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Abstract. Spectral computed tomography has received considerable interest in recent years
since spectral measurements contain much richer information about the object of interest. In
spectral computed tomography, we are interested in the energy channel-wise reconstructions of
the object. However, such reconstructions suffer from low signal-to-noise ratio and share the
challenges of conventional low-dose computed tomography such as ring artifacts. Ring artifacts
arise from errors in the flat-field correction and can significantly degrade the quality of the
reconstruction. We propose an extended flat-field model that exploits high correlation in the
spectral flat-fields to reduce ring artifacts in the channel-wise reconstructions. The extended
model relies on the assumption that the spectral flat-fields can be well-approximated by a
low-rank matrix. Our proposed model works directly on the spectral flat-fields and can be
combined with any existing reconstruction model, e.g., filtered back projection and iterative
methods. The proposed model is validated on a neutron data set. The results show that our
method successfully diminishes ring artifacts and improves the quality of the reconstructions.
Moreover, the results indicate that our method is robust; it only needs a single spectral flat-field
image, whereas existing methods need multiple spectral flat-field images to reach a similar level
of ring reduction.

1. Introduction
Computed Tomography (CT) is a non-invasive imaging technique that allows us to obtain
structural knowledge about the interior of objects from a set of projection images. Projection
images are acquired by illuminating the object from different angles with radiation from a source
e.g., an X-ray beam or beam of neutron radiation. The beam is attenuated as it travels through
the object and the attenuated beam is measured by a detector placed opposite the source. The
attenuation is governed by absorption in X-ray CT and by scattering in the case of neutron CT.
In both cases, the attenuation is material- and energy-specific, and if we measure the attenuation
for multiple energies, also referred to as spectral CT, we can obtain a material decomposition
of the object.
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To obtain the material decomposition, we need to compute the energy channel-wise
reconstructions. Most reconstruction methods rely on the assumption that the detector response
is known. In practice, however, the detector response is subject to various errors and must be
estimated from measurements acquired without an object in the scanner, i.e., from flat-fields,
also referred to as air scans [1], white fields [2] or open beams. The flat-fields are noisy due
to factors such as measurement noise, miscalibration, defective pixel elements with non-linear
response, dust on scintillators, and may introduce concentric rings in the reconstruction, also
known as ring artifacts [3]. Ring artifacts are a great challenge for experimental CT set-ups
with low-dose and/or short exposure time [4] and can significantly degrade the quality of the
reconstruction. In spectral CT, we measure spectral flat-fields, i.e., flat-fields for each energy.
However, the spectral measurements share the characteristics of low-dose CT since each energy
channel has a low signal-to-noise ratio (SNR) and thus ring artifacts present a challenge in
spectral CT [5, 6].

To illustrate the challenges of spectral CT, let us consider a neutron CT data set [7] which is
described in detail in Section 3. Filtered back projection (FBP) reconstructions of the neutron
data are shown for two energies in Figure 1 and the reconstructions reveal presence of ring
artifacts.

Figure 1. FBP reconstructions of energy 2.7 Å and 3.4 Å. Ring artifacts are apparent in both
reconstructions with varying severity.

1.1. Existing methods for ring reduction
Several reconstruction methods have been proposed to combat ring artifacts as part of the
spectral reconstruction step. Wu et al. [8] propose a reconstruction method that exploits the
similarity across spectral images by computing a polychromatic reconstruction (average across
the spectral dimension) as a reference image combined with total variation (TV). Lv et al. [9]
and Fang et al. [10] both propose deep learning approaches to suppress noise and remove ring
artifacts for spectral CT. However, all methods rely on computationally expensive algorithms
where the ring reduction is part of the reconstruction estimation process.

Conventional preprocessing methods for ring reduction in monochromatic CT, i.e., single
energy CT, can also be applied to the spectral CT data [11, 12]. The main drawback here is
that the ring reduction techniques must be applied channel-wise to the measured data.

