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Abstract
We investigate electromagnetic scattering phenomena by further developing and using the
T-matrix method. Capitalizing on the analytical properties of spherical or cylindrical wave
solutions to expand electromagnetic fields in a basis adapted to the localized nature of a
scatterer, we can efficiently study the interaction between scatterers in finite, disordered
or infinite, periodic arrangements. Thereby, we can describe a wide variety of artificial
photonic materials used for applications such as sensing, imaging, or photonic computing.
The chosen T-matrix method approach simplifies the analysis by separating the shape
and material properties of the scatterers from their arrangement and lattice structure.
Besides providing a solid theoretical framework to obtain analytical insights into these
photonic materials, our approach is also an extraordinary computational tool that allows
performing parameter studies or bridging of different length scales efficiently.

However, especially for periodic structures that we emphasize in this thesis to some
extent, the success of the T-matrix method sensitively hinges on efficient expressions to
calculate the arising lattice sums. Using Ewald’s method, we derive expressions that can
consider complex unit cells, i.e., unit cells containing multiple scatterers, in one-, two-,
and three-dimensional lattices. These expressions converge orders of magnitude faster and
are numerically more robust than direct summation approaches.

The lattice sums and functions related to the T-matrix method are implemented in
a novel open-source program treams, which provides a holistic framework for various
computations using T-matrices in the spherical and cylindrical basis and, additionally,
an S-matrix description in the plane wave basis. Combining these different basis sets
unlocks the opportunity to explore a wide range of applications. Furthermore, treams
fully supports chiral material parameters.

Besides the implementation, we additionally present the application of this newly de-
veloped computational tool to selected problems. We outline its use in large parameter
studies to design helicity-preserving cavities that enhance chiral signals, for the multi-
scale modeling of molecular materials, and for the homogenization of artificial photonic
materials made from periodically arranged constituents. Moreover, in connection with
additional methods to compute the focusing with high-aperture lenses, we show how this
framework can be used for highly specialized applications in multi-photon direct laser
writing. Other applications of the presented methods include the simulation of moiré
lattices, the investigation of anti-reflective coatings for solar cells, the analytical investi-
gation of metasurface properties, the inverse design of bound states in the continuum, or
the simulation of self-assembled plasmonic nanostructures.

Many major accomplishments were already achieved while developing this framework
and applying it to selected contemporary challenges in computational nanophotonics.
However, many more aspects remain to be explored, among which the description of non-
linear photonic materials would be one example. Also, translating the current framework
to other physical systems covered by similar equations would be a fascinating research
endeavor.
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Zusammenfassung
Wir untersuchen elektromagnetische Streuphänomene, indem wir die T-Matrix-Methode
weiterentwickeln und anwenden. Wir profitieren dabei von den analytischen Eigenschaften
der zugrundeliegenden sphärischen oder zylindrischen Wellen, um die Wechselwirkung zwi-
schen Streuern in endlichen, ungeordneten und unendlichen, periodischen Anordnungen zu
berechnen. Dadurch können wir künstliche photonische Materialien, die für Anwendung
wie Sensoren, Bildgebung, oder dem optische Rechnen verwendet werden, abbilden. Die
gewählte T-Matrix-Methode vereinfacht die Analyse, indem die Form und Materialeigen-
schaften der Streuer von ihrer Anordnung und der Gitterstruktur getrennt werden. Neben
der Bereitstellung eines fundierten theoretischen Rahmens, um analytische Erkenntnisse
zu gewinnen, sind die hier entwickelten Methoden ein außergewöhnliches Rechenwerkzeug,
um Parameterstudien oder die Multi-Skalen-Modellierung effizient durchzuführen.

Der Erfolg der T-Matrix-Methode, gerade für periodische Strukturen, die wir in dieser
These besonders unterstreichen, hängt jedoch von effizienten Ausdrücken für die auftreten-
den Gittersummen ab. Unter Verwendung der Ewaldschen Methode leiten wir Ausdrücke
für komplexe Einheitszellen, d.h. Einheitszellen die mehrere Streuer enthalten, in ein-,
zwei- und dreidimensionalen Gittern her. Diese Ausdrücke konvergieren um Größenord-
nungen schneller und sind numerisch stabiler als direkte Summen.

Alle entwickelten Funktionen sind in einem neuen quelloffenen Programm, treams, im-
plementiert, das ein umfassendes Programmiergerüst für Berechnungen mit T-Matrizen
in der sphärischen und zylindrischen Basis und zusätzlich in der S-Matrix-Beschreibung in
der Ebene-Wellen-Basis bereitstellt. Die Kombination dieser verschiedenen Basen eröffnet
die Möglichkeit, eine große Auswahl an Anwendung zu untersuchen. Des Weiteren werden
chirale Materialparameter von treams vollständig unterstützt.

Neben der Implementierung stellen wir auch die Anwendung dieses neuen Programms
auf ausgewählte Probleme vor. Wir skizzieren die Verwendung von treams in großen Pa-
rameterstudien für den Entwurf von helizitätserhaltenden Resonatoren zur Verstärkung
chiraler Signale, für die Multi-Skalen-Modellierung molekularer Materialien und für die
Homogenisierung von künstlichen photonischen Materialien aus periodisch angeordneten
Elementarzellen. Außerdem zeigen wir, wie diese Methode für spezifische Anwendungen
im Multiphotonen-Direct-Laser-Writing in Verbindung mit Verfahren zur Berechnung der
Fokussierung mit Linsen großer numerische Apertur verwendet werden kann. Andere An-
wendungen der vorgestellten Methoden beinhalten die Simulation von Moirégittern, die
Untersuchung antireflektierender Beschichtungen für Solarzellen, die analytische Untersu-
chung der Eigenschaften von Metaoberflächen, das inverse Design von gebunden Zustän-
den im Kontinuum oder die Simulation von selbst-assemblierten Nanostrukturen.

Viele wesentliche Ergebnisse wurden bereits in der Entwicklung dieses Rahmens und
seiner Anwendung auf ausgewählte Probleme in der Nanophotonik erreicht. Jedoch verblei-
ben viele Aspekte zur weiteren Untersuchung, z. B. die Beschreibung nichtlinearer photo-
nischer Materialien. Zudem wäre seine Übertragung auf andere physikalische Systeme, die
von ähnlichen Gleichungen beschrieben werden, ein faszinierendes Forschungsvorhaben.
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1 Introduction

Artificial photonic materials offer unprecedented possibilities to shape the interaction
of light and matter. Thereby, unique novel optical properties can be achieved. These
properties emerge from the precisely tailored designs of individual constituents of these
artificial materials in combination with the interaction of the constituents in bulks – often
in periodic arrangements – on the macroscopic scale. The properties of artificial photonic
materials can be used in many applications, such as fishnet structures with a negative
refractive index for optical cloaking and lensing [1], Huygens’ metasurfaces fulfilling the
Kerker condition for near-zero reflectivity [2], or topological photonic insulators for back-
scattering free mode guiding [3]. Novel research directions study further inclusion of
non-local effects [4] or of time-varying materials [5]. These developments can be used, for
example, to achieve high-throughput optical computing [6] or to implement the concept
of a photonic lab on a chip [7].

These advancements are based on the complementary developments in different scien-
tific fields. Here, physics is traditionally described by its two branches experimental and
theoretical physics. Novel experimental approaches, for example, to fabricate photonic
structures with higher precision, smaller features, or from previously unused materials,
can realize innovative designs to implement concepts previously explored only theoreti-
cally. Conversely, unique and unusual properties of materials require the development
of new theoretical models to describe them. However, the development of more complex
theoretical models and the ever-increasing possibilities of structures that can be realized
experimentally require ultimately computational tools for their exploration. Facilitated
by more powerful computers, the new branch of computational physics becomes more
important. Sophisticated computational methods based on theoretical models allow the
prediction of the physical properties of novel photonic materials.

The development of fabrication methods for artificial materials is under active research.
Depending on the type of materials, additive methods can be used, such as direct laser writ-
ing [8], or self-assembly methods, for example, to fabricate metal-organic frameworks [9]
or DNA-origami structures [10]. However, the prediction and theoretical analysis of the
properties of artificial materials fabricated with such methods can pose a computational
challenge. These challenges include the presence of different physically relevant length
scales, that have to be bridged, or many different design parameters, that have to be
explored. Currently widely used methods to solve electromagnetic scattering, such as
finite difference schemes, finite-element methods, or Fourier modal methods, can reach
their limitations [11]. For example, largely different length scales in the structure require
different scales of discretization to be simulated accurately and, simultaneously, must stay
practically feasible. Also, changing parameters, such as the lattice constant, can require
completely new calculations. Moreover, high demands on the computing infrastructure
can also create challenges due to their resource requirements which increases energy con-
sumption and cost. Therefore, novel approaches to simulate electromagnetic scattering
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1 Introduction

become necessary. Specialized simulation approaches can be used to respond to these
challenges. One such approach is the transition matrix (T-matrix) method [12].

In essence, the T-matrix is an efficient way to encode the scattering response from an
object under arbitrary direction or polarization of the illumination by using basis sets tai-
lored to the scattering problem. The interaction between multiple particles can be solved
analytically. The T-matrix method has several benefits. Its central object of interest,
the matrix itself, is a very compact description of the scattering properties of a single
object. Thereby, it is efficient for solving systems involving many scatterers. Moreover,
by computing the interaction analytically, the required computational effort is reduced
offering also an opportunity for gradient-based optimizations. The separation of the single
scatterer properties from the interaction calculations is beneficial to accommodate differ-
ent length scales. It also allows the separation of lattice and scatterer effects in photonic
materials.

In this thesis, we explore the application of the T-matrix method for various prob-
lems in the field of artificial photonic materials. We not only apply the T-matrix for finite
structures, but particularly for infinite, periodic arrays. As it turns out, the efficient appli-
cation of the T-matrix calculation in the presence of periodic boundary conditions needs
highly specialized expressions to calculate lattice sums. We package T-matrix method
functions and efficient lattice sums in a holistic software framework. From the outset, we
also include the possibility to describe scattering in the presence of electromagnetically
chiral materials to further increase the range of applications. We use the derived methods
to simulate artificial materials and structures and analyze their properties. Furthermore,
we explore these methods in combination with other matrix-based approaches to study
the printing process of artificial materials.

The structure of this thesis can be approximately described as the transition from theo-
retical and mathematical methods to numerical and computational topics, which, finally,
are used in several applications. The foundation of thesis is the scattering theory and
its application which is described in Chapter 2. We begin with Maxwell’s equations and
the associated constitutive relations. With several applications involving electromagnetic
chirality in mind, we emphasize on formulating the solutions to Maxwell’s equations cor-
respondingly, which means that we benefit from using modes of well-defined helicity. We
continue by describing the T-matrix method. We formulate the calculation of the in-
teraction for aperiodic clusters of scatterers and in the presence of periodic boundary
conditions. Thereby, we cover a wide range of potential applications in the field of ar-
tificial photonic materials. Furthermore, we describe related matrix-based methods for
stratified media that can be combined with the T-matrix approach, such as S-matrices
and transfer matrices. Furthermore, we explain simulation methods for high numerical
aperture lenses.

Although the T-matrix method equations for the interaction between scatterers in pe-
riodically repeated unit cells can be written down quite concisely, the calculation of the
interaction is a computational challenge caused by a particular type of lattice sums, which
appears. These sums for lattices are the focus of Chapter 3. We develop a unified method
to derive exponentially convergent series for two types of solutions: spherical waves and
cylindrical waves. These waves constitute the basis sets for which we formulated the T-
matrices in the preceding chapter. An emphasis in the derivation, which is a significant
complication, is put on complex unit cells, i.e., unit cells containing more than one object.
The derived lattice sums are then comprehensively validated.
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Chapter 4 gives an overview of the structure and the capabilities of the developed
software package treams. This software, which is now published as an open-source pack-
age, provides a comprehensive framework for T-matrix and S-matrix computations. It
combines the T-matrix method, using spherical and cylindrical wave solutions, with the
exponentially convergent lattice sums. Thereby, it can – in addition to applying the
T-matrix method to finite clusters – solve multi-scattering equations in the presence of
periodic boundary conditions. Moreover, all functionality is designed to include modes
of well-defined helicity and, therefore, chiral media can be included in the computations
without restrictions. The introduction of treams is concluded with several examples to
validate the accuracy and a discussion of actions to ensure the quality of the code.

Based on this computational framework, we study several applications in Chapter 5.
We investigate helicity-preserving cavities for the enhancement of optical rotation sig-
nals. Such sensing schemes can distinguish molecules with different handedness, which
is crucial, for example, in biomedical applications. Furthermore, we study different se-
tups for direct laser writing in special conditions: The printing process in birefringent
media and the presence and influence of inhomogeneities on the printing process are in-
vestigated. Furthermore, we study molecular arrays. By combining the derived methods
with quantum-chemical simulations of individual molecules, the properties of such novel
artificial materials can be calculated ab-initio. We also investigate a connection of the
T-matrix method to the homogenization, i.e., the description of photonic materials by
effective material parameters. The range of applications highlights the versatility of the
approach to solve electromagnetic scattering as described in this thesis and implemented
in treams.

The concluding Chapter 6 summarizes the results of the thesis. Furthermore, we give a
brief overview on other applications of treams that are not covered in detail in this thesis.
Finally, we provide an outlook on future research directions based on the results of this
thesis.

