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Abstract
The objective of this paper is to study the impact of limited datasets on deep learning techniques and conventional methods in
semantic image segmentation and to conduct a comparative analysis in order to determine the optimal scenario for utilizing
both approaches. We introduce a synthetic data generator, which enables us to evaluate the impact of the number of training
samples as well as the difficulty and diversity of the dataset. We show that deep learning methods excel when large datasets
are available and conventional image processing approaches perform well when the datasets are small and diverse. Since
transfer learning is a common approach to work around small datasets, we are specifically assessing its impact and found only
marginal impact. Furthermore, we implement the conventional image processing pipeline to enable fast and easy application
to new problems, making it easy to apply and test conventional methods alongside deep learning with minimal overhead.

Keywords Deep learning · Conventional image processing · Comparison · Synthetic data

1 Introduction

Semantic segmentation is a crucial task in computer
vision, widely used in fields like autonomous driving, med-
ical tissue evaluation, and remote sensing image analysis.
Deep learning (DL) methods, including convolutional neu-
ral networks (CNN) [1–3] and visual transformers (ViT) [4],
have become the preferred approach to solve this type of
problem due to their outstanding performance.

DL approaches are adaptive and easily applicable to a
wide range of tasks,with little effort. Consequently, they have
become the go-to solution for this type of problem,while con-
ventional image processing techniques, such as Threshold-
ing, Watershed, Active Contour, (Super) Pixel Classification
and Handcrafted Features, are often overlooked. Neverthe-
less, there are still automated and sophisticated conventional
image processing pipelines (CIPPs) [5–8] available.
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DL methods, however, have their downsides as well. The
training process for DL involves representation learning and
requires a significant amount of computational resources.
Although researchers are currently exploring interpretabil-
ity and explainability in DL [9, 10], the available methods,
such as class activation maps and gradient analysis, are only
applicable for image classification.

In contrast, CIPP approaches excel in areas such as com-
putational complexity, inference speed, and explainability.
The decision process of a CIPP can be easily analyzed by
executing and visualizing each step separately, as the CIPP
consists of many understood steps. CIPPs can be used espe-
cially if the problem at hand is easy to solve or an efficient and
simple solution is needed [11]. An expert can inject implicit
knowledge into a CIPP, reducing the amount of information
that needs to be learned. Therefore, CIPPs can be successful
when few data points or computational resources are avail-
able [12].

These properties of DL and CIPP show the potential of
both approaches and their ability to complement each other
when applied at the right time and scenario. The general
consensus states that DL performs best on large and diverse
datasets while CIPPs are applied to small and easy datasets.
Studies comparing DL and conventional image processing
in the field of image classification [13–18] or semantic seg-
mentation [17, 19–27] show that DL methods consistently
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Fig. 1 Concept: A synthetic dataset generator creates a dataset with a
given difficulty D. A subset with N images is sampled from this dataset.
On this subset, we train a DL model and CIPP and compare the per-
formances of both approaches. The performance is measured using the

F1-score. This allows us to estimate the “Break-Even-Point” (BEP), up
to which the CIPP is still able to outperform DL. In the end, we aggre-
gate the experimental results of each dataset to define the specifications
for the usability of CIPPs over DL

exceed or at least match the the performance of conven-
tional techniques. All these comparisons where performed
on individual datasets not evaluating the underlying dataset
properties. A neutral and systematic evaluation of the appli-
cability of CIPPs and DL in relation to the properties of
semantic segmentation datasets and guidelines for applica-
tion are currently missing.

In this paper, we aim to address this gap by analyzing
the strengths and weaknesses of DL models compared to
CIPPs in terms of dataset properties. We introduce an auto-
matically optimized conventional image processing pipeline,
which is as easy to apply to a problem as a DL method, and
provide a novel synthetic dataset generator enabling us to
conduct experiments and investigate the behavior of DL and
CIPP for various difficulties and different numbers of images.
The benchmark dataset supports different tunable noises to
increase the difficulty. Additionally, we evaluate different
dataset sizeswith respect to the influences of stochastic errors
and heterogeneous errors in training and testing. Finally, we
provide guidelines for choosing the appropriate algorithm
(CIPP/DL) based on the characteristics of the dataset and
problem.

