors and myself usually resorted to Fourier transformation of the real
valued displacement data. The reason mainly lies in the nicer visualization of
the band-structure results, as Fourier transformation of a real-valued quantity
provides a symmetric spectrum. This makes the identification of individual bands
and their pathway through k-space easier as they appear more cohesive.

Summary

In this Chapter, I reported the commissioning and characterization of the self-built
experimental setup, comprised out of a optical confocal laser-scanning back-
scattering microscope and a laser-Doppler vibrometer. A method to align the
resulting confocal-microscopy branch and the laser-Doppler-vibrometry branch
onto each other was described. Furthermore, I explained calibration procedures
for the microscope field of view and the displacement-amplitude obtained with
laser-Doppler vibrometry when using high-NA objective lenses due to the Gouy
phase shift. Those calibrations are necessary when absolute displacement values
are important, or in-plane displacements are to be compared with out-of-plane
displacements. Additionally, I quantitatively discussed a cross-talk of out-of-plane
displacements into in-plane displacements. The cross-talk can arise, when per-
forming DIC analysis on image data obtained with an optical sectioning technique.
To mitigate this effect, a sufficiently coarse sectioning must be chosen with respect
to the anticipated displacement magnitude. Lastly, I provided a demonstration
of the setup, by showcasing the tracking of elastic waves in a metamaterial-beam
sample. All three time-resolved displacement-vector components were measured
at designated ROIs. Displacement amplitude envelopes of the sample were recon-
structed via Fourier analysis. The dominant elastic wave propagation direction
was recovered from these amplitude envelopes for different excitation frequencies.
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5
Chapter 5

Roton-like Dispersion in 3D
Metamaterials

This Chapter spans the result of two projects [45, 94] on mechanical metamaterials con-
ducted during this thesis. A non-trivial elastic-wave dispersion was achieved for the lowest
acoustic bands of the finite metamaterial samples. At one temporal frequency, three propa-
gating acoustic modes can coexist, one of which is a backward wave. Such phenomenon
resembles the behavior of sound in superfluid helium or Bose-Einstein condensates at low
temperatures and is called a roton dispersion. The metamaterials reported here incorporate
two approaches, namely nonlocality and chiral couplings, to achieve a similar, roton-like
dispersion relation. The latter is revealed in ultrasound phonon-band-structure measure-
ments conducted with the setup described in the previous Chapter. The experiments on the
nonlocal metamaterial were conducted by myself, while for the experiments on the chiral
metamaterial, I acted in the role as a supervisor for my former master student Jonathan
Schneider.
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5.1 History and Properties of Rotons

The term "roton" was first introduced by Landau in 1941. He addressed the most
noteworthy dispersion of acoustical longitudinal waves in superfluid helium [22].
He predicted a parabolic relation between wave energy and momentum1 at simul-
taneously finite energy and nonzero momentum. A behavior, vastly different from
the well-known linear dispersion of vibrational eigenstates (phonons) in gasses,
liquids or solids [8]. Experimental evidence for such a roton dispersion relation
was provided using inelastic neutron scattering [25], following the suggestions
provided by Feynman et al. [23, 24].

The identifying feature for a roton dispersion is a region of negative slope,
induced by the mentioned parabolic minimum in at least one of the dispersion
bands. Thereby, for a single frequency, three modes of the same polarization but
different wavenumbers k coexist simultaneously. Additionally, the negative slope
of the band is synonymous with a negative group velocity vgr = dω/ dk < 0 at a
positive phase velocity vph = ω/k > 0 (cf. Equation 2.36, Equation 2.37), turning
one of the waves into a backward wave.

Remarkably, backward waves can be connected to a negative index of refraction
and raised significant interest at the beginning of the 21st century. Closely tied to
the developments in metamaterials, a negative refractive index was experimentally
realized in artificial structures for electromagnetic waves on multiple occasions [3,
4, 108].

These efforts follow the ongoing endeavor to tailor the dispersion relation of
any sort of waves in metamaterials, which naturally also extends to acoustics and
elasticity [109]. Along these lines, two suggestions were made in 2020, to achieve
a roton dispersion relation in mechanical metamaterials. Before proceeding, the
vastly differing underlying physics of rotons in superfluid helium and rotons in
mechanical metamaterials should be attributed. No correlated quantum systems or
low temperatures are necessary for metamaterials. To discriminate between both
fields while acknowledging the similarities at the same time, the term "roton-like"
for the elastic (or acoustic) waves in metamaterials is deemed more appropriate
and is henceforth used throughout this thesis. To achieve roton-like dispersion,
two proposals were followed upon.

The first proposal by Yi Chen et al. [26] relies on nonlocal couplings of masses,
also termed beyond-nearest-neighbor interaction. The latter can be captured by
an intuitive toy-model, which in itself is an extension of the previously discussed
linear chain of masses (cf. Figure 2.3). Experiments I conducted on fabricated
microscale metamaterial samples incorporating this principle of nonlocality are
reported in Section 5.2.

1 Landau received the Nobel prize for his work in 1961.

80

https://www.nobelprize.org/prizes/physics/1962/summary/


5 .2 a nonlocal approach

The second proposal is based on the work of Kishine et al. [27] and exploits
chirality to achieve roton-like dispersion. The description of such a material
requires an extension of standard Cauchy elasticity, namely micropolar elasticity
as established by Eringen et al. in 1964 [110, 111]. Experiments performed on
metamaterial samples which feature extreme chiral couplings to achieve roton-like
dispersion are addressed in Section 5.3. Those experiments were conducted by
my former student (and now valued colleague) Jonathan Schneider during his
Masters thesis, which was carried out under my supervision.

5.2 A Nonlocal Approach

The experimental results discussed in this section were already published in [94].
Therein, a roton-like dispersion relation was achieved for waves in two types
of metamaterials. On one hand, for elastic transverse waves in a microscale
polymer-based metamaterial at ultrasound frequencies. On the other hand, for
acoustic pressure waves in a channel-system metamaterial at audible frequencies.
Both experiments were conducted at ambient conditions. The author of this
thesis performed the experiments on the elastic microscale sample with the setup
introduced in the previous Chapter 4. The metamaterial samples were fabricated
using 3D laser microprinting by my former colleague Tobias Frenzel. The design
of the metamaterial was suggested by my colleagues and co-authors Yi Chen et al.
in [26].

In the following, I introduce and summarize the aforementioned toy-model
following the lines of the authors of [26], since they offer an intuitive approach
into the topic. Additionally, I will quickly outline an effective-medium description,
which yields comparable results within certain limits. Subsequently, I present the
unit-cell design, before reporting the findings of the experiments I conducted on
the microscale polymer samples.

5.2.1 An Intuitive Toy-Model and Effective-Medium Description

The toy-model proposed by Yi Chen et al. [26] builds onto the well-known model of
an infinite linear chain of masses m, spaced by distance a and coupled by Hooke’s
springs of constant D1. The model is introduced in Chapter 2 Figure 2.3. Here,
additional Hooke’s springs of constant DN and length Na are introduced, which
mediate the N-th nearest-neighbor interaction. For this introduction, a coupling
to the third-nearest-neighbor (N = 3) is discussed. The model is depicted in
Figure 5.1(a). Newton’s equation of motion for every j-th mass now also features
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Figure 5.1: One-dimensional toy-model and dispersion relation incorporating third-
nearest-neighbor interaction and thus extending the simple model shown in Fig-
ure 2.3. (a) The added Hooke’s springs (red) of constant D3 couple every j-th mass to
their (j± 3)-th neighbors, while the lattice periodicity remains strictly a, as indicated
by the unit cell. (b) The ensuing dispersion relation for D3 = 3D1. The frequency
range featuring three waves at identical frequency but different wavenumber k is
shaded gray. The portion of the band capturing waves with negative group velocity,
and thus backward waves, is colored magenta.

additional components with j± 3 (cf. Equation 2.38):

F(j) = mü(j) = D1

(
u(j+1) − 2u(j) + u(j−1)

)
+ D3

(
u(j+3) − 2u(j) + u(j−3)

)
. (5.1)

Bloch waves with uj(t) = U exp (i(kja−ωt), as introduced in Equation 2.50 are
the solution to the equation of motion. The dispersion relation of this infinite
chain of masses unfolds to:

ω(k) = ω(−k) = 2

√
D1

m
· sin2

(
ka
2

)
+

D3

m
· sin2

(
3ka
2

)
. (5.2)

This dispersion is plotted in Figure 5.1(b). The parabolic minimum at wavenumber
kmin = 2π/(Na) = 2π/(3a) is clearly visible. It needs to be emphasized that as
long as D1 ̸= 0, the underlying and thus governing periodicity remains a. To
check the consistency of Equation 5.2, a gedankenexperiment can be performed:

• Letting D3 → 0 with D1 ̸= 0 directly recovers Equation 2.40 and thus the
already known dispersion of a linear chain without nonlocal interaction.

• Letting D1 → 0 with D3 ̸= 0 recovers three overlapping chains exhibiting
conceptually the same dispersion, albeit for a larger periodicity of 3a.

Basically, Equation 5.2 incorporates the usual acoustic dispersion of a 1D-chain
(first term) and a faster oscillating part with respect to k (second term), due to
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the larger superlattice periodicity 3a. The latter results in a larger frequency
3/2a > 1/2a of the second sinusoid, the amplitude of which depends on the
second spring constant D3, or more precisely the ration D1/D3. In principle,
following the reasoning of [26], the ensuing roton-like dispersion relation can be
understood as the hybridization of two acoustical phonon dispersion relations.
The authors of [26] argue that a pronounced roton-like minimum only occurs
for a sufficient degree of nonlocality (N ≥ 3) and a sufficiently strong beyond-
nearest-neighbor coupling (DN/D1 > 1/N), with DN as the spring constant of the
coupling to the N-th nearest neighbor. These criteria were accounted for in their
design of a metamaterial unit cell. Especially, N = 3 is the degree of nonlocality
with arguably minimal complexity (compared to larger N) and therefore chosen
in the metamaterial design discussed below.

Effective-Medium Description

As done in [94], an interesting and noteworthy point should be reiterated here for
the sake of integrity. In the scope of metamaterials, it is oftentimes desirable to
describe the metamaterial as an effective medium. Some may argue that this is
even a vital point to separate a mere mechanism from a material altogether [47],
an assessment I find very sound. It is shown in [94] that the occurrence of a
roton-like dispersion can be captured by a higher-order-gradient effective-medium
approximation. In short, the equation of motion is rewritten in the continuum
limit for az → 0 for the amplitude field A = A(z, t):

∂2A
∂t2 = c2

∂2A
∂z2 + c4

∂4A
∂z4 + c6

∂6A
∂z6 . (5.3)

Thereof, an analytical approximation of the dispersion relation can be found,
which is derived in the supporting information of [94]:

ω(kz) = ω(−kz) =
√

c2k2
z − c4k4

z + c6k6
z . (5.4)

Since effective-medium descriptions correspond to the limit of az → 0, the infor-
mation about the microstructure is lost to some extend. Thus, the model provides
no good description of the material for wavenumbers close to the edge of the
first Brillouin zone, where Bragg-reflections occur [8]. Nonetheless, the roton-like
behavior can be positively captured by such a model, as will be demonstrated
when fitting Equation 5.4 to the data obtained from (numerical) finite-element
analysis.
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Figure 5.2: Blue print of the unit cell for the nonlocal roton metamaterial designed
in [26] by Yi Chen et al. A metamaterial-beam sample comprised of such unit
cells shows roton-like dispersion for elastic waves propagating along the z-direction.
The blue and red shaded parts represent the nearest-neighbor and the beyond-
nearest-neighbor coupling between the yellow masses, respectively. The geometrical
parameters are given in in units of the axial lattice constant az. The lateral lattice
constant is axy = 2az. Furthermore, the radii of the coupling rods are r1/az = 0.08
and r2/az = 0.12. Lastly, t1/az = 0.4, t2/az = 0.6 with az = 100 µm. Figure from [94]
published by Sci. Adv. 2021, and caption from [26], published by Nat. Commun.
2021. Adapted under (CC BY 4.0), respectively.

5.2.2 Experimental Observation of Roton-Like Dispersion

Herein, I start with introducing the metamaterial design envisioned in [26], before
reporting the experimental results on fabricated finite samples. Based on their
previously introduced toy-model, Yi Chen et al. proposed two metamaterial
architectures which translate their 1D consideration into a 3D structure2. One of
the architectures is a channel-based metamaterial for acoustic pressure waves, the
other is a polymer based metamaterial for elastic transverse waves. In principle,
those architectures are roughly complements of each other. Experiments on finite
samples following those architectures were already published in [94], wherein
I performed the experiments on the microscale polymer metamaterial samples.
Therefore, I will focus on the polymer samples, the unit cell of which is shown in
Figure 5.2.