3





2 Electromagnetic scattering

The mathematical description of electromagnetic phenomena in classical physics is based
on Maxwell’s equations. Those equations precisely describe the properties and behavior of
electromagnetic fields and their interaction with matter from the ultraviolet and the visible
down to static frequencies. Excluding quantum effects at extremely small distances and
highest energies, Maxwell’s equations have great predictive power. They are, therefore,
not only used to explain natural phenomena but also to engineer novel designs for a myriad
of applications.

In our thesis, we focus on scattering processes based on general and widely applicable
methods. These methods are used to explore in Chapter 5 a small subset of applications.
The core concept in the theoretical description of scattering processes are wave solutions
to Maxwell’s equations, which we introduce in Section 2.1. As a starting point, Maxwell’s
equations in media are postulated and the involved fields are defined. On their own,
however, Maxwell’s equations do not completely constrain the solutions. So, they must
be combined with suitable constitutive relations. For the particular choice of constitutive
relations used in this thesis in combination with Maxwell’s equations, we obtain the
Helmholtz wave equation in a homogeneous medium. We make extensive use of the
solution theory for the vector Helmholtz equation to arrive at several solution sets for
Maxwell’s equations used in the remainder of the thesis. These solution sets are important,
as arbitrary solutions to Maxwell’s equations can always be written as a superposition of
the elements of these solution sets.

The solutions we introduce are particularly useful in combination with the concept of T-
matrices [12] described in Section 2.2, which are a cornerstone to calculate the scattering
response from structures of interest in the following chapters. In essence, the T-matrix de-
scribes how an incident field, expanded in a suitable solution set, on an object is scattered.
The scattered field is equally expanded in a suitable basis set. The amplitudes of the
expansion are expressed in vectors, and the T-matrix connects them in a matrix-vector
product. Such basic description offers efficient methods to calculate the interaction in
multi-scattering scenarios for both, aperiodic and periodic cases. To explain this in a suf-
ficient detail, we introduce different methods to compute T-matrices for a wide range of
scattering objects and, furthermore, describe several transformations that can be applied
to T-matrices, such as rotations, translations, or the change between different basis sets.

We give an outline of the method to compute the lattice sums that arise when perform-
ing multi-scattering calculations with periodic boundary conditions in Section 2.3. The
general idea underlying the so-called Ewald method [13] is explained and an overview of
known results for various cases is given. However, a more detailed discussion of our novel
and unified approach is the content of Chapter 3.

In the final section of this chapter, Section 2.4, we also introduce the methods used
to study the optical response from stratified media in combination with plane wave ex-
pansions, which are based on scattering matrices (S-matrices). Additionally, for focus
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calculations with Richards and Wolf integrals [14] in anisotropic media, we use methods
based on transfer matrices.

2.1 Electromagnetic wave solutions
Maxwell’s equations as stated in Subsection 2.1.1 describe electromagnetic fields in dif-
ferent settings. We set the focus on time-harmonic waves propagating in the absence of
free charges and currents. These waves are a result of imposing certain restrictions onto
the materials involved – mainly the condition to respond linearly to electromagnetic fields
– by the choice of constitutive relations made in Subsection 2.1.2. The combination of
Maxwell’s equations and the constitutive relations leads to the Helmholtz wave equation,
which we solve in spherical, cylindrical, and Cartesian coordinates in Subsection 2.1.3
resulting in vector spherical, cylindrical, and plane waves, respectively [15].

2.1.1 Maxwell’s equations
Due to their relevance throughout numerous fields and branches of physics, mathematics,
and engineering, Maxwell’s equations have been stated in various ways. Here, we use
one of the most common starting points: the electromagnetic equations in real space and
time-domain [16, 17]

∇ ·D(r, t) = ρext(r, t) (2.1a)
∇ ·B(r, t) = 0 (2.1b)

∇×E(r, t) = − ∂

∂t
B(r, t) (2.1c)

∇×H(r, t) = jext(r, t) +
∂

∂t
D(r, t) , (2.1d)

with the electric displacement D(r, t), the magnetic flux density B(r, t), the electric field
E(r, t), and the magnetic field H(r, t). In this, so-called macroscopic, formulation the
microscopic charges and currents of matter are included into the definition of the fields
and only the external charges are explicitly included. While the microscopic charges
give rise to the material properties that are finally expressed as constitutive relations,
external charges ρext(r, t) and currents jext(r, t) are assumed to be absent in all scenarios
considered in the remainder of this thesis.

Next, we want to express these time-domain equations in frequency-domain. In essence,
we can write, while assuming a linear response, an arbitrary field in time domain as a
superposition of time harmonic solutions that each differ in frequency, and the following
Maxwell’s equations capture the spatial behavior of the amplitudes of these time-harmonic
solutions. Each time-dependent vector field is expressed by its Fourier transform as defined
in Appendix A. Then, we arrive at Maxwell’s equations in Fourier domain

∇ · D̃(r, k0) = 0 (2.2a)
∇ · B̃(r, k0) = 0 (2.2b)
∇× Ẽ(r, k0) = ick0B̃(r, k0) (2.2c)
∇× H̃(r, k0) = −ick0D̃(r, k0) . (2.2d)
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2.1 Electromagnetic wave solutions

We use the vacuum wave number k0 = ω
c , where c is the speed of light in vacuum,

instead of the angular frequency ω as variable. This simplifies the implementation later
because an explicit assumption of the units of length and time can be omitted. As a last
modification, we normalize all fields such that they have the same units as the electric
field, namely H(r, k0) = Z0H̃(r, k0), D(r, k0) =

1
ϵ0
D̃(r, k0), and B(r, k0) = cB̃(r, k0) for

which we use, in addition to c, the free space impedance Z0, and the vacuum permittivity
ϵ0. For a uniform notation, we also introduce E(r, k0) = Ẽ(r, k0) although the electric
field definition remains unmodified. Now, in a stretch of notation where the divergence
and curl operators act on each half of the six-component vectors, the Maxwell equations
can be written concisely as

∇ ·
(
D(r, k0)
B(r, k0)

)
= 0 (2.3a)

∇×
(
E(r, k0)
H(r, k0)

)
= k0

(
0 i
−i 0

)(
D(r, k0)
B(r, k0)

)
. (2.3b)

The first equation mostly enforces transversality of the displacement field in the absence
of sources and of the magnetic flux density. The second equation expresses a connection
between the different electromagnetic fields and is the source of dynamically evolving fields.
At this point, however, it gets necessary to introduce an additional relation between these
fields to complete this otherwise under-determined set of equations.

2.1.2 Constitutive relations for bi-anisotropic and chiral media
The constitutive relations provide exactly that relation, which, in general, can be any func-
tional {D,B} = F [{E ,H}]. However, for many realistic materials additional restrictions
can be imposed that greatly simplify this functional [17]. We return to the time-domain
formulation for a brief period to make these restrictions apparent.

We begin with requiring a linear relation between those fields. As it turns out, this
is a reasonable assumption for many optical systems when the amplitudes of the fields
are not excessively large. For sufficiently low field strengths, a linear approximation is
usually possible. Typically, non-linear effects such as higher harmonic generation or the
Kerr effect appear under strong fields [18]. We also require locality and time-invariant
materials to arrive at [17]

1

ϵ0
D(r, t) = E(r, t) +

∫ ∞

−∞
dt′
[
Ree(r, t− t′)E(r, t′) +Rem(r, t− t′)Z0H(r, t′)

]
(2.4)

c0B(r, t) = Z0H(r, t) +

∫ ∞

−∞
dt′
[
Rme(r, t− t′)E(r, t′) +Rmm(r, t− t′)Z0H(r, t′)

]
,

(2.5)

where we introduced four response functions Ree(r, t − t′), Rem(r, t − t′), Rme(r, t − t′),
and Rmm(r, t − t′) that are, in general, matrix-valued. Additionally, temporal causality
requires that the response functions are zero for t′ > t. Applying the convolution theo-
rem, these integrals become simple multiplications after a Fourier transformation to the
frequency domain. Thus, these relations can be written compactly as(

D(r, k0)
B(r, k0)

)
=

(
ϵ(r, k0) χ(r, k0) + iκ(r, k0)

χ⊺(r, k0)− iκ⊺(r, k0) µ(r, k0)

)(
E(r, k0)
H(r, k0)

)
, (2.6)
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2 Electromagnetic scattering

where we use again the normalized fields introduced in the previous section. The electric-
electric and the magnetic-magnetic couplings are expressed with the relative permittivity
ϵ(r, k0) and the relative permeability µ(r, k0), respectively. The electric-magnetic and
the magnetic-electric coupling are already decomposed into the non-reciprocity parameter
χ(r, k0) and the chirality parameter κ(r, k0). As the name suggests, reciprocal materi-
als, which are inarguably an important class of matter, have a vanishing non-reciprocity
parameter [17]. The entire six-by-six matrix, as defined here, is unitless. It is called
bi-anisotropic tensor and, likewise, materials where no substantial further simplifications
can be made are bi-anisotropic materials.

Further simplifications of Eq. (2.6) can be made depending on the symmetries and
properties of the material. If the off-diagonal blocks vanish, a material is called anisotropic.
Certain cases of scattering in the presence of anisotropic material parameters are discussed
in Section 2.4 with an application in Section 5.2. Alternatively, if we impose spatial
isotropy, all four material parameters become scalar functions. For non-vanishing off-
diagonals, the material is called bi-isotropic. An important class of materials in this
thesis are isotropic chiral materials, where the constitutive relations become(

D(r, k0)
B(r, k0)

)
=

(
ϵ(r, k0) iκ(r, k0)

−iκ(r, k0) µ(r, k0)

)(
E(r, k0)
H(r, k0)

)
. (2.7)

The combination of Maxwell’s equations in frequency domain with these constitutive
relations now forms a fully determined set of equations. In the following, we discuss
the Helmholtz wave equation that, as we show subsequently, is closely related to the
connection of Eqs. (2.3) and (2.7) in the case of homogeneous media, i.e., if the material
parameters are independent of the spatial coordinate r. Thus, we can use the solutions
of the Helmholtz wave equation to construct solutions to Maxwell’s equations.

2.1.3 Solutions to the Helmholtz wave equation and their application to
Maxwell’s equations

In this section, we introduce the scalar and vector Helmholtz equation. The solutions to
this equation are later used to construct solutions for Maxwell’s equations. The Helmholtz
wave equation can be written as [15]

(∇2 − k2)f(r, k) = div grad f(r, k)− k2f(r, k) = 0 (2.8)

for a scalar field f(r, k) and wave number k. For a vector field f(r, k), it is written as

(∇2 − k2)f(r, k) = grad div f(r, k)− curl curl f(r, k)− k2f(r, k) = 0 . (2.9)

The operator ∇2 is the scalar or vector Laplacian, respectively. A vast knowledge on
the solutions of the scalar Helmholtz equation has been developed; separable solutions in
eleven systems of coordinates are known [15]. From those cases, we use the solutions in
Cartesian, cylindrical, and spherical coordinates. The definition and used convention of
the coordinates are given in Appendix B. The first set of solutions are plane waves

fk̂(r, k) = eikr , (2.10)
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2.1 Electromagnetic wave solutions

where the wave vector k = kk̂ fulfills k2 = k2 and kr = k ·r is the scalar product. Second,
we have cylindrical waves

f
(n)
kzm

(r, k) = Z(n)
m (kρρ)e

imφ+ikzz , (2.11)

with Z
(n)
m (·) the Bessel functions of first (n = 1) and second (n = 2) kind or the Hankel

functions of first (n = 3) and second (n = 4) kind [19]. The radial part of the wave vector
is defined by kρ =

√
k2 − k2z and m ∈ Z. Here and in the remainder of the thesis, we

select the branch with the complex phase in [0, π) for the square root. Third, there are
spherical waves

f
(n)
lm (r, k) = z

(n)
l (kr)Ylm(θ, φ) (2.12)

with spherical Bessel or Hankel functions of first and second kind z
(n)
l (·) indexed analo-

gously to their cylindrical counterparts and the spherical harmonics Ylm(θ, φ). Multiple
conventions for the definition of the spherical harmonics exist: See Appendix C for the con-
vention used in this thesis. The modes are indexed by l ∈ N0 and m ∈ {−l,−l+1, . . . , l}.

In six of the coordinate systems with separable solutions, particularly for the cylindrical,
spherical, and Cartesian coordinates, it is possible to construct solutions to the vector
equation from the scalar solutions by a general procedure [15]. From the scalar solution
fν(r, k), where we use ν as a general index into the set of solutions, we obtain three vector
solutions by

Lν(r, k) = ∇fν(r, k), (2.13a)
Mν(r, k) = ∇× [vfν(r, k)], (2.13b)

Nν(r, k) =
∇
k

×Mν(r, k) , (2.13c)

where v is a pilot vector that depends on the choice of the coordinate system. In Cartesian
and cylindrical coordinates, we use v = ẑ and in spherical coordinates v = r. The three
solutions can be associated with three different polarizations. The solutions Mν(r, k) and
Nν(r, k) are divergence-free and, thus, are transverse fields, whereas Lν(r, k) is longitu-
dinal. Therefore, since we work with Maxwell’s equations in the absence of sources, the
focus is set on the solutions Mν(r, k) and Nν(r, k).

We note that the solutions Mν(r, k) are orthogonal to the pilot vector v. This means
that in Cartesian and cylindrical coordinates the solutions are orthogonal to the z-direction.
In spherical coordinates, the solutions are orthogonal to the radial direction. Later, when
expanding the electric field in these waves, the solutions Mν(r, k) are called transverse
electric (TE) and the solutions Nν(r, k) are called transverse magnetic (TM) [16]. How-
ever, the reference for that nomenclature differs between Cartesian and cylindrical waves
on the one hand and spherical waves on the other hand.

