Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 120 (2023) 601-606

www.elsevier.com/locate/procedia

56th CIRP Conference on Manufacturing Systems, CIRP CMS °23, South Africa

Modular Hardware/Software Architecture for Edge Units in Highly Flexible
Manufacturing Systems

Florian Schade®*, Marius Kreutzer®, Edgar Miihlbeier®, Eduard Gerlitz®, Philipp Gonnheimer®,
Jiirgen Fleischer®, Jiirgen Becker®*
“Institut fuer Technik der Informationsverarbeitung (ITIV), Karlsruhe Institute of Technology, Kaiserstrafle 12, 76131 Karlsruhe, Germany

bFZI Research Center for Information Technology, Haid-und-Neu-Str. 10-14, 76131 Karlsruhe, Germany
“wbk Institute of Production Science, Karlsruhe Institute of Technology, Kaiserstrafie 12, 76131 Karlsruhe, Germany

Abstract

With the increasing demand for individualized production and swift adaptability to changing market needs, new manufacturing system concepts
emerge. Aiming for high flexibility and scalability, they rely on universal reconfigurable machines that can be used in various production steps by
automatically changing tools and sensors. Consequently, the data processing infrastructure is required to support the frequent exchange of process-
specific software applications, ranging from control and monitoring tasks to complex sensor data processing. This can be a major challenge when
computation-intensive software is supported by hardware acceleration to achieve the desired performance or latency requirements. In this paper,
we present an edge unit architecture that allows for hosting such applications while meeting the needs for modularity and reconfigurability. It
builds upon a hypervisor to partition fixed processing resources among the applications. We present a mechanism that extends this partitioning
to field-programmable gate arrays (FPGA) by using dynamic partial reconfiguration. This provides the option to deploy application-specific
hardware accelerators with computation-intensive applications while maintaining modularity and on-line reconfigurability. We conclude the paper

by pointing out the potential of the proposed architecture based on a use case for automated disassembly in a reconfigurable robotic cell.

© 2023 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the S6th CIRP International Conference on Manufacturing Systems 2023

Keywords: Flexible manufacturing system (FMS); Reconfiguration; Distributed control

1. Introduction

Facing an increasing demand for individualized production
and mass customization, future production systems need to ful-
fill high flexibility and scalability requirements while main-
taining high productivity and efficiency. Since production line
planning and deployment are time- and cost-intensive pro-
cesses, rigid processing systems become increasingly unattrac-
tive where volatile market needs need to be met. Instead, pro-
duction systems need to be designed for different product vari-
ants or even different product families. The Wertstromkine-
matik (WSK, Value Stream Kinematics) concept [1] aims to
solve this issue by implementing a robot-based production sys-
tem concept that avoids the use of specialized machines by

* Corresponding author. Tel.: +49-721-608-41972. E-mail address:
florian.schade @kit.edu

2212-8271 © 2023 The Authors. Published by Elsevier B.V.

covering all production steps using unified, flexible, robot-like
kinematics. Using exchangeable end effectors comprising the
tools and sensors needed for production, monitoring, and qual-
ity control, these robots can implement various handling, pro-
cessing, and sensing tasks. Where complex manufacturing pro-
cesses require process forces and accuracy exceeding the capa-
bilities of today’s industrial robots, the WSK concept envisions
the coupling of multiple kinematics to increase the stiffness.
Frequent automatic reconfiguration is a central characteris-
tic of a WSK production system. This includes coupling and
decoupling of robots as well as automatic changeover between
tools by changing end effectors. This flexibility needs to be
matched by the control and data processing architecture of the
production system. Control and data processing units need to
be automatically reconfigurable to match the data processing
needs of the processes performed in the production system. De-
pending on the nature of these processes, the corresponding
data processing poses different requirements towards the data
processing infrastructure. While process monitoring tasks re-

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-ne-nd/4.0)
Peer-review under responsibility of the scientific committee of the 56th CIRP International Conference on Manufacturing Systems 2023

10.1016/j.procir.2023.09.045



602 Florian Schade et al. / Procedia CIRP 120 (2023) 601-606

quire low-latency data processing, predictive maintenance tasks
have comparably relaxed timing constraints. Similarly, process-
ing complex sensor data, such as camera feeds, can be computa-
tionally expensive, while object position checking using touch
probes requires little computing power. Where computation-
ally expensive data processing is subject to low latency require-
ments, hardware-accelerated data processing may be required.
This includes the use of graphics processing units (GPU) or
application-specific accelerators.