Several parts of the unit cell are shaded to match the coloration of Figure 5.1.
Yellow blocks correspond to masses, blue cylinders to springs mediating nearest-
neighbor interaction and the red cylinders connected to frames are springs con-

2 They emphasize that it is necessary to go to a 3D design, to not have any overlap (or contact) of
the beyond-nearest-neighbour couplings.
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veying the beyond-nearest-neighbor interaction. The critical parameters of this
architecture are the radii r1 and r2 of the cylindrical rods3. The larger the respec-
tive radii are, the larger are the effective spring constants (local) D1 and (nonlocal)
D3. The red-shaded rods are inclined in such a manner that they connect the
shown unit cell to its third nearest neighbor. Thus, the order of nonlocality is
N = 3, identical to the configuration chosen in the toy-model.

Furthermore, the geometry is achiral, as it features two mirror planes and a
rotation-reflection symmetry [26]. Therefore, the two lowest acoustical and trans-
verse phonon-bands are degenerate and a roton-like dispersion can be expected
for both of them4.

To form a metamaterial structure from this unit cell, it is imposed onto a
translation lattice with tetragonal symmetry. Consequently, roton-like dispersion
is only expected to occur for waves propagating along the z-axis with wavevector
k = (0, 0, kz)

T.

The Fabricated Metamaterial Sample

In order to perform experiments, finite metamaterial samples comprised of 2×
2× 50 unit cells forming a beam were fabricated by my colleague Tobias Frenzel,
using 3D laser microprinting (described in Section 2.3). For the printing process,
a hatching distance of dhatch = 300 nm, and slicing distance of dslice = 700 nm
were chosen. Since the sample exceeds the printing field, several printing fields
were stitched together. The spacing of these fields was 200 µm. Furthermore, a
laser power of 27.5 mW and a laser focus scan speed (focus velocity) of 0.125 m s−1

were used. A bottom plate was included at one end of the beam samples to
ease sample manipulation. The plate was printed at a laser power of 50 mW,
scan speed of 0.140 m s−1 as well as dhatch = 0.5 µm, and dslice = 1.5 µm. After
printing, the samples were rinsed for 20 min respectively in propylene glycol
methyl ether acetate (PGMEA) and acetone, before critical point drying in CO2,
see Section 2.3. The writing strategy created by Tobias Frenzel can be inferred
from the machine-code files contained in the repository of the corresponding
publication5 [94]. A showcase of the fabricated sample as they were used in the
experiments is provided in Figure 5.3. Best results for the roton-like dispersion
relation were achieved with slightly differing values for the radii r1 and r2 as
originally introduced in the caption of Figure 5.2. While the axial lattice constant
was maintained at az = 100 µm, the radii were 2r1 = 16.8 µm, 2r2 = 25.2 µm were
used.
3 For r2 ≫ r1, the roton-like minimum conceptually approaches zero frequency [26].
4 Furthermore, the achirality sets this approach to achieve a roton-like dispersion apart from the

metamaterials discussed in Section 5.3.
5 https://doi.org/10.35097/488
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5 roton-like dispersion in 3d metamaterials

Figure 5.3: Showcase of the microscale metamaterial sample with nonlocal couplings.
(a) Wide-field optical micrograph offering an overview of a printed polymer sample,
consisting out of 2× 2× 50 unit cells (for x, y and z). (b) 3D reconstruction of an iso-
intensity surface obtained using a confocal flourescence microscope (LSM800, Zeiss).
Signal is provided by the autofluorescence of the polymer. Coloring, mass-numbering
and scale bar added in post-processing with Blender for visualization. The blue and
red coloration highlights the nearest-neighbor and beyond-nearest-neighbor coupling,
following the logic of Figure 5.2. Some superficial unit cell features are rendered
transparent to unveil the interior of the microstructure. (c,d,e) Scanning-electron
micrographs of a beam sample. (c) Close-up of the beam showing the outer-frames
with cross-shaped markers for tracking with DIC analysis. (d) Topmost layers of the
beam and (e) top-view along the beam (z-)axis through several unit cells. Figure and
caption taken from [94] and adapted under (CC BY 4.0), published by Sci. Adv. 2021.
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Band-Structure Measurements

At the time in which these experiments were performed, the experimental setup
only featured the confocal-imaging branch. Logically, only the measurement of
the in-plane displacement vector components was possible at the time. For the
investigations of the roton metamaterial-beam samples this is sufficient, as long as
the displacement of one of the transverse-polarized modes lies within the image
plane. This is achieved by orienting the beam axis under 90◦ to the optical axis of
the illumination path. In other words, looking at the sample from a side view.

As explained in Section 4.3.1 of the previous Chapter 4, elastic waves were
excited using a piezoelectric transducer driven with a time-harmonic amplified
voltage. To mainly excite transverse waves, the actuator axis was oriented under
90◦ to the beam axis. Following the procedure described in Section 4.3.3, the
displacement field along the beam axis was sampled at 51 regions of interest
(ROI) the spacing of which followed the periodicity az. The zeroth ROI is placed
on the bottom plate and provides quantitative information about the mechanical
excitation of the sample. Each ROI consisted of 60× 60 pixels with a pixel size
of p = 500 nm. Each ROI is centered on a cross-shaped marker to enhance image
contrast and improve the signal-to-noise ratio of the following DIC analysis to ex-
tract the in-plane displacement-vector components. From this data, the amplitude
envelope of the standing wave pattern oscillating at the excitation frequency fm
is reconstructed (cf. Figure 4.14). To extract the dispersion for relation over the
frequency range covered by the hybridized phonon bands, amplitude envelopes
for frequencies fm = 20 kHz to 200 kHz in steps of ∆ f = 5 kHz were acquired.
The latter determines the frequency resolution of the band-structure measurement.
Due to the beam sample consisting of 50 ROI in real-space, a total of 26 points in
k-space result in the interval kz ∈ [0, π/az], which governs the k-space resolution
of the experiment. Since only transverse polarized waves show roton-like behavior,
it is sufficient to focus on the x-displacement vector component (coordinate system
cf. Figure 5.3(a)).
For comparison, experimental results of these amplitude envelopes are plotted

next to predictions from a finite-element analysis performed by Yi Chen in the
left column of Figure 5.4(a) and (b). In the calculations, a Young’s modulus of
E = 4.19 GPa, a Poisson’s ratio of ν = 0.4 and a mass density of ρ = 1140 kg m−3

for the constituent polymer were chosen. The complex amplitude-field Ã(j)(ω),
as a function of lattice site (or ROI number) j and angular frequency ω = 2π fm is
depiction as a false-color plot6. In order to eliminate the influence of the frequency
response of the piezoelectric transducer, Ã(j)(ω) is normalized to unity power
density ∑50

j=1|Ã(j)(ω)|2 = 1.

6 This is another equivalent way of depicting the amplitude snapshot shown in Figure 4.14.
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Figure 5.4: Comparison of measured and calculated displacement amplitude data and
resulting roton-like dispersion relation for transverse elastic waves propagating along
the z-direction. (a) On the left side, experimental raw data for the displacement-vector
amplitude distribution over the lattice sites j, given in false-color by |Ã(j)(ω)|. On
the right side, the corresponding band structure obtained by Fourier transformation
with respect to space. The bands can be identified by following the maxima in
the false-color plot of |Ã(ω, kz)|. The white solid lines are the roton-like bands
predicted for a lossless metamaterial beam which is infinite along the direction
of wave propagation. (b) Same as (a) but calculated using finite-element analysis
for a finite beam including damping. Good agreement between computations and
experiments is evident. Additionally, the gray curve represents the approximate
analytical dispersion relation obtained from a higher-order gradient effective-medium
model, which is elaborated in the text (cf. Equation 5.4). Figure and caption taken
from [94] and adapted under (CC BY 4.0), published by Sci. Adv. 2021.
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Subsequent Fourier transformation of the real part of Ã(j)(ω) with respect to
space j = z/az yields Ã(ω, kz). The maxima of the latter’s absolute value reveal
the desired band structure, see Figure 5.4 right column.

From Figure 5.4 it becomes apparent that predictions from theory using finite-
element analysis for both infinite beams (Equation 2.48) and finite-beam samples
(Equation 2.52) agree well with the experimental results. Naturally, computations
for a finite sample are not affected by measurement noise, which makes the bands
in Figure 5.4(b) appear slightly more prominent.

The result of the effective-medium description, is indicated by the gray line in
Figure 5.4(b) (right). The coefficients c2, c4 and c6 of which are obtained by fitting
to the experimental data in the interval kz ∈ [0, 0.6π/az]. As discussed previously,
such a description cannot capture Bragg-reflections at the edge of the Brillouin
zone. More information can be found in [94].

Summary

To the date of writing this thesis, achieving a roton-like dispersion through
nonlocal coupling is extended in theory to two [112] and three [113] dimensions
by Ke Wang et al. However, the underlying metamaterial structures exhibit an
enormous increase in complexity and are thus challenging to fabricate. Hence,
experimental evidence may be subject to future work. Furthermore, a roton-like
dispersion was also achieved for photons in a cable-network metamaterial [114],
extending the principle of nonlocal coupling to the electromagnetic domain,
directly following the predictions made in [94]. Nonetheless, the experiments
reported here on the microscale samples are among the first to realize a roton-like
dispersion in the lowest acoustic bands of a metamaterial. It is thus safe to say
that this work [94] sparked several interesting follow-up research and emphasizes
the utility of nonlocal couplings in the tailoring of the dispersion relation for not
just elastic waves.

In addition, the experimental results advocate and validate the method of
tracking elastic waves using a confocal scanning microscope as a tool for this
thesis. Thus, they formed an important milestone from which the experimental
setup was expanded on to also capture the third displacement vector component
via laser-Doppler vibrometry.
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5.3 Chirality-Induced Roton-Like Dispersion

In this section, I report the realization of a roton-like dispersion relation in a
microscale mechanical metamaterial through different means than beyond-nearest-
neighbor coupling. Here, a carefully designed chiral structure with pronounced
nonlocal chiral couplings was used. These results were produced during the
Masters thesis of my former student Jonathan Schneider and were subsequently
published [45].

Unfortunately, no simple and intuitive toy-model is known to me, in order to
explain how the roton-like dispersion relation comes about through chirality. This
may very well be attributed to the fact that the definition of chirality is somewhat
difficult (if not impossible) in one dimension. Factually, not even Cauchy-elasticity
can capture chiral effects7. Instead, an extension to micropolar elasticty, following
Eringen [110, 111, 116] is required8.

Along these lines, roton-like dispersion induced by chirality was predicted by
Kishine et al. Their paper [27] was the key initiator for the work reported in this
section. In contrast to the nonlocal case from above, hybridization of an optical
and acoustic band produce the roton-like minimum (cf. Figure 2.4 hybridization
of blue and magenta band needed), instead of the hybridization of two acoustic
bands. However, no explicit structure or design path was provided to engineer a
corresponding chiral material showing such a dispersion.

In the following text, a brief summary of the paper from Kishine et al. is given,
to superficially present the effect of chirality on the dispersion relation of phonons.
Subsequently, the unit-cell design conceived by Yi Chen, Muamer Kadic and
Martin Wegener is explained. Afterwards, the sample fabrication, experiments
and results are addressed.

5.3.1 Effect of Chirality on the Phonon Dispersion

Before discussing the phonon dispersion relation in a chiral material, I want to
quickly introduce chirality itself. Chirality describes a special asymmetry of objects
and was first defined by Lord Kelvin in 1984 [117] and refined by Whyte [118,
119]. An object is deemed chiral, if it cannot be superimposed by translations
or rotations upon a mirror image of itself. More precicely, it lacks a plane of
symmetry, a centre of symmetry, and any 4n-fold inversion axis, according to

7 Lakes states that an even rank tensor is inherently inversion-symmetric and hence cannot capture
chiral phenomena [115].

8 According to Eringen, chirality can be interpreted as a manifestation of nonlocality [116].

90



5 .3 chirality-induced roton-like dispersion

Figure 5.5: Example for chirality. A ren-
der of two screws embedded in a slab.
The screws differ by their thread pitch.
The left screw is left handed (LHS) and
the right screw is right handed (RHS).
The screws cannot be made congruent
with each other using simple transla-
tions or rotations. A mirror operation is
necessary. Thus, they are chiral objects.