Another property we can assess directly from the definition in Eqs. (2.13a) to (2.13c)
together with the scalar solutions is their parity. The scalar plane waves in Eq. (2.10)
change the direction of propagation under parity as does the kz component of the cylin-
drical waves. Moreover, the scalar cylindrical waves in Eq. (2.11) obtain a factor (−1)m

under parity due to the transformation φ → φ+ π, and the scalar spherical waves inherit
the parity (−1)l from the transformation properties of the spherical waves. The vector
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2 Electromagnetic scattering

solutions, therefore, also have simple transformations under parity: The waves Lν(r, k)
and Mν(r, k) get an additional factor −1 under the parity transformation in compari-
son to the scalar solution transformation, while the solutions Nν(r, k) do not. Due to
these simple transformation properties under the parity operation, we refer to the basis
consisting of Mν(r, k) and Nν(r, k) as parity basis.

The Helmholtz wave equation is a linear differential equation. Therefore, linear com-
binations of solutions are themselves solutions of the Helmholtz equation. This property
can be used to obtain solutions of well-defined helicity. The helicity operator is the pro-
jection of the spin onto the linear momentum. For the functions defined in real space and
frequency domain, the representation of the operator is ∇×

k [20]. Using the definitions
of the transverse solutions in Eqs. (2.13b) and (2.13c) in combination with Eq. (2.9), we
find that by applying the helicity operator on one of the transverse solutions Mν(r, k) or
Nν(r, k) generates the other. So, solutions that are eigenfunctions of the helicity operator
with eigenvalues ±1 are readily defined by

Aν±(r, k) =
Nν(r, k)±Mν(r, k)√

2
. (2.14)

As a result, we have two sets of solutions for the Helmholtz equation that will be used
later on: the helicity basis and the parity basis. We finish these more abstract discussions
of the solutions and will shortly derive the concrete definitions of the functions of the
parity basis.

Vector plane waves

The vector plane waves with a wave vector expressed by its Cartesian components k =
kxx̂+ kyŷ + kzẑ = kk̂ are given by

Mk̂(r, k) = i
kyx̂− kxŷ

kρ
eikr = −iφ̂ke

ikr (2.15a)

Nk̂(r, k) =
−kxkzx̂− kykzŷ + k2ρẑ

kρk
eikr = −θ̂ke

ikr . (2.15b)

The expression is normalized by dividing through kρ =
√
k2x + k2y. That normalization

makes the functions unitless, and it also allows us to write those functions efficiently by
using the unit vectors of the spherical coordinates. Note, however, that for complex-valued
components, these modes are not normalized to unit strength. Furthermore, we define
these functions for kx = 0 = ky, thus, k̂ = ±ẑ by

M±ẑ(r, k) = −iŷeikzz (2.16a)
N±ẑ(r, k) = ∓x̂eikzz , (2.16b)

which corresponds to applying first the limit ky → 0+ and then kx → 0+. These parity
modes can be seen, as mentioned above, as TE and TM modes with respect to the x-y-
plane or, equivalently, as the s- and p-polarized modes. The waves of well-defined helicity
derived from these modes are circularly polarized for real-valued wave vectors.

An alternative indexing of these modes is useful in the presence of periodic boundaries
in two directions. Instead of the three components of the normalized wave vector k̂, we

10



2.1 Electromagnetic wave solutions

kz = π kz = 2π
− + − +

m = 0

m = 1

m = 2

Figure 2.1: Visualization of vector cylindrical waves on a cylindrical surface. The fields
Re(A

(3)
kzms(r, k)) are shown for kz = π and kz = 2π and non-negative values

of m. We set k = 5, thus, the two shown cases illustrate the fields for purely
real and purely imaginary values of kρ and evaluate the fields at the cylinder
radius ρ = 0.2. Each column corresponds to one helicity. The cones show the
direction of the electric field. The color scale from white to dark red indicates
the normalized strength of the electric field. The fields for negative values of
m are related to the shown fields by symmetry.

define two components, e.g., for periodicity in the x-y-plane k∥ = kxx̂ + kyŷ. Then, the
remaining third component is given by kz = d

√
k2 − k2x − k2y where d = ±1 specifies the

principle direction of propagation. Hence, we can also use Mk∥,d(r, k) and Nk∥,d(r, k) to
uniquely define a plane wave mode. To avoid confusion with the index for positive and
negative helicity, we use the notation d = ↑ for d = 1 and d = ↓ for d = −1.

Vector cylindrical waves

The second set of solutions used in this thesis are vector cylindrical waves. They are given
by

M
(n)
kzm

(r, k) =

(
im

Z
(n)
m (kρρ)

kρρ
ρ̂− Z(n)

m

′
(kρρ)φ̂

)
eimφ+ikzz (2.17a)

N
(n)
kzm

(r, k) =

(
i
kz
k
Z(n)
m

′
(kρρ)ρ̂−m

kz
k

Z
(n)
m (kρρ)

kρρ
φ̂+

kρ
k
Z(n)
m (kρρ)ẑ

)
eimφ+ikzz , (2.17b)
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2 Electromagnetic scattering

where we applied again a normalization by dividing through kρ. Like in the case of vector
plane waves, this normalization makes the modes unitless. Furthermore, it results in the
following expressions for kρ = 0

M
(n)
kzm

(r, k) =

{
iρ̂∓φ̂

2 eikzz±iφ = ix̂∓ŷ
2 eikzz m = ±1

0 otherwise
(2.18a)

N
(n)
kzm

(r, k) =


±iρ̂−φ̂

2 eikzz±iφ = ± ix̂∓ŷ
2 eikzz m = ±1 and kz = k

−±iρ̂−φ̂
2 eikzz±iφ = ∓ ix̂∓ŷ

2 eikzz m = ±1 and kz = −k

0 otherwise
, (2.18b)

which are well-defined limits of the general expressions above. Note that in this limiting
case, the modes M (n)

kzm
(r, k) and N

(n)
kzm

(r, k) become degenerate. When we now change to
the modes of well-defined helicity, we find the following pattern: For positive helicity only
the modes with m = ±1 and kz = ±k, i.e., positive linear and angular momentum are
non-zero and the modes m = ∓1 and kz = ∓k vanish. For negative helicity the opposite
pattern occurs. This property is expected but useful to verify.

Most often, we use the vector cylindrical waves with n = 1, which we call regular due
to them being finite in the whole space of r ∈ R3, and the waves with n = 3 that fulfill
the radiation condition, which we call singular. As an example, we illustrate the vector
cylindrical waves of well-defined helicity for a small set of values in Fig. 2.1, namely we
show non-negative values of m for two cases: purely real values and purely imaginary
values of kρ. The negative values of m can be obtained by symmetry. Essentially, taking
the mirror image where the z-axis lies in the mirror plane, flips m and helicity.

Vector spherical waves

Finally, there are the vector spherical waves. Instead of directly applying the definitions
of Eqs. (2.13a) to (2.13c) onto Eq. (2.12), we define the vector spherical harmonics first.
They can be directly derived from the (scalar) spherical harmonics Ylm(θ, φ) by [16]

Xlm(θ, φ) =
∇× r√
l(l + 1)

Ylm(θ, φ)

=

√
(2l + 1)

4πl(l + 1)

(l −m)!

(l +m)!︸ ︷︷ ︸
=Nlm

(
iπlm(cos θ)θ̂ − τlm(cos θ)φ̂

)
eimφ (2.19a)

Ylm(θ, φ) = r̂ ×Xlm(θ, φ) = Nlm

(
τlm(cos θ)θ̂ + iπlm(cos θ)φ̂

)
eimφ (2.19b)

Zlm(θ, φ) = ir̂Ylm(θ, φ) , (2.19c)

with the angular functions πlm(cos θ) = m
Pm
l (cos θ)
sin θ and τlm(cos θ) =

∂Pm
l (cos θ)
∂θ . The

functions Pm
l (·) are the associated Legendre polynomials defined in Appendix C. We also

define the normalization factor Nlm for later use. The operator r×∇ is proportional to the
angular momentum operator. The vector spherical harmonics constitute an orthonormal
set by obeying [16]∫ π

0
dθ sin θ

∫ 2π

0
dφXl′m′∗(θ, φ)Xlm(θ, φ) = δll′δmm′ (2.20)
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2.1 Electromagnetic wave solutions

l = 1 l = 2
− + − +

m = 0

m = 1

m = 2

Figure 2.2: Visualization of vector spherical waves on a spherical surface. The dipolar
(l = 1) and quadrupolar (l = 2) orders of Re(A(3)

lms(r, k)) are shown for non-
negative values of m in each row. Each column corresponds to one helicity.
The cones show the direction of the electric field. The color scale from white
to dark red indicates the normalized strength of the electric field. The fields
for negative values of m are related to the shown fields by symmetry.
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2 Electromagnetic scattering

and ∫ π

0
dθ sin θ

∫ 2π

0
dφYl′m′∗(θ, φ)Xlm(θ, φ) = 0 (2.21)∫ π

0
dθ sin θ

∫ 2π

0
dφZl′m′∗(θ, φ)Xlm(θ, φ) = 0 (2.22)

as well as the analogous relations for Ylm(θ, φ) and Zlm(θ, φ). With these functions, the
vector spherical waves can be written as

M
(n)
lm (r, k) = Xlm(θ, φ)z

(n)
l (kr) (2.23a)

N
(n)
lm (r, k) = Ylm(θ, φ)

(
z
(n)
l (kr)

kr
+ z

(n)
l

′
(kr)

)
+
√
l(l + 1)Zlm(θ, φ)

z
(n)
l (kr)

kr
. (2.23b)

These functions M
(n)
lm (r, k) and N

(n)
lm (r, k) are zero for l = 0, which mathematically

expresses the absence of electromagnetic monopole waves. The lowest non-zero multipole
order is the dipolar order. Again, we use mostly the regular and singular modes with n = 1
and n = 3 later. The singular modes fulfill the radiation condition in three dimensions [16].

Similarly to the vector cylindrical waves, visualizations of the vector spherical waves of
well-defined helicity are shown in Fig. 2.2. We show the dipolar and quadrupolar fields
for non-negative values of m, as the negative values can be obtained by mirror symmetry
again. With the vector plane, cylindrical, and spherical waves defined, we have completed
the foundation works on defining the solutions with which we will work in the following.
These are, however, solutions to the Helmholtz equation. We now make the connection
to Maxwell’s equations in the presence of isotropic chiral constitutive relations.

Wave solutions to Maxwell’s equations

We first insert the constitutive relation Eq. (2.7) into the final form of Maxwell’s equa-
tions we arrived at in Eq. (2.3) to eliminate the fields D(r, k0) and B(r, k0) from them.
Equation (2.3b) then becomes

∇×
(
E(r, k0)
H(r, k0)

)
= k0

(
κ(k0) iµ(k0)
−iϵ(k0) κ(k0)

)(
E(r, k0)
H(r, k0)

)
(2.24)

and, as long as the determinant of the bi-isotropic tensor is non-zero, namely ϵ(k0)µ(k0) ̸=
κ2(k0), Eq. (2.3a) can be converted to

∇ ·
(
E(r, k0)
H(r, k0)

)
= 0 . (2.25)

For practical applications, the vanishing determinant is not an issue since the chirality
parameter is usually orders of magnitude smaller than the permittivity.

Equations (2.24) and (2.25) do not mix solutions with different k0, which is a result
of both, Maxwell’s equations and the constitutive relations, being linear. Thus, we can
solve these equations for each k0 separately. Furthermore, in time-domain, the fields
are observable quantities and, thus, have to be real valued, which relates the positive
and negative frequency fields. It also connects real and imaginary parts of the material
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2.1 Electromagnetic wave solutions

parameters, such as the permittivity, which are known as Kramers-Kronig relations [16].
Based on these observations, we can restrict all further discussions to monochromatic,
positive frequency fields, which changes k0 from being the conjugated variable of the time
t in the Fourier transform to a parameter. We indicate this change by separating it with
a semi-colon. The electric field is then given by

E(r, t) = Re
(
E(r; k0)e−ick0t

)
. (2.26)

The replacement

E(r, k′0) =
1

2c

(
δ(k0 − k′0)E(r; k0) + δ(k0 + k′0)E∗(r; k0)

)
(2.27)

can always recover the original Fourier transform for the monochromatic field and can be
tested by applying Eq. (A.1) to Eq. (2.27), which results in Eq. (2.26). However, using
E(r; k0) is often more convenient than using E(r, k0) because the delta distributions do
not need to be carried explicitly.

If we assume an achiral material for the moment, we set the chirality parameter to zero.
Then, the typical approach to find a solution is: First, apply the curl twice in Eq. (2.24)
to eliminate one of the fields E(r; k0) or H(r; k0), and, second, use Eq. (2.25) to arrive at
Eq. (2.9) with the wave number in the medium k(k0) =

√
ϵ(k0)µ(k0)k0. Once we arrived

at that point, we can immediately use all results of the Helmholtz equation to express
the fields either in parity modes Mν(r, k) and Nν(r, k) or modes of well-defined helicity
Aν±(r, k±) in a Cartesian, spherical, or cylindrical basis, respectively.