2 Concept

In this paper, we conduct a study on the performance of DL
and CIPP approaches for semantic segmentation to discover
effects that let CIPP perform better than DL. The concept
of the study is shown in Fig. 1. We focus specifically on the
impact of the amount of training data and the difficulty of the
task.

Therefore, we introduce a synthetic dataset generator
which enables us to quantify and isolate the properties of a
semantic segmentation task. Synthetic data is generated with

a clearly defined difficulty D. From each dataset, we ran-
domly draw a number of images N and train with this subset
a DL model and a CIPP. For each subset with difficulty D
and number of images N , we can compare the performance
of the DL model and the CIPP and determine the ”Break-
Even-Point” (BEP) for each dataset. We expect the CIPP to
perform well on easy datasets when there are few training
images provided. To confirm this hypothesis, we aggregate
the results over all datasets to specify the area of usability
where a CIPP outperforms DL in relation to the number of
training samples and the difficulty of the dataset.

3 Synthetic dataset

To generate synthetic datasets for the comparison of seman-
tic segmentation approaches, we model an image generation
pipeline as depicted in Fig. 2. Each generated dataset con-
tains N̂ unique images with N̂train = 512 in the train set and
N̂test = 512 in the test set. An image Ii with i ∈ [1, N̂ ] is
a square with image height and width simg = 400px and
three RGB color channels with a corresponding binary label
map Li of the same size. In the images and their respective
label maps, we place an elliptical object on top of heteroge-
neous structures that constitute our background. The object
and background are slightly altered, e.g., texture on the object
and different background colors, to ensure a baseline diffi-
culty for our segmentation task. Subsequently, different types
of noise are added with a defined rate D to increase the dif-
ficulty further.

In detail, the images are generated as illustrated in Fig. 2
using the following steps:
Create background: The background is drawnfirst and covers
the entire image Ii with the purpose of giving the segmen-
tation problem a baseline difficulty. In this study, we used a
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Fig. 2 The data generation process: we start with an empty frame (top
left) and create a background (Gaussian Blobs) on the frame, before the
object (ellipse) to be identified is inserted on top. As specified by the
user, three noise types (Blurring, Salt-n-Pepper, Color-Shift) are applied

background consisting of 50–200 randomly generated Gaus-
sian distributions. The color of all the blobs in a single image
Ii is randomly chosen from the candidates brown, purple, and
teal, which all differ from the color of the object to identify
(added in the next step).

Insert object: Then an elliptical object is placed in a random
position of the image Ii and the respective label map Li .
Here, we use a green ellipse that has a salt-n-pepper texture
and varies slightly in shape, color, and degree of texture.

Apply noise: Noise is added last to an image Ii and applied
to both the background and the object. The user defines the
noise difficulty DNoise ∈ [0%, 100%] which determines the
diversity and maximum strength of the applied noise for the
entire data set. The exact degree of noise applied to an indi-
vidual image Ii is defined by the noise parameter gNoise,i that
is sampled from an interval GNoise as shown in Fig. 3. To be
precise, the noise parameter gNoise,i for an image Ii is sam-
pled uniformly from the interval GNoise, which is defined as
follows:

GNoise = [gmin
Noise, DNoise · gmax

Noise]. (1)

The lower limit of the interval GNoise is defined by the min-
imum possible noise parameter gmin

Noise and the upper limit
is defined by the maximum possible noise parameter gmax

Noise
scaled with the defined difficulty DNoise.

This sampling process ensures that the noise difficulty
DNoise defines the diversity of noise and the maximum
amount of noise applied. The concept of applying a vary-
ing degree of noise to every generated image is inspired by
real-world applications where some samples are easier to
identify, while others are noisier. DNoise = 0% means that
no additional noise is added to a dataset, but the properties

Fig. 3 The noise difficulty DNoise is set by the user for thewhole dataset
and defines the upper limit of the interval GNoise. The noise parameter
gNoise,i is then uniformly sampled from the interval GNoise and applied
to the image Ii . This is repeated for all images in the dataset

of the object, as well as the background, still differ between
images, which constitutes a baseline difficulty for our syn-
thetic dataset. By increasing the difficulty of noise DNoise,
a larger interval GNoise of noise parameters is covered, thus
raising the overall level and diversity of noise in a dataset.
The specific noise options are the following:

• Blurring: A normalized box filter is applied to the image,
thus blurring the object to identify. The noise parameter
corresponds to the size of the kernel gmin

BL = 0 and gmax
BL =

400px as the maximum image side simg.
• Salt-n-pepper: For each pixel, a random value is gen-
erated, which is added or subtracted from the original
pixel value. The noise parameter limits the maximum
pixel value that can be generated with gmin

SNP = 0 and
gmax
SNP = 255.