To facilitate the efficient execution of data processing tasks
with varying computing requirements in highly-flexible pro-
duction systems, we present an edge unit architecture concept
that allows for the deployment of data processing applications
in combination with highly-customized, application-specific
hardware accelerators, while maintaining the required modu-
larity and reconfigurability. It supports both CPU-triggered ac-
celerators as well as active accelerator components that can be
used to implement sensor readout and actuator control without
CPU intervention. The edge unit software bases on a hypervisor
to partition processing resources among the applications, which
we complement by a mechanism that allows for the concurrent
deployment of multiple application-specific hardware acceler-
ators to a field-programmable gate array (FPGA). We employ
the dynamic partial reconfiguration feature of today’s FPGAs
in combination with a partitioning shell to enable on-line re-
configuration of hardware accelerators while enforcing access
constraints to processing system resources. We conclude the pa-
per with a discussion of the potential of the proposed architec-
ture with respect to a use case for automated disassembly in a
reconfigurable robotic cell.

2. Related work

Hypervisors are a widely-used technology to isolate applica-
tions and implement resource sharing in processing platforms.
Regarding edge units, they can be used to co-host applications
with varying timing requirements, e.g., to run PLC software in
parallel to less time-critical software on a shared platform [2].

The integration of FPGA-based accelerators with hypervi-
sors has been subject to extensive research in the recent years
[3, 4, 5, 6]. While a main focus has been on virtualization in
datacenters, their use in the context of embedded systems has
gained more attention lately [7]. In the following, we will focus
on System-on-Chip-based hardware platforms that tightly inte-
grate CPUs and FPGA units with an emphasis on approaches
that allow for accelerators that actively initiate accesses to the
system memory (direct memory access, DMA). They allow
for high flexibility with respect to accelerator functionality and
high performance when processing complex data structures.

Aiming at multiplexing FPGA hardware in virtualized cloud
environments, Ma et al. present the Optimus hypervisor [8]. Ac-
cording to the authors, it is the first hypervisor to support scal-
able shared-memory FPGA virtualization, which is the basis for
active accelerator components. The hypervisor provides both
spatial FPGA multiplexing, i.e., partitioning of the FPGA into
multiple accelerators, and temporal FPGA multiplexing, i.e.,

sequential sharing of one accelerator between multiple hyper-
visor guest applications. To ensure that each accelerator faces
the same memory layout as the corresponding hypervisor guest
software, it uses the hardware platform’s input/output memory
management unit (IOMMU) using page table slicing. Optimus
does not use partial FPGA reconfiguration and thus requires a
reset of all accelerators when one accelerator is replaced.

In contrast, the Ker-ONE hypervisor [9] makes use of dy-
namic partial reconfiguration to load accelerator designs onto
the FPGA in a way that is transparent to the application. It
thereby provides both spatial and temporal FPGA multiplexing.
While the authors briefly mention that accelerators can be pro-
grammed to perform DMA transfers, it does not become clear
to which extent memory isolation and a coherent memory lay-
out between partition and accelerator is achieved.

In contrast to both Optimus and KER-ONE, our proposed ar-
chitecture avoids temporal FPGA multiplexing. This simplifies
the accelerator interface and allows for continuous operation of
the accelerator even when the hypervisor partition is not sched-
uled, thus facilitating accelerator-based low-latency control im-
plementations. To ensure both memory isolation and a unified
memory layout between accelerator and guest application, our
approach utilizes the hardware platform’s IOMMU. In contrast
to Optimus, our partitioning shell enables the use of different
IOMMU address spaces instead of page table slicing, thus sim-
plifying memory management. Finally, our approach employs
dynamic partial reconfiguration to achieve the modularity and
reconfigurability required in a flexible production environment.

3. Data processing in highly flexible processing systems

Flexible manufacturing system concepts, such as WSK, ex-
hibit several features to achieve efficient adaptability to chang-
ing product requirements. These include the use of universal
manufacturing machines, flexible machine positioning resulting
in a flexible layout, control devices that are not assigned to sin-
gle machines but can be dynamically assigned processing tasks
as required, and autonomous plant planning and management
systems. As in conventional production systems, various data
acquisition and processing tasks are present. These include pro-
cess monitoring, quality control, and data management tasks,
ranging from simple object detection checks to quality inspec-
tion and from simple data logging to data compression or holis-
tic digital representations of machines and products. Besides,
process and robot control tasks are present, which can be sub-
ject to stringent latency and safety requirements.