1.2. Contribution
Figure 2 shows the eight measured spectral flat-fields stacked vertically and the corresponding
singular values. A visual inspection suggests that the spectral flat-fields carry significant



redundant information and that we can improve the SNR level in the spectral flat-fields by
approximating the spectral flat-fields with a low-rank matrix. In particular, the singular values
indicate that the spectral flat-fields can be well-approximated by a rank-one matrix due to the
large jump in magnitude between the first and second singular values. A similar idea where
principal component analysis (PCA) is used to reduce ring artifacts in case of beam instability
has been proposed by Hagemann et al. [13] and Nieuwenhove et al. [14]. The underlying
assumptions in these studies are related, but the nature of the problems solved differs.

Figure 2. Visualization of the eight spectral flat-fields stacked vertically (a) and a loglog plot
of the singular values (b). The singular values indicate that the spectral flat-fields are well-
approximated by a rank-one matrix.

Inspired by Figure 2, we propose an extended flat-field model that exploits high correlation
across channels in the spectral flat-fields to reduce ring artifacts in the reconstructions. The
extended model relies on the assumption that the spectral flat-fields can be well-approximated
by a low-rank matrix. Our method does not depend on a specific reconstruction method
since it works directly on the spectral flat-fields. Hence, our method can be combined with
all existing reconstruction models such as the conventional FBP or more advanced spectral
methods e.g., [8, 15, 16, 17]. Moreover, our method does not need to be applied channel-wise in
the sense that the low-rank spectral flat-field simply replaces the measured spectral flat-field in
the reconstruction step.

1.3. Outline
Section 2 introduces the spectral CT model, existing methods for ring reduction and the proposed
methodology. In Section 3, the experimental set-up for the neutron data set is described and
numerical experiments are conducted in Section 4. Section 5 discusses the results and Section 6
concludes the paper.

1.4. Notation
The set Rn is the n-dimensional Euclidean space, Rn

+ is the non-negative orthant and Rm×n

denotes the set of real-valuedm×nmatrices. The vector 1n ∈ Rn is a vector of ones, In×n ∈ Rn×n

denotes the identity matrix and the transpose of A is denoted AT . The function exp with a
vector or matrix as argument are to be interpreted element-wise. If x is a vector, then diag(x) is
the diagonal matrix with the elements of x on the diagonal. The 2-norm of a vector is denoted
‖ · ‖2 and the Frobenius norm is denoted ‖ · ‖F.



2. Methods
Consider a spectral data set with m energy channels and let Ek denote the kth energy channel.
The incident intensity of a beam with energy Ek on a detector elemenet is prescribed by the
Beer-Lambert law [18],

I(Ek) = I0(Ek) exp

(
−
∫
`
µ(x, Ek)dx

)
, (1)

where I(Ek) and I0(Ek) are the energy-dependent intensity incident on the detector element and
in the object, respectively. Further, ` is the line segment between the source and the detector,
and µ : Rd × R→ R+ is the energy-dependent spatial attenuation function.

Let Yk ∈ Rrp denote the measurements for the k’th energy with r detector elements and p
projection images and discretize the domain into n pixels, then by appropriate discretization
(e.g., see [19]), we can describe the measurements by,

Yk = diag (1p ⊗ Zk) exp (−AXk), (2)

where ⊗ is the Kronecker product, Zk ∈ Rr is energy-dependent intensity incident on the
detector, Xk ∈ Rn are the unknown attenuation coefficients and A ∈ Rrp×n is the system matrix
describing the traveled distance of the beams. In practice, the energy-dependent intensity
incident on the detector is estimated by measuring the detector response. We assume that
s spectral flat-fields are measured for each energy. The estimate for Z ∈ Rr×m is then
conventionally computed by the mean of the s measured spectral flat-fields, i.e.,

Ẑ =
1

s

s∑
j=1

Fj =
1

s

(
1T
s ⊗ Ir×r

)
F, (3)

where F = [F T
1 , F

T
2 , . . . , F

T
s ]T and Fj ∈ Rr×m is the j’th spectral flat-field. However, if F is

noisy, then the estimate Ẑk can give rise to ring artifacts in the reconstruction.

