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Uncertainty-Aware Hand–Eye Calibration
Markus Ulrich and Markus Hillemann

Abstract—We provide a generic framework for the hand–
eye calibration of vision-guided industrial robots. In contrast to
traditional methods, we explicitly model the uncertainty of the
robot in a stochastically founded way. Albeit the repeatability of
modern industrial robots is high, their absolute accuracy typically
is much lower. This uncertainty — especially if not considered —
deteriorates the result of the hand–eye calibration. Our proposed
framework does not only result in a high accuracy of the
computed hand–eye pose but also provides reliable information
about the uncertainty of the robot. It further provides corrected
robot poses for a convenient and inexpensive robot calibration.
Our framework is computationally efficient and generic in several
regards: It supports the use of a calibration target as well as self-
calibration without the need for known 3D points. It optionally
enables the simultaneous calibration of the interior camera pa-
rameters. The framework is also generic with regard to the robot
type, and hence supports antropomorphic as well as SCARA
robots, for example. Simulated and real experiments show the
validity of the proposed methods. An extensive evaluation of
our framework on a public dataset shows a considerably higher
accuracy than 15 state-of-the-art methods.

I. INTRODUCTION

HAND–EYE calibration is essential for applications that
use vision-guided robots. It determines the 3D rigid

transformation (pose) between the robot and the camera
(hand–eye pose). This enables measurements that are per-
formed in the camera coordinate system to be transformed into
the robot coordinate system. In bin-picking applications, for
example, the pose of an object is determined in the coordinate
system of the camera by using 3D object recognition [1]–[4].
To grasp the object, the object pose must be transformed into
the coordinate system of the robot.

In general, there are two different scenarios of vision-guided
robots [5, Chapter 3.12.2]. In the first scenario, the camera is
mounted at the robot tool and is moved to different positions
by the robot. In the second scenario, the camera is mounted
stationary outside the robot without moving with respect to
the robot base. The pose that must be determined by hand–
eye calibration is the pose of the camera with respect to the
robot tool in the first scenario, or the pose of the camera
with respect to the robot base in the second scenario. For
simplicity, we focus on the first scenario with a moving camera
in the following. However, our framework can be applied
analogously to the second scenario with a stationary camera.

Traditional approaches for hand–eye calibration assume that
the pose of the robot tool with respect to the robot base is
known accurately. When discussing the accuracy of robots, it
is necessary to distinguish between the pose repeatability (i.e.,
precision) and the pose accuracy of the robot [6]. Repeatability
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is a measure of the robot’s ability to move the tool repeatedly
to the same pose. Accuracy is a measure of the robot’s ability
to move its tool to a specified pose in 3D space. Modern
industrial robots typically offer a very high repeatability, which
is in the range of 0.02–0.15 mm [7]–[10]. For applications
where the robot always moves to the exact same pose, which
is trained in advance, a high repeatability is sufficient. How-
ever, for robots that are programmed offline and especially
for vision-guided robots, obviously a high pose accuracy is
important as well. Unfortunately, the pose accuracy of robots
often is much lower than the pose repeatability. The position
accuracy typically is in the range of 0.1–5.0 mm while the
orientation accuracy ranges from about 0.2 deg up to several
degrees [8]–[10].

It is possible to increase the accuracy with a robot calibra-
tion by up to an order of magnitude, in rare cases even up to
the level of repeatability [7]. Unfortunately, robot calibration
often requires high-precision measurement instruments like
lasertrackers [8], and hence is expensive and time consuming.
In this paper, we combine all errors of the robot under the
term uncertainty, which include errors that have an impact on
repeatability and on accuracy.

Almost all traditional methods for hand–eye calibration do
not explicitly model erroneous robot poses. Our proposed
framework explicitly models the uncertainty of the robot in
a stochastically founded way resulting in a higher accuracy of
the computed hand–eye pose. Furthermore, it provides reliable
information about the uncertainty of the robot, which other-
wise would require high-precision measurement instruments.
Since the framework also provides error-corrected robot poses,
it can support a convenient and inexpensive robot calibration
by assuming the error-corrected robot poses as ground-truth
poses for the estimation of the robot parameters (i.e., Denavit-
Hartenberg parameters [11], for example).

Most existing approaches for hand–eye calibration require
the acquisition of multiple images of a calibration target. A
few more flexible and user-friendly solutions avoid the use
of calibration targets. Our framework supports both variants,
target-based calibration as well as self-calibration without the
need for known 3D points. Furthermore, for both variants, the
framework offers the possibility to simultaneously calibrate
the interior camera parameters if desired.

This publication is an evolved paper. It extends our pre-
viously published work [12] in several aspects. We included
and discussed additional relevant related work. We give details
about the polynomial distortion model that supports a higher
accuracy compared to the division model. We also included a
comprehensive description of the structure of the parameter es-
timation including a visualization of the Jacobian, a flowchart,
and detailed pseudocode of the approach. All necessary partial
derivatives have been analytically calculated and are now given
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in the Appendix supporting a faster, more accurate, and hence
more robust computation. A new section contains details about
the estimation of the variance components. We have also
improved the implementation in a way that our framework can
now be applied to calibration scenarios with a large number of
points and/or calibration images. These optimizations, which
are explained in depth in a new section, drastically reduce
both memory consumption and computation time, making our
framework more widely applicable. We also executed several
new experiments in order to better assess the performance of
our approach. Furthermore, we applied our implementation
to an additional public dataset, which enables a comparison
to a larger number of state-of-the-art methods and further
illustrates the advantages of our uncertainty-aware hand–eye
calibration. A new chapter contains in-depth discussions and
possible future research questions. Finally, our method has
become part of the HALCON1 software from version 23.05
[13] on, which is freely available for academic use2.

We will give an overview of the related work in Sec. II.
Sec. III introduces our generic framework for hand–eye cali-
bration of uncertain robots. In Sec. IV, different aspects of our
framework are extensively evaluated including a comparison
to 15 state-of-the-art methods. Sec. V concludes our work.

II. RELATED WORK

Fig. 1 shows the coordinate systems that are relevant for the
hand–eye calibration of a robot with a moving camera (for a
stationary camera, see [5, Chapter 3.13], for example). Let
s2Hs1 denote the 4 × 4 homogeneous transformation matrix
that represents a rigid 3D transformation of points from
coordinate system s1 to s2. One of the most common problem
formulations of hand–eye calibration is based on closing the
following chain of transformations [14]:

bHw = bHt
tHc

cHw , (1)

with the coordinate systems world (w, WCS), camera (c,
CCS), robot tool (t, TCS), and robot base (b, BCS), as well as
the unknown poses tHc (hand–eye pose) and bHw (world–base
pose). The unknown poses are typically determined by moving
the robot to different robot poses and taking an image of a
calibration target at each pose. The calibration target defines
the WCS. At each robot pose, bHt is queried from the robot
controller and cHw is determined by PnP algorithms or camera
calibration like [15]. Eq. (1) is often written as

Y = AiXBi (2)

with the unknown poses X and Y and the observed poses Ai

and Bi for each of the n robot poses (i = 1, . . . , n). Since the
essential unknown is X, we can eliminate Y by taking one pair
of different robot poses i and j, yielding A−1j AiX = XBjB

−1
i .

With A = A−1j Ai and B = BjB
−1
i we obtain

AX = XB, (3)

1www.mvtec.com/products/halcon
2www.mvtec.com/company/mvtec-on-campus
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Fig. 1. Relevant 3D coordinate systems, known or observed transformations
(green), and unknown (red) transformations for hand–eye calibration where a
camera (eye) is rigidly mounted at the robot’s end-effector (hand).

where the movement of the tool is represented by A and the
movement of the camera is represented by B, when moving
the robot from pose i to j.

There are several linear least-squares approaches that ba-
sically solve Eq. (2) or Eq. (3), e.g., [16]–[26]. They either
determine the rotation and translation parts of the hand–
eye pose successively or simultaneously. The latter has the
advantage that rotation errors do not propagate and increase
translation errors. Approaches that solve Eq. (3) require the
selection of suitable pairs of robot poses to compute A and
B. Criteria for the suitability are proposed in [16], [23], and
[27], for example. However, it is still difficult to ensure that
the observed information (Ai and Bi) is optimally exploited.
Furthermore, these approaches do not explicitly model errors
in the robot poses [16].

Because linear approaches typically minimize an algebraic
error, their accuracy is limited. Therefore, they are often used
to initialize a subsequent non-linear optimization to obtain a
higher accuracy. Most non-linear approaches ( [19], [20], [26],
[28]–[32], [5, Chapter 3.13.5], [33]), which either minimize
an algebraic or geometric error, also do not explicitly model
errors in the robot poses. Some of them face the additional
problem of weighting the error components of rotation and
translation appropriately with respect to each other. Handling
uncertainty in hand–eye calibration is a largely neglected topic
[34]. In [14], for example, a weighted sum of the rotation
and translation error parts is minimized where the weights
for the error components are statistically derived. While this
takes errors in the robot poses bHt into account, error-free
camera poses cHw are assumed as input. In [35], rotation
and translation parts of Eq. (3) are solved successively while
errors in A and B are propagated to X. In [36], uncertainties
of the camera and the robot poses are also considered with
covariance matrices and a Cramer-Rao Lower Bound of the
uncertainty of X is determined. In [37] and [38], the rotation
and translation parts of X are solved simultaneously, the
uncertainty of X is derived analytically, and the sensitivity to
robot and camera pose noise is investigated. However, in [36],
[37], and [38], an algebraic error is minimized. Furthermore,
no information about the uncertainty of the robot is provided.
Some non-linear approaches do not require initial estimates
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and provide globally optimal solutions with respect to a certain
cost function. In [39], this is achieved by solving a multivariate
polynomial optimization problem over semi-algebraic sets us-
ing the method of convex linear matrix inequality relaxations.
More recently, in [40], this is achieved by using a convex
semidefinite programming relaxation. In the presence of noise,
however, globally optimal solutions do not imply zero error
with respect to the ground truth, but still differ from it [40].

Another class of approaches minimizes the reprojection
error of 3D world points on a calibration target (e.g., [41],
[42]) similar to camera calibration approaches like [15]. The
appealing advantages are that it is unnecessary to explicitly
estimate the camera pose in each image in pre-processing,
no pre-selection of pose pairs is required, and a meaningful
geometric error is minimized in the space of the observed er-
roneous measurements, i.e., the image points. Minimizing the
reprojection error also enables the simultaneous estimation of
the interior camera parameters. However, also these methods
do not model errors in the robot poses. Recently, in [43], a
pose graph optimization framework for hand–eye calibration
was introduced, in which the errors of the robot poses are
minimized in addition to the reprojection error of the points on
a calibration target. Experiments showed the benefit of taking
the uncertainty of robot poses into account. Unfortunately, no
details are given about the stochastic model, the optimization,
and how the different error components are weighted with
respect to each other.

Self-calibration techniques are used to perform the hand–
eye calibration without a calibration target. For the purpose
of this paper, self-calibration does not mean that the interior
orientation of the camera is determined but that no calibration
target is used for the hand–eye calibration. In [30], unknown
3D points are tracked in the image sequence obtained from a
predefined robot motion. The interior camera parameters and
the 3D points are simultaneously estimated together with the
hand–eye pose. A structure-from-motion (SfM) approach is
used in [22], where the unknown scale factor of the SfM
result is integrated into the equations. The idea is picked
up in [31], where the post-processing step of enforcing the
orthogonality of the rotation matrix is avoided by introducing
the unknown scale factor into the equations of [19] and [21].
Because these self-calibration techniques minimize algebraic
errors, the obtained accuracy is limited. Note that of course
also self-calibration techniques can be applied to determine
the movement of the camera to solve Eq. (3), provided that
a sufficient number of image features in a non-degenerate
configuration is available.

Our proposed framework combines the mentioned benefits
of minimizing a reprojection error, the advantage of stochas-
tically modelling the uncertainty of all measured observations
(image points and robot poses), the flexibility of either per-
forming target-based calibration or self-calibration, and the
possibility of either using known interior camera parameters
or estimating them simultaneously.