• Color-shift: For each channel, a random value is gen-
erated which is added or subtracted from the original
channel. The noise parameter corresponds to the value
added with gmin

CS = 0 and gmax
CS = 255.

In real-world applications, the three types of noise are
influenced by various properties of the recording device, such
as the employed optics or the resolution of the detector, and
therefore not directly related to each other. Consequently,
a general parameter D to describe the degree of noise in
a dataset can be calculated as the mean of the individual
difficulties:

D = 1

3
(DBL + DSNP + DCS). (2)

To simplify matters, we generate our synthetic dataset using
equal noise levels for all types, e.g., D = 5% = DBL =
DSNP = DCS.

In conclusion, the generation pipeline produces pairs of
RGB images and binary label maps with elliptical objects for
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Fig. 4 Five randomly generated images of the baseline dataset with an overall difficulty D = 0% (baseline). The difficulty D is then increased by
applying noise

the purpose of semantic segmentation. The elliptical objects
exhibit a textured surface and vary slightly, but differ from the
blurred background in their sharp edges and color. Figure4
presents examples of a dataset with D = 0%, the baseline
difficulty. By increasing the level of noise, the edges of the
objects are blurred, the texture is added across the entire
image, and the colors of the total image are shifted, compli-
cating the segmentation task. The code to create synthetic
datasets can be found here: https://github.com/FMuenke/
synthetic-dummy-dataset.

4 Semantic segmentationmodels

Conventional image processing relies on simple operations
such as thresholding, edge-detection, or morphological oper-
ations, where each operation can be specified with individual
parameters. We define a CIPP model as a static sequence
of conventional image processing operations. As depicted in
Fig. 5, our implementation of aCIPPmodel provides a frame-
work for an expert to stack these operationswithoutmanually
setting parameters. Each operation has a pre-defined set of
parameters. In this paper we select the best parameters by
running all available training images through all possible
combinations of parameterized pipelines (grid-search) and
selecting the sequence of parameters with the best perfor-
mance on the training data. Our framework provides besides
grid-search other optimization strategies as random search
or genetic algorithm.

The CIPP model is specifically designed to use sim-
ple techniques to ensure intuitive application to a prob-
lem, explainable results, and fast inference even when few
data points and computational resources are available. The
strengths of CIPP are only useful when they are as easy to
apply to a problem as DL. Thus, we have created an easily
installable Python package to enable the simple use of CIPPs.

The CIPP is designed to solve the synthetic data set
presented in Sect. 3. The segmentation target features two
distinct attributes: salt-n-pepper texture and bright green
color, which are detectable with edge-detection and thresh-
olding. The CIPP used is visualized in Fig. 6. We aim to

increase the processing speed by reducing the image size
to 200px x 200px and only applying the CIPP to the green
channel. Afterward, the CIPP has the option to apply blur-
ring of different scales to the image to remove noise. The
following inversion operation enables the CIPP to select
whether the image should be inverted frommaximum tomin-
imum. Segmentation is performed by applyingThresholding,
Otsu-Thresholding [28] or Edge-Detection. The segmenta-
tionmask is post-processed by applyingClosing and Eroding
to the segmentation. Further details on the image processing
operations are found in Tab. 1. The implementation of the
CIPP can be found here https://github.com/FMuenke/cipp

In the domain of image segmentation, the U-Net [1] is
a prominently used neural network model [29–32] that we
employ as our representative for DL.We use the implementa-
tion from [33]. The hyperparameters for training the U-Net
were determined through a brief random search1 to fit the
synthetic dataset. The final parameters are the following:

• Input size: 256 × 256,
• Backbone: ResNet18 [34],
• Loss: Dice,
• Optimizer: Adam, Learning rate: 10−5,
• Early Stopping after 100 Epochs without improving the
validation loss,

• Learning Rate Scheduling (factor 0.5 after 50 epochs),
• Augmentations: horizontal/vertical flip, rotation, crop-
ping.