Wavenumber k in nm-1

Fr
eq

ue
nc

y 
ω

 in
 T

H
z 

5-5 0

10

0

2

4

8

6

TO-ri
gh

tTO-left

TA-rightTA-left

Figure 5.6: Elastic-wave (or phonon)
dispersion in a chiral crystal. The
transverse acoustic (TA) and optic (TO)
are plotted for the left handedness
(dashed lines) and right handedness
(solid lines), respectively. The lowest
bands show roton-like dispersion. The
exact trend of the bands depends on
the chosen values for the material pa-
rameters. In this example, the values
from Kishine et al. were used [27].

Whyte. Very common examples of such objects are human hands9 or the thread
of mechanical screws, see Figure 5.5.

For elastic metamaterials, the interest in chirality induced effects such as acous-
tical activity, the counterpart to optical activity, was only recently rekindled. In
part, by the work of Tobias Frenzel et al. in 2019 [13]. Following this upcoming
field, Kishine et al. used micropolar elasticity to predict a roton-like dispersion
relation in a chiral metamaterial. Their core idea is based on chirality lifting the
degeneracy of transverse acoustic (TA) and transverse optical (TO) bands, respec-
tively. The splitting of the TA bands is the manifestation of acoustic activity [120].
Furthermore, the minimum of the TO bands is shifted away from k = 0 generating
a region of negative group velocity for the TO-modes. Hybridization of a TO-right
handed band with a TA-right handed band leads to an anti-crossing, and the
bands become hybridized. In other words, the negative group velocity behavior
of the optical modes becomes admixed into the acoustical modes. For sufficiently
large coupling of the bands, a roton-like dispersion ensues. Calculated bands
following Kishine et al. are plotted in Figure 5.6. Both, the shift of the TO-band
minima away from k = 0, as well as the roton-like dispersion for the TA bands are
visible.

9 "Chiral" is derived from the Greek word for "hand". (Wikipedia on the 20th of September 2023).
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Remark on Micropolar Elasticity

As aforementioned, a chiral material cannot be described by Cauchy-elasticity
and as such cannot provide effective material parameters. Eringens micropolar
elasticity expands Cauchy-elasticity with additional rotational degrees of freedom.
Hence, a material is said to be made up of points, which also can rotate around
all three normal axis. These degrees of freedom require the introduction of
additional tensorial quantities. For deformation, the curvature tensor κij and
for stresses, the couple-stress tensor mij must be introduced. The constitutive
law (similar to Hooke’s law) is derived in the linear elastic regime from the
principle of conservation of energy and leads to an effective elastic matrix with
9× 9 components. For the interested reader, a rigorous description of micropolar
elasticity is given in Eringens work [110, 111, 116]. A micropolar description of
chiral metamaterials is introduced by Yi Chen et al. in [121] and replicated in part
within the supporting material of [45].

5.3.2 Exploiting Extreme Chiral Couplings

While the authors of [27] nicely predicted the possibility of roton-like dispersion
in a chiral material, no architecture or structure of a metamaterial unit cell was
proposed. However, it was made clear that chirality is a necessity but by far
no guarantee to observe roton-like behavior. The material parameters must be
carefully taylored, in order to introduce sufficient coupling and admixture of
optical and acoustical bands. The core idea governing the following design is to
split both optical and acoustical bands of a metamaterial crystal due to chirality
and admix the aforementioned negative group velocity behavior of optical modes
into acoustical ones.

A structure designed by my aforementioned colleagues which can fulfill this
criteria is shown as a blue print in Figure 5.7. In principle, the material design
is based on an arrangement of cubes (yellow) with side-length L imposed onto
a simple cubic translation lattice10 with lattice constant a. Naturally, these cubes
have three translational and three rotational degrees of freedom. The crucial part
lies in the nature of the coupling rods (blue) between the cubes of adjacent unit
cells. These rods form chiral connections, not only between nearest neighbours,
but also between neighbours along the face-diagonals. One such chiral coupling
is highlighted in red in Figure 5.7(b). As a consequence, the unit cell has three
axes with fourfold rotational symmetry (face normals), four axes with threefold
rotational symmetry (body diagonals), no center of inversion, no mirror planes,
and no rotation-reflection symmetries [45].

10 Kishine et al. considered tetragonal crystal symmetry. Here, cubic symmetry was chosen.
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Figure 5.7: Blue print of the unit cell for the chiral roton metamaterial. Coloration
is for visualization only. (a) Single unit cell with lattice constant a. A hollowed-out
cuboid (yellow) with side length L is at the center of the unit cell. In total, 24
cylindrical rods (light blue) with diameter d are connected to the cuboid by 24 half-
spheres (light blue) at one end. At the other end, they merge into 24 quarter-spheres
(dark blue). The unit cell features no mirror symmetries, but all rotational symmetries
of a cube. (b) A small metamaterial crystal assembled from 2× 2× 2 unit cells. One
of the extreme chiral couplings between unit cells is highlighted (red) for clarity.
Those couplings arguably convey a weak form of nonlocality, since they connect
not only neighboring unit cells, but also unit cells along the face diagonals of the
underlying translation lattice. Figure and caption taken from [45] and adapted under
(CC BY 4.0), published by Adv. Func. Mat. 2023.

Furthermore, it is those connections that couple translational degrees of freedom
of the cubes to rotational ones. This ultimately leads to the required admixture of
optical and acoustical bands. This can be verified by inspecting the mode shapes
of TA and TO bands at small wavenumbers k, respectively. As described in [45],
the TA bands feature circular polarized modes that are dominated by translations
of the cubes. The TO bands on the other hand mainly show rotations of the
cubes. For larger k, the TO and TA bands hybridize and roton-like dispersion
manifests in the lowest band. The corresponding modes in the negative group
velocity region now feature simultaneous translation and rotation of the cubes, a
somewhat intuitive result.

The critical parameter dictating the degree of admixture and hence the "depth"
in frequency of the roton-like minimum is the coupling rod diameter d. This
geometric parameter is directly linked to the previously mentioned careful tai-
loring of the resulting effective material parameters in order to obtain roton-like
dispersion through chirality. Conceptually, for d/a → 0 the minimum would
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approach zero frequency. Yet such a structure is impossible to fabricate and me-
chanically unstable. Conversely, finite-element calculations predicted, that for too
large values of d, the roton-like behavior vanishes. For the following fabrication of
metamaterial-beam samples, this poses a significant challenge. The coupling rods
must be thin enough to ensure roton-like dispersion and at the same time be stiff
enough to support the structure during and after printing.

The Fabricated Metamaterial Sample

For fabrication via laser microprinting, a hatching distance of dhatch = 200 nm,
and slicing distance of dslice = 300 nm were chosen. The laser power was set to
27.5 mW and a laser focus scan speed (focus velocity) of 0.145 m s−1 was used.
The bottom plate was again written using a laser power of 50 mW, scan speed of
0.140 m s−1 as well as dhatch = 0.5 µm, and dslice = 1.5 µm.

The sample fabrication proved to be remarkably challenging and took almost a
full year of tedious iterative optimization11. The reason for this was the vast num-
ber of fine and overhanging parts in the unit cell (cf. Figure 5.8(c)). Especially the
slender rods with diameter d are only connected on one end at certain times dur-
ing the printing process. Therefore, they may drift away or bend even during the
time they are printed. A sophisticated printing and sample development strategy
had to be designed, to counteract and minimize these defects. The most notewor-
thy is the "laying-down" of the beam onto the substrate. This means, they were
printed with their axis parallel to the plane of the substrate, instead of normal to it.

To remove the samples non-destructively from the substrate, the latter was
spin coated with a sacrificial layer of polyvinyl alcohol (PVA) with ≈ 150 nm
thickness. After printing and washing-away of the unpolymerized resist with
two subsequent baths in PGMEA and ethanol respectively, the sacrificial layer
was dissolved in hot water, detaching the sample. No critical point drying was
employed, instead, the samples were air dried in ambient laboratory conditions.
A gallery of a metamaterial beam fabricated in such a way is shown in Figure 5.8.
The sample consists of 3× 3× 40 unit cells (x, y and z) and thus forms a beam
with. The lattice constant is a = 185 µm and (coupling) rod diameter is d ≈ 7.5 µm.

11 The latter was at the core of the Masters thesis of Jonathan Schneider.
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Figure 5.8: Showcase of the microscale metamaterial sample with extreme chiral
couplings. (a) Wide-field optical micrograph presenting an overview of a printed
polymer sample, comprised out of 3× 3× 40 unit cells (for x, y and z). (b) 3D iso-
intensity surface acquired with a confocal fluorescence microscope (LSM800, Zeiss)
from the autofluorescence of the polymer. Similar to Figure 5.7(b), an extreme chiral
coupling is highlighted (red). (c,d,e) Side-view scanning-electron micrographs of a
beam sample. (c) Close-up oblique view onto a single unit cell of a beam sample.
Several rods are slightly bend, which is a consequence from fabricating overhanging
parts with 3D laser microprinting. (d) View through the side of a beam sample,
showing 3× 3 unit cells at the surface. This viewing angle is convenient to inspect
for defects or falsely connected parts due to the proximity effect. (e) Zoom-in on
the bottom right unit cells from (d). The arrow (red) points towards one of the
cross-shaped markers used for tracking with DIC analysis. Figure and caption taken
from [45] and expanded under (CC BY 4.0), published by Adv. Func. Mat. 2023.

95

https://creativecommons.org/licenses/by/4.0/


5 roton-like dispersion in 3d metamaterials

150

0

100

50

kz in 𝜋/a 

Fr
eq

ue
nc

y 
ω

/(
2𝜋

) i
n 

kH
z 

0.50 1 0.50 10.50 1
kz in 𝜋/a kz in 𝜋/a 

0

1

|
Ã
(ω

,k
z)
|

ux uzuy

Figure 5.9: Experimental dispersion relation results for the chiral metamaterial-beam
sample. In analogy to Figure 5.4(a), the dispersion relation is obtained by Fourier
transform with respect to space of the displacement-vector-component amplitude
distribution (amplitude envelope) for every excitation frequency. The results are
again depicted as false-color plots of |Ã(ω, kz)|. Bands are visible by following the
false-color maxima. The panels are labeled with the according displacement-vector
component (ux, uy and uz), from which they were derived of. Due to the symmetry
of the metamaterial structure, the dispersion relation derived from each of the three
displacement-vector components reveals the roton-like dispersion in the lowest band.
The solid lines are numerically calculated bands using finite-element analysis for an
infinite beam along z and a 3× 3 cross-section. The lowest band is emphasized in
black. In the chosen coordinate system, the beam axis aligns with the z-direction.
Thus, the ux and uz components were measured with DIC analysis (in-plane) while
the uy component was measured with vibrometry (out-of-plane). Figure and caption
taken from [45] and adapted under (CC BY 4.0), published by Adv. Func. Mat. 2023.

Band-Structure Measurements

To measure the band structure for the chiral metamaterial-beam samples, we
conducted similar experiments as already described in Section 4.3.3 and Section 5.2.
The displacement field of elastic waves propagating along the beam z-axis was
sampled on 41 ROI. The zeroth ROI was positioned on the bottom plate to
survey the displacement excitation. The residual 40 ROI were spaced by the lattice
constant a and centered on cross-shaped markers (cf. Figure 5.8(e)). For this project,
the laser-Doppler-vibrometry branch was included in the experimental setup (cf.
Figure 4.7. Therefore, displacement-vector-component amplitude distributions
(amplitude envelopes) for all three spatial directions were measured.
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5 .3 chirality-induced roton-like dispersion

The investigated excitation frequency range was 10 kHz to 150 kHz with 5 kHz
increment i.e. temporal frequency resolution. ROI size and pixel size were identi-
cal as given in Section 5.2. For each ROI and frequency, 2048 images were acquired
for DIC analysis. For laser-Doppler vibrometry, 219 data points as described in
Section 4.3.3 were acquired. The displacement vector amplitudes were extracted
for each ROI from the raw data using discrete fast Fourier transformation (FFT)
with respect to time as mentioned in Section 4.3.2. To prevent spectral leakage,
the raw-displacement data was truncated to yield a FFT resolution of an integer
fraction of the excitation frequency12. To do so, ux(r, t) and uz(r, t) raw data was
truncated from 2048 to 2000 points to provide a FFT resolution of 5 kHz. For
uy(r, t) the raw data was truncated from 219/64 = 8192 to 6250 data points, equat-
ing to a resolution of 1.25 kHz. Lastly, the obtained amplitude envelopes were
Hann-windowed and Fourier transformed with respect to real space to assem-
ble the band structure for elastic waves (i.e. phonons) propagating along the z-axis.