2.1. Low-rank approximation
Essentially, each of the spectral flat-fields carries information about the detector response for all
energies and the aim is to exploit the high correlation in the spectral dimension motivated by
the observations in Figure 2.

The nearest low-rank matrix of F in the spectral norm can be computed by means of a
singular value decomposition (SVD) [20]. An SVD of F is a decomposition

F = UΣV T , (4)

where the columns of U ∈ Rrs×rs and V ∈ Rm×m are orthogonal matrices, and Σ ∈ Rrs×m is a
matrix with the singular values σ1 ≥ σ2 ≥ · · · ≥ 0 on the main diagonal and zeroes elsewhere.
The best rank-l approximation of F in the spectral norm is then given by

F l =
l∑

i=1

σiUiV
T
i , (5)

where Ui and Vi are the ith columns of U and V , respectively. The relative approximation error
is given by,

‖F l − F‖F
‖F‖F

=
σl+1

σ1
, (6)



which follows from the Eckart–Young–Mirsky theorem. The rank-one and rank-five
approximations of the spectral flat-fields for the neutron data are shown in Figure 3. The
approximation error for the rank-one and rank-five matrices are 0.030 and 0.028, respectively.
Hence, we only reduce the approximation error with 0.002 by including four extra singular
vectors. Considering Figure 3, we see that the rank-one approximation has mitigated a
substantial amount of noise whereas in the rank-five approximation, some of the noisy tendencies
in the spectral flat-fields start to reappear. This observation is confirmed by considering the
difference images between the spectral flat-fields and the low-rank matrices in Figure 3e and
3f. Hence, for the numerical experiments, we will confine ourselves to considering the rank-one
approximation of the spectral flat-fields, i.e., we compute the estimate for Ẑ by replacing F by
F 1 in (3), i.e.,

Ẑ =
1

s

(
1T
s ⊗ Ir×r

)
F 1. (7)

At this point, we emphasize that our method is computationally cheap as it scales with
O(min(rs,m)2 max(rs,m)). Moreover, it can be combined with any reconstruction method,
e.g., FBP, iterative methods, statistical models, etc. since it is only applied to the spectral
flat-fields.

Figure 3. Rank-one and five approximations of the spectral flat-field are shown in (b) and (c).
The corresponding difference images between the spectral flat-fields and low-rank matrices are
shown in (e) and (f) for rank-one and rank-five, respectively.

2.2. Existing ring reduction method
Our method works solely on the spectral flat-fields and thus separates the ring reduction from the
reconstruction step. Hence, we compare our method to two existing ring reduction techniques



for monochromatic CT. We compare our methodology with the preprocessing method proposed
by Münch et al. [11] which combines wavelet and Fourier filtering to mitigate ring artifacts
in the reconstruction. The method is computationally inexpensive and does not increase the
overall computational cost significantly. The method depends on three parameters; we use a
damping factor of 0.9 and the Daubechies 5 wavelet with a three-level decomposition for all
numerical experiments, see [11] for details. The second preprocessing method is proposed by
Vo et al. [12] and uses a combination of sorting and smoothing (non-local means) in attempt
to smooth the data and thereby reduce ring artifacts. The method depends on a parameter
related to the smoothing filter, we choose a parameter value of 31, see [12] for further details.
We denote the methods from Münch et al. [11] and Vo et al. [12] by FW (Wavelet Fourier) and
NLM (non-local means), respectively.

3. Neutron data
We validate the proposed methodology on a neutron CT data set [7]. The neutron data were
acquired at the imaging and materials science and engineering (IMAT) beamline operating at
the ISIS spallation neutron source (Rutherford Appleton Laboratory, UK). Figure 4 shows a
sketch of the object of interest. The object consists of six cylinders whereof five are filled with
metal powders, i.e., aluminum (Al), iron (Fe), copper (Cu), nickel (Ni) and zinc (Zn) powders.