During the random search, it became evident that a batch
size of 8 significantly (+30% F1-score) improved perfor-
mance compared to a batch size of 1. When training with a
few images, the batch size is set to the maximum number of
images until a batch size of 8 is reached.

During training, the only augmentation techniques used
are horizontal/vertical flips, rotation, and cropping, since the
synthetic dataset already uses salt-n-pepper noise, blurring,

1 We are not considering grid-search since it is too resource intensive
and the general effect of the number of training images correlating with
the BEP can still be observed. Especially for simpler synthetic data sets,
the DL configuration does not change the result.
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Fig. 5 Optimization process of a CIPP. The order of operations is set
by the user and each operation has a predefined set of parameters asso-
ciated with it. During the optimization process, the optimal parameters
are determined based on the provided training data by grid-search. All

provided images are processed with all possible parameter combina-
tions and finally the set of parameters with the highest F1-score on the
training data is picked

Fig. 6 Structure of the CIPP: An image Ii is resized to 200px ×
200px and the green channel is selected for further processing. After-
ward Blurring and Inversion are used as pre-processing steps. The
target is segmented by applying Thresholding, Otsu-Thresholding or
Edge-Detection to the image. Finally Closing and Eroding are used to
post-process the output. (Static operations are defined by the user and
do not contain variable parameters. Dynamic operations have variable
parameters which are optimized during the training process)

and channel shift to increase difficulty. These augmentation
techniques are not useful for a CIPP model and thus are not
used during their training.

For each set of N training images,we select the same num-
ber of additional validation images. These images are used to
evaluate the performance of theDLmodel during training.As
the final DL model, we choose the best performing model on
the validation dataset. Transfer-learning utilizing pretrained
weights is a common strategy to improve data efficiency.

Fig. 7 Example Images from our dataset for the difficulties D = 5%,
20% and 50%, as introduced in Sect. 3

Thus, we are considering the baseline U-Net as described
(U-Net-R18) and the same U-Net with an encoder pretrained
on Imagenet [35] (U-Net-R18-I) in our experiments.

5 Results

5.1 Overview

We train three types of models in our experiments as intro-
duced in Sect. 4. Eachmodel is trained on a synthetic dataset,
which covers all types of noise (blurring, salt-n-pepper, and
color-shift) simultaneously. This dataset increases its diffi-
culty D by raising the separate noise difficulties DBL, DCS,
and DSNP equally, as shown in Fig. 7. The difficulties 0% to
50% in steps of 5% and additionally 100% are evaluated.

We train with different numbers of training images N =
{4, 8, 16, 32, 64, 128} for each difficulty D. N corresponds
only to the number of images used to train. Since the U-Net
models require validation data to determine the optimal time
to stop training, we always supply the U-Nets with an equal
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number of validation images in parallel to the number of
training images N .2 We test CIPP and DL on each subset and
compare their F1-score on the full test set. Since the images
are selected randomly, we repeat each training 20 times to
reduce the random deviation introduced by the initialization
of the U-Net and the choice of training images. During the
sampling of images, we ensure that the approaches are both
trained on the same images by setting the random seed (e.g.,
the first iteration of CIPP is trained on identical images as
the first iteration of the U-Net models). The difficulty, as
described in Sect. 3, represents the strength of applied noise,
as well as the diversity of the data set.

5.2 Baseline U-Net

The average results of the U-Net-R18 on our dataset are dis-
played in Fig. 8. We can see that the U-Net-R18 performs
well on the difficulties D ≤ 5% regardless of the amount
of training images with performance over 93% F1-score. As
expected the performance starts to decrease with an increase
in difficulty and the performance increases with an increase
in the amount of training images. The U-Net-R18 is still able
to reach a performance of above 73% even for higher diffi-
culties D ≤ 50% provided enough training images. Only for
the difficulty D = 100% the U-Net-R18 is not able to learn
adequate filters for the segmentation task and cannot exceed
6% F1-score.