Lastly, we want to highlight the differences of our frame-
work to the approach described in [14], which at first glance
could be considered similar to ours. One fundamental differ-
ence is that the approach in [14] assumes that the camera poses

have been determined in advance with a calibration procedure
and that these camera poses are error-free. In contrast, in
our approach no camera poses need to be provided for input.
The camera poses are determined only implicitly during the
optimization. Therefore, by minimizing the reprojection error,
uncertainties in the camera poses are considered implicitly
in our approach as well. Furthermore, in [14] not the orig-
inally observed observations (image points) are modelled as
erroneous quantities but rather functionally derived quantities
from them, i.e., in form of one rotation and one translation
error. The approach of [14] also does not allow to compute
calibrated robot poses because errors in the camera poses and
robot poses are mixed. Also, the weights that are automatically
computed in [14] to balance translation and rotation errors
might be biased by the assumption of error-free camera poses
and hence cannot represent the robot accuracy. In contrast to
[14], our approach models all originally observed and thus
error-prone measurements directly as random variables (see
Section III-F).

III. HAND–EYE CALIBRATION OF UNCERTAIN
ROBOTS

Fig. 2 shows a flowchart of our uncertainty-aware hand–
eye calibration framework. It gives a rough overview of the
calibration flow and the variety of use cases. In particular, the
flowchart highlights four important aspects of our framework:
• the simultaneous calibration of the interior camera pa-

rameters is supported if no camera calibration is done
beforehand,

• both target-based calibration as well as self-calibration
are supported,

• the automatic variance components estimation and its
iterative nature,

• and the variety of outputs.
In this section, we will first describe the camera model

and the calibration model, i.e., the relation between 3D world
points and their projection into the camera that is mounted on
the end-effector of the robot. After a short introduction to pa-
rameter estimation models, we will introduce three alternative
least-squares estimation models for hand–eye calibration and
propose how to obtain initial values for the estimation. The
section concludes with implementation details.

A. Camera Model
We represent the camera by the perspective camera model

described in [5, Chapter 3.9.1]. A 3D point pw in the WCS is
transformed to a point pc in the CCS by

pc = R pw + t (4)

where t = (tx, ty, tz)
> is a translation vector and R is

a rotation matrix parameterized by Euler angles: R =
Rx(α)Ry(β)Rz(γ) (see Eqs. (25)–(27)). The parameters
(tx,ty,tz,α,β,γ) describe the exterior orientation of the camera.
With homogeneous coordinates (i.e., after extending pw and
pc with a fourth coordinate of 1), the transformation can be
written as a 4× 4 homogeneous matrix:

pc = cHwpw =

(
R t

0> 1

)
pw . (5)
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Fig. 2. Flowchart of our uncertainty-aware hand–eye calibration framework.

The point pc = (xc, yc, zc)
> is then projected into the image

plane by (
xu
yu

)
=

c

zc

(
xc
yc

)
, (6)

with the principal distance c of the lens. Even if we will
concentrate on a perspective lens, other camera models (e.g.,
for telecentric lenses) can be included in a straightforward

way [5, Chapter 3.9]. Next, the undistorted point (xu, yu)> is
distorted to (xd, yd)>, e.g., by either the division model [44](

xu
yu

)
=

1

1 + κr2d

(
xd
yd

)
, (7)

which models radial distortions by κ, or the polynomial model,
which is based on [45],

(
xu
yu

)
=


xd(1 +K1r

2
d +K2r

4
d +K3r

6
d)

+ (P1(r2d + 2x2d) + 2P2xdyd)

yd(1 +K1r
2
d +K2r

4
d +K3r

6
d)

+ (2P1xdyd + P2(r2d + 2y2d))

 , (8)

which models radial distortions by K1, K2, and K3 as well
as decentering distortions by P1 and P2. Here, r2d = x2d + y2d.
While the division model can be inverted analytically, the
polynomial model must be inverted by a numerical root finding
algorithm [5, Chapter 3.9.1.3]. This is significantly slower than
the analytical inversion in the division model. This is why
we implemented the polynomial model the other way round
compared to [45]. In machine vision, it is important that in
online application the rectification of distorted measurements
is fast, for example, when transforming image coordinates
to measurements in the world. Thus, it is advantageous to
compute the rectification instead of the distortion analytically
[5].

Finally, the distorted point (xd, yd)> is transformed into the
image coordinate system:

pi =

(
xi
yi

)
=

(
xd/sx + cx
yd/sy + cy

)
, (9)

where (cx, cy)> is the principal point and sx and sy denote
the pixel pitches on the sensor (x refers to the horizontal and
y to the vertical axis of the image).

The six parameters i = (c, κ, sx, sy , cx, cy)> for the division
model or the ten parameters i = (c, K1, K2, K3, P1, P2, sx,
sy , cx, cy)> for the polynomial model describe the interior
orientation i of the camera.

B. Calibration Model

For hand–eye calibration, the tool of the robot is moved
to nr different poses and an image is acquired at each pose.
For target-based calibration, the calibration target is placed
at a fixed position within the workspace of the robot (see
Fig. 1). In the self-calibration case, images are acquired from
any sufficiently textured object or background scene instead.
Let tHb,j be the robot pose that is queried from the robot
controller at pose j (j = 1, . . . , nr). Further let the 3D world
points (given in the WCS) of the calibration target or in the
scene be pk (k = 1, . . . , nw) and their 2D projections into
the image at robot pose j be pj,k. Then, we can describe the
projection of a 3D point into an image by:

pj,k = π(cHt
tHb,j

bHwpk, i) , (10)

where π(pc, i) is the projection of the point pc, which is given
in the CCS, into the image by successive execution of Eqs. (6),
the inverse of either (7) or (8), and (9), by using the parameters
of the interior orientation i. We denote the vector that contains
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the six transformation parameters of the robot poses tHb,j by
et,j , that of the unknown hand–eye pose cHt by ec, and that
of the unknown pose bHw by eb (in analogy with cHw above).

C. Introduction to Estimation Models

Estimation theory is used to estimate unknown parameters
(unknowns) from given erroneous and redundant observed
parameters (observations). Parameter estimation has a long
tradition in photogrammetric computer vision and is often
based on weighted least-squares estimation as a special case
of Bayesian estimation [46].

Two of the most common models that are applied for this
purpose are the Gauss-Markov model and the Gauss-Helmert
model, both of which exist in a multitude of variations.
One key advantage of these models is that the stochastic
properties of the observed and unknown parameters are taken
into account by the second moments of their distributions,
i.e., their variances and covariances. Furthermore, a variety
of established tools exist for evaluating the estimation results,
making both models easy to apply in practice. The Gauss-
Markov model assumes that the observations can be expressed
as an explicit function of the unknowns. Since this assumption
is not fulfilled in all practical cases, the more general but
also less efficient Gauss-Helmert model is able to represent
constraints between observations and unknowns via implicit
functions [46].

D. Estimation in the Gauss-Markov Model

We distinguish between the functional model and the
stochastic model [46]. The functional model describes the
relations between the observations and the unknowns. In the
stochastic model, the observations and the unknowns are
treated as random variables with uncertainties, where the
uncertainties are described by (co-)variances.

For error-free robot poses, the hand–eye calibration task
can be formulated in the Gauss-Markov model [46, Chapter
4.4] because all uncertain observations l can be expressed as
a function l = f(x) of the unknown parameters x, where f
describes the functional model and corresponds to Eq. (10).

The vector l contains the measured image points l = (p>1,1,
. . ., p>1,nw

, . . ., p>nr,nw
)>. If a 3D point is not visible in a

certain image, the respective entry in l is simply omitted. Let
ni denote the total number of measured image points over all
images. Then, the number of observations nl is 2ni. For each
observed image point, we set up two equations of the form of
Eq. (10) yielding 2ni equations. The vector x depends on the
application scenario and is formed according to the following
recipe:
• For all scenarios, x contains the hand–eye pose: x := ec.

Note, however, that for SCARA robots, the z component
tz of the translation part of the hand–eye pose cannot
be determined as all robot poses are parallel [47]. To be
more specific, the optimization problem would become
singular and yield a 1D manifold of equivalent solutions.
Therefore, for SCARA robots, tz is (arbitrarily) set to
0, excluded from the optimization, and determined in

post-processing like proposed in [26], i.e., in this case, x
contains only the five remaining parameters of ec.

• For the scenario of a target-based calibration, x must be
extended by the unknown eb: x := (x>, e>b )>. Note that
for the self-calibration scenario, we can reconstruct the
3D points directly in the BCS. Hence, we exclude eb from
the unknowns and internally set eb = (0, 0, 0, 0, 0, 0)>.

• In the scenario where the interior orientation of the cam-
era is unknown and shall be simultaneously estimated, we
further extend x := (x>, i>)>. Note that sy is typically
excluded from the calibration [5, Chapter 3.9.4.2].

• For the self-calibration scenario, x must be further ex-
tended by the coordinates of the 3D points: x :=
(x>, p>1 , . . . , p>nw

)>.
Let the final number of unknown variables in x be nx.
It should be noted that the singularity in the Euler angle
parameterization is not critical when perturbations with respect
to the initial poses of ec and eb are used. These perturbations
will be close to the identity transformation, such that the
singularity of the Euler angle parameterization is irrelevant.
Regardless, our framework supports the use of alternative pose
parameterizations if desired. The initial poses are obtained by
a non-iterative approach, e.g., by the dual-quaternion-based
approach of [21] (cf. Sec. III-G).

The stochastic model specifies the statistical properties of
the observation process. Assuming that the image points are
uncorrelated and are measured with the same accuracy, we set
the nl×nl weight coefficient matrix of the observations to the
identity: Qll = I. Note that it is sufficient to only specify the
ratio of the variances of the observations in Qll. Their absolute
values will be estimated later by scaling Qll with the variance
factor (see Eqs. (13) and (14)).

For linearization, we compute the 2ni × nx Jacobian A3 of
f at the initial values of the unknowns x(0) (cf. Sec. III-G):

A =
∂f(x)

∂x

∣∣∣∣
x=x(0)

. (11)

With ∆l = l − f(x(0)) and the weight matrix Pll = Q−1ll , we
can calculate the corrections for the unknowns by solving

A>PllA∆x̂ = A>Pll∆l (12)

for ∆x̂ by sparse Cholesky decomposition, for example4. For
details about the Gauss-Markov model including the derivation
of Eq. (12), the interested reader is referred to [46, Chapter
4.4.1].

Then, x̂(1) = x(0) + ∆x̂, and Eqs. (11) and (12) are
repeatedly applied until convergence. This corresponds to the
minimization of the reprojection error of the 3D points. After
convergence, the covariance matrix of the original observations
is obtained by

Cll = σ̂2
0Qll , (13)

with the variance factor

σ̂2
0 = v̂>Pllv̂/r , (14)

3Note that from here on, A and B represent Jacobians in contrast to
Section II.

4In statistics, the hat operatorˆdenotes an estimated or fitted value.
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the residuals v̂ = A∆x̂−∆l, and the redundancy r = nl−nx.
The corrected observations are obtained by l̂ = l + v̂. The
covariance matrix of the estimated unknowns is obtained by
variance propagation:

Cx̂x̂ = σ̂2
0(A>PllA)−1 (15)

Note that the special case of this approach with target-based
calibration and Qll = I corresponds to the rp1 method (fixed
interior orientation) or rp2 method (simultaneously estimated
interior orientation) in [42].

E. Estimation in the Gauss-Helmert Model

In order to consider uncertain robot poses, these must
be introduced as erroneous observations in addition to the
image coordinates. Hence, the observations can no longer
be expressed explicitly as a function of the unknowns. For
this purpose, parameter estimation must be performed in the
Gauss-Helmert model [46, Chapter 4.8]. In the Gauss-Helmert
model, our functional model becomes f(x, l) = 0.

In this model, the vector l contains the observed image
points as well as the robot poses l = (p>1,1, . . ., p>1,nw

, . . .,
p>nr,nw

,e>t,1, . . ., e>t,nr
)>. The number of observation equations

is still 2ni. However, the number of observations now becomes
nl = 2ni + 6nr. The vector x of unknowns is identical to that
in the Gauss-Markov model.