When such a processing system is reconfigured, the num-
ber of active kinematics, sensors, actuators, and peripheral de-
vices in the robot’s workspace may change. This affects the data
processing infrastructure, where communication network load,
data volumes to be processed, as well as the set of required data
processing applications change. This leads to the need for on-
line reconfiguration planning as well as a reconfigurable edge
and network infrastructure.

As part of the WSK research project, a prototype of such a
production system has been developed and built. In the follow-



Florian Schade et al. / Procedia CIRP 120 (2023) 601-606 603

Robot with tool changing
system for docking of
different gripper

Smart part
gripper
5 Battery module
2 gripper

HSK tool
magazin

K]

Clamping system for
vertical battery
module clamping Robot with motor

spindle for separation

operations

Fig. 1. Flexible robot cell for battery module disassembly

ing, its use for the flexible disassembly of battery modules is
described as an exemplary use case to point out the impact on
data processing and the requirements towards the edge units.

Due to the high diversity of battery variants in the electric
vehicle market, a battery dismantling system that is not only
capable of handling various battery models but also adapts to
varying battery dimensions resulting from battery expansion is
needed. Such a system is currently being developed based on
the prototypical WSK production cell as illustrated in Figure 1.
The process chain for disassembly includes the following se-
quential steps: First, the battery is gripped by a robot and in-
serted it into a clamping system. Then, its exact topography is
determined using a 3D camera. Once the exact dimensions have
been determined and trajectories for dismantling have been
calculated, the welded connections of the battery housing are
loosened using a milling spindle. Then, the housing compo-
nents are removed using grippers. During the process, a thermo-
graphic camera continuously monitors the surface temperature
and sends an alarm signal in case of thermal runaway. These
process steps are executed by two robots using varying end ef-
fectors. The corresponding data processing tasks can be catego-
rized into subclasses depending on their requirements towards
the data processing infrastructure as listed in Table 1. Note that
disassembly planning and code generation is not considered as
they are performed on a dedicated computing unit.

Table 1. Operation classes and requirements for battery disassembly operations

Operation Exemplary  Real-time Data rate  Processing

class end effector  require- complexity
ments

Open-loop Pneumatic no low low

control gripper

Closed-loop  Milling yes low low

control spindle

Safety mon-  Thermal yes low/high low/high

itoring camera

Machine Vi- 3D camera no high high

sion

4. Reconfigurable edge unit architecture

To match the requirements of highly flexible production sys-
tems, the following main properties were considered during
edge architecture design.

Modularity. Since data processing tasks in production systems
vary greatly concerning computational effort and typically do
not require all resources offered by the edge unit, multiple ap-
plications shall be hosted in parallel on a single unit to make
efficient use of the unit’s processing resources. In the context of
the WSK concept, we expect one edge unit to implement data
processing functionality related to multiple robots. Since these
robots can be reconfigured independently, the corresponding
applications need to be handled in a modular way. Edge units
have to support adding and removing applications at runtime
without affecting other applications running in parallel.

Resource management and isolation. To ensure that critical ap-
plications can meet their deadlines, resource starvation needs to
be avoided. Therefore, the edge platform needs to support ex-
plicit assignment of processing resources to applications and
needs to enforce resource usage limits among applications, pre-
venting unintended interaction between applications. Resources
of interest include CPU processing time, memory, and access to
peripherals.

Support for flexible hardware acceleration. To allow for ef-
ficient and low-latency processing of computation-intensive
workloads, the edge platform shall support the integration of
hardware accelerators. To achieve functional flexibility and fu-
ture extensibility, the accelerator integration mechanism shall
allow for the integration of various accelerator designs. Specif-
ically, active accelerators shall be supported. Thus, the archi-
tecture shall allow for accelerators that initiate memory and
peripheral accesses to enable the implementation of control
tasks by directly interfacing peripherals or to simplify access-
ing complex data structures without further CPU interaction. At
the same time, memory isolation between different applications
must be upheld as well as modularity.