Zn

Ni

Fe

Al

Cu Figure 4. Sketch of the object for
the experimental neutron data [7]. The
experimental set up consists of six cylinders
where five of the cylinders have been filled
with aluminum (Al), iron (Fe), copper
(Cu), nickel (Ni) and zinc (Zn) powders.
The sixth cylinder is empty.

3.1. Data acquisition
Ametova et al. [17] describe the data acquisition and pre-treatment of data in detail, i.e., beam
instabilities, overlap correction and spectral averaging. We consider the reconstruction-ready
measurements and confine ourselves to reporting only the essential details of the experimental
set-up. The data set contains m = 339 spectral projections acquired at p = 120 equidistant
angles distributed from 0◦ to 180◦ with 1.5◦ angular increments. Eight spectral flat-fields were
acquired, four prior to the scan and four after, i.e., s = 8. Each projection consists of 460× 460
pixels with a pixel size of 0.055 mm resulting in a view of approximately 25 × 25 mm2 and
r = 460 detector elements and n = 4602 pixels for the experiments. We choose the 127th vertical
detector row for experiments, i.e., we consider a two-dimensional set-up. The experimental set-
up is summarized in Table 1. The attenuation coefficient for the neutron experiment is denoted
Σtot(λ) and has unit cm−1, see [17] for further details.

Table 1. Experimental set-up for the spectral neutron data used for the numerical experiments.

pixels (n) energy channels (m) detectors (r) projections (p) spectral flat-fields (s)

4602 339 460 120 8



4. Numerical experiments
We consider two reconstruction models: FBP and a weighted least squares (WLS) reconstruction
model combined with TV regularization. We compare our method to the conventional flat-field
correction and the existing ring reduction techniques described in Subsection 2.2. Table 2
provides an overview of the reconstruction models and ring reduction techniques.

Table 2. Abbreviations used for the reconstruction models and ring reduction techniques.

Ring reduction technique
Reconstruction Model

FBP WLS with TV

Conventional FBP TV
Preprocessing Münch et al. [11] WF-FBP WF-TV
Preprocessing Vo et al. [12] NLM-FBP NLM-TV
Low-rank spectral flat-fields LR-FBP LR-TV

We use AIR TOOLS II [21] to generate the parallel-beam geometry of the experimental set-
up. For the FBP reconstructions, we use the fbp function from AIR TOOLS II with the Hann

filter to reduce the noise in the computed FBP reconstructions. For the TV reconstructions,
we used the implementation of WLS with TV from [4] in MATLAB. All TV reconstructions
have a maximum number of iterations of 1000 and a regularization parameter of 0.005. The
regularization parameter was found by visual inspection of reconstructions for varying values
of the regularization parameter. Note that we pick the same regularization parameter for
all energies which will result in some reconstructions being a bit over-regularized whereas
other reconstructions might be slightly under-regularized. The reason is that the SNR changes
significantly as a function of energy and thus there is not a single regularization parameter that
fits all energy channels. However, the purpose of the methods is ring reduction and thus we
limit the experiments to considering the same regularization parameter for all reconstructions.

4.1. Error measures
The quality of the computed reconstructions is assessed by visual inspection combined with
contrast-to-noise ratio (CNR). The CNR metric is used for evaluating the image contrast and
noise properties for a selected region of interest (ROI) [22]. We use the method proposed by
Bian et al. [23] where a ROI with low-contrast structure is compared to a background ROI while
taking the standard deviations of both the signal and background ROIs into account. The ROIs
are clearly marked on the figures when applicable.

4.2. Experiment: Different energies
There are too many energies to visualize all reconstructions, and the SNR varies significantly
between the energies [17]. Thus, we select three energies based on the relative difference (RD)
between the computed FBP and LR-FBP solution to ensure a representative visualization of
energy channels. We define RD by the measure,

RD(k) =
‖XFBP

k −XLR-FBP
k ‖2

‖XLR-FBP
k ‖2

. (8)

where XFBP
k and XLR-FBP

k denote the FBP and LR-FBP reconstructions for energy k,
respectively. We select three energies corresponding to the minimum, median and maximum
RD, corresponding to energies 3.1 Å, 4.2 Å and 2.9 Å, respectively.