In comparison to the Gauss-Markov model, the stochastic
model must also consider the uncertainties of the robot poses.
Tests on real systems showed that the errors in the robot
poses are zero-mean Gaussian distributed [14]. But even if
assuming uncorrelated observations, we still would have to
know the relative accuracy between the three observation
groups (image coordinates, Euler angles of the robot poses,
translation components of the robot poses) to set up Qll. The
absolute accuracy values are not required as input. However,
they can be computed from the estimation result. Therefore,
we initialize Qll with reasonable values and use the concept of
variance components [46] to estimate the true variances of the
observations (see below). We could also initialize Qll = I, but
then the number of iterations to estimate the variance com-
ponents would be unnecessarily high. For a higher efficiency,
in our implementations we initially set the standard deviations
of the image points to σi = 0.1 pixels, of the Euler angles to
σa = 0.1 deg, and of the translation components to σt = 1 mm.
Then,

Qll = diag(rep(σ2
i , 2ni), rep([σ2

a , σ
2
a , σ

2
a , σ

2
t , σ

2
t , σ

2
t ], nr)) ,

(16)
where the function rep(y, n) generates a vector containing n
copies of y.

In the Gauss-Helmert model, the Jacobian A is the same as
in the Gauss-Markov model. However, in the Gauss-Helmert
model, we have to linearize f additionally with respect to the
observations yielding the 2ni × nl Jacobian

B =
∂f(x, l)
∂l

∣∣∣∣
x=x(0)

. (17)

Note that the upper left 2ni×2ni submatrix of B is a diagonal
matrix with all diagonal elements set to -1. With w = f(x(0), l),
we can calculate the corrections for the unknowns by solving

A>(BQllB
>)−1A∆x̂ = −A>(BQllB

>)−1w (18)

for ∆x̂. For details about the Gauss-Helmert model including
the derivation of Eq. (18), the interested reader is referred to
[46, Chapter 4.8].

After convergence, we estimate a variance component for
each of the three observation groups. This yields corrected
values for σi, σa, and σt, and thus a corrected Qll (for details
about variance components estimation see Sec. III-F2). Then,
the whole estimation process (which is an iterative process
by itself) is repeated until the variance components converge.
The covariance matrix of the observations is obtained by
Cll = σ̂2

0Qll with the redundancy r = 2ni − nx. The
covariance matrix of the estimated unknowns is obtained by
Cx̂x̂ = σ̂2

0(A>(BQllB
>)−1A)−1.

In essence, this model allows us to simultaneously minimize
the reprojection error and the error in the robot poses by
automatically weighting the error terms with respect to each
other based on the computed statistics.

F. Estimation in the Gauss-Markov Model with Fictitious
Observations

1) Parameter Estimation: Because of the expensive matrix
computations in the Gauss-Helmert model, we also imple-
mented a more efficient variant of the Gauss-Markov model
that is equivalent to the Gauss-Helmert model ( [48], [49]) by
using the concept of fictitious observations for the robot poses.

The key idea is to introduce the uncertain robot poses
simultaneously as observations and as unknowns. The first
part of the functional model is still l = f(x). In contrast to
Sec. III-D, however, we add 6 additional observation equations
of the form et,j = f2(et,j) for each robot pose j, where f2
is the identity in our case. This results in nl = 2ni + 6nr
observation equations. Hence, the vector l contains the ob-
served image points and the robot poses l = (p>1,1, . . ., p>1,nw

,
. . ., p>nr,nw

,e>t,1, . . ., e>t,nr
)> as in Sec. III-E. Simultaneously,

we also introduce the robot poses as unknowns by extending
x := (x>, e>t,1, . . . , e>t,nr

)>, yielding nx unknowns.
Because l is identical to that in the Gauss-Helmert model,

we apply the same stochastic model and initialize Qll by using
Eq. (16).

The computation of the (2ni +6nr)×nx Jacobian A and of
the corrections ∆x̂ is done by Eqs. (11) and (12). Note that in
this case the lower left part of A contains zeros and the lower
right part the identity I6nr×6nr

. Figure 3 shows the complete
structure of the Jacobian A.

For the computation of A, an analytic calculation of the
partial derivatives is clearly preferable over a numerical cal-
culation because in our case it is faster and the derivatives
are more accurate, which leads to a faster convergence of the
optimization. All partial derivatives are given in the Appendix.

After convergence, the variance components are estimated
as described in Sec. III-F2. Finally, Cll = σ̂2

0Qll, l̂, and Cx̂x̂ are
computed as described in Sec. III-D.
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Fig. 3. Structure of the Jacobian A in the Gauss-Markov model with
fictitious observations. The rows represent observations, the columns represent
unknowns. White blocks indicate that all entries are 0, gray blocks indicate
partial derivatives that are typically different from 0 and black blocks indicate
the identity matrix. Block rows 1 to 9 represent the measured image points,
block rows 10 to 12 represent the robot poses, i.e., the fictitious observations.
Block column 1 represents the hand–eye pose. Block column 2 represents the
pose of the calibration target and is omitted in the self-calibration case. Block
column 3 represents the interior camera parameters, which, depending on the
lens distortion model, contains either 5 or 9 elements when excluding sy from
the calibration. Block column 3 is omitted if the camera parameters are already
known and should not be estimated. Block columns 4 to 6 represent the 3D
world points, and hence are omitted in the case of target-based calibration.
Block columns 7 to 9 represent the robot poses.

2) Variance Components Estimation: To estimate the vari-
ance components of the three observation groups we have to
generalize the stochastic model of the Gauss-Markov model
[46, Chapter 4.2.4]. To put it simply, it is no longer sufficient
to calculate a single global variance factor σ̂2

0 as in Sec. III-D.
Instead, we need to estimate an individual variance factor for
each observation group. This enables the correct modeling of
the stochastic properties of each observation group. Note that
because we are interested in the absolute values of the vari-
ances, two variance factors that model only the ratio between
the three observation groups would not be sufficient. The
steps that are necessary for variance components estimation
are described in this section.

1) First, we compute the weight coefficient matrix of the
estimated unknowns x̂:

Qx̂x̂ = (A>PllA)−1 . (19)

Note that this computation step was already performed
during parameter estimation (see Eq. (12) in Sec. III-D
and Sec. III-F1).

2) Then, we apply error propagation to obtain the weight
coefficient matrix of the corrected observations l̂:

Q̂l̂l = AQx̂x̂A
> . (20)

3) From this, we compute the weight coefficient matrix of
the estimated residuals v̂

Qv̂v̂ = Qll − Q̂l̂l (21)

and the so-called redundancy matrix

R = Qv̂v̂Pll = I− Q̂l̂lPll . (22)

The main diagonal of R contains the redundancy num-
bers, i.e., the contribution of a single observation to the
total redundancy r, with

∑nl

i=1Ri = r and Ri being the
main diagonal element of R at row and column i. Recall
that the total redundancy is the difference between the
number of observations and the number of unknowns
r = nl − nx.

4) Let Ii, Ia, and It be the sets of observation indices that
contain the observed image point coordinates, the ob-
served Euler angles of the robot poses, and the observed
translation components of the robot poses, respectively.
Further, let v̂i, v̂a, and v̂t be vectors that contain the
subset of the elements of the residual vector v̂ that
correspond to the respective observation group and let
Pll,i, Pll,a, and Pll,t be matrices that contain the subset
of the rows and columns of the weight matrix Pll that
correspond to the respective observation group. Then,
the variance components of the three observation groups
can be computed as

σ̂2
0,i =

v̂>i Pll,iv̂i∑
i∈Ii Ri

, σ̂2
0,a =

v̂>a Pll,av̂a∑
i∈Ia Ri

, σ̂2
0,t =

v̂>t Pll,tv̂t∑
i∈It Ri

.

(23)
5) By multiplying the initially chosen variances of the

observations with the variance components, we obtain
improved estimates of the variances:

σ2
i ← σ̂2

0,iσ
2
i , σ2

a ← σ̂2
0,aσ

2
a , σ2

t ← σ̂2
0,tσ

2
t . (24)

6) They are used to update the stochastic model. The update
is performed by setting up a new weight coefficient
matrix Qll where the entries on its main diagonal are
set to the new values of σ2

i , σ2
a , and σ2

t .

Then, the parameter estimation is restarted with the original
observations but with the new matrix Qll. The process is
repeated until the variance components converge, i.e., σ̂2

0,i,
σ̂2
0,a, and σ̂2

0,t are all sufficiently close to 1.0. This is typically
the case after 3 to 5 iterations.

Note that when estimating variance components, the global
variance factor σ̂2

0 does not need to be computed by using
Eq. (14) because convergence of the variance components
automatically ensures that σ̂2

0 = 1.0. For more details about
variance components estimation, the interested reader is re-
ferred to [46].
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G. Initialization of the Unknowns

Because of the nonlinearity of the optimization problem,
initial values for the unknowns need to be provided. We
propose the following initialization for x:
• Initial values for the hand–eye pose ec and for eb are

obtained from a linear approach (e.g., [21] for antropo-
morphic robots or [26] for SCARA robots).

• Initial values for the interior orientation are obtained from
the data sheets of the camera (sx and sy) and the lens
(c). The principal point (cx,cy)> is set to the image center
and the distortion coefficients are set to 0.

• For self-calibration, a SfM pipeline (e.g., COLMAP [50])
is applied to the acquired images. It returns the camera
parameters i, the reconstructed 3D points pk, and for each
image j the extracted 2D keypoints pj,k and the exterior
orientation cHw,j .

In the self-calibration case, we fix the inherent unknown
scale factor of SfM in the initial values for pk and cHw,j by ap-
plying the following steps: For all pairs of robot poses j1 and
j2, we compute the camera movement c2Hc1 = cHw,j2

cHw
−1
,j1

and the tool movement t2Ht1 = tHb,j2
tHb
−1
,j1. We then convert

both rigid 3D transformations to screw parameters [21]. From
the screw congruency theorem [18] we known that the screw
translation parameter dt of the tool movement is identical to
the screw translation parameter dc of the camera movement.
Therefore, the ratio dt/dc reflects the unknown scale factor of
the SfM. For a higher robustness, the median over the ratios
of all pairs is computed while ignoring ratios for which dt or
dc is below a noise threshold. Finally, the scale factor is used
to correct the initial values for pk and cHw,j before starting
the optimization.

H. Implementation of the Gauss-Markov Model with Fictitious
Observations

Pseudocode of the proposed uncertainty-aware hand–eye
calibration with the Gauss-Markov model with fictitious ob-
servations (GMF) is given in Fig. 11 in the Appendix.

In this section, details about an efficient implementation of
the parameter estimation in the Gauss-Markov model with fic-
titious observations are given. Even though the computations
in this model are less demanding than in the Gauss-Helmert
model, a straightforward implementation of the presented
algorithm would still result in very long computation times and
a huge memory consumption, especially for a large number
of observed image points. Therefore, we will describe how to
optimize the implementation while preserving the exact result:
• A first set of optimizations is based on the fact that Qll

is a diagonal matrix. Hence, Pll is efficiently obtained by
computing the reciprocals of the main diagonal elements
of Qll. Furthermore, when computing the corrections
of the unknowns by solving (12), two multiplications
can be sped up. Firstly, the matrix multiplication of
Pll with A is replaced by scaling each row of A by
the corresponding diagonal element of Pll. Secondly,
the matrix multiplication of (A>PllA)−1A> with Pll is
replaced by scaling each column of the former matrix

by the corresponding diagonal element of Pll. Each of
both replacements reduces the number of calculation
operations from 2n2l nx to nlnx.

• A second set of optimizations can be applied because in
Sec. III-F2 we saw that the entire redundancy matrix R
does not need to be computed. Instead, it is sufficient
to know its main diagonal to compute the variance
components. Therefore, and because Pll is a diagonal
matrix as well, it follows from (22) that also for Qv̂v̂ only
its main diagonal needs to be computed. Furthermore,
we can conclude from (21) that the same holds for Q̂l̂l,
too. Note that the right product in (20), i.e., Qx̂x̂A

>, is
already available from the computation of the corrections
of the unknowns in (12). Hence, the elements of the main
diagonal of Q̂l̂l can be efficiently computed by the scalar
products of each row of A with the corresponding column
of Qx̂x̂A

>. According to (22), each resulting diagonal ele-
ment is multiplied by the corresponding diagonal element
of Pll and subtracted from 1.0 to obtain the corresponding
element of R. This drastically reduces the number of
calculation operations from 2n4l + (2nx + 1)n2l + 2n2xnl
to 2nxnl.