The experimental results are collected in Figure 5.9. For the lowest band showing
roton-like dispersion, a significant peak-to-valley ratio of ω(kmin)/ω(kmax) ≈ 0.63
was achieved. Thus a broadband region of negative group velocity was created.
Solid lines are bands computed from finite-element analysis for an infinite beam
with 3× 3 unit-cell cross-section. In the computations, a Young’s modulus of
E = 4.19 GPa, a Poisson’s ratio of ν = 0.4 and a mass density of ρ = 1140 kg m−3

were chosen for the constituent polymer.
The region in the lowest band showing the targeted dispersion is emphasized

in black. Higher bands, depicted in gray, originate either from local resonances
in the material or a large number of back-folded bands as a consequence of the
finite beam cross-section. Overall, an excellent agreement between the theory
and the experiment was achieved. For comparison of the experimental data with
finite-element calculations for finite beam sample (cf. Figure 5.4(b)), the reader is
referred to supporting information of publication [45]

12 Considering the (effective) sample rates of imaging and vibrometry, respectively.
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5 roton-like dispersion in 3d metamaterials

Summary

In this project, based on the prediction of possible roton-like dispersion by Kishine
et al., a chiral microscale metamaterial was designed and fabricated. The roton-
like dispersion resulted from carefully designed admixture of the chirality-split
optical and acoustic bands. This behavior was observed in the experiment for
waves propagating along the axis of finite metamaterial-beam samples. Due to the
symmetry of the unit cell, this roton-like behavior is predicted to occur for waves
propagating along the other principal directions as well, given sufficient sample
size along those directions. To the date of the corresponding publication [45],
this was arguably the first demonstrations in how to achieve roton-like dispersion
through different means than beyond-nearest-neighbor interaction.

Furthermore, due to the use of the laser-Doppler-vibrometry branch, all three
displacement-vector components could be measured simultaneously. Thus, the
roton-like band could be easily reconstructed from all three displacement-vector
components without reorienting the sample in the setup.
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6
Chapter 6

Extremal Cauchy-Elastic

Materials

Within this Chapter, I report my experiments on extremal Cauchy-elastic materials,
namely Tetramode and Monomode metamaterials. This designation follows the proposition
of Milton and Cherkaev [28] in their work from 1995. In order to explain the nomenclature,
I briefly summarize their definition and outline the most important properties of such
materials. Subsequently, I report my experiments on a finite Tetramode metamaterial,
where the material acts as a polarizer for transverse elastic waves (phonons). Afterwards, I
address my experiments on Monomode metamaterial-beam samples. As in the previous
Chapter, a roton-like dispersion is achieved. Here however, the single soft-mode of the
material is hybridized exploiting an intricate back-folding strategy. The results of the
experiments on both materials were previously published [92, 122].
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6 extremal cauchy-elastic materials

6.1 Definition and Properties

The generalized Hooke’s law in three dimensions links the deformation response
of a material to the loads applied onto it. As has been summarized in Chapter 2, for
linear elasticity, several symmetries can be exploited to vastly reduce the number
of independents in the stiffness tensor C. Subsequently, the tensor reduces to a
6× 6 matrix in Voigt-notation [29, 123] (cf. Equation 2.27). Inherently, for this
case, six eigenvalues of C can be found, each of which belong to a orthogonal
mode of deformation. Due to the orthogonality, each of these eigenvalues can
independently be zero. Each vanishing eigenvalue corresponds to a so-called
"soft" mode of deformation. In the static case, such a mode conceptually requires
zero force or energy to induce. Consequently, for dynamic elastic waves, this
corresponds to wave-velocities lying at strictly zero frequency (cf. Equation 2.37).

In the year 1995, Milton and Cherkaev used this attribute of vanishing eigenval-
ues to define extremal Cauchy-elastic materials [28]. Furthermore, they suggested
to name materials according to the number of these vanishing (or in practise
extremely small with respect to the other) eigenvalues1. Numbering the modes
(or vanishing eigenvalues) with N = 1, 2, 3, 4, 5, 6 yields N = 1 Monomode, N = 2
Dimode, N = 3 Trimode, N = 4 Tetramode, N = 5 Pentamode and N = 6
Hexamode materials.

In practise, it is possible to engineer approximates of such materials as metama-
terials using a smart arrangement of bodies, connected by small hinges or joints.
To achieve an ideal extremal metamaterial, those hinges need to be ideal in the
sense that they dissipate no energy and require no force to actuate. Only then
can the metamaterial feature a truly "soft" mode i.e. have one or more vanishing
eigenvalues of C. In reality, this usually is equivalent with a geometric parameter,
i.e. a connection-point diameter d to go to zero. Naturally, this is not possible to
fabricate, as such metamaterials would just fall apart. Thus, all fabricated instances
of an extremal Cauchy-elastic metamaterial will represent approximations with a
finite d.

Along these lines and following the suggestions of Milton and Cherkaev [28], a
Pentamode metamaterial using double-cone elements connected at their tips was
demonstrated on the microsscale [12] in 2012. Such a material is only stable under
hydrostatic pressure which is accompanied by extreme ratios of the bulk modulus
K to shear modulus G (cf. Equation 2.31 with B/G ≈ 1000 [124]).

In [12], the Pentamode character of the material was validated by numerical
calculations calibrated to the geometric parameters of the fabricated samples.
Experiments on macroscale [124] and microscale [17] samples were supplemented
shortly after in 2013 and 2014, respectively.

1 Their original work used a mixture of Latin and Greek numbering, here we decided to stick to
Greek number words.
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6 .2 polarizing elastic waves using a tetramode metamaterial

In the experiments from 2014, the Pentamode metamaterial was used as an
acoustic cloak, i.e. shielding an object from forces applied upon a layer of pen-
tamode metamaterial. This property attracted considerable attention in the field
of seismic wave protection [125]. Moving forward, it is naturally worthwhile to
further investigate the interesting extremal elastic properties of such materials to
tailor wave-propagation. Two experimental implementations of such tailoring are
addressed in the following sections.

6.2 Polarizing Elastic Waves using a Tetramode Metama-
terial

As aforementioned, a Pentamode metamaterial was used as an acoustic cloak,
shielding an object from the displacement field induced by external forces [17]. Ex-
periments were conducted quasi-statically (force loading on the order of seconds).

This raises a maybe relatively naive but to some intuitive question. If the
displacement field can be controlled in such a way, that it is directed somewhat
"around" a structure, then maybe there is also the possibility to selectively suppress
only certain displacement polarizations?

A theoretical study from 2012 provided the answer to that question by band-
structure calculations for elastic waves (phonons) in a pentamode metamate-
rial [126]. It was shown that for certain wave propagation directions through
the material, a suppression of (transverse) shear-waves is predicted. Hence, out
of three possible displacement-field polarizations for elastic waves in mechanics,
only the longitudinal one is preserved2.

This shows that the idea to use extremal Cauchy-elastic materials as polarizers
for elastic waves is not new. However, a polarizer for a single transversely polar-
ized wave, i.e. the counterpart to a wire-grid polarizer3 in optics [127], remained
absent. Here, I report my experimental demonstration of such a transverse and
broadband elastic-wave polarizer, formed from a Tetramode metamaterial which
was published in [92].

6.2.1 Unit-Cell Design and Elastic Properties

The underlying unit-cell design of the Tetramode metamaterials was based on the
suggestion of Yu Wei et al. [92]. In principle, two geometrical elements are used to
build the unit cell of tetragonal symmetry. Double-cones of central diameter D
are joined at their tips using half-spheres of radius r.

2 The polarization refers to the orientation of displacement field u(r, t) to wavevector k
3 It is legitimate to view such a polarizer as a two dimensional metamaterial.
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6 extremal cauchy-elastic materials

Figure 6.1: Blue print of
Tetramode unit cell with
lattice constant a. Design pa-
rameters for the double-cones
are the central diameter D
and the critical diameter d,
where they are merged into
the half-spheres (inset) with
radius r. Figure and caption
based on [92] under (CC BY
4.0), published by Adv. Mat.
2023. a

d
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The blue print of the unit cell is rendered in Figure 6.1. It is those spheres
that represent the modification undertaken from the original designs suggestion.
Without those spheres, the critical geometrical parameter of the structure would be
the diameter of the tip-connections of all double-cones. Such a structure however
is extremely sensitive to imperfection during printing and thus challenging to
fabricate. Introduction of the spheres eases this process and assists in obtaining a
well-defined geometry. The critical geometric parameter of this unit cell is now
the ideally circular connection with diameter d of the double-cones and spheres.
It is the thickness d that directly influences the shear-stiffness of the material and
how little the joints resist to external loading by forces. A metamaterial crystal
of tetragonal symmetry is formed by imposing the unit cell onto a simple-cubic
translation lattice with lattice constant a.

The response of the material to external loads can be summarized as follows.
Due to the unit-cell geometry, the material can efficiently withstand a shear load
σzx = σxz ̸= 0 (equivalently due to symmetry σyx = σxy ̸= 0) with little deforma-
tion. The occurring forces can be decomposed into components along the center
axis of the double-cones, along which they are stiff. Consequently, the material
appears "hard" and shows little deformation. For all other (shear or normal)
loading conditions, such a decomposition is not possible and the connections
between spheres and double-cones yield, effectively acting as hinges. Thus, the
material appears compliant i.e. "soft" and deforms more. This mechanism is
further illustrated in the supporting information of [92].

Widening this conceptual understanding of the unit-cell mechanism to an
infinitely expanded bulk structure, was performed by my co-authors Yu Wei and
Yi Chen. In their numeric simulations using finite element analysis in COMSOL,
several ratios of d/a were investigated [92].
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Figure 6.2: Static and dynamic properties of the Tetramode metamaterial. (a) Geo-
metric parameters targeted for fabrication are given. Ceff is the calculated effective
elasticity matrix Ceff derived from the phase velocities in the long-wavelength limit
(cf. supporting information of [92]). The eigenvalues are listed in V. Two of
which, emphasized in bold-face, are at least one order of magnitude larger than
the remaining four. Thus, the materials is Tetramode. (b) Corresponding band-
structure-calculation results for an infinite bulk and waves propagating along the
z-direction with wavenumber kz. Three bands emerge, which are labeled according
to their dominant displacement-field polarization. The x- and y-polarized modes are
transverse waves, while the z-polarized mode is longitudinal. Figure and caption
taken from [92] and expanded under (CC BY 4.0), published by Adv. Mat. 2023.

Conceptually, when d/a→ 0, the joints become ideal and the material would
exhibit ideal Tetramode behavior. Obviously, some compromise must be made
in order to arrive at a geometry fit for fabrication. Given the finite voxel size
in printing as a fundamental constraint, we arrived at the targeted geometric
parameters of a = 200 µm, d = 4 µm, hence d/a = 0.02.

The corresponding effective stiffnes matrix Ceff is given in Figure 6.2(a), together
with its respective eigenvalues. Two out of the six eigenvalues are at least one
order of magnitude larger than the remaining four4, making this metamaterial
Tetramode in unison with Miltons and Cherkaevs definition. The stiffness matrix
was derived in the long-wavelength limit from finite-element band-structure
calculations, the results of which are depicted in Figure 6.2(b). To arrive at these
results, E = 4.19 GPa, ν = 0.4 and ρ = 1190 kg m−3 were chosen for the Young’s
modulus, Poisson’s ratio and mass density of the constituent polymer, respectively.

4 For d/a→ 0 the four small eigenvalues would tend to zero.
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6 extremal cauchy-elastic materials

In regard of the experiments, it is sufficient to only discuss waves propagating
along z-direction with wavevector k = (0, 0, kz)T within the first Brillouin zone.
This direction of wave propagation is chosen in the experiments reported below.
In total, three bands are present. Two bands correspond to transverse (shear)
modes, namely modes with x-polarized (red) and y-polarized (blue) displace-
ment fields. The third band corresponds to longitudinal i.e. z-polarized modes
(magenta). The bands differ significantly in their slope and thus the frequency
region f = ω/(2π) they cover in the first Brillouin zone. Therein lies the key
point of the material. Over a broad frequency region, between roughly 80 kHz
and 320 kHz, only x-polarized elastic waves can propagate. Waves featuring y-
and z-polarization become evanescent and are thus suppressed5. This polarization
sensitive discrimination gives rise to the polarizer behavior of the sample. In con-
trast to the Pentamode metamaterial from [126], only one of the two (transverse)
polarizations as well as the longitudinally polarization are suppressed.