Table 3. CNR for experiment depicted in Figures 5 and 6. The ROIs are marked in Figures 5
and 6.

Energy
FBP TV

Conv. WF NLM LR Conv. WF NLM LR

3.1 Å 2.15 2.31 2.17 2.31 1.02·103 1.03·103 1.01·103 1.06·103

4.2 Å 0.28 0.30 0.29 0.30 0.16·102 0.16·103 0.21·103 0.28·103

2.9 Å 0.20 0.24 0.24 0.25 0.03·101 0.04·103 0.07·103 0.07·103

The FBP reconstructions in Figure 5 (first column) are all affected by ring artifacts. However,
the severity of the ring artifacts increases from top to bottom, i.e., when the RD increases.
The WF-FBP reconstructions (second column) seem to mitigate the ring artifacts at first
glance, however, when carefully comparing the WF-FBP with NLM-FBP and LR-FBP, wave-
like artifacts can be seen in the WF-FBP reconstructions. Hence, the ring artifacts have been
reduced but not eliminated. For the NLM-FBP and LR-FBP reconstructions (third and fourth
column), there are no visible artifacts remaining.

Figure 5. FBP (first column), WF-FBP (second column), NLM-FBP (third column) and
LR-FBP (fourth column) reconstructions for three energies chosen by the RD measure. The
white squares with full and dashed lines mark the structure and background ROIs for CNR,
respectively.



Figure 6. TV (first column), WF-TV (second column), NLM-TV (third column) and LR-TV
(fourth column) reconstructions for three energies chosen by the RD measure. The white squares
with full and dashed lines mark the structure and background ROIs for CNR, respectively.

Considering the CNR listed in Table 3, we see that the CNR decreases from top to bottom
for all four methods. Thus, when the SNR is low, our method differs most from the FBP, which
can be explained by the fact that the ring artifacts are more dominating when the SNR is low.
The CNR for all four methods is quite close in Figure 5. This might be explained by the fact
that the dominating noise contribution comes from the measurement noise and not the ring
artifacts, since all FBP reconstructions suffer from a very low SNR. Note that the high noise
level might conceal remaining ring artifacts.

Inspecting the TV reconstructions in Figure 6, we see that TV regularization reduces the
noise level significantly, and consequently, the ring artifacts appear more severe for the TV
reconstructions. In addition, we also note that the vague wave structures in the WF-FBP
reconstructions are even clearer in the WF-TV reconstructions compared to the WF-FBP
reconstructions. By carefully inspecting the NLM-TV reconstruction for 2.9 Å, one can see
that the preprocessing has introduced a dark spot with negative values in the center. The
other NLM-TV reconstructions show no introduced artifacts and closely resemble the LR-TV
reconstructions (fourth column). The LR-TV reconstructions reveal no ring structure even
though the noise level is reduced.

The TV reconstructions have significantly improved the overall CNR compared to the FBP
reconstructions, which can be seen in Table 3. For the TV experiment in Figure 6, we also see an
increase in CNR when applying a ring reduction method, especially for NLM-TV and LR-TV.
The LR-TV reconstruction achieves the highest CNR for two out of the three energies depicted



in Figure 6.

Figure 7. FBP, WF-FBP, NLM-FBP and LR-FBP reconstructions of energy 2.1 Å with eight,
four, two and one flat-field, respectively. The white squares with full and dashed lines mark the
structure and background ROIs, respectively.

4.3. Experiment: Effect of number of spectral flat-fields
We now perform an experiment with varying number of spectral flat-fields to validate the
robustness of our proposed method. We consider energy 2.1 Å for the experiment and use
eight, four, two and one flat-field for the flat-field correction, respectively. The FBP, WF-FBP,
NLM-FBP and LR-FBP reconstructions are depicted in Figure 7 and the TV reconstructions
for the same experiment are shown in Figure 8. The CNR measures for the reconstructions are
listed in Table 4.