• Also the computation of the numerators in (23) can be
sped up by computing the element-wise product of the
main diagonal of Pll and the squared elements of v̂ and
summing up the results. This reduces the number of
calculation operations from 2n2l + 2nl to 3nl for each
observation group5.

• After the convergence of the variance components, the
computation of the statistics can be optimized as well:
The computation of σ̂2

0 is optimized in analogy with
the computation of the variance components described
above. The main diagonal of the covariance matrix of
the original observations Cll is obtained by scaling the
main diagonal of Qll with σ̂2

0 .

Through the described optimizations we not only speed up
the calculations but also manage to avoid the computation
of matrices of size nl × nl. This is important because nl
may become huge in practice. To give one example, the
optimizations reduce the overall memory consumption of the
hand–eye calibration from approximately 3.9 GB to 100 MB
and the computation time from 72 s to 2 s (for nr=25 robot
poses and nw=200 world points, which results in nl = 10150).

IV. EVALUATION

This section presents the results of multiple experiments
that show the validity and the advantages of our uncertainty-
aware hand–eye calibration. We will first evaluate different
selected aspects of our proposed model based on simulated
data that we generated. Afterwards, experiments on real data
are intended to demonstrate the advantages in application
scenarios. These include experiments with our own robot as
well as evaluations on a public dataset of a real laboratory.
Finally, a comprehensive comparison with 15 state-of-the-

5Note that here, nl exceptionally represents the number of observations
in the respective observation group
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Fig. 4. Translation and rotation error of the hand–eye pose for different
number of robot poses nr and different approaches: Daniilidis [21], Steger
[5], Tabb rp1 [42], GMF (ours). ’Reference’ visualizes the uncertainty of the
simulated robot, i.e., the L2-Norm of the standard deviations applied to the
robot poses.

art methods based on a public dataset of synthetic images
completes the section.

A. Model Validation on Simulated Data

We simulated an uncertain robot by adding zero-mean Gaus-
sian noise to its robot poses tHb,j with a standard deviation
of 1 mm in the translation components and of 0.1 deg in the
orientation components. To the image points, we applied noise
with a standard deviation of 0.1 pixels.

For calibration, we simulated a planar calibration target
with nw = 40 points and a diameter of about 1 m and
placed it in the workspace of the robot. We set the hand–
eye pose cHt to different values with a translation of about
10 cm and different orientations. For the camera of resolution
1280×1024 we assumed the division model and set c = 8 mm,
κ = 2000 m−2, sx = 5.21µm, sy = 5.2µm, and (cx, cy) =
(645,502) pixels. We generated 40 random robot poses tHb,j

in its 1 m3 workspace such that at least 90% of the calibration
points were visible in the image.

First, we calibrated the interior orientation of the camera
by using the acquired images and the approach of [5, Chapter
3.9.4]. Then, for hand–eye calibration we applied the linear
approach of [21] (Daniilidis), the non-linear approach of [5,
Chapter 3.13.5] (Steger), the approach based on the Gauss-
Markov model of Sec. III-D (Tabb rp1), which is equivalent
to the rp1 method in [42], and the Gauss-Markov model
with fictitious observations of Sec. III-F (GMF). All non-
linear approaches were initialized with the result of [21]. In
all experiments, the results of the Gauss-Helmert model of
Sec. III-E were identical to that of GMF (up to numerical
inaccuracies). This shows the validity of using the more
efficient GMF instead of the Gauss-Helmert model and also
makes the presentation of the results of the Gauss-Helmert
model superfluous. We repeated each experiment 30 times and
display the mean values in the following.

Fig. 4 shows the translation and rotation error of the
computed hand–eye poses cHt. Let H represent the computed
pose and Hgt the ground truth pose. We compute the translation
error as the length of the translation part of H− Hgt. For the
rotation error, we compute the magnitude of the Rodrigues
rotation of HH−1gt . As expected, the errors of all approaches
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Fig. 5. Translation and rotation error of the robot poses tHb,j before (black)
and after (green) GMF calibration.
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Fig. 6. Translation and rotation error of the hand–eye pose with (GMF)
and without (GMF, no VC) estimating variance components. The standard
deviation of the rotation components of the simulated robot was set to 0.3 deg
and the standard deviation of the translation components was varied. The trans-
lation standard deviation that corresponds to the initial ratio 0.3 · σt/σa mm
is indicated by the vertical dotted line.

generally decrease when increasing the number of robot poses.
GMF performs best in all cases. Furthermore, the advantage
of modeling the uncertainty of the robot can be clearly seen
from the difference between Tabb rp1, which is equivalent to
the Gauss-Markov model of Sec. III-D, and GMF. Note that
the translation error might even exceed the uncertainty of the
robot especially for fewer robot poses.

Fig. 5 shows the translation and rotation error of the robot
poses before and after GMF calibration (the calibrated robot
poses are contained in l̂). GMF is able to decrease the errors in
the robot poses to about 20–25%. Thus, GMF not only returns
an accurate hand–eye pose but also enables a convenient
vision-based robot calibration where the calibrated robot poses
are assumed as ground-truth poses for the estimation of the
robot parameters (e.g., Denavit-Hartenberg parameters [11]).

To analyze the benefit of estimating the variance compo-
nents, we fixed the number of robot poses to 40 and set the
standard deviation of the rotation components of the simulated
robot poses to 0.3 deg. Then, we varied the standard deviation
of the translation components of the robot from 0 to 7.5 mm
and repeated each experiment 30 times. The mean error of the
hand–eye pose is shown in Fig. 6. As before, we initialized
Qll with σa = 0.1 deg and σt = 1 mm. The positive effect of
estimating the variance components on the accuracy is obvious
and increases the more the assumed ratio deviates from the true
ratio of standard deviations.

Another advantage of estimating the variance components
is that a meaningful accuracy of the robot is returned in Cll,
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which otherwise would require costly robot calibration. On
average, the accuracy (i.e., the standard deviations) of the robot
was computed with an error of 61.1% in translation and 53.3%
in rotation without estimating variance components, and with
an error of only 0.8% and 1.0% when estimating variance com-
ponents. The mean standard deviation of the image points was
estimated as 0.14 pixels without, and correctly as 0.10 pixels
with estimating variance components.

In general, the experiments indicate that the hand–eye
calibration is solvable in the proposed way. They show that the
chosen problem formulation is not ill-posed and the system of
normal equations (12) does not become singular. Furthermore,
they show that the topography of the error surface allows the
optimization to converge to the desired minimum. The exper-
iment also indicates that the initial values that are obtained by
the linear approach of [21] are sufficiently accurate.

Next, we simulated a robot with systematic errors. For
this, we took the Denavit-Hartenberg (DH) parameters [11],
[51] of a UR3e robot arm and added systematic errors to
the parameters of each of its six axes: We applied random
systematic offsets with a standard deviation of 0.05 mm to
the link length parameters a and to the link offset parameters
d, random systematic offsets with a standard deviation of
0.02 deg to the link twist parameters α and to the joint angle
parameters θ, and a random systematic scaling 1+ε of the joint
angle parameters θ with a standard deviation of 0.0001 for ε.
Then, we simulated 40 robot poses by applying the forward
kinematics [51] once with the erroneous DH parameters and
once with the original DH parameters. We then projected the
3D points of a calibration target with 837 points for each
robot pose into the camera image by using the erroneous robot
pose and added noise to the image points with a standard
deviation of 0.1 pixels. The robot poses that were computed
with the original DH parameters were used as input to the
same hand–eye calibration approaches as before. Again, all
non-linear approaches were initialized with the result of [21].
For now, the camera parameters were assumed to be known.
For the resulting hand–eye poses, we again computed the error
in the translation part and in the rotation part. We repeated the
experiment 20 times with different systematic errors in the DH
parameters and computed the mean error in translation and
rotation over the 20 results. Finally, we repeated the whole
experiment for different noise levels by multiplying the above
standard deviations of the DH parameters by a noise factor
ranging from 0 to 10, while keeping the noise in the image
points constant. The results are shown in Fig. 7. Note that no
additional noise was added to the robot poses. The experiment
shows that our approach is also able to cope with systematic
robot errors very well.

For a noise factor of 1.0, we also tested the simultaneous
estimation of the interior camera parameters. Table I shows
the initial values for the camera parameters, the ground truth
values, the results of our approach and the standard deviations,
which are also returned by our approach. It can be seen that
the estimated camera parameters are very close to their ground
true values. Also, the standard deviations that are returned by
our approach are on the same order of magnitude as the errors
in the parameters, and hence are plausible.
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Fig. 7. Translation and rotation error of the resulting hand–eye pose for a
robot with systematic errors in the Denavit-Hartenberg parameters.

TABLE I
RESULTS OF THE SIMULTANEOUS CAMERA CALIBRATION. PARAMETERS

INDICATED BY ∗ ARE EXCLUDED FROM THE CALIBRATION.

Camera Initial Ground Truth Estimated Standard
Parameter Values Values Values Deviation
f (mm) 8.0 8.4300 8.4303 0.0002
κ (m−2) 0.0 1000.00 999.92 0.54
sx (µm Pixel−1) 5.2 5.21000 5.20997 0.00003
sy (µm Pixel−1)∗ 5.2 5.20000 5.20000 0.00000
cx (Pixel) 640.0 660.00 659.99 0.02
cy (Pixel) 512.0 482.00 481.96 0.02

B. Experiments on Real Data

For our experiments, we attached a 2448 × 2048 IDS U3-
3280SE camera with an 8 mm lens at the end-effector of a
6-axis UR3e robot arm (0.5 m working radius). To test the
target-based calibration, we put a planar calibration target
with known control points6 in the workspace of the robot and
acquired images at 25 different robot poses (Fig. 8, top). To
test the self-calibration capabilities of our model, we replaced
the calibration target by a planar print and acquired 25 images
by using the same robot poses (Fig. 8, bottom).

Table II displays the reprojection root mean squared error
(RRMSE) and the reconstruction accuracy error (RAE), which
is the average squared Euclidean error of the reconstructed
calibration points, as proposed in [42]. For the evaluation, we
compare different variants of GMF with the methods of [21]
(Daniilidis), [5] (Steger), [42] (Tabb rp1), and [14] (Strobl)
as a representative that models errors in the robot poses. For
the evaluation of [14], we used the implementation of [54],
which allows to chose whether the errors in the robot poses
(Strobl 1) or in the camera poses (Strobl 2) are minimized.
For GMF, ’fixed camera’ means that camera parameters are
pre-calibrated separately by using [5, Chapter 3.9.4] and are
excluded from the hand–eye calibration. ’orig. poses’ means
that the errors are calculated with the original robot poses
instead of the calibrated ones. ’self-calibration’ means that
no calibration target was used (in this case, RAE cannot
be computed because the true 3D points are unknown). For
the GMF, we again initialized Qll with σi = 0.1 pixels,
σa = 0.1 deg and σt = 1 mm. For the calibrated robot poses,

6The image coordinates of the circular control points are extracted by
fitting ellipses to their subpixel-accurate image edges. This causes a bias in
the point positions [52]. For most applications, this distortion is so small that
it can be neglected. However, the bias can be removed with the approach
described in [53] if necessary.
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Fig. 8. Two example calibration images for the target-based hand–eye
calibration (top row) and for hand–eye self-calibration (bottom row).

TABLE II
RRMSE AND RAE ERRORS ON THE UR3E DATA

Method RRMSE RAE Time
(pixel) (mm2) (s)

Daniilidis [21] 0.708 0.00462 0.2
Steger [5] 0.608 0.00212 0.2
Strobl 1 [14] 1.082 0.04248 1.6
Strobl 2 [14] 1.152 0.07076 1.6
Tabb rp1 [42], fixed camera 0.567 0.00194 0.3
Tabb rp1 [42] 0.545 0.00212 0.3
GMF, orig. poses, fixed camera 0.784 0.02190 3.4
GMF, orig. poses 0.771 0.02103 3.4
GMF, fixed camera 0.196 0.00073 3.4
GMF 0.193 0.00073 3.4
GMF, self-calibration 0.178 - 14.2

GMF returns the smallest errors for target-based calibration
and for self-calibration.