4.1. Edge unit architecture overview

To meet the requirements defined above, the proposed edge
architecture extends the partitioning concept implemented by
hypervisors to reconfigurable FPGA regions and thereby allows
for the deployment of application modules to partitions. An
application module comprises application software for deploy-
ment on the CPU and an optional hardware accelerator compo-
nent for deployment on the FPGA. As depicted in Figure 2, each
module is deployed to a separate partition that comprises both
the hypervisor-provided partition and a reconfigurable FPGA
region. A partition is mainly characterized by the processing
resources that are assigned to it. For the software component,
these resources include the number of CPU cores, the share of
CPU time on each core, as well as access to virtualized compo-
nents, such as virtual network interfaces. For accelerator com-
ponents, these resources include the FPGA region, i.e., a subset



604 Florian Schade et al. / Procedia CIRP 120 (2023) 601-606

CPU Partition 1 Partition 2

Reconfiguration

service Application / OS 1

Application / OS 2

Hypervisor

Memory &
Peripherals

FPGA

Accelerator 1 Accelerator 2

Partitioning shell

Fig. 2. Edge unit resource partitioning

of FPGA hardware resources that can be used to implement the
accelerator. Access to system memory and peripherals of the
hardware platform is controlled for both software and accelera-
tor components.

To implement this partitioning, a hypervisor is running on
the CPU. It realizes CPU scheduling as well as partition-
ing of memory resources, peripherals, and virtualized compo-
nents. Besides, it provides means for inter-partition communi-
cation. Using a hypervisor to implement partitioning leads to
high flexibility concerning the deployable software, since both
operating-system-level and application-level software can be
deployed. This can be helpful where latency-critical applica-
tions that are implemented based on real-time operating sys-
tems (RTOS) are to be deployed parallel to less time-critical
software that often profits from the rich functionality provided
by general-purpose operating system such as Linux.

To achieve the desired modularity with respect to accelerator
components, the hypervisor is complemented by a partitioning
shell. The partitioning shell is a static FPGA design that divides
the FPGA into multiple reconfigurable regions, into which ac-
celerator components can be deployed using dynamic partial
reconfiguration (DPR). This enables modular loading and un-
loading of accelerator components as application modules are
deployed and removed. Besides, the shell comprises static logic
that implements the accelerator interfaces and signal routing re-
quired for interaction between the software component and the
accelerator as well as the accelerator and system memory or
peripherals. To meet the resource management and isolation re-
quirements, the shell implements a mechanism that allows for
enforcing the same memory and peripheral access restrictions
for the accelerator as imposed by the hypervisor for the corre-
sponding software components. Moreover, this mechanism is
used to realize a homogeneous memory mapping for both soft-
ware and accelerator. This ensures that within a partition both
the software component and the accelerator component use the
same memory layout and are both subject to the memory access
permissions configured on the partition level. This hardware ac-
celerator integration is described in more detail in Section 4.2.

To allow plant management systems to trigger a reconfig-
uration of the edge unit, a reconfiguration service is imple-
mented as a privileged software component. It implements re-

source management by tracking the available resources on the
platform while executing reconfiguration commands triggering
the loading or unloading of single application modules. Upon a
load command it first checks resource availability and then ob-
tains the partition configuration, software image, and, if needed,
the accelerator bitstream for the requested reconfigurable region
from a central repository. It then deploys the accelerator to the
FPGA region and creates the hypervisor partition using the pro-
vided configuration. When unloading an application module, it
destroys the hypervisor partition and clears the reconfigurable
FPGA region to destroy the corresponding accelerator.

4.2. Hardware accelerator integration

This work targets System-on-Chip (SoC) components that
combine a hardwired processing system (PS) comprising a
CPU, memory, and peripherals with an FPGA as the underlying
hardware platform. These platforms allow for a tight integration
of software applications and accelerators by directly connecting
the FPGA to the PS memory infrastructure, interrupt lines, etc.
This allows for high-bandwidth data exchange and direct access
to the SoC’s peripherals and memory from both subsystems.