The presence of chiral matter makes this approach less straightforward, because apply-
ing the curl twice no longer eliminates one of the two remaining fields. Therefore, we
try to find fields different from E(r; k0) and B(r; k0) that diagonalize Eq. (2.24). From a
straightforward calculation of the eigenvectors of the matrix in Eq. (2.24), we find

G±(r; k0) =
E(r; k0)± iZ(k0)H(r; k0)√

2
, (2.28)

which are also known as Riemann-Silberstein vectors or Beltrami fields [21, 22], and
Z(k0) =

√
µ(k0)
ϵ(k0)

is the relative impedance. The corresponding eigenvalues are ±n±(k0) =

±
√

ϵ(k0)µ(k0) + κ(k0) . As the variable name suggests, these eigenvalues correspond to
two different refractive indices and, so, two different wave numbers k±(k0) = k0n±(k0).
Thereby, we have two separate equations

∇× G±(r; k0) = ±k±(k0)G±(r; k0) . (2.29)

Now, it is possible to apply the curl twice as in the achiral case and, in combination
with the vanishing divergence of G±(r; k0), we arrive again at the Helmholtz equation.
Thus, we know that these fields are solutions of the Helmholtz equation. Equation (2.29),
however, is stricter than the Helmholtz equation. In fact, it requires fields of pure helicity
as solutions and we can expand G±(r; k0) as

G±(r; k0) =
√
2
∑
ν

aν±Aν±(r, k±(k0)) , (2.30)
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2 Electromagnetic scattering

(a) (b)

Figure 2.3: Artistic illustration of the scattering process described with spherical and cylin-
drical T-matrices. Panel (a) shows the vector spherical waves in blue scattered
from a finite size gray object. The incident field in light color gets scattered
to a dark spherical wave. In panel (b), the vector cylindrical waves are shown
in red. The scatterer is an elongated object with a periodic shape along its
axis. The actual shape of the fields are shown in Figs. 2.1 and 2.2.

with the expansion coefficients aν±. Returning to a description of the electromagnetic
waves as electric and magnetic fields, this leads to the expansions

E(r; k0) =
∑
s=±1

∑
ν

aνsAνs(r, ks(k0)) (2.31)

and

H(r; k0) = − i

Z(k0)

∑
s=±1

∑
ν

saνsAνs(r, ks(k0)) . (2.32)

These general solutions (the expansion in terms of the displacement field and the magnetic
flux density are given in Appendix D) of Maxwell’s equations together with the concrete
solutions for the Helmholtz equation in Cartesian, cylindrical, and spherical coordinates
provide now many possible starting points to solve various scattering problems. For
this purpose, the next questions revolve around how to include scatterers with different
material properties – up to now the solution is only applicable for homogeneous spaces –
and how to treat multiple scattering and interaction between different particles.

2.2 The T-matrix method for vector spherical and cylindrical
waves

A very successful approach to efficiently compute the scattering response of an individual
scatterer and of clusters of particles is the T-matrix method [23]. Originally, it was devel-
oped using vector spherical waves [12]. However, the method can be applied equally well
using vector cylindrical waves [24]. We start with outlining several methods, analytical
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2.2 The T-matrix method for vector spherical and cylindrical waves

and numerical, to obtain the T-matrix. Then, we proceed from single object T-matrices
to multi-scattering scenarios in the presence and absence of periodic boundaries. Finally,
we give an overview over regularly used transformations that can be applied to perform
various actions on the T-matrix.

Generally, the T-matrix method relies on the separation of the total electric field
E(r; k0) = E inc(r; k0)+Esca(r; k0) outside the considered scatterer into an incident and a
scattered part. By using suitable functions for the incident and scattered field, namely the
regular and singular fields of the vector spherical and cylindrical waves, this separation
can be written conveniently as

E inc(r; k0) =
∑
s=±1

∑
ν

aνsA
(1)
νs (r, ks(k0)) (2.33)

Esca(r; k0) =
∑
s=±1

∑
ν

pνsA
(3)
νs (r, ks(k0)) , (2.34)

where the expansion coefficients of the incident field are aνs and those of the scattered
field are pνs. Note that in comparison to the previous section the general index ν now
only includes the combination l and m or kz and m and not the parameter n any more.
We can expand the incident field in regular modes only because they are the only fields
finite at the origin for vector spherical and cylindrical waves. The scattered field has to
fulfill the radiation condition [16], so only the singular modes can contribute. While we
define the T-matrix here only in the helicity basis, it can be also defined using the parity
modes. However, we restrict the discussion to helicity modes for brevity.

If we now consider an isolated scatterer placed at the origin of the coordinate system,
the electric field around the scatterer can be expanded in those modes. As long as the
scatterer responds linearly to the incident field, the relation between the incident and
scattered field coefficients can be written as

pνs =
∑

s′=±1

∑
ν′

Tνsν′s′aν′s′ , (2.35)

where the coefficients Tνsν′s′ encode the transition from incident mode ν ′ with helicity
s′ to the scattered mode ν with helicity s. In general, it gets necessary to truncate the
inclusion of the modes ν and ν ′ for a numerical evaluation. It turns the infinitely large
space of solutions into a finite set. Then, the expression above can be written as a matrix
equation

p = Ta . (2.36)

It needs to be clarified, when such a truncation is justified. In the case of vector spherical
waves, the scatterer is required to have a finite size. Then, for a sufficiently large truncation
order, the error introduced by omitting all higher multipole orders is negligible. Extremely
tiny objects, like molecules or truly nanoparticles, can effectively be described by a dipolar
approximation. The objects are simply too small to probe the spatial variation of the
incident field. For many practical problems in the field of nanooptics, the expansion can
be truncated at order four or five. In case of the vector cylindrical waves, the scatterer
must be finite in the x-y-plane. In the z-direction, it is highly beneficial for the scattering
structure to have a periodicity. Then, the at least discrete translation symmetry along
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2 Electromagnetic scattering

the z-direction implies that only those values of kz couple that differ in multiples of
the reciprocal lattice. Otherwise, all modes from a continuous spectrum of values of kz
couple with each other. Thus, we assume that if we apply the T-matrix method using
the vector cylindrical waves, the scatterer is periodic in the z-direction. As a result, we
can truncate kz to a finite number of diffraction orders that mainly contribute to the
field. All higher diffraction orders are then highly evanescent and can be neglected for
scattering calculations. An exemplary structure of a general object described by a T-
matrix are shown in Fig. 2.3 in panels (a) and (b) for vector spherical and cylindrical
waves, respectively.

2.2.1 Computing T-matrices for arbitrarily shaped scatterers
While the calculation of the scattering response by the T-matrix is a simple matrix mul-
tiplication, we still need to describe how the T-matrix coefficients can be obtained. We
discuss two methods. First, we describe how to calculate analytically the scattering from
spheres and cylinders consisting of chiral materials and having potentially several con-
centric shells. For simple spheres, these coefficients are known as Mie coefficients [25].
Second, we describe one possible method to calculate the T-matrix of arbitrarily shaped
particles using finite-element calculations. Note that a range of other methods exists to
calculate T-matrix coefficients, such as the extended boundary condition method [12, 26],
also known as null-field method, or the method of distributed dipoles [27]. The T-matrix
of molecules can be obtained from quantum-chemical simulations by relating the resulting
polarizability matrices with the T-matrix entries [P7]. We also want to remark that one
can parametrize the possible values of the T-matrix of a general isotropic object using
Mie angles [28].

Analytical solutions for multi-layered spheres and cylinders

The most general cases solved here are multi-layered spheres in the vector spherical wave
basis and multi-layered infinitely long cylinders in the vector cylindrical wave basis. First,
we fix the wave number k0, which we omit as argument to the material parameters for a
conciser notation. In both cases, we have the inner core with radius r1 and ρ1 made of
a material with parameters ϵ1, µ1, and κ1. Here, the field has to be expanded in regular
modes only, because the field has to be finite in the center. Then, an arbitrary finite
number of N − 1 concentric shells with radii ri or ρi and ϵi, µi, and κi for i ∈ {2, . . . , N}
can follow. Finally, the embedding medium is characterized by the material parameters
ϵN+1, µN+1, and κN+1.

Now, we impose the condition that at each of the N interfaces the tangential components
of E(r; k0) and H(r; k0) are continuous. For spheres, this leads to [29–31]

r̂ × E(r, k0)
∣∣
r=ri−0

= r̂ × E(r, k0)
∣∣
r=ri+0

(2.37a)
r̂ ×H(r, k0)

∣∣
r=ri−0

= r̂ ×H(r, k0)
∣∣
r=ri+0

(2.37b)

and for cylinders to [31]

ρ̂× E(r, k0)
∣∣
ρ=ρi−0

= ρ̂× E(r, k0)
∣∣
ρ=ρi+0

(2.38a)

ρ̂×H(r, k0)
∣∣
ρ=ρi−0

= ρ̂×H(r, k0)
∣∣
ρ=ρi+0

. (2.38b)
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2.2 The T-matrix method for vector spherical and cylindrical waves

We can now project onto individual coefficients of the expansions in Eqs. (2.33) and (2.34).
For spheres this is done by multiplying with X∗

lm(θ, φ) or Y ∗
lm(θ, φ) and integrating over

the angles as shown in Eqs. (2.20) to (2.22). For the cylinder, we multiply with either
φ̂e−i(mφ+kzz) or ẑe−i(mφ+kzz) and integrate over φ and z. This then leads to equations of
the structure

(
Ψ

(1)
ν,i+1,i Ψ

(3)
ν,i+1,i

Ξ
(1)
ν,i+1,i Ξ

(3)
ν,i+1,i

)
aν,−,i+1

aν,+,i+1

pν,−,i+1

pν,+,i+1

 =

(
Ψ

(1)
ν,i,i Ψ

(3)
ν,i,i

Ξ
(1)
ν,i,i Ξ

(3)
ν,i,i

)
aν,−,i

aν,+,i

pν,−,i

pν,+,i

 , (2.39)

where the matrices Ψ
(n)
ν,j,i are a result from applying Eqs. (2.37a) and (2.38a), and Ξ

(n)
ν,j,i

come from Eqs. (2.37b) and (2.38b), the index j refers to the material parameters and
the index i to the radius. For the spherical waves and the sphere, the matrices are

Ψ
(n)
l,j,i = Ψ

(n)
l (x−, x+) =

 −z
(n)
l (x−) z

(n)
l (x+)

(x−z
(n)
l (x−))′

x−

(x+z
(n)
l (x+))′

x+

 (2.40)

and

Ξ
(n)
l,j,i = Ξ

(n)
l (x−, x+) =

1

Zj

 z
(n)
l (x−) z

(n)
l (x+)

− (x−z
(n)
l (x−))′

x−

(x+z
(n)
l (x+))′

x+

 , (2.41)

with l replacing ν. For the sphere, the coefficients are the same for all values of m.
The argument x± is a shorthand for the size parameter k±ri, with k± depending on the
material parameters ϵj , µj , and κj . For the cylindrical waves and the cylinder, we have

Ψ
(n)
kzm,j,i = Ψ

(n)
kzm

(x−, x+) =

 −kρ,−
k−

Z
(n)
m (x−) −kρ,+

k+
Z

(n)
m (x+)

− kz
k−

mZ
(n)
m (x−)
x−

+ Z
(n)
m

′
(x−) − kz

k+

mZ
(n)
m (x+)
x+

− Z
(n)
m

′
(x+)


(2.42)

and

Ξ
(n)
kzm,j,i = Ξ

(n)
kzm

(x−, x+) =
1

Zj

 kρ,−
k−

Z
(n)
m (x−) −kρ,+

k+
Z

(n)
m (x+)

kz
k−

mZ
(n)
m (x−)
x−

− Z
(n)
m

′
(x−) − kz

k+

mZ
(n)
m (x+)
x+

− Z
(n)
m

′
(x+)

 ,

(2.43)

where x± = kρ±ρi. As a next step, we can invert the left-hand-side in Eq. (2.39) for all
interfaces to obtain the matrix

Mν,N =

(
Ψ

(1)
ν,N+1,N Ψ

(3)
ν,N+1,N

Ξ
(1)
ν,N+1,N Ξ

(3)
ν,N+1,N

)−1(
Ψ

(1)
ν,N,N Ψ

(3)
ν,N,N

Ξ
(1)
ν,N,N Ξ

(3)
ν,N,N

)
. (2.44)

This matrix has a quite compact form for spheres and in the case of kz = 0 also for
cylinders. These expressions are given in Appendix E. With these matrices and the
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2 Electromagnetic scattering

requirement that in the innermost material, i.e., the core of the particle, the singular
fields must vanish to have physically plausible finite field values, we get

aν,−,N+1

aν,+,N+1

pν,−,N+1

pν,+,N+1

 = Mν,N . . .Mν,2

(
Ψ

(1)
ν,2,1 Ψ

(3)
ν,2,1

Ξ
(1)
ν,2,1 Ξ

(3)
ν,2,1

)−1(
Ψ

(1)
ν,1,1

Ξ
(1)
ν,1,1

)(
aν,−,1

aν,+,1

)
. (2.45)

The four-by-two matrix on the right-hand side can be separated in two parts: the upper
two-by-two matrix relates the incident fields to the internal fields and the lower part
relates the scattered with the internal fields. After eliminating the internal fields from
these equations, we obtain the T-matrix coefficients for each of the modes.

Numerical solutions

For other shapes than multi-layered spheres or cylinders, it is usually necessary to calculate
the T-matrix numerically. A range of methods exists for this purpose: the discrete dipoles
method [27], the extended boundary condition method [12, 26], or solving the scattering
with a full wave solver and decomposing the incident and scattered fields into vector
spherical or cylindrical waves [32, 33].