Table II also shows the computation times of the different
methods measured on an Intel Core i7-8565U with 1.8 GHz.
Compared to the methods of [21], [5], and [42], GMF is slower
by a factor of approximately 10. This is mainly caused by
the additional iteration that is needed in GMF for estimating
the variance components. Nevertheless, the absolute value of
3.4 s is still fast enough for practical applications where the
acquisition time of the calibration images takes by far the most
time. In the self-calibration case, the computation time of GMF
increases to 14.2 s because of the higher number of unknowns,
i.e., the reconstructed 3D points.

It is also interesting to have a look at the standard deviations
of the image points, the robot translations, and the robot

TABLE III
RESULTING HAND–EYE POSES

Method tx ty tz α β γ
(mm) (mm) (mm) (deg) (deg) (deg)

GMF 63.64 135.21 45.67 2.26 25.39 176.35
GMF, self-calib 63.79 135.18 45.76 2.24 25.35 176.35

TABLE IV
ESTIMATED CAMERA PARAMETERS. PARAMETERS INDICATED BY ∗ ARE

EXCLUDED FROM THE CALIBRATION.

Camera Initial Pre- Simultaneous Standard
Parameter Values Calibration Calibration Deviation
f (mm) 8.0 8.143883 8.143442 0.000296
κ (m−2) 0.0 -1828.362 -1834.429 2.176
sx (µm pixel−1) 3.45 3.449968 3.449982 0.000026
sy (µm pixel−1)∗ 3.45 3.450000 3.450000 0.000000
cx (pixel) 1224.0 1249.083 1249.081 0.066
cy (pixel) 1024.0 1035.332 1035.266 0.074

rotations, which are returned by GMF. They are 0.23 pixels,
0.093 mm, and 0.029 deg in the target-based calibration and
0.32 pixels, 0.097 mm, and 0.025 deg in the self-calibration
case. Thus, the robot uncertainty was estimated consistently.
For comparison, the manufacturer specifies the repeatability of
the robot as 0.03 mm. Consequently, our result suggests that
the uncertainty of the robot is worse than its repeatability by a
factor of 3, which is plausible. Furthermore, the image points
of the calibration target are extracted with a slightly higher
accuracy compared to the feature points in the prints, which
is plausible as well. The resulting hand–eye poses for target-
based calibration and self-calibration are shown in Table III.

We also compared the result of camera pre-calibration using
the approach of [5, Chapter 3.9.4] with simultaneous camera
calibration. Table IV shows the obtained camera parameters
for both variants together with the standard deviations that are
returned by our approach. Additionally, the initial parameter
values that were used for both variants are shown. Our results
are consistent with the results obtained by pre-calibration.

To test the robustness of the estimation of the variance
components to the initialization of σi, σa, and σt, we modified
the standard values of 0.1 pixels, 0.1 deg, and 1 mm. Since
only the ratio of the three values affects initialization, we
independently multiplied σa and σt by a factor of 10P where
P is an integer ranging from -5 to +5, resulting in 112

combinations. For each combination, we used σi and the scaled
versions of σa and σt to initialize Qll and restarted our hand–
eye calibration. For all experiments for which −4 ≤ P ≤ 4,
the variance components successfully converged to the same
values in at most 5 iterations. For |P | = 5, in some cases
the least-squares estimation failed due to numeric problems,
which is not surprising since the values in Qll differed by up
to 11 orders of magnitude. The experiment shows that the
estimation of the variance components is extremely robust,
even for unrealistically incorrect initializations.

We also applied our approach to four datasets published in
[42]. Information about these datasets is given in Table V and
the results are shown in Table VI. For calibrated robot poses,
GMF returns the smallest errors in almost all cases. When
taking the original robot poses (GMF, orig. poses), the error
is significantly higher.

C. Comprehensive Comparison with Previous Work

For a comprehensive comparison of our framework to previ-
ous methods, we use the publicly available benchmark dataset
of [33]. We selected the CS Synthetic 3 dataset for evaluation
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TABLE V
INFORMATION ABOUT THE DATASETS PUBLISHED IN [42]. CAMERA CALIBRATION ERROR REFERS TO THE REPROJECTION ROOT MEAN SQUARE ERROR

OF CAMERA CALIBRATION.

Dataset Image Size Approx. Focal Length Robot nr Camera Calibration Error
(pixel × pixel) (mm) (pixel)

1 640 × 480 8 Denso VS-6577GM-B 88 0.185
2 2456 × 2058 8 Denso VS-6577GM-B 28 0.199
3 2456 × 2058 6 Denso VM-60BIG 36 0.540
4 1600 × 1200 6 Denso VM-60BIG 20 0.447

TABLE VI
RRMSE AND RAE ERRORS ON THE DATASET [42] (RESULTS OF [42] AND [43] ARE TAKEN FROM [43])

Dataset 1 Dataset 2 Dataset 3 Dataset 4
RRMSE RAE RRMSE RAE RRMSE RAE RRMSE RAE

Method (pixel) (mm2) (pixel) (mm2) (pixel) (mm2) (pixel) (mm2)
Daniilidis [21] 1.895 51.023 3.877 2.623 12.504 725.852 2.627 38.219
Steger [5] 1.411 5.096 3.578 0.070 3.624 9.356 1.524 2.082
Strobl 1 [14] 2.148 70.728 4.836 8.345 13.759 447.813 6.378 64.998
Strobl 2 [14] 2.888 111.251 4.945 9.971 13.748 515.157 6.986 129.097
Tabb c2 [42] 1.672 5.820 3.960 0.086 3.553 1.927 2.388 1.715
Tabb rp1 [42] 1.569 0.238 3.741 0.030 2.890 1.454 1.603 1.437
Tabb rp2 [42] 1.363 0.524 3.181 0.450 2.680 1.588 1.505 1.481
Koide Pose Graph [43] 1.562 0.214 3.751 0.038 2.879 1.337 1.619 1.380
GMF, orig. poses 1.567 7.715 3.835 3.519 11.744 584.722 1.661 9.090
GMF 0.076 0.113 0.176 0.031 0.479 1.188 0.389 1.380

because it is the most comprehensive one and contains the
greatest variation in the orientations of the robot and the
camera, which is important for accurate hand–eye calibration
[16]. It is simulated with Blender [55] and consists of 30
images of a checkerboard, which is captured from different
poses, and the corresponding robot poses.

The authors of [33] aim to introduce realistic noise to get as
close as possible to real data. They add Gaussian visual noise
to the image points and introduce pseudo-realistic noise to
the robot poses, which consists of a systematic and a random
(Gaussian) component and is different for each axis. The noise
magnitude of the components is derived from a real robot by
reverse engineering. The size of the systematic components is
0.06 mm, -0.05 mm, and -0.04 mm for the robot position in X,
Y, and Z as well as 0.0032 deg, -0.0002 deg, and 0.0002 deg for
the robot rotation about these axes. The standard deviation of
the random components is 0.22 mm, 0.18 mm, and 0.17 mm for
the position in X, Y, and Z as well as 0.0177 deg, 0.0161 deg,
and 0.0110 deg for the rotation about these axes. Note that
our proposed framework models the robot noise by a single
random component. However, it can be easily extended to
more complex noise models in a straightforward way.

Fig. 9 visualizes the translation and rotation errors7 defined
in [33] of the hand–eye pose for varying visual noise. For
this experiment, the pseudo-realistic robot pose noise was set
to the above fixed values. For each level of visual noise, the
computations were repeated 1000 times with different random
noise. The mean results over all repetitions are shown in
Fig. 9. Dotted lines visualize linear approaches: Tsai [16],
Horaud [19], Park [28], Li [24], Shah [25], Daniilidis [21].
Dashed lines visualize non-linear approaches: Ali Xc1 and
Xc2 [33], Tabb Zc1 and Zc2 [42], Steger [5], Wise (R+C+H)

7Note that the definition of the rotation error of [33] slightly differs from
our definition in Section IV-A.

[40]. Solid lines visualize non-linear approaches that minimize
the reprojection error: Ali RX and RZ [33], Tabb rp1 [42],
GMF (ours) with a fixed camera. The implementations of the
approaches are taken from the benchmark in [33] or from the
source that is given in the respective publication.

Our framework clearly outperforms all previous approaches.
The evaluation also shows that all approaches that minimize
the reprojection error are more robust to visual noise, which
agrees with the results of [33]. Of the linear methods, Li [24]
is the most robust to high visual noise.

Fig. 10 visualizes the translation and rotation error defined
in [33] of the hand–eye pose for varying robot pose noise.
Now, the visual noise was set to a fixed value of 0.5 pixels.
Rotation and translation components of the robot pose noise
were varied simultaneously. For each level of robot pose
noise, the computations were repeated 100 times with different
random noise. The mean results over all repetitions are shown
in Fig. 10. It shows that our framework outperforms all other
approaches also in the presence of robot pose noise. In this
experiment, the performance gain to the second best method
is almost one order of magnitude. All other approaches that
minimize the reprojection error are sensitive to robot pose
noise. Here, approaches that minimize a pose error might
have an advantage. This clearly shows the benefit of explicitly
considering the robot uncertainty during hand–eye calibration
as our approach minimizes both visual and robot pose noise.

D. Discussion and Future Work

At this point, we would like to highlight again the ad-
vantages of estimating absolute values for the uncertainties.
The result matrix Cll contains the uncertainty of the robot,
which includes both absolute accuracy and repeatability. This
information is usually not available since most robot manufac-
turers only specify the repeatability. For vision-guided robots,
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Fig. 9. Translation and rotation error of the hand–eye pose for varying
visual noise and constant pseudo-realistic robot pose noise calculated on
the benchmark dataset of [33]. Dotted lines visualize linear approaches,
dashed lines non-linear approaches, and solid lines non-linear approaches that
minimize the reprojection error.

2mm, 1
.15°

4mm, 2
.25°

6mm, 3
.35°

Robot Pose Noise

10
0

10
1

10
2

E
rr

o
r 

[m
m

] 
(l
o

g
 s

c
a

le
)

Hand-Eye Pose: Translation Error

2mm, 1
.15°

4mm, 2
.25°

6mm, 3
.35°

Robot Pose Noise

10
-2

10
-1

10
0

10
1

E
rr

o
r 

[d
e

g
] 

(l
o

g
 s

c
a

le
)

Hand-Eye Pose: Rotation Error

Fig. 10. Translation and rotation error of the hand–eye pose for varying robot
pose noise and constant visual noise calculated on the benchmark dataset of
[33] (see Fig. 9 for the legend).

however, it is not the repeatability but the total uncertainty of
the robot that is crucial. Therefore, our method can be used to
easily determine the robot uncertainty, which in turn can be
used, for example, to decide whether the robot is suited for a
specific application with a certain accuracy requirement. The

absolute accuracy of the hand–eye pose, which is returned in
Cx̂x̂, is of interest in practical applications of a vision-guided
robot as well for the same reason. The accuracy information
can be the base for the decision whether the accuracy of
the estimated hand–eye pose is sufficiently high for a certain
application. The absolute accuracy of the hand–eye pose might
also be helpful to analyze whether the robot poses cover
enough variations for an accurate hand–eye calibration. If,
for example, all robot tool poses were more or less parallel
to each other, the standard deviation in tz would be very
high. Finally, the obtained uncertainty information about the
robot and the hand–eye pose is valuable as input for applying
error propagation. For example, the robot can be used for
stereo reconstruction by moving it to two specified different
poses and acquiring an image at each pose. The uncertainty
of the robot pose and that of the hand–eye pose can then
be propagated together with the uncertainty of the measured
image points to the uncertainty of the reconstructed 3D point.

We model the uncertainty of the robot by assuming that
the errors in the robot poses are zero-mean Gaussian dis-
tributed. While tests on real systems showed the validity of
this assumption [14], the assumption might be violated for
some robots. The evaluations presented in this section have
shown that the accuracy of the hand–eye calibration benefits
from modeling the uncertainty in the proposed way even
when the distribution of the errors in the robot poses deviates
from a zero-mean Gaussian distribution. Obviously, a wrong
assumption about the exact shape of the error distribution is
still better than ignoring the errors completely. However, the
modelling and the accuracy of the hand–eye calibration could
be further improved by directly modelling the uncertainty of
the robot parameters of the individual joints rather than the
robot pose, which result from the robot parameters by applying
the forward kinematics. This is a topic for future research.

