KIT | KIT-Bibliothek | Impressum | Datenschutz

On–off conduction photoswitching in modelled spiropyran-based metal-organic frameworks

Mostaghimi, Mersad 1; Pacheco Hernandez, Helmy 1; Jiang, Yunzhe 2; Wenzel, Wolfgang 1; Heinke, Lars 2; Kozlowska, Mariana ORCID iD icon 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract:

Materials with photoswitchable electronic properties and conductance values that can be reversibly changed over many orders of magnitude are highly desirable. Metal-organic framework (MOF) films functionalized with photoresponsive spiropyran molecules demonstrated the general possibility to switch the conduction by light with potentially large on-off-ratios. However, the fabrication of MOF materials in a trial-and-error approach is cumbersome and would benefit significantly from in silico molecular design. Based on the previous proof-of-principle investigation, here, we design photoswitchable MOFs which incorporate spiropyran photoswitches at controlled positions with defined intermolecular distances and orientations. Using multiscale modelling and automated workflow protocols, four MOF candidates are characterized and their potential for photoswitching the conductivity is explored. Using ab initio calculations of the electronic coupling between the molecules in the MOF, we show that lattice distances and vibrational flexibility tremendously modulate the possible conduction photoswitching between spiropyran- and merocyanine-based MOFs upon light absorption, resulting in average on-off ratios higher than 530 and 4200 for p- and n-conduction switching, respectively. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000167353
Veröffentlicht am 19.01.2024
Originalveröffentlichung
DOI: 10.1038/s42004-023-01072-4
Scopus
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2399-3669
KITopen-ID: 1000167353
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Communications Chemistry
Verlag Nature Research
Band 6
Heft 1
Seiten Art.-Nr.: 275
Vorab online veröffentlicht am 18.12.2023
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page