We use mostly the method of solving the scattering problem with general purpose
Maxwell solvers, usually based on the finite-element method. However, it is also possible
to use finite difference methods. In principle, the object is illuminated with multiple
incident fields that can be decomposed into vector spherical or cylindrical wave coefficients
ai and then, after solving the scattering problem for that illumination, the scattered field
is also decomposed resulting in the corresponding expansion coefficients pi. After N
illuminations, we obtain the linear system of equations(

p1 p2 · · · pN

)
= T

(
a1 a2 · · · aN

)
, (2.46)

that can then be solved for the unknown matrix T. For an equal number N of illuminations
to the dimension of T, this is just the inversion of the matrix consisting of the incident
field illuminations. Therefore, the illuminations have to be chosen such that the coefficient
vectors are linearly independent. However, it can be beneficial to use a larger number of
illuminations [33]. Then, the overdetermined system can be solved, e.g., by the method
of least squares. Most often, the illumination is chosen to be plane waves [33] or spherical
waves [32]. The former are useful because they have rather simple and analytical expansion
coefficients and their implementation is typically included natively in general purpose
Maxwell solvers. The latter are less frequently available as direct implementations in
general purpose Maxwell solvers, but offer the advantage that every incident spherical
wave mode can be excited separately. Hence, the matrix containing the incident field
coefficients becomes a unit matrix and the step of matrix inversion can be omitted.

The decomposition of the scattered fields is conceptually most simple using a spherical
or cylindrical surface enclosing the scatterer completely for spherical and cylindrical waves,
respectively. Then, the properties of the vector spherical harmonics in Eqs. (2.20) to (2.22)
leads to

1√
2
Ψ

(3)
l (x−, x+)

(
plm,+

plm,−

)
=

(∫
dΩX∗

lm(θ, φ)Esca(r; k0)∫
dΩY ∗

lm(θ, φ)Esca(r; k0)

)
, (2.47)
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2.2 The T-matrix method for vector spherical and cylindrical waves

r1

r2

R

Figure 2.4: Geometry of two particles described by T-matrices in a periodic arrangement.
For the two particles with red outlines, the individual circumscribing circles
are shown as dotted lines. In a local description the expansion is valid in the
domain outside of these circles. The dashed circle marks the domain of validity
for a global T-matrix, describing both particles as a combined object. Note
that in a periodic arrangement it is possible that for a small lattice pitch the
description of scattering in a global description is not valid due to overlapping
circumscribing spheres. However, the local description can still be used in the
computation. For spherical and cylindrical waves, this two-dimensional figure
generalizes two three dimensions by replacing the circumscribing circles with
spheres or cylinders, respectively.

where the matrix on the left-hand side is defined in Eq. (2.40). The same procedure, but
as in the analytical solution with suitable projectors for cylindrical waves, leads to

1√
2
Ψ

(3)
kzm

(x−, x+)

(
pkzm,+

pkzm,−

)
=

1

2πaz

(∫
dΩẑe−i(mφ+kzz)Esca(r; k0)∫
dΩφ̂e−i(mφ+kzz)Esca(r; k0)

)
(2.48)

using the matrix from Eq. (2.42). However, this simple approach is numerically less stable
than more sophisticated methods and it requires large computational domains in cases
where the circumscribing sphere or cylinder is much larger than the object itself. Then,
it is useful to apply other methods [34]. However, this simple approach is useful for chiral
embedding materials where two different wave numbers have to be considered.

2.2.2 Multi-scattering in clusters with and without periodic boundaries
Up to now, the T-matrix method is limited to single objects, but many phenomena in
physics appear due to the interaction of multiple objects. Moreover, if periodic boundary
conditions are considered, the interaction between objects in different unit cells of the
lattice has to be included. When using the vector spherical or cylindrical waves, these
interactions can be computed analytically, which comes with several benefits. First, the
evaluation of the analytic formulas can be very efficient. In the case of periodicity, however,
it will only be efficient after the substantial manipulations derived in Chapter 3. Second,
it is possible to separate the object properties from the arrangement properties to a large
extent and, thereby, analyze them separately. Third, it becomes quite simple to bridge
different length scales. Finally, the analytic formulas can also be differentiated to perform
gradient based optimizations [35].
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2 Electromagnetic scattering

Initially, we consider a system without periodic boundaries. We start by considering N
particles described by T-matrices Ti at the positions ri with i ∈ {i, . . . , N}. An example
for two particles is shown in Fig. 2.4, the grayed-out part of the figure only applies to
periodic boundaries. Each particle is illuminated by the field ai, and we want to solve
for the scattered fields pi. Considering Eq. (2.36) as a starting point, the illumination on
particle i does not only consists of the external illumination but additionally includes the
scattered fields from all other particles [23]

pi = Ti

ai +
∑
j ̸=i

C(3)(ri − rj)pj

 . (2.49)

The scattered field at rj is expanded into a regular field incident on ri by the matrix
C(3)(ri − rj) = C

(3)
ij . For vector spherical waves, this matrix contains the coefficients

A
(3)
l′m′,lm(r−r′, k±) and B

(3)
l′m′,lm(r−r′, k±) that relate the fields (see Appendix F) [26, 36,

37]

A
(3)
lm±(r, k±) =

∞∑
l′=1

l′∑
m′=−l′

(
A

(3)
l′m′,lm(r − r′, k±)±B

(3)
l′m′,lm(r − r′, k±)

)
A

(1)
l′m′±(r

′, k±)

(2.50)

at two positions for |r − r′| > |r′|. Note that the fields of well-defined helicity are not
mixed by this operation. However, parity modes generally get mixed. In the vector
cylindrical wave basis the translation formula has with

A
(3)
kzm±(r, k±) =

∞∑
m′=−∞

H
(3)
m−m′(

√
k2± − k2zρr−r′)ei(m−m′)φr−r′+ikz(z−z′)A

(1)
kzm′±(r

′, k±)

(2.51)

for ρr−r′ > ρr′ also a quite simple form. With the knowledge of Eqs. (2.50) and (2.51),
the system of equations in Eq. (2.49) can be directly solved by

plocal =
[
1−TdiagC

(3)
]−1

Tdiag︸ ︷︷ ︸
Tlocal

alocal (2.52)

where plocal and alocal are vectors containing all coefficients from pi and ai, respectively,
ordered by particle index i, and Tdiag is a block-diagonal matrix that holds the individual
T-matrices ordered accordingly. The matrix C(3) consists block-wise of the matrices C

(3)
ij

on the off-diagonals and has zeros in the blocks of the diagonal. That simply expresses
the fact that each particle does not generate a scattered field that acts as an illumination
on itself. By defining the matrix Tlocal, the structure of Eq. (2.52) becomes similar to
Eq. (2.36). The difference is mainly that the combination of all objects described by the
local T-matrix is given in a vector wave basis with not only one but multiple origins. We
see in this expression that the interaction with the other particles modifies the T-matrix
of each individual object, and we speak of a renormalization. The incident field has to be
expanded separately at each origin into alocal, and the total scattered field is obtained by
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2.2 The T-matrix method for vector spherical and cylindrical waves

a combination of the contributions from all particle positions defined by the coefficients
plocal. The local description is valid in the domain outside the dotted lines in Fig. 2.4.

It is possible to convert the local description of the cluster of particles into a global
description, i.e., all fields are defined with respect to a single origin. This can be achieved
by the translation coefficients [26, 36, 37]

A
(n)
lm±(r, k±) =

∞∑
l′=1

l′∑
m′=−l′

(
A

(1)
l′m′,lm(r − r′, k±)±B

(1)
l′m′,lm(r − r′, k±)

)
A

(n)
l′m′±(r

′, k±)

(2.53)

and [24]

A
(n)
kzm±(r, k±) =

∞∑
m′=−∞

Jm−m′(
√

k2± − k2zρr−r′)ei(m−m′)φr−r′+ikz(z−z′)A
(n)
kzm′±(r

′, k±) ,

(2.54)

with n ∈ {1, 3}, which are the same as those in Eqs. (2.50) and (2.51) but with the
(spherical) Hankel functions of the first kind replaced with (spherical) Bessel functions.
For n = 3, these expressions are only valid for |r − r′| < |r′| or ρr−r′ < ρr′ , respectively.
Then, the global incident field a defined at r0 = 0 can be expanded as

alocal =


C

(1)
10

C
(1)
20
...

C
(1)
N0

a (2.55)

and the global scattered field is obtained by

p =
(
C

(1)
01 C

(1)
02 . . . C

(1)
0N

)
plocal . (2.56)

Finally, the global matrix of the cluster is

T =
(
C

(1)
01 C

(1)
02 . . . C

(1)
0N

)
Tlocal


C

(1)
10

C
(1)
20

. . .

C
(1)
N0

 . (2.57)

Describing a cluster in the local and global basis has different benefits and downsides [38].
Typically, the trade-off is between a lower multipolar order required to describe the indi-
vidual scatterers, but having to expand the field around multiple positions and a larger
multipolar order for the, in total, larger spatial extent of the cluster, but having to expand
the field only around the point r0 = 0. Furthermore, the domain where the local field ex-
pansion is valid is larger in comparison to the valid domain of global field expansion. The
difference is illustrated by the larger radius of the dashed line in Fig. 2.4 in comparison to
the dotted lines. Thus, the field between the particles is only correctly described in the
local description.
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2 Electromagnetic scattering

Now, we want to consider periodic boundaries. We index the particles with two indices:
the N positions for all particles in one unit cell with letters i, j ∈ {1, . . . , N} and the
different lattice sites with their lattice vectors R. The lattice vectors are elements of the
set Λ = {

∑d
i=1 niui|ni ∈ Z} that defines the lattice with basis vectors ui spanning one

unit cell. A lattice can extend in d ∈ {1, 2, 3} spatial dimensions. In the case of vector
cylindrical waves that are assumed to be inherently periodic along the z-axis the lattice
dimension has to be d ≤ 2.

We choose the unit cell at R = 0 to be the reference unit cell. Then, we can change
Eq. (2.49) to

pi,0 = Ti

ai,0 +

N∑
j=1

∑′

R∈Λ
C(3)(ri − rj −R)pj,R

 (2.58)

for the inclusion of periodicity in the T-matrix calculation [39]. It is now required to
sum over all particles in all unit cells, with the exception of the selected particle i in the
reference unit cell. This exclusion of the term where ri − rj −R = 0 is indicated by the
prime next to the lattice sum. To bring this expression into a manageable form, we now
have to assume a common wave vector tangential to the lattice k∥. The tangential wave
vector describes the phase difference between different unit cells, namely ai,R = ai,0e

ik∥R

and pi,R = pi,0e
ik∥R. This is nothing else than the Bloch theorem that we impose here.

With this assumption, we can write the equation as

pi,0 = Ti

(
ai,0 +

N∑
j=1

∑′

R∈Λ
C(3)(ri − rj −R)eik∥R

︸ ︷︷ ︸
=C̃

(3)
ij

pj,0

)
(2.59)

that expresses the scattered and incident fields only in quantities from the reference unit
cell. The general layout of the scattering with periodic boundary conditions is shown in
Fig. 2.4 where the grayed-out part shows the neighboring unit cells. It can be seen that
with such periodic boundary conditions complex unit cells, i.e., unit cells with more than
one particle, can sometimes only be described in a local basis, because the domains where
the global T-matrix description is valid overlap between adjacent unit cells. The trade-off
here is in the more complex lattice sums required for complex unit cells and which we
derive in Chapter 3. We define the expansion coefficients of the scattered fields as incident
fields in a lattice with an added tilde to the variable name. This lets us write the final
multi-scattering in an analogous fashion to Eq. (2.52)

p̃local =
[
1−TdiagC̃

(3)
]−1

Tdiag︸ ︷︷ ︸
T̃local

ãlocal , (2.60)

where we find the local T-matrix renormalized by the lattice interaction. The result are
scattered field coefficients in the reference unit cell. As a reminder that the total scattered
field is only obtained after summing up the scattered fields of all unit cells, we also add a
tilde to the variable name. We do so similarly for the incident field, because it has to fulfill
the same phase relation among the unit cells defined by k∥. But, unlike for the scattered
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2.2 The T-matrix method for vector spherical and cylindrical waves

field, when evaluating the incident field, it is not necessary to include the lattice explicitly.
Furthermore, it is possible to expand the scattered fields in the lattice back into regular
fields in the reference unit cell by C̃(3)p̃local. This expansion is useful when evaluating the
scattered fields after solving the scattering problem for a particular illumination.

Up to now, we always implicitly assumed that the term in brackets can be inverted,
which is, indeed, usually the case. However, finding eigenvectors of that term with van-
ishing or very small eigenvalues indicates long lived lattice modes. This is an aspect that
can be exploited when discussing resonances sustained in certain photonic materials.

In summary, with Eqs. (2.52) and (2.60) we have expressions to solve the scattering
problem without and with periodic boundary conditions. In the first case, the analytically
known translation coefficients make calculations for a cluster of particles very efficient,
and with Eq. (2.57) we can describe it as if it were a single object. In the latter case,
the efficiency of the method mainly relies on the efficiency of the lattice sum that is
necessary to calculate the translation coefficients. Finding and implementing such efficient
expressions for all possible lattice dimensions is one of the major results of this thesis. We
elaborate on them in more detail in the following chapter. The lattice sums constitute
the basis to the physical insights gained in the various applications that are discussed in
the final chapter of the thesis. .