Our current implementation assumes that there are no
outliers in the observations. For target-based calibration, the
robust calibration mark extraction ensures that outliers are
suppressed. For self-calibration, outliers are already identi-
fied and eliminated during the SfM pipeline, e.g., by using
RANSAC [56]. Consequently, our optimization framework
does not need to deal with outliers in both cases. However,
if the correspondences would be obtained in a different way
where outliers cannot be suppressed completely, it would
be necessary to extend the optimization by well-established
methods for robust estimation. A comprehensive overview
about robust estimation and outlier detection is given in [46,
Chapter 4.7].

We currently assume that all image points are equally
accurate. While this is a common assumption in computer
vision, the assumption does not perfectly hold in practice.
Therefore, we would like to investigate whether considering a
point-specific accuracy improves the accuracy of the hand–eye
calibration. This could be easily established in our framework
by setting individual entries in Qll including covariances of
row and column coordinates. For target-based calibration, we
could use the size and shape of the elliptic projections of the
circular calibration marks in the image to derive an individual
variance scaling for each image point, for example. For self-
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calibration, an appropriate point extractor (e.g., [57]) could be
used that returns information about the point’s accuracy.

Because there is no bi-invariant distance metric in SE(3),
i.e., the Euclidean group of rigid-body motions [58], there is a
direction-dependence in our formulation of modeling the robot
poses. Therefore, in future research we want to investigate
whether this direction-dependence has a significant impact on
the results, and, if so, investigate possible solutions.

V. CONCLUSION

Explicitly modelling the uncertainty of a robot is beneficial
for robot hand–eye calibration. It improves the accuracy,
returns calibrated robot poses, and gives information about
the uncertainty of the robot. The proposed parameter esti-
mation in the Gauss-Markov model with fictitious observa-
tions combined with the estimation of variance components
enables a stochastically sound representation of the problem.
Different scenarios of hand–eye calibration (e.g., target-based
calibration, self-calibration, calibration of antropomorphic or
SCARA robots, unknown or known interior orientation) can
be easily represented by adding or removing the respective
parameters to or from the parameter vectors. By this, a large
number of applications can benefit from our approach. Imple-
mentation details including several optimizations facilitate an
easy, fast, and memory efficient realization of the framework
making it applicable also in scenarios with a large number of
calibration images and points. Finally, the experiments clearly
demonstrate the advantages of our uncertainty-aware hand–eye
calibration.

APPENDIX
PSEUDOCODE

Fig. 11 shows pseudocode of our generic uncertainty-aware
hand–eye calibration, which uses parameter estimation in the
Gauss-Markov model with fictitious observations (GMF).

APPENDIX
CALCULATION OF THE PARTIAL DERIVATIVES

A. Definitions

To write down the partial derivatives and to keep the nota-
tion as simple as possible, we use the following definitions:
• pw = (xw, yw, zw)>, pb = (xb, yb, zb)>, pt =

(xt, yt, zt)
>, and pc = (xc, yc, zc)

> is a 3D point in the
WCS, BCS, TCS, and CCS, respectively.

• pi = (xi, yi)
> is the corresponding projected 2D image

point.
• The 3D rigid transformation of a point in the WCS to the

BCS is given by pb = bRwpw + btw with the translation
vector btw = (btxw,

btyw,
btzw)> and the rotation matrix

bRw = Rx(bαw)Ry(bβw)Rz(bγw). The rotation matrices
are parameterized by Euler angles:

Rx(α) =

 1 0 0
0 cosα − sinα
0 sinα cosα

 , (25)

Ry(β) =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 , (26)

Rz(γ) =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 . (27)

The 3D rigid transformations pt = tRbpb + ttb and pc =
cRtpt + ctt are defined accordingly.

B. Observation Equations
To build the Jacobian A, we essentially need the partial

derivatives of the observation equations (10) with respect to the
unknowns. With the previously introduced notation, equation
(10) can be split up into the following functions that are
executed consecutively:

1) Transformation from WCS to BCS:

pb = bRwpw + btw (28)

2) Transformation from BCS to TCS:

pt = tRbpb + ttb (29)

3) Transformation from TCS to CCS:

pc = cRtpt + ctt (30)

4) Projection into the image plane:(
xu
yu

)
=

c

zc

(
xc
yc

)
(31)

5) Applying lens distortions (inverse of (7)):(
xd
yd

)
=

2

1 +
√

1− 4κ(x2u + y2u)

(
xu
yu

)
(32)

6) Transformation into the image coordinate system:(
xi
yi

)
=

(
xd/sx + cx
yd/sy + cy

)
(33)

Note that in step 5, we focus on the division model since
the polynomial model cannot be inverted analytically. If the
polynomial model should be used, its partial derivatives can be
computed numerically. Alternatively, the minimization of the
reprojection error can be performed in the (distorted) image
plane instead of in the image coordinate system (for details,
see [5, Chapter 3.9.4.2]).

In the following representations of the derivatives, zeros and
ones are explicitly considered for efficiency reasons.

C. Derivatives of Step 1: Transformation from WCS to BCS
The partial derivatives of xb, yb, and zb with respect to

bαw, bβw, bγw, btxw, btyw, btzw, xw, yw, and zw are given in
Table VII. Note that rows 1–3 of Table VII are the transposed
of [−bRwpw]×M with

M =


1 0 sin bβw

0 cos bαw − sin bαw cos bβw

0 sin bαw cos bαw cos bβw

 (34)

and [x]× denoting the skew-symmetric 3×3 matrix of x for that
[x]×y = x×y holds (see [59] for details). Rows 4–6 obviously
are the identity matrix and rows 7–9 are the transposed of bRw.
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Generic GMF Algorithm for Hand–Eye Calibration

1: procedure GMF(Bool DoTargetBasedCalibration, Bool DoPrecalibrateCamera)
2: if DoPrecalibrateCamera then
3: Perform camera calibration → interior orientation i
4: end if
5: if DoTargetBasedCalibration then
6: Place calibration target with nw 3D points pk (k = 1, . . . , nw) in robot workspace
7: for j = 1 to nr do
8: Move robot tool to predefined pose tH(0)

b,j
9: Acquire camera image

10: Extract coordinates of calibration points pj,k in the acquired image
11: Compute cHw,j from correspondences pk, pj,k, and i with PnP algorithm
12: end for
13: else
14: Provide textured scene elements in robot workspace
15: for j = 1 to nr do
16: Move robot tool to pose tH(0)

b,j
17: Acquire and save camera image
18: end for
19: Apply SfM pipeline (e.g., COLMAP) to camera images → i(0), nw, p(0)

k , pj,k, cHw,j

20: Fix the SfM scale ambiguity in p(0)
k and cHw,j as described in Section III-G

21: end if
22: Perform linear hand–eye calibration of [21] based on tH(0)

b,j and cHw,j → initial values for cH(0)
t , bH(0)

w

23: Build parameter vectors cH(0)
t → e(0)c , bH(0)

w → e(0)b , tH(0)
b,j → e(0)t,j . for self-calibration, bH(0)

w = I

24: Set vector of observations l = (p>1,1, . . ., p>1,nw
, . . ., p>nr,nw

,e(0)t,1

>
, . . ., e(0)t,nr

>
)>

25: Build vector of unknowns x(0) ← (e(0)c

>
, e(0)t,1

>
, . . . , e(0)t,nr

>
)>

26: if not(DoPrecalibrateCamera) then
27: Extend vector of unknowns x(0) ← (x(0), i(0)

>
)>

28: end if
29: if DoTargetBasedCalibration then
30: Extend vector of unknowns x(0) ← (x(0), e(0)b

>
)>

31: else
32: Extend vector of unknowns x(0) ← (x(0), p(0)

1

>
, . . . , p(0)

nw

>
)>

33: end if
34: Initialize variances of the three observation groups σ2

i ← 0.12 pixel, σ2
a ← 0.12 deg, σ2

t ← 1.02 mm
35: repeat
36: Build Qll by using Eq. (16) and compute Pll ← Q−1

ll
37: Initialize vector of unknowns x̂← x(0)

38: repeat
39: ∆l← l − f(x̂) . f(x̂) is Eq. (10) extended by the current values of the unknown robot poses
40: Compute Jacobian A shown in Fig. 3 by using Eq. (11) and the partial derivatives given in the Appendix
41: Solve Eq. (12) for ∆x̂
42: x̂← x̂ + ∆x̂
43: until convergence of the parameter estimation (∆x̂ == 0)
44: Compute Qx̂x̂, Q̂l̂l, Qv̂̂v, and R with Eqs. (19), (20), (21), and (22), respectively
45: Compute the variance components σ̂2

0,i, σ̂
2
0,a, and σ̂2

0,t with Eqs. (23) and update σ2
i , σ

2
a , σ

2
t with Eqs. (24)

46: until convergence of the variance component estimation (σ̂2
0,i == σ̂2

0,a == σ̂2
0,t == 1⇒ σ̂2

0 = 1)
47: Compute the covariances Cll of the original observations with Eq. (13) . provides information about robot uncertainty
48: Compute the covariances Cx̂x̂ of the estimated unknowns with Eq. (15)
49: return x̂, Cx̂x̂, Cll
50: end procedure

Fig. 11. Pseudocode of our generic uncertainty-aware hand–eye calibration (GMF) for the cases target-based hand–eye calibration (DoTargetBasedCalibration
== True), self-calibration (DoTargetBasedCalibration == False), using a pre-calibrated camera (DoPrecalibrateCamera == True), and simultaneous camera
calibration (DoPrecalibrateCamera == False).

D. Derivatives of Step 2: Transformation from BCS to TCS

The partial derivatives of xt, yt, and zt with respect to tαb,
tβb, tγb, ttxb, ttyb, ttzb, xb, yb, and zb are analogous to those
of step 1. Then, we apply the chain rule to obtain the partial
derivatives of xt, yt, and zt with respect to the parameters
of the previous steps (see Table VIII). Note that rows 1–3 of
Table VIII are the transposed of −tRb[bRwpw]×M, rows 3–5

are the transposed of tRb, and rows 7–9 are the transposed of
tRb

bRw.

E. Derivatives of Step 3: Transformation from TCS to CCS

The partial derivatives of xc, yc, and zc with respect to cαt,
cβt, cγt, ctx t, ctyt,

ctz t, xt, yt, and zt are analogous to those
of step 1. Then, we apply the chain rule to obtain the partial
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TABLE VII
DERIVATIVES OF STEP 1: TRANSFORMATION FROM WCS TO BCS

∂xb/ . . . ∂yb/ . . . ∂zb/ . . .

. . . /∂bαw 0
−xw(sin bαw sin bγw − cos bαw cos bγw sin bβw)
−yw(cos bγw sin bαw + cos bαw sin bβw sin bγw)
−zb cos bαw cos bβw

xw(cos bαw sin bγw + cos bγw sin bαw sin bβw)
+yw(cos bαw cos bγw − sin bαw sin bβw sin bγw)
−zb cos bβw sin bαw

. . . /∂bβw

−xw cos bγw sin bβw
+yw sin bβw sin bγw
+zw cos bβw

xw cos bβw cos bγw sin bαw

−yw cos bβw sin bαw sin bγw
+zw sin bαw sin bβw

−xw cos bαw cos bβw cos bγw
+yw cos bαw cos bβw sin bγw
−zw cos bαw sin bβw

. . . /∂bγw
−xw cos bβw sin bγw
−yw cos bβw cos bγw

xw(cos bαw cos bγw − sin bαw sin bβw sin bγw)
−yw(cos bαw sin bγw + cos bγw sin bαw sin bβw)

xw(cos bγw sin bαw + cos bαw sin bβw sin bγw)
−yw(sin bαw sin bγw − cos bαw cos bγw sin bβw)

. . . /∂btxw 1 0 0

. . . /∂btyw 0 1 0

. . . /∂btzw 0 0 1

. . . /∂xw cos bβwcos bγw cos bαwsin bγw+ cos bγwsin bαwsin bβw sin bαwsin bγw- cos bαwcos bγwsin bβw

. . . /∂yw − cos bβw sin bγw cos bαw cos bγw − sin bαw sin bβw sin bγw cos bγw sin bαw + cos bαw sin bβw sin bγw

. . . /∂zw sin bβw − cos bβw sin bαw cos bαw cos bβw

TABLE VIII
DERIVATIVES OF STEP 2: TRANSFORMATION FROM BCS TO TCS

∂xt/ . . . ∂yt/ . . . ∂zt/ . . .