6.2.2 The Fabricated Sample

For the experiments, finite samples with 9× 6× 6 unit cells (along x, y, z) were
fabricated using 3D laser microprinting. The number of unit cells was chosen as
a compromise between expected polarizer action and fabrication time of ≈ 12 h.
Optimization of the sophisticated writing strategy was done by Jonathan Schneider.
A showcase of such a finite sample and its unit cell is given in Figure 6.3. Again,
an iso-intensity surface reconstructions was acquired using the auto-fluorescence
of the polymer to demonstrate the high sample quality. Since the performance of
the sample relies heavily on the critical parameter d, we measured this parameter
on fabricated samples. However, it is unwise to do so from an iso-intensity surface,
as the latter strongly depends on the chosen treshhold value for reconstruction.
Thus, the scanning-electron micrographs (cf. Figure 6.3(c)) were used to verify the
intended magnitude of d = 4 µm.

A residual asymmetry in the intended sphere-shape of the connections between
adjacent unit cells remain. We attribute this to the elliptical shape (extended along
the z-axis) of the printing voxel. With the used resist system, we arrived at the
limit of the possible voxel-compensation without jeopardizing the sample integrity.
Alternatively, a different resist system like the Microfabrication Solution Set Small
Features (3D SF, Nanoscribe) instead of Microfabrication Solution Set Medium
Features (3D MF, Nanoscribe) could be used. This would potentially allow for
even smaller ratios of d/a. However, using the 3D SF may escalate printing times
tremendously. The reason for that being the vastly reduced writing field by factor
of two compared to the 3D MF.

5 For d/a→ 0, the corresponding bands would lie at strictly zero frequency.
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Figure 6.3: Showcase of the Tetramode metamaterial sample features. (a) Recon-
structed 3D iso-intensity surfaces from a single unit cell under different viewing
angles. Data acquired with a confocal fluoerscence microscope (LSM800, Zeiss).
Coloration and tripods added in Blender. (b) Side-view of a sample comprised of
9× 6× 6 unit cells (along x, y, z) on its bottom plate. (c) Connection between two
adjacent unit cells. Due to the shape of the voxel during printing, the intended
sphere-shape is elongated along z, forming an ellipsoid. Figure and caption taken
from [92] and expanded under (CC BY 4.0), published by Adv. Mat. 2023.

Consequently, even a different writing strategy may be required to fabricate
adequate samples. Thus, we chose to account for those imperfections in the
numerical simulations instead to verify the persistence of the polarizer action.

For fabrication with the commercial printer (PPGT, Nanoscribe) a hatching
distance of dhatch = 300 nm, and slicing distance of dslice = 500 nm were chosen.
The focus velocity (scan speed) was set to 0.110 m s−1, and a laser power of
37.5 mW was used. Again, a bottom plate was included at one end of the samples
to facilitate sample manipulation. The plate was printed at a laser power of 50 mW,
scan speed of 0.140 m s−1 as well as dhatch = 0.5 µm, and dslice = 1.5 µm6. To rid
the samples of unpolymerized resist, they were submerged in a bath of propylene
glycol methyl ether acetate for a minimum of 30 min, followed by a 5 min rinse in
acetone. The latter was finally removed using critical-point drying in CO2.

6 Parameters and writing strategy can be deduced from the repository published with [92].
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Figure 6.4: Photographs of two Tetramode metamaterial samples in the experimental
setup. (a) The sample is coupled to a piezoelectric transducer (cf. Figure 4.11). To
orient the transducer axis along the y-direction (magenta), an aluminum cuboid is
used as an elbow piece. The transducer can be identified by the emerging cables,
through which it is driven with a voltage to excite elastic waves. Below, a three-axis
tilt platform can be used to align the sample with the focal plane of the microscope
objective lens. (b) Similar to (a), but with the transducer axis aligned with the z-
direction (magenta). To achieve this orientation, a silica glass substrate is glued onto
the transducer, before the sample is glued onto the silica glass. Figure and caption
modified from [92] under (CC BY 4.0), published by Adv. Mat. 2023.

6.2.3 Measuring the Polarizer Action

The general idea of the experiment can be summarized with few words. In
order to characterize the polarizer performance, elastic waves of arbitrary po-
larization need to be coupled into the sample. Subsequently, the displacement
field of those waves has to be tracked at designated input and output locations.
The component-wise amplitude-ratio of input displacement-vector components
to output displacement-vector components reveals which displacement polar-
ization is supported or suppressed. Sweeping the excitation frequency over a
broad frequency range indicates the frequency dependence of this polarizer action.

Elastic waves were excited within the sample by coupling them to a piezo-
electric transducer, see Figure 4.11. The latter was driven with a time-harmonic
voltage, as described in (Section 4.3.1). At ultrasound frequencies, the trans-
ducer shows nonzero displacements along all three spatial directions u(r, t) =
(ux(r, t), uy(r, t), uz(r, t))T, which provides the desired arbitrary input-wave po-
larization (cf. Figure 4.13). Nonetheless, for the experiments two configurations
were chosen to maximize the displacement input that is polarized along directions
of strong suppression i.e. where a small displacement is expected at the output.
Those configurations are shown in Figure 6.4, where two samples are installed in
the setup. For showing a strong suppression for say the uy displacement-vector
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Figure 6.5: Scanning-electron micrographs of polarizer input and output locations.
(a) Oblique-view of a sample with bottom plate. The regions enclosed by white
rectangles are magnified in the following panels. (b) Magnified view of the lower
white rectangle of (a). The red square on a cross-shaped marker highlights the
position designated as displacement "input" to the Tetramode metamaterial sample.
(c) Magnified view of the upper white rectangle of (a). The blue square positioned
on a half-sphere marks the position designated as displacement output. The position
is chosen in the top middle of the sample to stay away from edge-effects which
deteriorate the polarizer performance. Figure and caption taken from [92] and
expanded under (CC BY 4.0), published by Adv. Mat. 2023.

component, it is beneficial to start out with a large displacement amplitude along
the y-direction. This in mind, in Figure 6.4(a) the transducer axis points along the
y-direction and in Figure 6.4(b) respectively along the z-direction. To calculate
the displacement ratio, the time-dependent displacement-vector components were
measured on cross-shaped markers on the bottom plate (input), and at the top
center of the sample (output). Figure 6.5 highlights those locations. The output
location was deliberately chosen to be as far away as possible from the edges of
the sample. A finite sample exhibits significant edge effects that deteriorate the
polarizer action due to numerous back-folded bands.

For both sample configurations, ux and uy were measured with DIC analysis,
while uz was measured with laser-Doppler vibrometry. To compute the displace-
ment ratio, the displacement-vector-component amplitudes were extracted using
Fourier analysis of the raw-data as explained in Section 5.3.2. The excitation
frequency was incremented from 0 kHz to 300 kHz in steps of ∆ f = 10 kHz. We
observed that for a displacement input

uin(r, t) = (ux(r, t), uy(r, t), uz(r, t))T ,

only the x-component remains, such that

uout(r, t) = (ux(r, t), uy(r, t) ≈ 0, uz(r, t) ≈ 0)T.
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Figure 6.6: Polarizer action of the Tetramode metamaterial. The displacement ratio
of output to input displacement (cf. Figure 6.5) is plotted component-wise versus
frequency. (a) Results computed with finite element analysis for waves polarized
along the y-direction (blue) and x-direction (red). (b) As (a) but results from the
experiment. The dashed lines indicate the noise-floor of the experiment. To obtain
this data, the piezoelectric transducer axis was aligned along the y-direction. (c, d)
Analogous to (a, b), respectively. In (d), the transducer axis was aligned with the
z-direction. For z and y, a suppression of up to two orders of magnitude over a broad
frequency range can be seen. This range is emphasized by the green-shaded area.
For these experiments, x- and y-displacements were obtained from DIC analysis,
while z-displacements (black) were measured using vibrometry. Figure and caption
taken from [92] and expanded under (CC BY 4.0), published by Adv. Mat. 2023.
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To illustrate these findings versus frequency, the component-wise ratio of input
to output displacement amplitude is plotted in Figure 6.6. The green shaded area
highlights the frequency range of expected polarizer action. This region is linked
to the frequency range of the band-structure calculations, where only a x-polarized
mode is supported to propagate. The dashed lines in Figure 6.6(b, d) indicate
noise-floor of the setup. This floor was computed from the component-wise ratio
of uin for every frequency, to uout for f = 0 kHz i.e. when the transducer was not
driven at all. These lines serve as a sanity check for the results. It is unphysical to
detect a displacement smaller than the displacement noise-level when no waves
are excited. From the dashed lines it becomes clear, why two configurations i.e.
orientations for the transducer axis were chosen. If the input displacement along
for example the y-direction (or z-direction) is large, the dashed line is pushed
to smaller displacement ratios. Additionally, it is not necessary to orient the
transducer axis along the x-direction, since a displacement ratio close to unity
is expected, which is connected to a nanometer-scale output displacement, well
within the setups resolution limit. In summary, data points for the displacement
ratio lying below the corresponding dashed line should be discarded. However,
this was not necessary for the presented results, and it becomes apparent that the
setup is in principle capable of detecting even smaller displacement-ratios (down
to 10−4).

Comparing Figure 6.6(a) to (b) and (c) to (d), good qualitative agreement
between prediction from theory and measured result for the polarizer performance
is evident. A residual quantitative mismatch is attributed to remaining sample
imperfections from fabrication. Nonetheless, a suppression in amplitude for the
unwanted (y− and z−) polarizations of up to two orders of magnitude is achieved.
When referring to polarizers in optics, usually one concerns oneself with power (or
intensity) and not with electric-field amplitude. To obtain a comparable quantity
for the polarizer action of the tetramode metamaterial, the displacement ratio
need to be squared. This yields a suppression of up to four orders of magnitude
with respect to mechanical power. This is on-par with commercially available
wire-grid polarizers [127].
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Summary

With this work, we expanded the scope of available tools for ultrasound elastic-
wave control with a polymer-based Tetramode metamaterial. The fact that four
out of six deformation modes are "soft" is exploited to simulate, fabricate and
experimentally investigate a compact broadband polarizer for transverse elastic
waves or phonons. In both theory and experiment, a polarizer performance
on the level of wire-grid polarizers from electromagnetism were predicted and
achieved. Consequently, mechanical counterpart for transverse wave polarization
was demonstrated. Furthermore, systematic scaling of the polarizer performance is
possible by adding material both laterally or axially. Thereby, the usable polarizer
output area is expanded (avoid edge effects) or the suppression of the unwanted
wave polarizations is strengthened, respectively.

In terms of the experimental procedure for tracking all three displacement-
vector components, the experiments on the Tetramode metamaterial were the first
conducted with inclusion of the vibrometry branch in the setup. Therefore, they
showcased the usefulness and practicality of vibrometry as a supplement to DIC
analysis in a microscopy system. If one had to rely only on DIC analysis, the
experiments would have been a lot more challenging. Rotation of the sample
would have been necessary, in order to supplement the missing displacement
vector component. Since the displacements here are small and the polarizer
action is extremely direction-dependent, small misalignment in this rotation could
deteriorate the detected performance drastically. With the vibrometry branch,
these issues can be avoided completely.
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6.3 Roton-Like Dispersion in Monomode-Metamaterial

Beams

Within this section, I revisit the roton-like dispersion discussed in the previous
chapter. Albeit here, the dispersion was yet again engineered through a very
different mechanism as before. Namely, the exploitation of these soft modes
present in a monomode material.

To avoid confusion, I want to provide a quick clarification of when I use "mode"
as singular or "modes" as plural in the following text and in the context of extremal
Cauchy-elastic materials. As the name suggests, a Monomode material features
one soft mode of deformation [28]. For the dynamic case, when considering elastic
waves, this corresponds to a relatively "flat" band along a certain direction in
k-space. This band features a small phase and group velocity for the propagating
waves7. Therefore, it is appropriate to speak of soft modes (thus in plural), when
referring to modes described by this dispersion band.

The occurrence of the soft modes is necessary, but not sufficient to produce a
roton-like minimum. Additionally, back-folding of the soft modes is required,
with subsequent admixture of the corresponding bands to achieve the desired
region of negative group velocity. The concept and the experiment results were
published in [122] and are reported in the following.