In the proposed architecture, hardware accelerators are de-
ployed to reconfigurable regions of the FPGA that are defined
by the partitioning shell. Prioritizing flexibility, accelerator de-
velopers can make direct use of the FPGA fabric within a re-
configurable region without being restricted to a specific over-
lay architecture. The accelerators, however, need to adhere to
a defined interface at the border of the corresponding recon-
figurable region. To allow for various accelerators, this inter-
face comprises both a slave port and a master port towards the
system memory bus as well as a defined number of interrupt
lines. The slave port can be used to transfer data from the CPU

POEOECa0o0000g FPGA
! Stream ID annotation
1 N
Accelerator 1 —> (0x0) >
----------- --! " 3 Stream ID
---------- -1 Routing reconstruction
'
! |Stream ID annotation
Accelerator 2 : (0x1) >
Main memory
& peripherals
Application 1 T
+ A 4
MMU - Routing [€— IOMMU/SMMU
A
Application 2 *
Hypervisor >»
- ! Processing
CPU Partition memory mapping system
—>» Memory access - Configuration ' Reconfigurable region "} Partition

Fig. 3. Memory infrastructure for coherent addressing for both CPU-based hy-
pervisor partition software and FPGA-based accelerators



Florian Schade et al. / Procedia CIRP 120 (2023) 601-606 605

or other master components to the accelerator. The master port
can be used by the accelerator to initiate memory transactions
(DMA) itself, allowing for memory and peripheral accesses in
memory-mapped architectures. Interrupt lines can be used to
signal events to the corresponding software components. The
shell provides functionality to decouple the reconfigurable re-
gion during reconfiguration and an optional safety module that
ensures that faulty accelerator implementations do not block the
memory bus when incorrectly handling memory transactions.

To integrate accelerator interrupts with hypervisor partitions,
the partitioning shell forwards them to the PS where they are
handled by the platform’s interrupt controller and thus can be
mapped to the corresponding partition by hypervisor configura-
tion. The integration of the memory interfaces is more com-
plex, since hypervisors typically employ virtual memory ad-
dressing to provide a continuous virtual memory address space
to partition software while the data can be scattered in phys-
ical memory. The required address translation is implemented
by the CPU’s memory management unit (MMU) based on a
mapping table provided by the hypervisor. To achieve a unified
memory layout for accelerators and software components in a
partition, the same memory mapping needs to be implemented
for memory transactions initiated by the accelerator. This can
be achieved by using the platform’s IOMMU (also referred to
as system MMU, SMMU) as depicted in Figure 3. It can be
used to apply memory address translation and enforce access
restrictions for memory transactions that are initiated by other
memory bus masters in the system. Since it requires informa-
tion on the master interface from which a transaction originates,
the partitioning shell is extended by logic to annotate unique
IDs to memory transactions originating from each accelerator’s
master port before forwarding the transaction to the processing
system. By configuring the hypervisor to create corresponding
IOMMU mapping tables, the IOMMU can be configured to ap-
ply the same translations to accelerator-based memory accesses
as are applied for CPU-based memory accesses.

4.3. Prototypical implementation

A prototypical implementation of the proposed architec-
ture was created based on the Xilinx Zynq UltraScale+ MP-
SoC. The software architecture builds upon the XEN hypervi-
sor [10], since it provides the required resource management ca-
pabilities, various scheduling mechanisms, including real-time
schedulers, and support for the platform’s SMMU. The par-
titioning shell was implemented as described in Section 4.2.
Since the interconnect used for routing memory accesses on
the FPGA discards the master interface IDs, the ID was in-
serted into a persistent field and later restored and inserted into
the correct field before routing the transaction to the process-
ing system, thus ensuring correct memory mapping and mem-
ory access permissions. The reconfiguration service was imple-
mented as an application in XEN’s management partition dom0.
It provides a REST interface by which it accepts reconfiguration
commands.

5. Development tool

To simplify the generation of the partitioning shell design for
a given set of accelerators and the generation of the correspond-
ing accelerator bitstreams for deployment, a development tool
was created. It requires an input model that defines the location
and size of each reconfigurable region, references the acceler-
ators to be implemented, and specifies accelerator-region map-
pings that shall be supported. In addition, the instantiation of
safety modules and the number of interrupt signal lines has to
be configured for each partition. Based on this information, it
generates a partitioning shell design that implements the con-
figured regions and accelerator mappings. It outputs design ar-
tifacts which can directly be used with the FPGA vendor’s syn-
thesis tool to generate the bitstreams for deployment.