5.3 Pretrained U-Net

Figure 8 presents the average results of U-Net-R18-I, which
was pretrained on ImageNet. Our findings indicate that the
performance of U-Net-R18-I is closely aligned with that of
U-Net-R18. Specifically, as the level of difficulty increases,
the performance of both models decreases, while increasing
the number of training images improves their performance.
However,we observed thatU-Net-R18-I performs better than
U-Net-R18 by an average of 0.56% across all combinations
of difficulties and training images. Notably, the performance
gap between the two models is generally below 9%, and the
majority of differences larger than 3% occur when the num-
ber of training images is less than 16. Our experiments also
demonstrate that the effect of pretrained weights on model
performance in this scenario is negligible. We assume that
this could be attributed to the fact that the pretrained weights
available are not specifically tailored to the domain they are
being applied to.

2 We have to acknowledge that the CIPP would perform potentially
even better since it does not require validation data. If the validation
data used during the DL training process had been used to train the
CIPP, its performance would have increased even further.

5.4 CIPP

We assess the performance of CIPP and present the results
in Fig. 8. Unlike the U-Nets, the CIPP is less sensitive to the
number of training images. We observed that increasing the
number of training images from N = 16 to N = 128 leads
to a maximum improvement of 7% for all difficulty levels.
Notably, the performance gain is more pronounced when the
number of training images is increased from N = 4 to N =
16, with an average improvement of around 11%. Although
the CIPP’s performance decreases as difficulty increases, it
still maintains a relatively high performance level of 26%
even at the highest difficulty level of 100%.

5.5 Comparison

Weconducted a side-by-side comparison of the threemod-
els, evaluating their performance at three different difficulty
levels, as shown in Fig. 9. Rather than presenting only the
average performance, we provide the results of all 20 exper-
imental runs, which enables us to observe the variation in
performance for different numbers of training images N . The
results indicate that the variation decreases as the number of
training images N increases for all models. Moreover, we
observed that the deviation between separate runs increases
clearly as the difficulty level of the dataset increases for both
U-Nets.

In Fig. 10, we compare the average performances of the
three models by subtracting the performance matrix of the
CIPP from those of the U-Nets. This yields a matrix that
highlights the differences between the U-Nets and the CIPP.
A positive value indicates superior performance by the U-
Nets, while a negative value indicates superior performance
by the CIPP. We observed that both matrices are similar, as
the performances of the U-Nets are comparable. The CIPP
outperforms the U-Nets at N = 4 and D = 25%. With
increasing difficulty, all models exhibit a drop in perfor-
mance, but the CIPP maintains a more stable performance.
Further, the CIPP is able to outperform the U-Nets at D =
50% even for N = 32 training images. At the highest dif-
ficulty level of 100%, the CIPP performs better across all
numbers of training images.

Overall, the CIPP exhibits a more stable and consistent
performance than the U-Nets, and is less affected by changes
in dataset difficulty and the number of training images. Addi-
tionally, the spread of the results from the 20 distinct test runs
is more stable for the CIPP than for the U-Nets at higher dif-
ficulty levels, as seen in Fig. 9. It is worth noting that the
U-Nets exhibit outstanding performance for a small number
of training images, particularly for difficulties D ≤ 15%.
Our suspicion is that the U-Nets are capable of fitting the
provided data due to the limited diversity of the dataset and
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Fig. 8 The performance matrix of the U-Nets and the CIPP for all difficulties D and the number of training images N . The performance is measured
using the average F1-score

Fig. 9 Exemplary results for different difficulties over the number of training images N

Fig. 10 Comparison of the U-Net-R18 and the U-Net-R18-I with the CIPP. Where the differences of the performance matrices between CIPP and
the U-Nets are visualized. (Positive Values: U-Nets outperforms, Negative Values: CIPP outperforms)
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the fact that the validation images closely resemble the gen-
eral dataset.

When comparing the inference speed of DL andCIPP on a
MacBookwith a 2,3GHzQuad-Core Intel Core i7 processor,
the DL approach is able to process 2.36 images per second
compared to 62.1 images per second for theCIPP. Thismakes
CIPP especially relevant for devices with low computational
capacities, such as microcontrollers.