6.3.1 Monomode Design and Back-Folding Strategy of the Soft Modes

The architecture of the Monomode metamaterial starts from a 2D periodic ar-
rangement of rhombuses connected at their tips by circles, which is shown in
Figure 6.7(a). The in-plane periodicity of the underlying square lattice is given by
the lattice constant a, which is consequently also the length of the chosen unit cell8.
The rhombuses are characterized by their thickness D, and the circles by their ra-
dius r (cf. inset in Figure 6.7(a)). Similar to the Tetramode metamaterial discussed
in Section 6.2, the critical geometric parameter of the structure is the diameter
d of the connections between rhombuses and circles (spheres and double-cones
previously). The value of d dictates how easily those connections yield under load
i.e. how close those connections come to ideal hinges. As typical for an extremal
Cauchy-elastic material, for d/a→ 0, ideal hinges and thus an ideal Monomode
metamaterial ensues.

7 For an ideal Monomode material, the band would lie at zero frequency for finite k.
8 Primitive Wigner-Seitz cell is smaller, cf. dashed box Figure 6.7(a)
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Figure 6.7: Monomode-metamaterial design for the back-folding strategy. (a) Infinite
metamaterial bulk consisting of rhombuses with thickness D and circles with radii r
(light blue). Extrusion out of the paper plane creates the three-dimensional structure.
A unit cell of length a is enclosed by the black box, while the dashed box shows the
primitive unit cell. The Inset enlarges the critical connection between rhombuses and
circles. The diameter d of this connection is the critical geometric parameter of the
Monomode metamaterial. (b) Introduction of a supercell with periodicity Nxa = 3a
by filling some voids (dark blue). This alteration shrinks the first Brillouin zone
compared to (a) and introduces the desired back-folding of bands. (c) Disconnecting
the bulk metamaterial along the x-direction at the periodicity of the supercell creates
an array of separate beams, the dispersion relations of which are mutually degenerate.
Importantly, the dispersion relation of the phonon bands is drastically altered by this
modification. Figure and caption taken from [122] and expanded under (CC BY 4.0),
published by Adv. Mat. 2023.
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Similar to the spheres introduced in the Tetramode metamaterial, the circles
connecting the rhombuses could be spared but significantly facilitate the control
over the value of d during manufacturing and actually represents a degree of
freedom for the tailoring of the dispersion.

From this planar outline of Figure 6.7, a three dimensional metamaterial is
obtained when extruding the material along the z-direction by extrusion length az.
Thereby, the rhombuses turn into skewed cuboids, and the circles into cylinders.
Conceptually, this extrusion is irrelevant when considering periodic structures
along all three spatial dimensions. For the subsequent experiments, a finite az has
to be chosen, effectively creating a perforated plate or metamaterial slab. This
geometry is vastly simpler in its design compared to the other structures discussed
in this work, easing the manufacturing process significantly.

In analogy to the Tetramode metamaterial, the eigenvalues of the stiffness
matrix can be derived in the long-wavelength limit from band-structure calcula-
tions [92] based on finite-element methods9. Assuming E = 4.19 GPa, ν = 0.4 and
ρ = 1190 kg m−3 for the Young’s modulus, Poisson’s ratio and mass density of the
constituent polymer, respectively and choosing the same geometric parameters
used in the experiments (given in the next section below), one finds: 3.295 GPa,
0.875 GPa, 0.385 GPa, 0.296 GPa, 0.296 GPa, and 0.006 GPa [122]. Especially the
last value is roughy three orders of magnitude smaller than the next largest one,
hence making the metamaterial Monomode [28].

To understand how the Monomode character of the material is combined
with a back-folding strategy to create a roton-like dispersion, it is helpful to
consider Figure 6.7 and Figure 6.8 side by side. Before returning to the real-space
metamaterial design in Figure 6.7, I shift to considerations in reciprocal-space
depicted in Figure 6.8.

For elastic waves, the Monomode character of the material manifest in the
calculated band structure for a bulk metamaterial as a valley in the dispersion
surface of the lowest band. This valley lies at a diagonal with respect to the
ky, ky-plane and can be clearly seen in Figure 6.8(a). Modes within the groove are
emphasized by the black solid line, which would lie at strictly zero frequency for
d → 0. All modes along this line are considered "soft". For finite d, the modes
correspond to transverse shear modes, propagating diagonally in the x, y-plane
(cf. Figure 6.7(a)). To illustrate the back-folding procedure, two dashed curves
are included in Figure 6.8(a). The first monotonously rising curve emerging at
the edge of the blue subsurface (i.e. kx = ky = 0) only illustrates the edge of the
dispersion surface at kx = 0. The second dashed line is included twice. Once at
kx = π/(3a) and again at kx = 0.

9 Conducted by Yi Chen in COMSOL.
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Figure 6.8: Back-folding strategy in reciprocal-space. (a) Frequency surface of the
lowest modes over kx and ky in a bulk Monomode metamaterial (transverse shear
modes). The solid black line extending diagonally describes the "soft" modes. The col-
oration of the surface helps to comprehend the introduction of a supercell Nxa = 3a,
shrinking the first Brillouin zone to |kx| < ±π/(3a). The green and red sections are
shifted by 2π/(3a) along negative kx. Consequently, the black dashed curve between
the green and red sections now lies at ky = 0 and crosses the band extending along
ky. (b) Dispersion for the bulk material with supercell period Nxa = 3a. For visualiza-
tion, the uncoupled bands are kept (dotted lines). The supercell introduces coupling
between those bands leading to weakly hybridized bands (red). (c) Dispersion for a
beam of width Nxa = 3a. The new boundary condition dramatically strengthens the
hybridization, even extending it to other (longitudinal) bands. Figure and caption
adapted from [122] under (CC BY 4.0), published by Adv. Mat. 2023.
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There, the line becomes valid when artificially considering a different periodicity
of Nxa = 3a along the x-direction. The edge between the red and green subsurfaces
is back-folded to kx = 0 and the dashed lines (i.e. bands) simply overlap. In other
words, the first Brillouin zone shrinks along kx. So far, no coupling between the
bands is introduced, since merely a different representation was chosen and no
alteration to the structure is performed10. Up to this point, the structure remains
identical to Figure 6.7(a).

Actual back-folding and hybridization of the bands (dashed lines at kx = 0)
is realized with an alteration to the structure. In this case, by introduction of
a supercell with period Nxa along the x-direction. This is done physically by
filling voids in the material, as shown in Figure 6.7(b). Coupling of the previously
overlapping bands ensues11. Initially, the hybridization is weak, which can be
inferred from the small gap between the two red bands shown in Figure 6.8(b).
However, a roton-like dispersion of the lowest band can already be recognized.
Two local extrema connected by a region of negative group-velocity dω/ dky < 0
are visible. The minimum at ky = 2π/(Nxa) is directly related to the back-folded
soft modes of the Monomode metamaterial.

In a follow-up step, the boundary condition along the x-direction is significantly
altered. The material is dissected every Nx = 3 unit cells into an array of identical
beams, depicted in Figure 6.7(c). Since the beams are identical, their respective
elastic-wave dispersions are degenerate. Thus, for the following discussion, it
is sufficient to only discuss a single beam. As a consequence the dissection, the
coupling between the bands dramatically strengthens. Hybridization even extends
to initially longitudinal modes, which is evident from Figure 6.8(c). Not only the
lowest red band shows a roton-like behavior, but also the lowest grey band as well
which corresponds to longitudinal modes. The reason for this behavior becomes
clear when observing the individual mode-shapes, i.e. the displacement field of
the modes (similar to Section 5.3.2).

For a Monomode bulk, the longitudinal modes feature a displacement field
u(r, t) with mostly parallel orientation to the wave vector k. For laterally finite
samples, such as beams, the orientation of the displacement field changes signifi-
cantly for those modes. Now, large displacement-vector components orthogonal
to k arise, which are generally considered for transverse modes. Thus, the orig-
inally longitudinal modes are no longer pure in the sense of their polarization,
suggesting a strong admixture with transverse modes. Accordingly, they should
be considered longitudinal-like, and they become subject to the same back-folding
and hybridization mechanism.

10 Inherently, choosing different unit-cell sizes without altering the structure leaves the underlying
physics unchanged.

11 Similar to the admixture of negative group-velocity behavior of chiral optical modes into acoustic
modes (Section 5.3.2 and [27]), the negative group-velocity property of the soft modes is admixed
into the original band, giving rise to a roton-like dispersion of the lowest band.
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In conclusion, the exact shape of the bands depends on only two parameters,
which in turn are important for the intended tailoring of the band structure. The
first parameter d directly influences the Monomode character of the metamaterial
and thus the "depth" of the valley from Figure 6.8(a). Consequently, d also
influences the "depth" of the roton-like minimum in the dispersion bands, moving
the minimum closer to zero frequency for d → 0. The second parameter is the
number of unit cells Nx enclosed in a single supercell. Lowering or increasing
Nx gives rise to fewer or additional local extrema in the bands, respectively.
In [122], computed band-structure results for Nx = 2 and Nx = 4 are included,
supplementing Figure 6.8. In the experiments, I only investigated samples with
Nx = 2, 3. Fabricating samples with Nx = 4 is straightforward. However, a larger
number of unit cells would be required to yield sufficient k-space resolution to
resolve the additionally occurring local extrema.

Remark on nonlocality and altered periodicty

The introduction of the supercell with Nxa = 3a may bring to mind the beyond-
nearest-neighbor coupling from Section 5.2, where also an additional periodicity
of 3a was introduced. However, there are noteworthy differences.

In the nonlocal approach, this periodicity was introduced along the parallel
and not the orthogonal propagation direction of the excited elastic waves with
wavevector k. However, the introduction of the beyond-nearest-neighbor coupling
did not alter the underlying periodicity along k, which remained strictly a [26].

For the Monomode metamaterial, introduction of the supercell by filling voids
every Nx = 2 or Nx = 3 unit cells, creates a new periodicity orthogonal to k (i.e.
along the x-direction) with 3a. As a consequence of this distinctness, the effects
on the dispersion bands were also arguably conceptually different between the
two approaches.

6.3.2 The Fabricated Metamaterial Samples

The geometry files for fabrication were generated in COMSOL Multiphysics by
Yi Chen and myself. Subsequently, I took care of optimizing the writing strategy.
All samples fabricated for the experiments featured a common in-plane lattice
constant of a = 300 µm, out-of-plane extrusion length of az = 600 µm and rhombus
diameter D = 148.5 µm. Furthermore, common numbers of unit cells along y-
direction, Ny = 40 and z-direction Nz = 1 were chosen. Only the two important
parameters Nx and d were varied, giving rise to different sample generations12.

12 The radius r of the connecting circles (cylinders) is intrinsically linked to d and thus cannot be
independently modified.
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Wide-field optical micrographs(a) Photographs(b)
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Figure 6.9: Showcase of the fabricated Monomode metamaterial. (a) Wide-field
optical micrographs offering different views on several sample features. To the left,
a sample comprised of Ny = 40 layers along the beam y-axis and Nx = 2 unit cells
along the x-axis is shown. The bottom plate of the sample can be seen close to the
tripod. On the right column, several close-ups are presented. On the top (middle),
the connection of a beam with Nx = 2 (Nx = 3) to its bottom plate is magnified.
This wedge-shaped transition region is deliberately designed to efficiently couple the
mechanical excitation into the modes showing roton-like dispersion. On the sides of
the beam, the added mass introducing the supercell can be seen, also. On the bottom,
a single unit cell is displayed. The cross-shaped markers in the rhomboids, and the
circular markers in the rhomboid-connecting cylinders are visible. In each unit cell
along the beam axis, one such marker was tracked to sample the displacement field
u(r, t). Regions of interest placed on markers are highlighted by red squares. (b)
Samples with Nx = 2 and Nx = 3 glued onto a piezoelectric transducer and mounted
in the setup for elastic-wave tracking. The transducer axis is highlighted (magenta).
Figure and caption adapted from [122] under (CC BY 4.0), published by Adv. Mat.
2023.
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A showcase of fabricated metamaterial beams is given in Figure 6.9. To confirm
consistency in d between simulated geometry and experiment, the value of d
was measured using optical wide-field microscope (Smartzoom 5, Zeiss) or the
experimental setups confocal-imaging branch with its calibrated field of view.
The samples were once again printed onto a bottom plate. The transition region
between bottom plate and the lowest layers of the metamaterial samples were
tailored specifically. Filling several voids implements a wedge-shape. which
ensures coupling of the mechanical excitation into the desired modes with roton-
like dispersion. On each rhombus, 2× 2 cross-shaped markers are implemented
as shallow intrusions of roughly 20 µm into the polymer. In the center of the
cylinders, round markers were implemented with the same intrusion depth. Those
markers create additional contrast for displacement tracking with DIC analysis.