. . . /∂bαw
∂xt
∂yb

∂yb
∂bαw

+ ∂xt
∂zb

∂zb
∂bαw

∂yt
∂yb

∂yb
∂bαw

+ ∂yt
∂zb

∂zb
∂bαw

∂zt
∂yb

∂yb
∂bαw

+ ∂zt
∂zb

∂zb
∂bαw

. . . /∂bβw
∂xt
∂xb

∂xb
∂bβw

+ ∂xt
∂yb

∂yb
∂bβw

+ ∂xt
∂zb

∂zb
∂bβw

∂yt
∂xb

∂xb
∂bβw

+ ∂yt
∂yb

∂yb
∂bβw

+ ∂yt
∂zb

∂zb
∂bβw

∂zt
∂xb

∂xb
∂bβw

+ ∂zt
∂yb

∂yb
∂bβw

+ ∂zt
∂zb

∂zb
∂bβw

. . . /∂bγw
∂xt
∂xb

∂xb
∂bγw

+ ∂xt
∂yb

∂yb
∂bγw

+ ∂xt
∂zb

∂zb
∂bγw

∂yt
∂xb

∂xb
∂bγw

+ ∂yt
∂yb

∂yb
∂bγw

+ ∂yt
∂zb

∂zb
∂bγw

∂zt
∂xb

∂xb
∂bγw

+ ∂zt
∂yb

∂yb
∂bγw

+ ∂zt
∂zb

∂zb
∂bγw

. . . /∂btxw
∂xt
∂xb

∂yt
∂xb

∂zt
∂xb

. . . /∂btyw
∂xt
∂yb

∂yt
∂yb

∂zt
∂yb

. . . /∂btzw
∂xt
∂zb

∂yt
∂zb

∂zt
∂zb

. . . /∂xw
∂xt
∂xb

∂xb
∂xw

+ ∂xt
∂yb

∂yb
∂xw

+ ∂xt
∂zb

∂zb
∂xw

∂yt
∂xb

∂xb
∂xw

+ ∂yt
∂yb

∂yb
∂xw

+ ∂yt
∂zb

∂zb
∂xw

∂zt
∂xb

∂xb
∂xw

+ ∂zt
∂yb

∂yb
∂xw

+ ∂zt
∂zb

∂zb
∂xw

. . . /∂yw
∂xt
∂xb

∂xb
∂yw

+ ∂xt
∂yb

∂yb
∂yw

+ ∂xt
∂zb

∂zb
∂yw

∂yt
∂xb

∂xb
∂yw

+ ∂yt
∂yb

∂yb
∂yw

+ ∂yt
∂zb

∂zb
∂yw

∂zt
∂xb

∂xb
∂yw

+ ∂zt
∂yb

∂yb
∂yw

+ ∂zt
∂zb

∂zb
∂yw

. . . /∂zw
∂xt
∂xb

∂xb
∂zw

+ ∂xt
∂yb

∂yb
∂zw

+ ∂xt
∂zb

∂zb
∂zw

∂yt
∂xb

∂xb
∂zw

+ ∂yt
∂yb

∂yb
∂zw

+ ∂yt
∂zb

∂zb
∂zw

∂zt
∂xb

∂xb
∂zw

+ ∂zt
∂yb

∂yb
∂zw

+ ∂zt
∂zb

∂zb
∂zw

derivatives of xc, yc, and zc with respect to the parameters of
the previous steps (see Table IX).

F. Derivatives of Step 4: Projection into the Image Plane

The partial derivatives of xu and yu with respect to c, xc,
yc and zc are shown in Table X.

Then, we apply the chain rule to obtain the partial deriva-
tives of xu and yu with respect to the parameters of the
previous steps (see Table XI).

G. Derivatives of Step 5: Applying Lens Distortions

The partial derivatives of xd and yd with respect to κ, xu
and yu are shown in Table XII with ru =

√
x2u + y2u and

D =
√

1− 4κr2u(1 +
√

1− 4κr2u)2.
Then, we apply the chain rule to obtain the partial deriva-

tives of xd and yd with respect to the parameters of the
previous steps (see Table XIII).

H. Derivatives of Step 6: Transformation into the Image
Coordinate System

The partial derivatives of xi and yi with respect to sx, sy ,
cx, cy , xd and yd are shown in Table XIV.

Then, we apply the chain rule to obtain the partial deriva-
tives of xi and yi with respect to the parameters of the previous

steps (see Table XV). Thus, all partial derivatives that are
required to build the Jacobian A are known.
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TABLE IX
DERIVATIVES OF STEP 3: TRANSFORMATION FROM TCS TO CCS

∂xc/ . . . ∂yc/ . . . ∂zc/ . . .

. . . /∂bαw
∂xc
∂xt

∂xt
∂bαw

+ ∂xc
∂yt

∂yt
∂bαw

+ ∂xc
∂zt

∂zt
∂bαw

∂yc
∂xt

∂xt
∂bαw

+ ∂yc
∂yt

∂yt
∂bαw

+ ∂yc
∂zt

∂zt
∂bαw

∂zc
∂xt

∂xt
∂bαw

+ ∂zc
∂yt

∂yt
∂bαw

+ ∂zc
∂zt

∂zt
∂bαw

. . . /∂bβw
∂xc
∂xt

∂xt
∂bβw

+ ∂xc
∂yt

∂yt
∂bβw

+ ∂xc
∂zt

∂zt
∂bβw

∂yc
∂xt

∂xt
∂bβw

+ ∂yc
∂yt

∂yt
∂bβw

+ ∂yc
∂zt

∂zt
∂bβw

∂zc
∂xt

∂xt
∂bβw

+ ∂zc
∂yt

∂yt
∂bβw

+ ∂zc
∂zt

∂zt
∂bβw

. . . /∂bγw
∂xc
∂xt

∂xt
∂bγw

+ ∂xc
∂yt

∂yt
∂bγw

+ ∂xc
∂zt

∂zt
∂bγw

∂yc
∂xt

∂xt
∂bγw

+ ∂yc
∂yt

∂yt
∂bγw

+ ∂yc
∂zt

∂zt
∂bγw

∂zc
∂xt

∂xt
∂bγw

+ ∂zc
∂yt

∂yt
∂bγw

+ ∂zc
∂zt

∂zt
∂bγw

. . . /∂btxw
∂xc
∂xt

∂xt
∂btxw

+ ∂xc
∂yt

∂yt
∂btxw

+ ∂xc
∂zt

∂zt
∂btxw

∂yc
∂xt

∂xt
∂btxw

+ ∂yc
∂yt

∂yt
∂btxw

+ ∂yc
∂zt

∂zt
∂btxw

∂zc
∂xt

∂xt
∂btxw

+ ∂zc
∂yt

∂yt
∂btxw

+ ∂zc
∂zt

∂zt
∂btxw

. . . /∂btyw
∂xc
∂xt

∂xt
∂btyw

+ ∂xc
∂yt

∂yt
∂btyw

+ ∂xc
∂zt

∂zt
∂btyw

∂yc
∂xt

∂xt
∂btyw

+ ∂yc
∂yt

∂yt
∂btyw

+ ∂yc
∂zt

∂zt
∂btyw

∂zc
∂xt

∂xt
∂btyw

+ ∂zc
∂yt

∂yt
∂btyw

+ ∂zc
∂zt

∂zt
∂btyw

. . . /∂btzw
∂xc
∂xt

∂xt
∂btzw

+ ∂xc
∂yt

∂yt
∂btzw

+ ∂xc
∂zt

∂zt
∂btzw

∂yc
∂xt

∂xt
∂btzw

+ ∂yc
∂yt

∂yt
∂btzw

+ ∂yc
∂zt

∂zt
∂btzw

∂zc
∂xt

∂xt
∂btzw

+ ∂zc
∂yt

∂yt
∂btzw

+ ∂zc
∂zt

∂zt
∂btzw

. . . /∂tαb
∂xc
∂yt

∂yt
∂tαb

+ ∂xc
∂zt

∂zt
∂tαb

∂yc
∂yt

∂yt
∂tαb

+ ∂yc
∂zt

∂zt
∂tαb

∂zc
∂yt

∂yt
∂tαb

+ ∂zc
∂zt

∂zt
∂tαb

. . . /∂tβb
∂xc
∂xt

∂xt
∂tβb

+ ∂xc
∂yt

∂yt
∂tβb

+ ∂xc
∂zt

∂zt
∂tβb

∂yc
∂xt

∂xt
∂tβb

+ ∂yc
∂yt

∂yt
∂tβb

+ ∂yc
∂zt

∂zt
∂tβb

∂zc
∂xt

∂xt
∂tβb

+ ∂zc
∂yt

∂yt
∂tβb

+ ∂zc
∂zt

∂zt
∂tβb

. . . /∂tγb
∂xc
∂xt

∂xt
∂tγb

+ ∂xc
∂yt

∂yt
∂tγb

+ ∂xc
∂zt

∂zt
∂tγb

∂yc
∂xt

∂xt
∂tγb

+ ∂yc
∂yt

∂yt
∂tγb

+ ∂yc
∂zt

∂zt
∂tγb

∂zc
∂xt

∂xt
∂tγb

+ ∂zc
∂yt

∂yt
∂tγb

+ ∂zc
∂zt

∂zt
∂tγb

. . . /∂ttxb
∂xc
∂xt

∂yc
∂xt

∂zc
∂xt

. . . /∂ttyb
∂xc
∂yt

∂yc
∂yt

∂zc
∂yt

. . . /∂ttzb
∂xc
∂zt

∂yc
∂zt

∂zc
∂zt

. . . /∂xw
∂xc
∂xt

∂xt
∂xw

+ ∂xc
∂yt

∂yt
∂xw

+ ∂xc
∂zt

∂zt
∂xw

∂yc
∂xt

∂xt
∂xw

+ ∂yc
∂yt

∂yt
∂xw

+ ∂yc
∂zt

∂zt
∂xw

∂zc
∂xt

∂xt
∂xw

+ ∂zc
∂yt

∂yt
∂xw

+ ∂zc
∂zt

∂zt
∂xw

. . . /∂yw
∂xc
∂xt

∂xt
∂yw

+ ∂xc
∂yt

∂yt
∂yw

+ ∂xc
∂zt

∂zt
∂yw

∂yc
∂xt

∂xt
∂yw

+ ∂yc
∂yt

∂yt
∂yw

+ ∂yc
∂zt

∂zt
∂yw

∂zc
∂xt

∂xt
∂yw

+ ∂zc
∂yt

∂yt
∂yw

+ ∂zc
∂zt

∂zt
∂yw

. . . /∂zw
∂xc
∂xt

∂xt
∂zw

+ ∂xc
∂yt

∂yt
∂zw

+ ∂xc
∂zt

∂zt
∂zw

∂yc
∂xt

∂xt
∂zw

+ ∂yc
∂yt

∂yt
∂zw

+ ∂yc
∂zt

∂zt
∂zw

∂zc
∂xt

∂xt
∂zw

+ ∂zc
∂yt

∂yt
∂zw

+ ∂zc
∂zt

∂zt
∂zw

TABLE X
DERIVATIVES OF STEP 4: PROJECTION INTO THE IMAGE PLANE (I)

∂xu/ . . . ∂yu/ . . .

. . . /∂c xc
zc

yc
zc

. . . /∂xc
c
zc

0

. . . /∂yc 0 c
zc

. . . /∂zc
−cxc
z2c

−cyc
z2c
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TABLE XI
DERIVATIVES OF STEP 4: PROJECTION INTO THE IMAGE PLANE (II)

∂xu/ . . . ∂yu/ . . .