While the T-matrix provides a very efficient description of the scattering process, we
also want to mention the S-matrix. We use it with the vector plane wave expansion, but
it can in principle also be used for vector spherical and cylindrical waves. The S-matrix
relates incoming and outgoing fields expanded in a helicity basis by A

(3)
ν,±(r, k±(k0)) and

A
(4)
ν,±(r, k±(k0)). It is defined as

E in(r; k0) =
∑
s=±1

∑
ν

aνs
2

A(4)
νs (r, ks(k0)) (2.61)

Eout(r; k0) =
∑
s=±1

∑
ν

aνs + 2pνs
2

A(3)
νs (r, ks(k0)) . (2.62)

Thus, the S-matrix is S = 1 + 2T. Another option is to separate the regular part and
irregular part as

Ereg(r; k0) =
∑
s=±1

∑
ν

(aνs + pνs)A
(1)
νs (r, ks(k0)) (2.63)

E irr(r; k0) =
∑
s=±1

∑
ν

ipνsA
(2)
νs (r, ks(k0)) , (2.64)

where the transition is described by the reactance matrix K. Its relation to the T- and
S-matrix is given by [40]

K = −i
T

1+T
= i

1− S

1+ S
. (2.65)

In both cases, the matrix in the numerator and the inverse matrix of the denominator
commute, so the order of their action does not need to be specified. Although in prin-
ciple equal, each of these matrices are a useful representation of the scattering process
depending on the exact task at hand [40].
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2 Electromagnetic scattering

2.2.3 Rotations, translations, and other transformations
In the previous sections, we discussed different basis sets, T-matrices and S-matrices that
are based on the solutions to Maxwell’s equations and how to calculate the interaction
between multiple objects represented by those matrices. However, the analytical expres-
sions for the different wave functions allow a range of further applications enlarging the
range of scattering scenarios that can be solved.

Rotations

We discuss arbitrary rotations of vector spherical waves and rotations about the z-axis for
vector cylindrical and plane waves. For vector spherical waves, applying a rotation about
the Euler angles α, β, γ in the zyz-convention, is expressed by the Wigner-D-matrices [41]
as

R(α, β, γ)A
(n)
lms(R

−1(α, β, γ)r, k) =

l∑
m′=−l

Dl
mm′(α, β, γ)A

(n)
lm′s(r, k) , (2.66)

where

R(α, β, γ) = Rz(α)Ry(β)Rz(γ) , (2.67)

with

Rz(α) =

cosα − sinα 0
sinα cosα 0
0 0 1

 and Ry(β) =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 . (2.68)

These rotations are taken to be in an active sense, namely, we rotate the waves and not
the coordinate frame. However, with the chosen Euler angle convention, we can switch
to the passive transformation by reversing the order of the angles applied. For vector
cylindrical waves, the rotation by β about the z-axis is done with

Rz(β)A
(n)
kzms(R

−1
z (β)r, k) = e−imβA

(n)
kzms(r, k) , (2.69)

and for vector plane waves, we use

Rz(β)Ak̂s(R
−1
z (β)r, k) = ARz(β)k̂s

(r, k) (2.70)

to change the direction of the wave vector and polarizations accordingly.

Translations

Translations for vector spherical and cylindrical fields are given by Eqs. (2.53) and (2.54),
where one stays within the same type of mode, namely, regular fields are translated to
regular fields and singular fields are translated to singular fields. The translation formula
for plane waves is simply the multiplication

Ak̂s(r +R, k) = eikRAk̂s(r, k) (2.71)

by the corresponding phase factor.
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2.2 The T-matrix method for vector spherical and cylindrical waves

Regular field expansions

The transformations so far only concerned transformations within the same type of so-
lution, for example, spherical waves are rotated to other spherical waves. However, an
important part is also the connection of different basis sets, which we summarize here.
First, we have the relation(

Mk̂(r, k)
Nk̂(r, k)

)
=

∞∑
l=1

l∑
m=−l

4πil−1Nlme−imφk

(
τlm(θk) πlm(θk)
πlm(θk) τlm(θk)

)(
M

(1)
lm (r, k)

N
(1)
lm (r, k)

)
(2.72)

of vector plane waves and vector spherical waves [P3, 23] that can be derived by com-
bining the expansion of plane waves propagating in the z-direction [16] with the rotation
operators [42] defined above. Next, we have the relation of vector cylindrical and plane
waves, (

Mk̂(r, k)
Nk̂(r, k)

)
=

∞∑
m=−∞

ime−imφk

(
M

(1)
kzm

(r, k)

N
(1)
kzm

(r, k)

)
, (2.73)

which is a direct result of applying Eqs. (2.13b) and (2.13c) to the plane wave expansion in
cylindrical coordinates (see Appendix G). With these results, it becomes straightforward
to obtain(

M
(1)
kzm

(r, k)

N
(1)
kzm

(r, k)

)
=

∞∑
l=m

4πil−m−1Nlm

(
τlm(θk) πlm(θk)
πlm(θk) τlm(θk)

)(
M

(1)
lm (r, k)

N
(1)
lm (r, k)

)
(2.74)

by comparison of the coefficients for the expansion of vector plane waves in vector spherical
and cylindrical waves [43].

Basis change of periodic scattered waves

In the following, we derive transformations to connect different basis sets in the presence
of periodic boundary conditions. More precisely, we transform scattered wave solutions in
different lattices into basis sets suited for the respective periodicity as discussed earlier. For
example, a chain of spherical wave solutions can be transformed to scattered cylindrical
waves. Such a change of basis comes with the benefit that evaluations of the field and
other quantities become more efficient. However, the trade-off comes by a changed domain
of validity as shown in Fig. 2.5. Note that this change can also be used to overcome
limitations that are specific to only some basis sets.

We begin with integral representations of the scattered waves into plane waves. Such
relations can be derived with the plane wave expansions of the scalar spherical and cylin-
drical waves (see Appendix G) and applying Eqs. (2.13b) and (2.13c). As a result, we get

M
(3)
lm (r, k) =

1

2πil

∫∫
R2

dkxdky
k2γxy

Xlm(θk, φk)e
i(kxx+kyy+kzz) (2.75a)

=
1

2πil

∫∫
R2

dkxdkz
k2γxz

Xlm(θk, φk)e
i(kxx+kyy+kzz) (2.75b)
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(a) (b) (c)

Figure 2.5: Domains of validity for different expansions. In all three panels, the outline
of a particle is shown as solid red line with the center point marked and a
circumscribing circle shown as dotted black line. A periodic arrangement is
indicated in the vertical direction. This periodic arrangement is enclosed by
two straight dashed lines. Two different domains are marked: The dotted area
outside the circles but between the dashed lines and the hatched area inside
the circles but outside of the dashed lines. Although the cross-section in all
three panels looks identical, they correspond to the following three transitions
as indicated by the gray lines:

(a) from spherical to cylindrical waves, where the paper plane corre-
sponds to the x-z-plane with the x-direction along the horizontal,

(b) from cylindrical to plane waves, where the paper plane corresponds
to the x-y-plane with the y-direction along the horizontal, and

(c) from spherical to plane waves, where the paper plane corresponds to
the x-z-plane (or another plane spanned by the z-axis and a lattice
vector) with the z-direction along the horizontal.

Hence, in the first and third case, the dotted circles are cross-sections of the
circumscribing spheres and in the second case the cross-sections of the circum-
scribing cylinders. The vector spherical and cylindrical waves, respectively,
are valid outside the dotted circles. After the transition to cylindrical waves
in case one and plane waves in cases two and three the domain of validity is
bounded by the dashed straight lines. Thus, due to the transition, the valid
domain changes as follows: The dotted area is excluded after the transition
but the hatched area gets added to the valid domain.
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and

N
(3)
lm (r, k) =

1

2πil−1

∫∫
R2

dkxdky
k2γxy

k̂ ×Xlm(θk, φk)e
i(kxx+kyy+kzz) (2.76a)

=
1

2πil−1

∫∫
R2

dkxdkz
k2γxz

k̂ ×Xlm(θk, φk)e
i(kxx+kyy+kzz) (2.76b)

for scattered spherical waves [44], where we use

γij =

√
1−

k2i + k2j
k2

(2.77)

for i, j ∈ {x, y, z}. The value of the wave vector component absent in the integral is given
by the constitutive relations. However, its sign needs to be determined, which depends on
the component of r corresponding to the direction of the wave vector that is not included
in the integral, namely z in the first version and y in the second one. For positive or
negative values, the sign of the corresponding value kz and ky is taken to be positive or
negative, respectively. Hence, the plane waves in the integral are always outgoing from
the origin and evanescent modes decay away from the origin. A similar expansion given
by [45]

M
(3)
kz ,m

(r, k) =
1

πim+1

∫ ∞

−∞

dkx
kγxz

φ̂ke
i(kxx+kyy+kzz+mφk) (2.78a)

N
(3)
kz ,m

(r, k) = − 1

πim

∫ ∞

−∞

dkx
kγxz

θ̂ke
i(kxx+kyy+kzz+mφk) (2.78b)

represents cylindrical waves by an integral over plane waves where the discontinuity is
along y = 0.

Periodic spherical waves to plane waves We solve each of the lattice sums in a case-
by-case manner, starting with vector spherical waves in a two-dimensional lattice in the
x-y-plane. Taking the integral expression of Eq. (2.75a) combined with Poisson’s sum
formula (see Eq. (A.5)), we get∑

R∈Λ2

M
(3)
lm (r −R, k)eik∥R =

2πNlm

Ak2il

∑
Q∈Λ∗

2

(
iπlm(θk)θ̂k − τlm(θk)φ̂k

) eikr+imφk√
1− (k∥+Q)2

k2

(2.79)

for the TE spherical waves. We note that k = k∥ + Q ± ẑ
√
k2 − (k∥ +Q)2 for z ≷ 0

and A is the area of one unit cell. Now, we can compare this expression with the explicit
formulas for the plane waves in Eq. (2.15). Analogously, we obtain a relation between
TM spherical waves and plane waves such that we can write∑

R∈Λ2

(
M

(3)
lm (r −R, k)

N
(3)
lm (r −R, k)

)
eik∥R

= −2πiNlm

Ak2il

∑
Q∈Λ∗

2

eimφk√
1− (k∥+Q)2

k2

(
τlm(θk) πlm(θk)
πlm(θk) τlm(θk)

)(
Mk∥+Q,sign(z)(r, k)

Nk∥+Q,sign(z)(r, k)

)
,

(2.80)
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2 Electromagnetic scattering

where we index the plane wave functions by two components and the direction of the re-
maining third component that is implicitly defined by the dispersion relation as described
above.

Periodic spherical waves to cylindrical waves The second case are spherical waves
in a one-dimensional lattice along the z-direction. Using the same procedure, but the
representation in Eq. (2.75a) for the vector spherical waves, we obtain∑

R∈Λ1

M
(3)
lm (r −R, k)eik∥R

=
Nlm

akil

∑
Q∈Λ∗

1

∫ ∞

−∞

dkxe
ikr+imφk

k

√
1− k2x+(k∥+Q)2

k2

(
iπlm(θk)θ̂k − τlm(θk)φ̂k

)
, (2.81)

where a is the lattice pitch. Then, a comparison with the plane wave representations of
the cylindrical waves leads to the connection

∑
R∈Λ1

(
M

(3)
lm (r −R, k)

N
(3)
lm (r −R, k)

)
eik∥R = − iπNlm

akil−m

∑
Q∈Λ∗

1

(
τlm(θk) πlm(θk)
πlm(θk) τlm(θk)

)M
(3)
k∥+Q,m(r, k)

N
(3)
k∥+Q,m(r, k)

 ,

(2.82)

where we also added the results for the TM modes. In both cases, we find that the TE
and TM modes of spherical and cylindrical or spherical and plane waves generally mix
in the transformation. That happens because the designations are meant with respect to
different surfaces, namely spherical shells and the x-y-plane. However, if we transition to
helicity basis, different modes do not mix.

Periodic cylindrical waves to plane waves The last case is a one-dimensional lattice
along the x-axis of scattered cylindrical waves. Here, we obtain

∑
R∈Λ1

Mkz ,m(r −R, k)eik∥R =
2

akim+1

∑
Q∈Λ∗

1

eikr+imφk√
1− (k∥+Q)2+k2z

k2

φ̂k (2.83)

for the TE cylindrical waves, which is also a pure TE plane wave since they share the
pilot vector in their construction. The complete result for both polarizations is

∑
R∈Λ1

(
M

(3)
kz ,m

(r −R, k)

N
(3)
kz ,m

(r −R, k)

)
eik∥R =

2

akim

∑
Q∈Λ∗

1

1√
1− (k∥+Q)2+k2z

k2

(
Mk̂(r, k)
Nk̂(r, k)

)
, (2.84)

which can also be transformed to helicity basis. The change of basis also changes the
domain of validity as shown in Fig. 2.5. For example, if we transition from vector spherical
waves to plane waves, the circumscribing cylinder can enlarge the domain in the direction
of ρ̂ as shown by the dashed area. The domain between the spheres, however, is not
described faithfully by the vector spherical waves. A similar behavior exists for the other
transition. This property can be used later. Note that even for aperiodic cases, a change
of basis can be used explicitly to couple particle close to each other [46].
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2.3 Lattice sums and the Ewald method

2.3 Lattice sums and the Ewald method
The Ewald method [13] is a useful approach to treat infinite sums. Originally developed
for calculations of electrostatic potentials in crystal lattices, the approach itself can be
generalized [P4, 47–54].