The samples were printed in similar fashion as the chiral metamaterial from
Section 5.3, albeit with much simpler printing strategy. Their beam axis was
oriented parallel to the substrate, however, no sacrificial layer was required due to
the simplicity and rigidity of the Monomode material. All sample variations (with
respect to d and Nx) were fabricated with a hatching distance of dhatch = 500 nm,
and slicing distance of dslice = 1.5 µm. The focus velocity (scan speed) was set to
0.140 m s−1. For the samples with d = 16.4 µm and d = 45.2 µm a laser power of
50 mW was used. The latter was measured at the entrance pupil of the objective
lens. To achieve the smaller value of d = 9.3 µm, the laser power was reduced to
20 mW. Again, a bottom plate was included at one end of each sample to facilitate
sample manipulation. The plate was printed with the same parameters as the
respective sample itself.

For development, the samples were submerged for 45 min in PGMEA and 5 min
in acetone before air-drying under ambient laboratory conditions. The markers
were implemented as intrusions on the sample side facing the substrate. Therefore,
it was necessary to detach the sample from the substrate while submerged in
PGMEA. Otherwise, unpolymerized photoresist could remain in the intrusions
rendering the markers useless. As usual, more details on writing parameters and
printing strategy can be inferred from the machine code and job files published in
the corresponding repository of [122].

118

https://doi.org/10.35097/1754


6 .3 roton-like dispersion in monomode-metamaterial beams

6.3.3 Band-Structure Measurement

The experiments to extract the band structure for elastic waves from the displace-
ment field u(r, t) = (ux(r, t), uy(r, t), uz(r, t))T were conducted as described in
Section 4.313. The samples were mounted with their beam axis parallel to the
field of view of the confocal-imaging branch, enabling a side-view showing the
markers, cf. Figure 6.9(b). In this orientation, ux and uy were determined with DIC
analysis from confocal image data, and uz using the laser-Doppler vibrometry.

The displacement field was sampled at 41 ROI, the first of which was posi-
tioned at a cross-shaped marker on the bottom plate to survey the displacement
excitation. The remaining 40 ROI were positioned onto either cross-shaped or
round cylindrical markers, each on a separate unit cell spaced by a, cf. red boxes
in Figure 6.9(a). In principle, it does not matter if cross-shaped or cylindrical
markers are selected, as long as equivalent markers are used for each experiment.
Depending on the shape of the amplitude envelope of a mode, different types
of markers have different displacement amplitudes and therefore my vary the
signal to noise in the displacement measurement. Extraction of the displacement
vector component amplitude distribution (amplitude envelope) of the ensuing 3D
standing-wave pattern was performed with Fourier analysis of the time-resolved
raw displacement data. The covered frequency range was 10 kHz to 600 kHz in
increments of 5 kHz, covering the frequency range of the back-folded and hy-
bridized bands. Fourier transform of the amplitude envelopes with respect to
real-space reveals the desired band structure.

A total of six sample generations were investigated. Three different choices
for d were realized, both with Nx = 2 or Nx = 3 in order to investigate the
dependence of the band structure on those parameters independently. For the
sake of brevity, I focus on the most important findings and results. The complete
dataset can be found in [122] and its supporting information. Results for samples
with d = 16.4 µm and Nx = 2 as well as Nx = 3 are depicted in Figure 6.10.

In both cases, the roton-like bands emerge in the dispersion relation derived
from both ux(r, t) and uy(r, t) respectively. At frequencies above 420 kHz, optical
modes emerge which are in good agreement with theory predictions (grey lines).
As mentioned above, this is due to the fact that the finite lateral extend of the beam
causes both longitudinal and transverse modes to feature significant displacement
contributions along x and y. The exception being the modes of the ordinary
flexural band of a beam, the displacement field of which is oriented along z. Hence,
those modes only exhibit significant displacements in uz(r, t). Consequently, the
modes are only revealed in the right-most panels of Figure 6.10.

13 In a similar manor as for the nonlocal (Section 5.2) and chiral (Section 5.3) metamaterial beams.
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Figure 6.10: Dispersion-relation-measurement results on Monomode-beam samples.
The critical parameter of the structure is d = 16.4 µm. As in the previous Chapter,
the modulus of the complex response function |Ã(ω, ky)| is plotted in false-color
versus wavenumber ky and frequency ω/(2π). Solid white lines represent the
computed three lowest bands for an infinite beam (Ny = ∞). (a) Results for a sample
with Nx = 2 cells along x. From left to right, the results for |Ã(ω, ky)| derived
from the respective displacement-vector components (ux, uy and uz) via 2D Fourier
transformation are depicted. In the first two panels, distinct regions of negative slope
are achieved. Thus, the roton-like bands are clearly visible and agree well with theory.
The third panel only shows a single band. The latter corresponds to modes polarized
along the z-axis, which follow the dispersion expected for a simple beam. Modes
with roton-like dispersion remain absent, since they do not feature displacement-field
components along z. (b) In analogy to (a) but for a larger supercell with Nxa = 3a.
Additional local extrema emerge, as it is expected for the now even smaller first
Brillouin zone as compared to Nxa = 2a in (a). Figure and caption adapted from
[122] under (CC BY 4.0), published by Adv. Mat. 2023.
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Figure 6.11: Influence of the critical parameter on the dispersion bands. (a) Identical
data to Figure 6.10 but in a reduced frequency range to better visualize the local
band minimum. (b) Data in the same frequency range but for a sample with reduced
critical parameter from d = 16.4 µm to d = 9.3 µm. Induced by the 32 % reduction
in d, the local minimum shifts in frequency by 43 % from 110 kHz to 75 kHz. This
behavior agrees nicely with theory (white lines), as a smaller value of d makes the
"soft" mode even "softer" and lowers the roton-like minimum. Consequently, these
results demonstrate how the dispersion can be tailored directly by controlling the
geometric parameter d. Figure and caption adapted from [122] under (CC BY 4.0),
published by Adv. Mat. 2023.
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Figure 6.12: Creating saddle points in the dispersion relation. The data is depicted
in the same false-color manner as in Figure 6.10 and Figure 6.11. Formation of
saddle points was achieved for beam samples with super lattice size (a) Nxa = 2a
and (b) Nxa = 3a, respectively. The value of the critical parameter was increased to
d = 45.2 µm. These experiments further emphasize how by increasing the diameter
d, adjacent local extrema can be merged into a saddle point, controlling the number
of points with zero group-velocity through different means than changing Nx. Figure
and caption adapted from [122] under (CC BY 4.0), published by Adv. Mat. 2023.
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Eminent agreement between calculations for infinite beams (Ny = ∞) with the
experimental data for finite beams (Ny = 40) is found. As an intermediary result,
Figure 6.10 shows how the number of local extrema can be controlled by adjusting
Nx. Subsequently, those proof-of-principle experiments are extended by studying
the influence of smaller and larger d, respectively.

As aforementioned, reducing the value of the critical parameter should further
"soften" the already "soft" modes in the Monomode metamaterial. Consequently,
the roton-like minimum is expected to shift to lower frequencies. Experimental
results confirming this hypothesis are depicted in Figure 6.11. A comparison is
made between samples with Nx = 2 and d = 16.4 µm versus d = 9.3 µm. In the
depicted reduced frequency range it can be seen how the roton-like minimum
indeed shifts down in frequency almost proportionally to the reduction in d.

It is natural to also go towards larger values of d. Experiments were conducted
for samples with Nx = 2 and Nx = 3 with d = 45.2 µm. The results are given in
Figure 6.12. The value of d was deliberatly chosen to merge the local maxima and
minima together in frequency and wavenumber, thus creating a saddle point. In
a way, this shows that the number of local extrema is not only controllable by
the value of Nx, but also by the value of d. Logically, increasing d diminishes the
Monomode properties of the metamaterial. Going to even larger values of d is not
interesting as little further insight is expected. For large enough d, the structure
will turn into a simple un-perforated plate or slab and the dispersion transitions
into the one expected for a solid plate or slab.

Summary

Within the project I reiterated above, we realized another, namely a third mech-
anism to obtain roton-like dispersion relation for elastic waves in a microscale
metamaterial. The Monomode property of an extremal Cauchy-elastic material
was explicitly used to tailor the lowest bands for elastic waves. A vast reduction
in complexity of the underlying metamaterial geometry was demonstrated. The
tailoring of the dispersion relation is achieved by controlling only two parameters.
The benefits of this may be twofold. On one hand, this may ease the access of new
research groups to the field of dispersion relation engineering of the lowest bands.
On the other hand, since the geometry is in principle a perforated plate, other
more scalable fabrication techniques may be employed. Thus, larger quantities
can be fabricated, making the material available for potential applications.

Furthermore, this mechanism to obtain roton-like dispersion through back-
folding might nourish the endeavor to obtain equivalent results in the fields of
acoustics and optics - similar to the case for the nonlocal approach. Additionally,
these results may provide an incentive to further consider the dynamic properties
of extremal Cauchy-elastic materials in the context of dispersion engineering.
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7
Chapter 7

Summary, Conclusion and

Outlook

Within this thesis, I have developed a procedure for the time-resolved tracking
of elastic waves by their displacement field in three-dimensions with nanometer-
displacement resolution at ultrasound frequencies. In contrast to previous work
on the matter by others, no stroboscopic illumination or high-speed camera was
required. Instead, the high analog bandwidth of an avalanche photodiode detec-
tor was used in conjunction with synchronization between data acquisition and
elastic-wave excitation within a self-build confocal laser-scanning back-scattering
microscope. Based on this synchronization, in-plane displacement information
could be extracted from images with the help of well-established digital-image
cross-correlation analysis. The so-far missing out-of-plane displacement informa-
tion was supplemented using laser-Doppler vibrometry which was seamlessly
integrated into the confocal microscope.

Expanding the displacement measurement over several layers of metamaterial-
beam samples allowed to reconstruct the elastic-wave dispersion for waves of
arbitrary polarization, thereby fulfilling both core goals that I set out to achieve
within my thesis. The measurement procedure as well as the experimental setup
were validated in experimental projects by myself and my master student on
four different types of microscale mechanical metamaterials, leading to several
publications in high-impact scientific journals and conference contributions of
myself and my colleagues.

In three out of the four projects, a roton-like dispersion for elastic waves was
engineered by my colleagues, and subsequently observed in experiments which
I either conducted myself or supervised. This interesting dispersion relation,
resembling the roton dispersion of liquid helium, features a wide range of negative
group-velocity in the lowest phonon bands. Thus, giving rise to backward-waves
and equivalently a negative index of refraction, conceptually at zero loss.
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7 summary, conclusion and outlook

While the outcome of the three projects may seem very similar, three vastly
different underlying mechanisms were used to achieve such dispersion. Namely,
nonlocality, extreme chiral coupling, and band back-folding of soft modes within
an extremal Cauchy-elastic Monomode metamaterial.

With the three-dimensional displacement measurement capability of the setup,
a more complete picture of the metamaterial eigenmodes i.e. elastic-wave dis-
placement fields was made accessible and thus allowed to observe elastic waves of
truly arbitrary (displacement) polarization. Especially this aspect was picked up
by myself to demonstrate and characterize a microscale broadband polarizer for
transverse elastic waves. The corresponding metamaterial was based on another
extremal Cauchy-elastic material, namely a Tetramode metamaterial. Therefore
the setup also contributed to the research on this so-far sparsely experimentally
investigated material class. In the following, I supplement a brief summary of the
key points from the individual Chapters of my work.

In Chapter 2, an introduction into linear Cauchy-elasticity was given. The focus
was put on the generalized Hooke’s law in 3D as the constitutive law between
stresses and strains. As the core of this thesis revolves around elasto-dynamic
phenomena, a summary on the equations of motions was included, a solution
of which are elastic waves. Their dispersion was derived for simple masses-and-
spring systems such as linear chains to form a knowledge base for the content
of the following Chapters. The Chapter concluded by summarizing 3D laser
microprinting as a means to fabricate the microscale polymer-based mechanical
metamaterials. The intend of this Chapter was to provide the necessary fundamen-
tals from continuum mechanics, such that novices in the field of mechanics may
follow the experimental results on mechanical metamaterials presented within
this work.