5.6 Transferability

The results presented in this paper are derived from syn-
thetic data, raising the question of whether these findings
can be extrapolated to real-world datasets. In the domain
of biomedical image processing, datasets often show high
diversity within and between datasets, and are typically lim-
ited in size. Our research suggests that datasets sharing
similar inherent features yields comparable results to those
obtained from our synthetic dataset. We have evaluated
the effectiveness of the CIPP on four real-world dataset in
Appendix 1. The LIVECell dataset [36] and the DOORS
dataset [37] exhibit significant diversity between their train-
ing and testing subsets. This diversity leads to the anticipated
superiority of the CIPP over the U-Net-R18-I. In the case of
the Derma ISIC dataset [38], both models demonstrate com-
parable performance, owing to the dataset’s relatively limited
diversity. Conversely, on the CryoNuSeg dataset [39], the
CIPP exhibits a comparatively inferior performance due to
the limited diversity among segmentation targets.

6 Conclusions

So far, there is no comprehensive study, comparing conven-
tional image processing to modern deep learning algorithms
considering dataset specific properties. Thus,we introduced a
synthetic dataset with tunable degrees of difficulty and con-
ducted a exhaustive study on DL approaches and our own
easy-to-apply implementation of a CIPP. The dataset serves
as a versatile benchmark dataset and will be used for future
studies as well. Furthermore, it can be used to educate stu-
dents and researchers in understanding and comparing the
performance of semantic segmentation approaches.

Our findings show that DL performs best on tasks with
low difficulty/diversity and large amounts of training data.
Deep learning is able to consider context and shapes which
makes it effective in recognizing the target even with few
training images. However, if only a few training images are
provided, the diversity of the dataset is not properly repre-
sented, leading to decreased DL performance. In such cases,
the CIPP is able to generalize better due to human expert
input and limited parameter space to optimize.

Overall, we recommend the use of our implementation of
a CIPP in all scenarios due to its ease of application and low
resource requirements. Our proposed CIPP implementation
can work with the same data format as most DL frameworks,
reducing the additional effort required for adoption. Addi-
tionally, CIPPs allow for easy understanding and adaptation
of the processing pipeline to new data, making them useful
in laboratory settings with few experimental modalities that
require quick adaptation with minimal computational costs.
Finally, the CIPP can also be used to post-process outputs of
DL approaches by removing artifacts or supporting the label-
ing process by providing quickly label-maps, which can be
corrected by a human operator.

Our study highlights the importance of understanding the
strengths and weaknesses of both deep learning methods
and conventional image processing pipelines. Researchers
and practitioners can use this knowledge to choose the most
appropriate approach for their specific task and dataset, based
on the available resources and desired performance metrics.

In our future research, we plan to expand the capabilities
of our CIPP implementation and assess its ability to assist
human annotators in fast and efficient pre-labeling. Specif-
ically, we aim to enhance our CIPP with additional image
processing techniques and optimize its performance on vari-
ous types of image datasets. Additionally, we will investigate
the potential of our CIPP to be used in combination with DL
methods to further improve semantic image segmentation
accuracy. We will also explore the possibility of integrating
our CIPP into existing annotation tools to facilitate the label-
ing process for human annotators.
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Appendix A: Conventional image processing
operations

In this section, we give further insights into the image pro-
cessing operations used by the CIPP. In Tab. 1 all operations
utilized by theCIPP in this paper are listed and explained. The
single operations can be picked by a user and assembled to a
CIPP which is then able to optimize itself. The optimization
considers the parameters which are listed in the Parameter
column.

Appendix B: Supplementary test series

In this section, we delve into additional experiments that
we conducted. First, we evaluate further DL models and
compare them to the U-Net. Second, we discuss the perfor-
mances of the U-Net-R18-I and the CIPP on four distinct
benchmark datasets. The subsequent experiments focused
on a specific type of noise using synthetic datasets. These
synthetic datasets were easier compared to the main test
series, and therefore, we evaluated the full range of difficul-
ties (DNoise) from 0 to 100% in 10% steps. For all following
experiments, we used the same implementation of the CIPP
as introduced in Sect. 4.

B.1: Deep learningmodels

Besides the U-Net there are multiple other DL models capa-
ble of semantic segmentation. We repeat the test series from
Sect. 5 with the LinkNet [40], FPN [41] and PSPNet [2] as
implemented in [33]. The DL models were trained with the
same parameters as the U-Net in Sect. 5 with a ResNet18
backbone pretrained on ImageNet. Each training was per-
formed ten times to reduce random deviation.