The fundamental idea is the following. Assume we have a lattice of dimension d
with unit vectors ui ∈ Rd, i ∈ {1, . . . , d} that consists of all points in the set Λ =
{
∑d

i=1 niui|ni ∈ Z} and a function f(r) that we want to sum for all these lattice points

D(Λ) =
∑
R∈Λ

f(R) . (2.85)

We, conventionally, call the sum D. In cases where the function f(r) is short-ranged,
the sum should converge quickly in real space and can be calculated directly. Moreover,
if the sum has long-range contributions, it might be beneficial to Fourier transform the
sum from the real to the reciprocal space, resulting in the function f(q) (Appendix A).
Then, by making use of Poisson’s summation formula given in Eq. (A.5), the sum can be
transformed to

D(Λ) =
(2π)d

Vd

∑
Q∈Λ∗

f̃(Q) (2.86)

with Λ∗ = {
∑d

j=1 njvj |nj ∈ Z} the reciprocal lattice with unit vectors vj fulfilling uivj =
2πδij . A sum that might be tedious to calculate in real space can so become quickly
converging in reciprocal space.

In some cases, however, there are short- and long-range interactions that contribute
equally to the final value of the sum. Then, the convergence is often poor in both real
and reciprocal space. The goal of Ewald’s method is to find a way to separate the short-
and long-range parts of the function f(r) = fS(r) + fL(r). This separation then allows
us to only transform the long-range contributions to the reciprocal space

D(Λ) =
(2π)d

Vd

∑
Q∈Λ∗

f̃L(Q)︸ ︷︷ ︸
D(1)(Λ)

+
∑
R∈Λ

fS(R)︸ ︷︷ ︸
D(2)(Λ)

, (2.87)

which then both converge quickly. The major challenge in this method is to find a sepa-
ration that leads to two equally quickly converging series whereof the long-range part has
a simple enough Fourier transform. We use D(1)(Λ) and D(2)(Λ) later to refer to these
parts.

In practice, the sum often excludes the point R = 0. Then, to Fourier transform the
field it is necessary to add and subtract fL(0) explicitly such that the decomposition now
includes the three parts

D(Λ\{0}) = −fL(0)︸ ︷︷ ︸
D(0)

+D(1)(Λ) +D(2)(Λ\{0}) . (2.88)

Deriving expressions to calculate these three parts – the origin correction, the reciprocal
space sum, and the real space sum – for the translations coefficients of Helmholtz equation
solutions are the main objective of Chapter 3.
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We derive the lattice sum of translation coefficients for scalar solutions of the Helmholtz
equation using a direct approach. We describe the derivation as direct in comparison to
the more widely used approach where one uses projections onto the different modes and
then has to take a special limit to evaluate the expressions. The direct approach is
conceptually simpler and has the additional benefit that it can be applied equally well to
complex unit cells and all lattice dimensions, which is not as easily done for the indirect
approach, as we show shortly.

For later comparison, we briefly outline the typical approach, which relies on the com-
bination of two expansions. First, we observe the following: Given the Green’s function
G0(r, k) of the Helmholtz equation in two or three dimensions – those cases correspond
to cylindrical and spherical wave solutions – the quasi-periodic Green’s function can be
expanded as

∑
R∈Λ

G0(r
′ + r −R, k)eik∥R = −ik

∑
ν

τν(k, r,k∥)fν(r
′, k) (2.89)

at r in regular solutions fν(r
′, k) [54]. Now, we can project onto individual coefficients

τν(k, r,k∥) by multiplying with the complex conjugate of the angular part of fν(r′, k) and
integrating over the angles. On the left-hand side, we have to solve the integration and,
then, we can take the limit |r′| → 0 and compare the lowest order coefficients on both
sides of the equation. However, solving the integral on the left-hand side of the equation
can be challenging.

The second observation is that we can alternatively write the Green’s function on the
left-hand side as singular zeroth order solutions fν(r

′, k). Then, we can apply the trans-
lation coefficients for this function to get a similar expansion to that on the right-hand
side and compare coefficients.

For lattices with simple unit cells, expressions are widely available [50, 52–55]. For
complex unit cells, however, only certain cases are solved [51, 56] and the results for
one-dimensional lattices of spherical waves are generally not known so far [57].

2.4 Plane wave methods for stratified media

In the plane wave basis, we mostly use S-matrices where incoming and outgoing fields are
used instead of T-matrices relating incident and scattered fields. Another approach that
will be discussed briefly are transfer matrices. They relate the fields on one side of a plane
with those on the other side.

For the S-matrix approach using plane waves, we usually assume uniformity in the x-
y-direction, such as for a slab of homogeneous material or a periodic system with lattice
Λ2. Then, the at least discrete translational symmetry suggests to expand the field in
diffraction orders Q ∈ Λ∗

2 instead. Thus, we replace the definition of the plane waves
by the three components of the wave vector k̂ to the definition in terms of the parallel
components k∥+Q as described above. In some cases, we use periodicity in the x-z-plane
and the remaining component points in the z-direction. However, the definition of the
plane waves is always the ones defined in Eq. (2.15).
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2.4 Plane wave methods for stratified media

The incoming waves are

E in(r; k0) =
∑
s=±

∑
Q

{
ak∥+Q,↑,sAk∥+Q,↑,s(r, ks(k0)) z < 0

bk∥+Q,↓,sAk∥+Q,↓,s(r, ks(k0)) z > 0
(2.90)

and the outgoing waves are

Eout(r; k0) =
∑
s=±

∑
Q

{
bk∥+Q,↑,sAk∥+Q,↑,s(r, ks(k0)) z > 0

ak∥+Q,↓,sAk∥+Q,↓,s(r, ks(k0)) z < 0
, (2.91)

where the coefficient vectors ad are for waves below the system described by the S-matrix
and the vectors bd are for waves above it. The S-matrix then relates these coefficients by(

b↑
a↓

)
=

(
S↑↑ S↑↓
S↓↑ S↓↓

)
︸ ︷︷ ︸

=S

(
a↑
b↓

)
. (2.92)

Four blocks can be identified: The diagonal ones contain transmission and the off-diagonal
blocks reflection coefficients. If we want to couple two S-matrices describing individual
layers or layer stacks to get the total transmission and reflection coefficients for the whole
system consisting of S-matrices Sa and Sb stacked along the z-axis, we can use [39]

S↑↑ = Sb
↑↑(1− Sa

↑↓S
b
↓↑)

−1Sa
↑↑ (2.93a)

S↓↑ = Sa
↓↑ + Sa

↓↓S
b
↓↑(1− Sa

↑↓S
b
↓↑)

−1Sa
↑↑ (2.93b)

S↑↓ = Sb
↑↓ + Sb

↓↓S
a
↑↓(1− Sb

↓↑S
a
↑↓)

−1Sb
↓↓ (2.93c)

S↓↓ = Sa
↓↓(1− Sb

↓↑S
a
↑↓)

−1Sb
↓↓ . (2.93d)

By iteratively using the coupling of two neighboring systems, a stack can be described.
Furthermore, the layer-doubling technique [39, 52] can be used to efficiently describe
periodic systems of finite thickness, exploiting the exponential growth of the number of
layers if the result on the left-hand side for coupling two identical S-matrices is reused on
the right-hand side.

Additionally, we can also compute the result for an infinite stack of periodically repeat-
ing S-matrices. With the third lattice vector being a3 = azẑ, the phase difference between
two adjacent layers is eikzaz , where kz needs to be determined. Then, we can express the
periodicity conditions as(

S↑↑ S↑↓
0 1

)(
a↑
b↓

)
=

(
1 0
S↓↑ S↓↓

)
eikzaz

(
a↑
b↓

)
, (2.94)

where we used b↑ = a↑e
ikzaz and a↓ = b↓e

−ikzaz and rearranged Eq. (2.92) such that the
right-hand side has the common exponential dependency. Then, we can invert the matrix
on the right-hand side and obtain [39, 52](

S↑↑ S↑↓
−S−1

↓↓ S↓↑S↑↑ S−1
↓↓ (1− S↓↑S↑↓)

)(
a↑
a↓

)
= eikzaz

(
a↑
a↓

)
, (2.95)

33



2 Electromagnetic scattering

which is a useful representation to calculate the band structure of three-dimensional peri-
odic structures. It is essentially an eigenvalue equation. The eigenvectors of the matrix on
the left-hand side describe different modes and the eigenvalues v specify the z-component
of the modes by kz = − i

az
ln v. Long-lived modes can be selected by setting a threshold

on the imaginary part of kz.
Another representation that is regularly used for stratified media is the transfer matrix.

Here, we choose to take the fields on one side of the system in question and relate them
to the fields on the other side. Taking the propagation in the positive z-direction, we,
therefore, take the vectors ad as given and want to obtain the vectors bd as result. Through
rearranging Eq. (2.92), we get(

1 −S↑↓
0 −S↓↓

)(
b↑
b↓

)
=

(
S↑↑ 0
S↓↑ −1

)(
a↑
a↓

)
. (2.96)

The matrix on the left-hand side can be inverted and we obtain the transfer matrix(
b↑
b↓

)
=

(
S↑↑ − S↑↓S

−1
↓↓ S↓↑ S↑↓S

−1
↓↓

−S−1
↓↓ S↓↑ S−1

↓↓

)
︸ ︷︷ ︸

=T

(
a↑
a↓

)
, (2.97)

where we use T as a symbol to differentiate the transfer matrix from the T-matrix in-
troduced earlier. The opposite transition from transfer matrices to S-matrices can be
obtained, analogously.

Transfer matrix method

We now introduce the separate topic of focusing light in layers of anisotropic but homo-
geneous materials. For the description of light propagation in anisotropic media, we use
transfer matrices [58, 59] that can be efficiently combined with the Richards and Wolf
method of describing focusing of light with high aperture lenses [14].

As previously, we use the z-axis as the principle direction of propagation. Then, we can
use the angular spectrum representation, where the two transverse directions are Fourier
transformed (see Appendix A)

E(x, y; z, k0) =
∫∫

dkxdkyE(kx, ky; z, k0)ei(kxx+kyy) , (2.98)

with the inverse transformation

E(kx, ky; z, k0) =
1

(2π)2

∫∫
dxdyE(x, y; z, k0)e−i(kxx+kyy) . (2.99)

We can propagate the angular spectrum along the z-axis by

E(kx, ky; z, k0) = eikzzE(kx, ky; 0, k0) , (2.100)

where kz is determined by the dispersion relation. There can be multiple values for kz in
anisotropic or chiral media. Instead of Eq. (2.24) used in the majority of this thesis, where
we have scalar but chiral constitutive relations, we want to describe anisotropic media here.
We start with Maxwell’s equations as given in Eq. (2.3). We can now transition to Fourier
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2.4 Plane wave methods for stratified media

space, which essentially replaces the nabla operator by ik. In the constitutive relations
of Eq. (2.6), we now assume a homogeneous material, i.e., all material parameters are
independent of the position r. Then, we obtain[(

k× 0
0 k×

)
− k0

(
χ⊺(k0)− iκ⊺(k0) µ(k0)

−ϵ(k0) −χ(k0)− iκ(k0)

)](
E(kx, ky; z, k0)
H(kx, ky; z, k0)

)
= 0 ,

(2.101)

where

k× =

 0 −kz ky
kz 0 −kx
−ky kx 0

 (2.102)

is the matrix representation of the cross-product. This equation, in principle, can be
solved directly now. All material parameters and the components kx and ky are given.
The only unknown is kz. The determinant of the matrix in Eq. (2.101) is a fourth order
polynomial in kz. The four solutions for its root correspond to the two polarizations times
the two principle directions of propagation. The kernel of Eq. (2.101) defines the electric
and magnetic fields for each of these modes.

However, we restrict ourselves to the achiral, reciprocal case. Then, we can eliminate
one of the fields, e.g., the magnetic field, to obtain

k × µ−1k × E(kx, ky; z, k0) + k20ϵE(kx, ky; z, k0) = 0 . (2.103)

Again, this is a fourth order equation in kz when computing the roots of the determinant
leading to four solutions kz,i. The polarizations and propagation directions corresponding
to these four solutions are again given by the kernel of the resulting matrix, which we
denote as pi. The polarizations of the magnetic field can then be found by qi = µ−1k×pi.
Then, for each pair of kx and ky, we can define a four-by-four matrix for the propagation
in the medium

P =


eikz,1z 0 0 0
0 eikz,2z 0 0
0 0 eikz,3z 0
0 0 0 eikz,4z

 (2.104)

and another matrix for the tangential components of the polarizations

D =


p1x̂ p2x̂ p3x̂ p4x̂
q1ŷ q2ŷ q3ŷ q4ŷ
p1ŷ p2ŷ p3ŷ p4ŷ
q1x̂ q2x̂ q3x̂ q4x̂

 (2.105)

called dynamical matrices [59]. The matching of the tangential components at an interface
between two media a and b is then simply expressed as D−1

b Da. This matrix and the
matrix P are used as transfer matrices to calculate the electromagnetic fields in stratified
media.