Following this reasoning in Chapter 3, the necessary background information
on the optical metrology techniques for displacement measurement were given.
The principle of confocal microscopy and its resolution limit were summarized.
Digital-image cross-correlation analysis was introduced as a method to extract
in-plane displacements of magnitude well below the optical resolution limit of
the previously discussed microscope. Laser-Doppler vibrometry was explained,
starting with the Doppler effect itself and leading towards the exploitation of this
effect in an interferometer to obtain time-resolved out-of-plane displacement data.
The resolution limit of a vibrometry system was discussed and it was shown that
the technology is suitable for (sub)nanometer displacement measurements, even
for low-reflectivity samples such as polymer-based metamaterials.

126



In Chapter 4, the commissioning of the experimental setup was reported and its
displacement measurement capabilities demonstrated. The commissioning process
was divided into two parts. The first part focused on the confocal-imaging branch
and the second part on the seamless addition of the laser-Doppler-vibrometry
branch. Two key aspects were discussed which are crucial to obtain correct abso-
lute displacement measurements in three dimensions. The first aspect addresses a
potential cross-talk between out-of-plane and in-plane displacements for too-fine
axial sectioning of the confocal-imaging branch. It was stated, that the axial
sectioning should be chosen orders of magnitudes larger (∝ µm) than the expected
displacement magnitudes (∝ nm). Furthermore, flat surfaces oriented perpen-
dicular to the optical axis should be selected for measurement. Additionally, a
calibration procedure was described to remove the effect of the Gouy-phase shift
on the out-of-plane displacement detected by vibrometry-integrated microscopes.
Following these preparations, an example of the displacement-measurement ca-
pabilities was given for a single location. Therein, the data acquisition for the
confocal imaging was described, in order to measure displacements correctly in
the ultrasound frequency range without the need for high frame-rates or strobo-
scopic illumination. The Chapter closed with a demonstration of the procedure
used in the following Chapters to obtain the dispersion relation i.e. band structure
for elastic waves in a metamaterial-beam sample.

In Chapter 5, the first two projects revolving around such dispersion-relation
measurements were reported. Each report was preceded by a short summary
on the underlying respective theory. Two types of mechanical metamaterials
were investigated, which use different mechanisms to obtain the aforementioned
interesting roton-like dispersion relation for elastic waves. With the setup, the
displacement fields of such waves, including the peculiar backward-waves, were
observed and the underlying dispersion relations were extracted. The first meta-
material featured tetragonal symmetry and incorporated nonlocal interaction for
waves propagation along a single spatial direction. The corresponding results
sparked multiple experimental and theoretical follow-up projects in acoustics and
electrodynamics, partly expanding the effect to higher dimensions of wave prop-
agation. The second material followed the suggestion to obtain such dispersion
through other means, namely through chirality. Owing to the chirality of the
unit cell, the eigenmodes featured displacements along all three spatial directions.
Thus, vibrometry was the ideal addition to the setup to observe and extract the
dispersion from all three displacement-vector components respectively in one
experiment, without the need for reorienting the sample.
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7 summary, conclusion and outlook

Chapter 6 opened with the definition and properties of extremal Cauchy-elastic
materials, as two types of such materials were subjected to experiments. Namely,
a Tetramode metamaterial with four soft modes (small eigenvalues in the stiffness
matrix), and a Monomode metamaterial with one soft mode. The Tetramode
metamaterial was shown to be applicable as a compact and broadband transverse-
wave polarizer. Thereby, supplementing previous work by others in the field on
Pentamode metamaterials which in turn acted as a longitudinal-wave polarizer. In
this thesis, a polarizer performance on-par with commercial transverse (wire-grid)
polarizers in optics was achieved. For those experiments, the three-dimensional
displacement tracking of the setup again proofed exceptionally useful, since the
displacement-field vector of arbitrarily polarized elastic waves could be tracked,
without the need to rearrange wave-excitation and sample with respect to each
other. With the Monomode metamaterial, a third mechanisms to obtain a roton-
like dispersion in metamaterial beams was observed. Herein, the soft mode was
combined with a back-folding and hybridization strategy of the lowest dispersion
bands. In this project, the setup was not only used to reconstruct the dispersion
for a single set of geometric parameters, but also to conduct a parametric study
on how alterations of the sample geometry influenced and modulated the low-
est dispersion bands in their number of local maxima and frequency range for
backward-waves. Thus, proving to be a valuable tool for subsequent work on
dispersion engineering in the field of mechanical metamaterials.
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Outlook

In terms of metamaterial research, further enhancement of the setup can be
envisioned. For example, the system can be easily expanded into a scanning
laser-Doppler vibrometer. Thereby, out-of plane displacement information from
different regions in the current field of view become obtainable. Furthermore,
multi-axis piezoelectric transducers could be implemented, enabling access to
additional excitation conditions, or at least enhanced control over the latter. By
doing so, I assume that the mechanical excitation could be chosen to efficiently
couple into desired eigenmodes of the metamaterial one wants to observe. Conse-
quently, it may be possible to avoid the need to engineer a dedicated transition
region within the samples and still excite the favoured eigenmodes efficiently.

Technology-wise, it is apparent that the presented setup features a significantly
increased complexity compared to a wide-field imaging approach with strobo-
scopic illumination. However, compared to wide-field systems, integration of a
vibrometry branch along the lines of C. Rembe et al. [100] is straightforward and
therefore the extension to the three-dimensional displacement measurement is
arguably more convenient. Consequently, I could imagine that the combination
of digital-image cross-correlation analysis with laser-Doppler vibrometry in a
microscopy system may find more widespread use, especially for the investigation
of microscale mechanical metamaterials. For those metamaterials, to the best of my
knowledge, the choice of commercial devices capable of 3D displacement tracking
at ultrasound frequencies is quite limited. For macroscale samples, commercially
available 3D laser-Doppler vibrometers exist [73]. However as mentioned, those
systems operate on the macroscale and are orders of magnitude more expensive.
For microscale samples, one possibility may be stroboscopic video microscopes
using interferometric techniques with elaborate data analysis for 3D-displacement
measurements, which was shown as proof-of-concept in 2002 [128]. Alterna-
tively, commercial LDV microscopy systems exist, which feature an integrated
stroboscopic-video-microscopy mode [73]. At the time of writing, the lateral
resolution of such devices remains on the order of 5 nm [73] and thus do not seem
to exploit the full potential of the technique, which may be subject to change in
the future [129]. In principle it has also been shown by C. Rembe et al. in 2014

[130] that microscopy based 3D laser-Doppler systems are also possible. However,
to my knowledge, no commercially available product has emerged so far along
those lines. The future will show, which of those technologies will become more
established as research and development progress.
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of the results.
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a supplementary derivations

A.1 Derivation of Symmetry of Stiffnes Tensor

Following [14], for a linear elastic material with stiffness tensor (matrix) C, sym-
metric small strain tensor ϵ and symmetric stress tensor σ, it can be shown that C
is also symmetric when inspecting the conservation of potential energy Upot:

Upot =
1
2

σϵ =
1
2
(Cϵ)ϵ =

1
2

Cϵ2, (A.1)

∂Upot

∂ϵ
=

∂

∂ϵ

(
1
2

Cϵ2
)
= Cϵ = σ, ⇒ σij =

∂Upot

∂ϵij
, (A.2)

Cijkl =
∂σij

∂ϵkl
=

∂

∂ϵkl

(
∂Upot

∂ϵij

)
=

∂2Upot

∂ϵij∂ϵkl
=

∂2Upot

∂ϵkl∂ϵij
. (A.3)

Since Upot is continuous, the order of the derivation in the last term does not
matter. Thus, C is symmetric.

A.2 Derivation of LDV Detector Signal

Derivation is found in similar manner in chapter 2.1 and following of [82]. The
signal of the detector u(t) depends on the absolute square of the real summed
electric fields E1 and E2:

E1(t) = E1,0 cos(2π f1t + ϕ1),
E2(t) = E2,0 cos(2π f2t + ϕ2).

Therefore:

i(t) ∝ (E1,0 cos(2π f1t + ϕ1) + E2,0 cos(2π f2t + ϕ2))
2

= E2
1,0 cos2(2π f1 + ϕ1) + E2

2,0 cos2(2π f2 + ϕ2)

+ 2E1,0E2,0 cos(2π f1t + ϕ1) cos(2π f2t + ϕ2)

= E2
1,0 cos2(2π f1 + ϕ1) + E2

2,0 cos2(2π f2 + ϕ2)

+ E1,0E2,0 cos(2π( f1 + f2)t + ϕ1 + ϕ2)

+ E1,0E2,0 cos(2π( f1 − f2)t + ϕ1 − ϕ2)

= Ē + E1,0E2,0 cos(2π( f1 − f2)t + ϕ1 − ϕ2).

A photodetector can neither respond to the high optical frequencies f1 and f2 nor
their sum f1 + f2. The resulting output will be an averaged and constant (DC)
signal Ē. A similar consideration can be made for the complex fields described by
exponentials, however, the result remains unchanged when taking the absolute
square of the resulting field. To arrive at the result above, the Werner trigonometric
formula is used:

2 cos α cos β = cos(α + β) + cos(α− β).
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b components and calibrations of the experimental setup

Table B.1: Component list of the self-built experimental setup with the confocal imag-
ing branch only. The components are broken down according to their designations
used in the schematics (Figure 4.1, Figure 4.7) and text with their corresponding
models and manufacturers. Reproduced and adapted from [94] under CC BY 4.0),
published by Science Advances 2021.

Component Designation Model

Laser - LCX-532S-200, Oxxius
Optical isolator Faraday isolator LINOS FI-530-2SV,

QIOPTIQ
Halve-wave plate R1 λ/2 532 nm low, B. Halle
Halve-wave plate R2 WPMQ10M-532, Thorlabs
Clean-up filter Filter FLH532-10, Thorlabs
Polarizing beam-splitter cube PBS PTW15, B. Halle
Thin-film beam splitter TFBS BSW10, Thorlabs
Galvanometer scanner - intelliSCAN se 10, Scanlab
Scan lens SC 2x AC508-250-A,

Thorlabs
Tube lens TL AC508-200-A-ML,

Thorlabs
Objective lens OL 50x CFI60 TU Plan

Epi ELWD, Nikon
Detection lense DL1 AC254-040-A-ML,

Thorlabs
Multimode fiber - M122L01 200µm NA 0.22,

Thorlabs
Avalanche photodiode module APD1 C10508-01SPL,

Hamamatsu
xyz-Translation stage - 3x Q-545.140,

Physik Instrumente
Piezoelectric transducer - PL055.31 PICMA®,

Physik Instrumente
Drive signal amplifier Amplifier A 1230-01 linear amplifier,

Hubert
Vibrometry signal amplifier RF-amplifier HVA-200M-40-B, Femto
Function generator - 33612A, Keysight
Data acquisition unit DAQ1 ATS9130, AlazarTech
Scanner control card RTC6 RTC6, Scanlab

138

https://creativecommons.org/licenses/by/4.0/


Table B.2: Extension to Table B.1 of the component list for the self-built experimental
setup. The components added (or in case of the objective lens, replaced) for the
vibrometry branch (cf. Figure 4.7) are broken down in the same manner. Reproduced
and adapted from [92] under (CC BY 4.0), published by Advanced Materials 2023.

Component Designation Model

Beam splitter cube BSC1 BS013, Thorlabs
Beam splitter cube BSC2 BS028, Thorlabs
Objective lens OL Plan L 50x/0.60,

Leitz Wetzlar
Acousto-optic modulator AOM MT80-B30A1,5-VIS,

AA Opto-Electronic
Detection lense DL2 AC254-040-A-ML,

Thorlabs
Multimode fiber - M122L01 200µm NA 0.22,

Thorlabs
Avalanche photodiode module APD2 C12702-11, Hamamatsu
Vibrometry signal amplifier RF-amplifier HVA-200M-40-B, Femto
Data acquisition unit DAQ2 M4i4450-x8,

Spectrum Instrumentation

Table B.3: Calibration factors for different objective lenses. The second row contains
the conversion factors of 1 µm into bit-levels of the 20-bit position encoder of the
RTC6 galvanometer scanner real-time controller card. The second row contains the
displacement amplitude correction factors, with which a displacement amplitude
has to be multiplied to obtain a correct absolute displacement value.

Objective lens Wetzlar Wetzlar Wetzlar Nikon CFI60 TU
PL Plan L Plan L Plan Epi ELWD

8x/0.18 25x/0.4 50x/0.6 50x/0.6

Conversion in µm−1
740 230 460 600

Amplitude Correction 1 0.95 1.02 1.90
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