The results are displayed in Fig. 11. The DLmodels show
a similar performance characteristics as the U-Net. The DL
models excel when many training images are available or
when the complexity and diversity is low (D < 20%). The
performance generally drops (F1 ≤ 40%) for D ≥ 35% and
N ≤ 8. The LinkNet-R18-I, FPN-R18-I and PSPNet-R18-I
are all outperformed by the CIPP at D > 25% for N = 4, as
the U-Net-R18-I. Thus, we conclude that the U-Net-R18-I is
a good representative for DL models.

B.2: Benchmark datasets

We have assessed the U-Net-R18-I and the CIPP on a selec-
tion of four benchmark datasets. We conducted 10 training
runs for N = 4, 8, 16 training images. Example images for
each datasets are shown in Fig. and the results are summa-
rized in Fig.
LIVECell [36] is a dataset of phase-contrast images for cell
segmentation. We select a subset of this dataset which has
a unique feature where training crops have a resolution of
256px × 256px, and test images have different resolutions
of 704px × 520px. The CIPP displays no deviation and
can reliably select its optimal parameters, even with just
N = 4 training images. Conversely, the U-Net’s deviation
is generally higher and decreases with an increasing number
of training images. Although the dataset lacks diversity in
appearance, the resolution shift greatly affects the U-Net’s
performance, whereas the CIPP, as demonstrated in previ-
ous tests, is more robust to data diversity and is not affected.
While we expect the U-Net to perform well on images of
the same resolution this example underlines the robustness
of the CIPP model.

DOORS [37] is a synthetic dataset to detect boulders on
the surface of small bodies. We train on images showing one
boulder and test on images withmultiple boulders to evaluate
the impact of diversity between train and test set. We observe
that the CIPP as expected outperforms the U-Net-R18-I as
it is more resilient against diversity in the dataset when few
training images are available.

Derma ISIC [38] focuses on skin lesion analysis and
melanoma detection. The performance of the U-Net-R18-I
and the CIPP are similar and overlap. The median perfor-
mance of the CIPP is slightly larger.
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Table 1 Details for the image processing operations used by the CIPP

Operation Parameter set Description

Blurring Kernel size: {3, 5, 9, 17},
inactive

This pre-processing step to removes potential noise by blurring the input. The
parameter corresponds to the kernel size

Inversion Active/inactive Depending on the following operations it may be necessary to invert the
image from minimum to maximum

Threshold Threshold: {0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

The input is min-max-scaled to values between 0 and 1 before the threshold is
used to binarize the image

Otsu-Threshold Active/inactive The Otsu-Threshold [28] is applied to the input

Edge-detection Kernel size: {3, 5, 9, 17},
inactive

The Laplace-operator is applied to the image. The output is then
min-max-scaled between 0 and 1

Closing Size: {3, 5, 9, 17}, inactive A morphological closing operation is applied to the input. The structuring
element is an ellipse

Erosion Size: {3, 5, 9, 17}, inactive A morphological erosion operation is applied to the input. The structuring
element is an ellipse

Where the column parameter contains all values the CIPP can choose from during training

CryoNuSeg [39] is a dataset of Hematoxylin and Eosin
(H&E)-stained images for nuclei segmentation from 10 dif-
ferent organs. The performances of both models are similar
but in this case the U-Net-R18-I slightly outperforms the
CIPP.

B.3: Blurring

In this test series, example images are visualized in Fig. 12,
we have applied only blurring to gradually increase the diffi-
culty DBL. The results for the difficulties DBL = 10%, 50%
and 90% are shown in Fig. 13. The U-Net used in this syn-
thetic experiment did not utilize any pretraining or specific
backbone. As expected, the deviation of independent training
runs decreases with the number of training images N used
for training. The CIPP performs on average (65.64%) signif-
icantly lower than the U-Net (80.20%), which indicates that
the U-Net generally is better equipped to deal with blurring
noise. With an increase in difficulty DBL the performance

of both methods drops significantly. The U-Net is more sen-
sitive to higher difficulties than the CIPP. This allows the
CIPP to outperform the U-Net for very few images and high
difficulties as visible in Fig. 14. In direct comparison, it is
apparent that the U-Net is able to handle blurring noise better
compared to the CIPP in nearly every test case. We suppose
that the ability of the U-Net to assess the shape and context of
the image provides in this specific case a crucial advantage.