6. Discussion

The proposed edge architecture concept allows for the in-
tegration of hardware accelerators with deployed software ap-
plications in a modular way by mapping them to individual re-
configurable regions. When defining the dimensions of these
regions, developers need to consider that accelerators can only
be mapped to regions that provide sufficient resources for the
accelerator. Thus, if multiple complex accelerators have to be
deployed in parallel on the same edge unit, the partitioning shell
may mainly comprise large regions. This can lead to under-
usage of the FPGA when low-footprint accelerators are mapped
to these regions, since the remaining FPGA resources of the re-
spective regions cannot be used by other partitions. To avoid
this underusage, reconfigurable region sizes can be adjusted to
the current needs of the production system at runtime by alter-
nating between different partitioning shell designs. This, how-
ever, comes at the cost of resetting all active accelerators, since
the FPGA has to be reprogrammed completely.

In contrast to conventional approaches, the proposed archi-
tecture is intended to support hosting active accelerators that go
beyond the acceleration of single algorithms in data processing
applications. As accelerators are not subject to the hypervisor
scheduler, they can permanently be active as long as the cor-
responding application module is deployed. At the same time,
the architecture allows accelerators to actively access memory
and peripherals without CPU interaction. This allows for a ded-
icated hardware implementation of sensor readout, data pro-
cessing, and actuator control, which can be helpful in fulfilling
low-latency functionality beyond the reaction time achievable
by CPU-based implementations. Depending on the peripherals
involved, however, this comes at the cost of more complex ac-
celerator design and challenges concerning shared usage of pe-
ripherals between accelerators and software.

Where hard real-time requirements need to be fulfilled, the
suitability of direct peripheral accesses by accelerators depends
on the real-time properties of the processing platform’s mem-
ory subsystem. Since the shared use of interconnects within the
memory subsystem may cause unpredictable delays due to par-
allel accesses and potentially unknown arbitration mechanisms,



606 Florian Schade et al. / Procedia CIRP 120 (2023) 601-606

further measures are necessary. One way to help control parallel
accesses by hardware accelerators would be the implementation
of memory bandwidth reservation as presented in [11]. Alterna-
tively, the FPGA could be used to directly interface sensors and
actuators. By realizing communication logic in the FPGA as de-
scribed in [12], both processing and communication of the hard
real-time functionality is completely decoupled from other, po-
tentially interfering applications on the SoC.

6.1. Suitability for the exemplary use case

The battery dismantling process described in Section 3 com-
prises several sequential processing steps. Consequently, sev-
eral end effector reconfigurations are necessary to implement
the process in the prototype production cell, leading to the need
for reconfiguration of the applications running on the edge unit.

The data processing operations required during different pro-
cessing steps pose varying requirements towards the data pro-
cessing infrastructure. Firstly, they vary significantly with re-
spect to the data rate to be processed. Simple open-loop control
tasks such as gripper control require little signalling. Due to in-
frequent gripper state changes, a low update rate is acceptable,
leading to a data rate in the order of few bits per second. In
contrast, machine vision tasks require the processing of stream-
ing camera data, resulting in a significantly higher data rates in
the order of hundreds of Mbit/s. Secondly, the computing com-
plexity of the tasks varies significantly. Open-loop control tasks
such as gripper control are mainly based on state machines that
transition based on defined conditions. This can be handled effi-
ciently by a CPU-based implementation. On the other hand, im-
age processing tasks, such as interpolation or feature detection
require the computation of uniform operations on large amounts
of data. Thus, such applications can profit significantly from
parallel processing in accelerators, especially where subsequent
operations need to be applied in a pipelined fashion.

Since the dismantling process requires continuous tempera-
ture monitoring, continuous operation of the monitoring appli-
cation must be ensured during reconfiguration of the edge unit.
In case that the thermal monitoring application makes use of
the FPGA, this is achieved as long as the partitioning shell is
not replaced. If it is implemented in software only, the parti-
tioning shell could be exchanged if necessary, e.g., to adapt to
changes in other sections of the production system.