If we start by considering the first column of Figure 7, we see that there are visible ring
artifacts in all FBP reconstructions, but the severity of the ring artifacts increases as the number
of flat-fields used for flat-field correction decreases (i.e., from top to bottom). The WF-FBP



Figure 8. TV, WF-TV, NLM-TV and LR-TV reconstructions of energy 2.1 Å with eight,
four, two and one flat-field, respectively. The white squares with full and dashed lines mark the
structure and background ROIs, respectively.

Table 4. CNR for experiment depicted in Figure 7 and Figure 8 for energy 2.1 Å.

Flat-fields
FBP TV

Conv. WF NLM LR Conv. WF NLM LR

8 0.15 0.17 0.16 0.16 0.95×102 0.95×102 1.62×102 1.70×102

4 0.13 0.15 0.14 0.16 0.55×102 0.56×102 1.39×102 1.79×102

2 0.11 0.14 0.13 0.16 0.36×102 0.39×102 0.87×102 1.78×102

1 0.06 0.12 0.14 0.16 0.14×102 0.15×102 0.52×102 1.80×102



reconstructions are shown in the second column of the figure. Vague ring artifacts can be seen
in the WF-FBP reconstruction using all eight flat-fields. However, the severity of these ring
artifacts increases when the number of flat-fields decreases, just as for the FBP reconstructions.
The NLM-FBP reconstructions in third column show less wave-like artifacts than NLM-FBP,
however, then using four or fewer flat-fields, the method starts to struggle, and artifacts start
to arise in the reconstructions. The LR reconstructions in the fourth column show no sign of
artifacts, not even in the case where a single flat-field is used and thus our method seems to be
robust. The robustness of LR-FBP can also be seen in the CNR reported in Table 4. Here the
CNR is almost constant for the four reconstructions with LR, whereas the CNR increases with
the number of flat-fields for both FBP, WF-FBP and NLM-FBP. The experiment was repeated
using TV for the reconstruction model and the findings support those found using FBP. The
SNR is significantly increased by using TV regularization and the remaining artifacts for the
preprocessing methods are even more pronounced in Figure 8, which is also supported by the
CNR measure listed in Table 4.

5. Discussion
An explanation for the robustness of our method lies with the fact that the spectral dimension
carries lots of redundant information. For the experiment, we have eight flat-fields but 339
energy channels. Thus, using a single spectral flat-field corresponds to 339 measurements for
our method, whereas eight flat-fields with the conventional method only corresponds to eight
flat-fields. Thus, if the assumption of low rank holds, then more energy channels will give
more redundancy in the spectral flat-fields and thereby our proposed method will gain further
advantage over the existing methods.

We investigated spectral plots for material decomposition, i.e., plot of a single pixel across
the spectral dimension for the distinct materials. However, preliminary results showed no visual
effect of applying the preprocessing methods.

We could consider the spectral flat-fields as a three-dimensional tensor with dimensions
s × r ×m. While tensor decomposition methods exist, such as the Tucker decomposition and
parallel factors decomposition (PARAFAC) [24, 25, 26], preliminary experiments showed no
significant difference between the low-rank tensor, and the low-rank matrix obtained by treating
the spectral flat-fields as a matrix as in (3).

A possible improvement of the model could be the inclusion of the low-rank matrix as
parameters of the reconstruction model and jointly estimating the reconstruction and the
spectral detector response, e.g., see [19]. A natural initial guess for the low-rank matrix would
be the estimate obtained by the LR method.

6. Conclusion
We have proposed an extended flat-field model for spectral CT that exploits high correlation
in the spectral flat-fields by replacing the spectral flat-fields with a low-rank approximation
to mitigate ring artifacts. The proposed methodology can be combined with any existing
reconstruction method and only depends on a single parameter, which is easy to choose by
inspection of the singular values of the spectral flat-fields. The method was validated on neutron
CT data and compared to the conventional flat-field correction and two preprocessing methods
for ring reduction. Our method successfully mitigated ring artifacts in all experiments whereas
the other methods struggled to suppress ring artifacts, especially in more challenging cases with
severe ring artifacts.
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