B.4: Color-shift

In this test series, we have only applied the noise color-shift
to the images, as visualized in Fig. 15. Three exemplary dif-
ficulties are visualized in Fig. 16 to showcase the impact of
random initialization and image choice on both approaches.
The U-Net used in this synthetic experiment did not uti-
lize any pretraining or specific backbone. With increasing
difficulty the deviation of performance increases for both
approaches. It is visible that the CIPP reaches peak perfor-

Fig. 11 The performance matrix of the LinkNet, FPN and PSPNet for all difficulties D and the number of training images N . The performance is
measured using the average F1-score on the synthetic dataset as in Sect. 5
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Fig. 12 Example images from the selected benchmark datasets. The first row shows an example from the training set and the second row shows an
example from the test set

Fig. 13 The performances of the U-Net-R18-I and the CIPP compared side by side over different amounts of training images N for each benchmark
dataset

Fig. 14 Exemplary images from
the test series focusing on
blurring
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Fig. 15 Experimental results for test series only applying blurring for different difficulties DBL over the number of training images N

Fig. 16 The performance matrices of test series (BL) for CIPP and U-Net comparing dataset difficulties DBL and number of training images N .
The performance is measured using the average F1-score. The comparison shows the performance gap between CIPP and U-Net

mance until a difficulty DCS ≤ 50%evenwith N = 4 images
besides few outliers, while the U-Net is not producing less
stable results. It is as well notable that the peak performance
of the CIPP drops for difficulty DCS = 90%.We can assume
that at this point the CIPP is lacking the necessary tools to
compensate for the applied noise.

The CIPP does not improve from N = 16 to N = 128
and has already reached its full potential at N = 16. In com-
parison, the U-Net improves more from N = 16 to N = 128
than from N = 4 to N = 16 with an average improvement
of 23.91%. The CIPP is able to solve this task nearly per-
fectly. It detects the sharp texture of the object in the task.
This sharp texture is not affected by the applied color-shift.
This way the CIPP can solve the task by focusing on the
texture while being able to ignore color changes. Only for
very high color deviations, the texture can vanish when the
color is changing so much that it is limited by the allowed
values within an image [0, 255]. The U-Net in contrast can
be confused by the differences in colors especially when few
images are presented and the change in color is substantial.

As visible in Fig. 17 the U-Net is only able to outperform the
CIPP at a difficulty of D ≥ 70% and N ≥ 64.

B.5: Salt-N-pepper

This test series focuses on salt-n-pepper noise.We have visu-
alized example image in Fig. 18. The results of three different
difficulties DSNP are visualized in Fig. 19. The U-Net used
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Fig. 17 Exemplary images from the test series focusing on color-shift

in this synthetic experiment did not utilize any pretraining or
specific backbone. The deviation increases with higher diffi-
culties DSNP but it is only relevant for N = 4 training images.
The top performance of the CIPP is steadily dropping with
increasing difficulty. The effect on the U-Net is minimal. The

CIPP in this test series is more sensitive to changes in dif-
ficulty. The U-Net is less affected on average, as visible in
Fig. 20. It appears that the U-Net is able to adapt very well
to the salt-n-pepper noise.

Fig. 18 Experimental results for test series only applying color-shift for different difficulties DCS over the amount of training image N

123



   25 Page 14 of 17 F. R. Münke et al.

Fig. 19 The performance matrices of test series color-shift for CIPP and U-Net comparing dataset difficulties DCS and number of training images
N . The performance is measured using the average F1-score. The comparison shows the performance gap between CIPP and U-Net

Fig. 20 Exemplary images from the test series focusing on salt-n-pepper
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Fig. 21 Experimental results for test series only applying salt-n-pepper noise for different difficulties DSNP over the amount of training image N

Fig. 22 The performance matrices of test series salt-n-pepper for CIPP and U-Net comparing dataset difficulties DSNP and number of training
images N . The performance is measured using the average F1-score. The comparison shows the performance gap between CIPP and U-Net
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