7. Conclusion

Targeting highly flexible production systems such as the
WSK concept [1], we presented an edge unit hardware/software
architecture that allows for the modular deployment of appli-
cations comprising both software components and application-
specific hardware accelerators on a SoC-based hardware plat-
form. A hypervisor-based software stack is complemented by
a partitioning shell that divides the SoC’s FPGA for reconfig-
urable accelerator deployment. The architecture enforces mem-
ory access controls both for software components and hardware
accelerators and allows for accelerator components that actively

access memory and peripherals without software intervention.
In addition to the CPU-triggered acceleration of computation-
intensive workload, this can be used to realize critical control
functionality in dedicated hardware, where the latency of CPU-
based implementations is not acceptable. We discussed the po-
tential of the proposed architecture and pointed out strengths
and limitations both for its general application and specifically
in regard to an adaptive battery dismantling system that is under
development using the WSK approach.

Acknowledgment

The authors would like to express their appreciation to
Karlsruhe Institute of Technology for its Future Fields Fund-
ing program supporting the “Wertstromkinematik™ project.

References

[1] E. Miihlbeier, P. Gonnheimer, L. Hausmann, J. Fleischer, Value Stream
Kinematics, in: B.-A. Behrens, A. Brosius, W. Hintze, S. Ihlenfeldt, J. P.
Waulfsberg (Eds.), Production at the leading edge of technology, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2021, pp. 409-418. doi:10.100
7/978-3-662-62138-7_41.

[2] Linux Foundation’s ACRN hypervisor achieves first commercial product
integration with TTTech Industrial, https://wuw.tttech-industria
1l.com/press/first-commercial-product-integration-of-1lin
ux-acrn-hypervisor, accessed: 2023-01-04 (Dec. 2020).

[3] A. Vaishnav, K. D. Pham, D. Koch, A Survey on FPGA Virtualization,
in: 2018 28th International Conference on Field Programmable Logic and
Applications (FPL), 2018, pp. 131-138. doi:10.1109/FPL.2018.000
31.

[4] M. H. Quraishi, E. B. Tavakoli, F. Ren, A Survey of System Architectures
and Techniques for FPGA Virtualization, IEEE Transactions on Parallel
and Distributed Systems 32 (9) (2021) 2216-2230. doi:10.1109/TPDS
.2021.3063670.

[5] R. Skhiri, V. Fresse, J. P. Jamont, B. Suffran, J. Malek, M. Margala, From
FPGA to Support Cloud to Cloud of FPGA: State of the Art, Int. J. Recon-
fig. Comput. 2019 (jan 2019). doi:10.1155/2019/8085461.

[6] Q. Ijaz, E.-B. Bourennane, A. K. Bashir, H. Asghar, Revisiting the High-
Performance Reconfigurable Computing for Future Datacenters, Future In-
ternet 12 (4) (2020). doi:10.3390/£112040064.

[7]1 C. Wulf, M. Willig, D. Gohringer, A Survey on Hypervisor-based Virtual-
ization of Embedded Reconfigurable Systems, in: 2021 31st International
Conference on Field-Programmable Logic and Applications (FPL), 2021,
pp. 249-256. doi:10.1109/FPL53798.2021.00047.

[8] J. Ma, G. Zuo, K. Loughlin, X. Cheng, Y. Liu, A. M. Eneyew, Z. Qi,
B. Kasikci, A Hypervisor for Shared-Memory FPGA Platforms, ASPLOS
’20, Association for Computing Machinery, New York, NY, USA, 2020, p.
827-844. doi:10.1145/3373376.3378482.

[9] T. Xia, Y. Tian, J.-C. Prévotet, F. Nouvel, Ker-ONE: A New Hypervi-
sor Managing FPGA Reconfigurable Accelerators, J. Syst. Archit. 98 (C)
(2019) 453-467. doi:10.1016/j.sysarc.2019.05.003.

[10] XEN project, https://xenproject.org, accessed: 2023-01-04.

[11] F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, G. Buttazzo, AXI Hyper-
Connect: A Predictable, Hypervisor-level Interconnect for Hardware Ac-
celerators in FPGA SoC, in: 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020. doi:10.1109/DAC18072.2020.9218652.

[12] E Schade, C. Karle, E. Miihlbeier, P. Gonnheimer, J. Fleischer, J. Becker,
Dynamic Partial Reconfiguration for Adaptive Sensor Integration in Highly
Flexible Manufacturing Systems, Procedia CIRP 107 (2022) 1311-1316,
leading manufacturing systems transformation — Proceedings of the 55th
CIRP Conference on Manufacturing Systems 2022. doi:10.1016/j.pr
ocir.2022.05.150.