. . . /∂bαw
∂xu
∂xc

∂xc
∂bαw

+ ∂xu
∂zc

∂zc
∂bαw

∂yu
∂yc

∂yc
∂bαw

+ ∂yu
∂zc

∂zc
∂bαw

. . . /∂bβw
∂xu
∂xc

∂xc
∂bβw

+ ∂xu
∂zc

∂zc
∂bβw

∂yu
∂yc

∂yc
∂bβw

+ ∂yu
∂zc

∂zc
∂bβw

. . . /∂bγw
∂xu
∂xc

∂xc
∂bγw

+ ∂xu
∂zc

∂zc
∂bγw

∂yu
∂yc

∂yc
∂bγw

+ ∂yu
∂zc

∂zc
∂bγw

. . . /∂btxw
∂xu
∂xc

∂xc
∂btxw

+ ∂xu
∂zc

∂zc
∂btxw

∂yu
∂yc

∂yc
∂btxw

+ ∂yu
∂zc

∂zc
∂btxw

. . . /∂btyw
∂xu
∂xc

∂xc
∂btyw

+ ∂xu
∂zc

∂zc
∂btyw

∂yu
∂yc

∂yc
∂btyw

+ ∂yu
∂zc

∂zc
∂btyw

. . . /∂btzw
∂xu
∂xc

∂xc
∂btzw

+ ∂xu
∂zc

∂zc
∂btzw

∂yu
∂yc

∂yc
∂btzw

+ ∂yu
∂zc

∂zc
∂btzw

. . . /∂tαb
∂xu
∂xc

∂xc
∂tαb

+ ∂xu
∂zc

∂zc
∂tαb

∂yu
∂yc

∂yc
∂tαb

+ ∂yu
∂zc

∂zc
∂tαb

. . . /∂tβb
∂xu
∂xc

∂xc
∂tβb

+ ∂xu
∂zc

∂zc
∂tβb

∂yu
∂yc

∂yc
∂tβb

+ ∂yu
∂zc

∂zc
∂tβb

. . . /∂tγb
∂xu
∂xc

∂xc
∂tγb

+ ∂xu
∂zc

∂zc
∂tγb

∂yu
∂yc

∂yc
∂tγb

+ ∂yu
∂zc

∂zc
∂tγb

. . . /∂ttxb
∂xu
∂xc

∂xc
∂ttxb

+ ∂xu
∂zc

∂zc
∂ttxb

∂yu
∂yc

∂yc
∂ttxb

+ ∂yu
∂zc

∂zc
∂ttxb

. . . /∂ttyb
∂xu
∂xc

∂xc
∂ttyb

+ ∂xu
∂zc

∂zc
∂ttyb

∂yu
∂yc

∂yc
∂ttyb

+ ∂yu
∂zc

∂zc
∂ttyb

. . . /∂ttzb
∂xu
∂xc

∂xc
∂ttzb

+ ∂xu
∂zc

∂zc
∂ttzb

∂yu
∂yc

∂yc
∂ttzb

+ ∂yu
∂zc

∂zc
∂ttzb

. . . /∂cαt
∂xu
∂zc

∂zc
∂cαt

∂yu
∂yc

∂yc
∂cαt

+ ∂yu
∂zc

∂zc
∂cαt

. . . /∂cβt
∂xu
∂xc

∂xc
∂cβt

+ ∂xu
∂zc

∂zc
∂cβt

∂yu
∂yc

∂yc
∂cβt

+ ∂yu
∂zc

∂zc
∂cβt

. . . /∂cγt
∂xu
∂xc

∂xc
∂cγt

+ ∂xu
∂zc

∂zc
∂cγt

∂yu
∂yc

∂yc
∂cγt

+ ∂yu
∂zc

∂zc
∂cγt

. . . /∂ctx t
∂xu
∂xc

0

. . . /∂ctyt 0 ∂yu
∂yc

. . . /∂ctz t
∂xu
∂zc

∂yu
∂zc

. . . /∂xw
∂xu
∂xc

∂xc
∂xw

+ ∂xu
∂zc

∂zc
∂xw

∂yu
∂yc

∂yc
∂xw

+ ∂yu
∂zc

∂zc
∂xw

. . . /∂yw
∂xu
∂xc

∂xc
∂yw

+ ∂xu
∂zc

∂zc
∂yw

∂yu
∂yc

∂yc
∂yw

+ ∂yu
∂zc

∂zc
∂yw

. . . /∂zw
∂xu
∂xc

∂xc
∂zw

+ ∂xu
∂zc

∂zc
∂zw

∂yu
∂yc

∂yc
∂zw

+ ∂yu
∂zc

∂zc
∂zw

TABLE XII
DERIVATIVES OF STEP 5: APPLYING LENS DISTORTIONS (I)

∂xd/ . . . ∂yd/ . . .

. . . /∂κ
4xur

2
u

D

4yur
2
u

D

. . . /∂xu
2

1+
√

1−4κr2u
+

8κx2u
D

8κxuyu
D

. . . /∂yu
8κxuyu
D

2

1+
√

1−4κr2u
+

8κy2u
D
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TABLE XIII
DERIVATIVES OF STEP 5: APPLYING LENS DISTORTIONS (II)

∂xd/ . . . ∂yd/ . . .

. . . /∂bαw
∂xd
∂xu

∂xu
∂bαw

+ ∂xd
∂yu

∂yu
∂bαw

∂yd
∂xu

∂xu
∂bαw

+ ∂yd
∂yu

∂yu
∂bαw

. . . /∂bβw
∂xd
∂xu

∂xu
∂bβw

+ ∂xd
∂yu

∂yu
∂bβw

∂yd
∂xu

∂xu
∂bβw

+ ∂yd
∂yu

∂yu
∂bβw

. . . /∂bγw
∂xd
∂xu

∂xu
∂bγw

+ ∂xd
∂yu

∂yu
∂bγw

∂yd
∂xu

∂xu
∂bγw

+ ∂yd
∂yu

∂yu
∂bγw

. . . /∂btxw
∂xd
∂xu

∂xu
∂btxw

+ ∂xd
∂yu

∂yu
∂btxw

∂yd
∂xu

∂xu
∂btxw

+ ∂yd
∂yu

∂yu
∂btxw

. . . /∂btyw
∂xd
∂xu

∂xu
∂btyw

+ ∂xd
∂yu

∂yu
∂btyw

∂yd
∂xu

∂xu
∂btyw

+ ∂yd
∂yu

∂yu
∂btyw

. . . /∂btzw
∂xd
∂xu

∂xu
∂btzw

+ ∂xd
∂yu

∂yu
∂btzw

∂yd
∂xu

∂xu
∂btzw

+ ∂yd
∂yu

∂yu
∂btzw

. . . /∂tαb
∂xd
∂xu

∂xu
∂tαb

+ ∂xd
∂yu

∂yu
∂tαb

∂yd
∂xu

∂xu
∂tαb

+ ∂yd
∂yu

∂yu
∂tαb

. . . /∂tβb
∂xd
∂xu

∂xu
∂tβb

+ ∂xd
∂yu

∂yu
∂tβb

∂yd
∂xu

∂xu
∂tβb

+ ∂yd
∂yu

∂yu
∂tβb

. . . /∂tγb
∂xd
∂xu

∂xu
∂tγb

+ ∂xd
∂yu

∂yu
∂tγb

∂yd
∂xu

∂xu
∂tγb

+ ∂yd
∂yu

∂yu
∂tγb

. . . /∂ttxb
∂xd
∂xu

∂xu
∂ttxb

+ ∂xd
∂yu

∂yu
∂ttxb

∂yd
∂xu

∂xu
∂ttxb

+ ∂yd
∂yu

∂yu
∂ttxb

. . . /∂ttyb
∂xd
∂xu

∂xu
∂ttyb

+ ∂xd
∂yu

∂yu
∂ttyb

∂yd
∂xu

∂xu
∂ttyb

+ ∂yd
∂yu

∂yu
∂ttyb

. . . /∂ttzb
∂xd
∂xu

∂xu
∂ttzb

+ ∂xd
∂yu

∂yu
∂ttzb

∂yd
∂xu

∂xu
∂ttzb

+ ∂yd
∂yu

∂yu
∂ttzb

. . . /∂cαt
∂xd
∂xu

∂xu
∂cαt

+ ∂xd
∂yu

∂yu
∂cαt

∂yd
∂xu

∂xu
∂cαt

+ ∂yd
∂yu

∂yu
∂cαt

. . . /∂cβt
∂xd
∂xu

∂xu
∂cβt

+ ∂xd
∂yu

∂yu
∂cβt

∂yd
∂xu

∂xu
∂cβt

+ ∂yd
∂yu

∂yu
∂cβt

. . . /∂cγt
∂xd
∂xu

∂xu
∂cγt

+ ∂xd
∂yu

∂yu
∂cγt

∂yd
∂xu

∂xu
∂cγt

+ ∂yd
∂yu

∂yu
∂cγt

. . . /∂ctx t
∂xd
∂xu

∂xu
∂ctxt

∂yd
∂xu

∂xu
∂ctxt

. . . /∂ctyt
∂xd
∂yu

∂yu
∂ctyt

∂yd
∂yu

∂yu
∂ctyt

. . . /∂ctz t
∂xd
∂xu

∂xu
∂ctzt

+ ∂xd
∂yu

∂yu
∂ctzt

∂yd
∂xu

∂xu
∂ctzt

+ ∂yd
∂yu

∂yu
∂ctzt

. . . /∂c ∂xd
∂xu

∂xu
∂c

+ ∂xd
∂yu

∂yu
∂c

∂yd
∂xu

∂xu
∂c

+ ∂yd
∂yu

∂yu
∂c

. . . /∂xw
∂xd
∂xu

∂xu
∂xw

+ ∂xd
∂yu

∂yu
∂xw

∂yd
∂xu

∂xu
∂xw

+ ∂yd
∂yu

∂yu
∂xw

. . . /∂yw
∂xd
∂xu

∂xu
∂yw

+ ∂xd
∂yu

∂yu
∂yw

∂yd
∂xu

∂xu
∂yw

+ ∂yd
∂yu

∂yu
∂yw

. . . /∂zw
∂xd
∂xu

∂xu
∂zw

+ ∂xd
∂yu

∂yu
∂zw

∂yd
∂xu

∂xu
∂zw

+ ∂yd
∂yu

∂yu
∂zw

TABLE XIV
DERIVATIVES OF STEP 6: TRANSFORMATION INTO THE IMAGE

COORDINATE SYSTEM (I)

∂xi/ . . . ∂yi/ . . .

. . . /∂sx −xd/s2x 0

. . . /∂sy 0 −yd/s2y

. . . /∂cx 1 0

. . . /∂cy 0 1

. . . /∂xd 1/sx 0

. . . /∂yd 0 1/sy
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TABLE XV
DERIVATIVES OF STEP 6: TRANSFORMATION INTO THE IMAGE

COORDINATE SYSTEM (II)

∂xi/ . . . ∂yi/ . . .

. . . /∂bαw
∂xi
∂xd

∂xd
∂bαw

∂yi
∂yd

∂yd
∂bαw

. . . /∂bβw
∂xi
∂xd

∂xd
∂bβw

∂yi
∂yd

∂yd
∂bβw

. . . /∂bγw
∂xi
∂xd

∂xd
∂bγw

∂yi
∂yd

∂yd
∂bγw

. . . /∂btxw
∂xi
∂xd

∂xd
∂btxw

∂yi
∂yd

∂yd
∂btxw

. . . /∂btyw
∂xi
∂xd

∂xd
∂btyw

∂yi
∂yd

∂yd
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∂xi
∂xd

∂xd
∂btzw

∂yi
∂yd

∂yd
∂btzw
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∂xi
∂xd

∂xd
∂tαb

∂yi
∂yd

∂yd
∂tαb

. . . /∂tβb
∂xi
∂xd

∂xd
∂tβb

∂yi
∂yd

∂yd
∂tβb

. . . /∂tγb
∂xi
∂xd

∂xd
∂tγb

∂yi
∂yd

∂yd
∂tγb

. . . /∂ttxb
∂xi
∂xd

∂xd
∂ttxb

∂yi
∂yd

∂yd
∂ttxb
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∂xi
∂xd

∂xd
∂ttyb

∂yi
∂yd

∂yd
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∂xi
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∂yi
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∂xi
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∂yi
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∂cγt

. . . /∂ctx t
∂xi
∂xd

∂xd
∂ctxt

∂yi
∂yd
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∂yd
∂zw
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