In addition to the transfer matrices for anisotropic media, we need to find a mathemat-
ical description of the focused beam where we follow [60]. We describe the illumination
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incoming onto the lens as a spectrum E illu(ρ, φ; k0) defined on a two-dimensional plane
in polar coordinates. We now assume that this illumination is refracted onto a spherical
shell. The azimuthal component φ̂ of the polarization is unchanged by the refraction and
the polar component ρ̂ is changed to

ϑ̂ = cosϑ cosφx̂+ cosϑ sinφŷ + sinϑẑ , (2.106)

where sinϑ = ρ
f and f the focal length of the lens and, thus, we arrive at

Erefr(ρ, φ;−f, k0) =

√
Zb

Za
cosϑ(ϑ̂⊗ ρ̂+ φ̂⊗ φ̂)E illu(ρ, φ; k0) , (2.107)

where ⊗ is the outer product. The square root as prefactor ensures energy conversation
upon refraction. The impedance ratio Zb

Za
takes a change from material a to material b on

each side of the optical system into account, for example when an immersion oil lens is
used. In principle this model can be refined further by using transmission functions for
the different polarizations, but we omit such factors here. Now, we want to propagate
this refracted field to the origin. Therefore, we use the transformation to the angular
spectrum and then apply Eq. (2.100)

Erefr(x, y;−f, k0) =

∫∫
dkxdkyE(kx, ky;−f, k0)e

i(kxx+kyy)

=

∫∫
dkxdkyE(kx, ky; 0, k0)ei(kxx+kyy−

√
k2−k2x−k2yf) (2.108)

with k = kb = k0nb the wave number in the material b. We simplify the expression by
using the stationary phase approximation to obtain

Erefr(x, y;−f, k0)
kf≫1
= 2πi

e−ikf

f
kzE

(
−kx

f
,
−ky

f
; 0, k0

)
, (2.109)

which can be inverted and becomes in polar coordinates

E
(
kρ

f
, φ+ π; 0, k0

)
=

−ifeikf

2πkz
Erefr(ρ, φ;−f, k0) . (2.110)

This result combined with Eq. (2.107) now relates the illumination beam to the angular
spectrum in the focal plane (z = 0). The parameters that define the lens are the focal
length f and the numerical aperture NA = nb sinϑ, which defines a maximal value for
ρ. We also find that each point in the illumination is mapped to the angular component
pointing in the opposite direction as we would already expect from a simple ray optics
approach.

Calculating the focusing in anisotropic media is possible with the following procedure:
First, the incident beam shape and polarization has to be defined on a grid of values for
ρ and φ. A maximal value for ρ is defined by the numerical aperture. The pass of the
illumination beam through an additional aperture can be incorporated by adding further
restrictions [61]. Second, we transform the beam to an angular spectrum in the focal
plane with Eqs. (2.107) and (2.110) for each value on the defined grid. Then, this angular
spectrum can be translated by Eq. (2.100) or, equivalently, after mapping them to the
eigenmodes in the material by Eq. (2.104). The mapping onto eigenmodes also allows
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us the use of the transfer matrix approach for interfaces with Eq. (2.105). The whole
functionality of calculating focusing into anisotropic media of this is published separately
from treams, which is discussed in Chapter 4, as a package called focusaniso. However, in
Section 5.2 an application combining these approaches is discussed.

In summary, this chapter started in Section 2.1 with postulating Maxwell’s equations
which are the governing equations to describe electromagnetism. For a linear response
and assuming locality as well as time-invariance, we describe the interaction of electromag-
netic fields with media by a set of parameter given in a six-by-six bi-anisotropic tensor.
Further assumptions, i.e., isotropy and reciprocity restrict the coefficients of this tensor to
three material parameters: permittivity, permeability, and the chirality parameter, which
completely describe the electromagnetic properties of chiral materials. We continue with
introducing the Helmholtz wave equation and derive three different solution sets for it:
vector spherical, cylindrical, and plane waves. The elements of these solutions can be
expressed in the parity or helicity basis. Next, we connect Maxwell’s equations and the
constitutive relations for chiral media with the Helmholtz equation solutions: chiral media
are described straightforwardly by modes of well-defined helicity and achiral media can
be described by both, parity and helicity, modes.

With these carefully constructed solution sets, we continue in Section 2.2 by introducing
the T-matrix method for vector spherical and cylindrical waves. By separating the field
expansion outside of an isolated scatterer into incident and scattered modes, we can
concisely encode the response in a single matrix. We provide a short introduction on
methods to calculate the T-matrix different particle shapes. Once the T-matrix of a
scatterer is known, the analytical properties of the used solution sets allow the efficient
calculation of the interaction between scatterers. Furthermore, other operations, such as
rotations, can be efficiently expressed. Thus, we can use this framework to solve many
different scattering problems.

One major focus of this thesis is solving scattering calculations in the presences of
periodic boundary conditions. A first tool to efficiently describe scattering in lattices
of different dimensionality are the chosen basis sets and we give expressions to change
between these basis sets for scattered waves. However, a particular challenge remains the
calculation of the interaction between particles. The arising lattice sums are converging
very slowly. In the following chapter, we discuss the treatment of these lattice sums in
detail, but the general method, named Ewald summation, is outlined in Section 2.3.

Finally, we conclude with methods for stratified media in Section 2.4, where we usually
expand the field in plane waves. We introduce the S-matrix and the transfer matrix
method that we use to compute the scattering response in these cases. Moreover, we
briefly introduce the Richard and Wolf method to describe focusing processes.
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3 Lattice sums with complex unit cells
for solutions of the Helmholtz equation

This chapter provides an in-depth treatment of the quasi-periodic lattice sums for solu-
tions to the Helmholtz equation. The main results of this chapter were published in [P4],
the lattice sums described in here are necessary to efficiently use the T-matrix method
with periodic boundary conditions, because they appear when summing the translation
coefficients of vector spherical and cylindrical waves, for example in Eq. (2.59). These
sums converge very slowly with a strong dependence on the lattice dimension. The trans-
lation coefficients decay in the limit of long distances kr ≫ 1 with (kr)−

1
2 for cylindrical

waves and with (kr)−1 for spherical waves. However, the number of terms that have to
be considered grows with (kr)d

′ in a lattice with dimension d′. Therefore, the decaying
strength of the individual contribution can be outweighed by the increasing number of
terms that need to be considered leading to slowly converging sums [52]. Thus, we need
to carefully transform these slow direct sums to equivalent sums that converge quickly.
Our derivation emphasizes on the following two properties: First, the final expressions
should include the case of complex unit cells. Second, the method of derivation should
be applicable to all possible lattice dimensions. While the first condition derives from
the intention to reduce the restrictions on scattering problems that can be solved with
the T-matrix method when periodic boundary conditions are used, the second condition
appears to be – superficially – a desire for mathematical beauty. However, having simi-
larities among all expressions is a benefit, because it allows to analyze their structure to
gain additional physical insights. Furthermore, it can be used in practice to reduce the
programming effort to implement these expressions.

The application of Ewald’s method to transform the lattice sums to fast converging
series evolved to include an increasing number of cases. The lattice sums for lattices
with simple unit cells are most comprehensively treated. Simple unit cells only contain a
single scatterer per unit cell, whereas complex unit cells contain multiple scatterers, i.e.,
the whole lattice can be divided into several sublattices. The case of complex unit cells
but with all objects in the unit cell in the same plane as the lattice [54] can be solved
analogously to the case of simple unit cells. However, arbitrary complex unit cells are a
considerably more complicated case, which we cover here. Lattice sums, where the lattice
covers all spatial dimensions, namely spherical waves in three dimensions [49, 55] and
cylindrical waves in two dimensions [62], were among the first problems of that kind to
be solved with Ewald’s method. The treatment in [50] applies and expands the results
from [47–49] to spherical waves in two-dimensional lattices. The presence of complex unit
cells is subsequently covered in [51]. Several methods for particular other cases followed.
These cases are summarized in review articles [53, 54], providing an overview of the main
results for lattices with simple unit cells. Complex unit cells are, however, not as widely
covered. Besides the results for two-dimensional lattices in [51], cylindrical waves in one-
dimensional lattices have been solved previously [56]. Our approach to solve the lattice
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3 Lattice sums with complex unit cells for solutions of the Helmholtz equation
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Figure 3.1: The five combinations of spatial dimension d ∈ {2, 3} and lattice dimension
1 ≤ d′ ≤ d for which the lattice sum is solved and their orientation. The
first row, including panels (a) to (c), are the lattices possible for spherical
waves in d = 3 spatial dimensions. Panels (d) and (e) in the second row show
the lattices with d = 2 for the cylindrical waves. Two sublattices are shown
in blue circles and green stars. The shift between these sublattices is r and
can be decomposed into the component that lies in the space spanned by the
lattice, which is shown in orange, and the perpendicular component. This
decomposition is indicated by the dashed line. One of the lattice vectors R
is shown additionally. Reprinted with permission from [P4]. Copyright 2023
American Physical Society.

sums is similar to the approach in [63] for the case of two-dimensional lattices with simple
unit cells. However, we generalize it considerably to cover all cases of lattices for spherical
and cylindrical wave solutions.

We treat the lattice sum derivations as follows. First, we define the lattice sum and
prepare the common starting point for all cases in Section 3.1. Then, as outlined in
Section 2.3, the sum is separated into a real space sum and a reciprocal space sum. The
real space sum can be treated quite generally for all cases at once as shown in Section 3.2.
The reciprocal space sum requires a more detailed treatment for the various cases in the
different parts of Section 3.3. Finally, we examine the derived expressions and discuss the
optimal choice of the splitting parameter in Section 3.4.

3.1 Problem definition

We define the lattice sum, which is treated in this chapter, as

Dν,d(Λd′ , k,k∥, r) =
∑′

R∈Λd′

f
(3)
ν,d (−r −R, k)eik∥R , (3.1)
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3.1 Problem definition

namely a sum over a phased array of singular solutions to the Helmholtz equation. These
expressions essentially appear in that form in the lattice sums of translation coefficients
of the vector cylindrical and spherical solutions as given in Eqs. (2.50) and (2.51). The
sum depends on a range of parameters and variables. First, we have to define the spatial
dimension of the solution d, where d = 2 corresponds to cylindrical solutions and d = 3
to spherical ones. The general index ν either refers to m ∈ Z for d = 2 or to l ∈ N0 and
|m| ≤ l for d = 3. The variables of the lattice sum are the d′-dimensional lattice Λd′ , where
1 ≤ d′ ≤ d. The five combinations of lattice sums with these restrictions on d and d′ are
shown in Fig. 3.1. The remaining three arguments of the lattice sum Dν,d(Λd′ , k,k∥, r) are
the complex-valued wave number k, the real-valued wave vector components tangential
to the lattice k∥, and the vector r that corresponds to a translation in the unit cell. Note
that, although the wave number k can be complex-valued, the most relevant application
of Ewald’s method is the case of a real-valued wave number, where the convergence of
the lattice sum is generally slowest. The real-valued wave number corresponds to a non-
absorbing embedding medium between scatterers and, thus, the longest range of their
interaction. We can assume that r /∈ Λd′\{0} because r coinciding with any lattice vector
is – up to a phase factor – equivalent to setting r = 0 due to the property

Dν,d(Λd′ , k,k∥, r +R) = e−ik∥RDν,d(Λd′ , k,k∥, r) (3.2)

for R ∈ Λd′ of the sum. This property is also the reason that the sums are regularly re-
ferred to as quasi-periodic lattice sums [54]. Even more strictly, this discrete translational
symmetry allows defining r such that it is always in the Wigner-Seitz cell of the lattice,
which is beneficial for the convergence of the real space sum. On the right-hand-side of
Eq. (3.1), we have the cylindrical solutions defined in Eq. (2.11) for d = 2 and the spher-
ical solutions defined in Eq. (2.12) for d = 3. The prime next to the sum symbol is the
reminder to exclude the point R = 0 if r = 0. This omission practically removes the unde-
fined value of f (3)

ν,d (0) from the sum, which would correspond to the direct self-interaction
of the scattered field from a particle with itself. Effectively, a single contribution is re-
moved from an otherwise periodic function. The vector r = r∥ + r⊥ can be decomposed
into a component parallel and a component perpendicular to the d′-dimensional lattice
Λ as shown in Fig. 3.1. It describes the translation between different sublattices. The
one-dimensional lattice is conventionally placed along the z-axis for d = 3 and along the
x-axis for d = 2. The two-dimensional lattice is placed in the x-y-plane.

To separate short- and long-range contributions later, we introduce a particular integral
representations of the Hankel function of the first kind, which is [55]

H
(1)
l (z) =

(−1)
l−|l|
2 2

iπ
z|l|

∞∫
0e−iπ2

dt t2|l|−1e−
z2t2

2
+ 1

2t2 , l ∈ Z . (3.3)

We take l as the index instead of m to highlight the similarities with the d = 3 case, where
we expand the spherical Hankel function of the first kind as

h
(1)
l (z) = −i

√
2

π
zl

∞∫
0e−iπ2

dt t2le−
z2t2

2
+ 1

2t2 , l ∈ N0 . (3.4)
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3 Lattice sums with complex unit cells for solutions of the Helmholtz equation

z

Im

Reη

t

Figure 3.2: Integration contour for the integral representation of the (spherical) Hankel
functions. The integrations are defined in Eqs. (3.3) and (3.4). The contour
shown in red ensures at t → 0 the convergence of the integral. The domain
of values for the argument z where the expressions are valid is shown as gray
area. Additionally, we mark the separation value η.

Note that for a convergence of that integral, we require a particular integration contour
for t → 0 [49, 55]. Namely, this limit is taken along the negative imaginary axis which is
indicated by the phase at the lower integration boundary. We need to keep track of this
condition throughout the derivation to choose the correct branch for the complex-valued
functions in the result. A visualization of the contour is shown in Fig. 3.2.

Now, we can insert the representations in Eqs. (3.3) and (3.4) into Eq. (3.1) to arrive
at the full expression

Dν,d(Λd′ , k,k∥, r) =
∑′

R∈Λd′

2eik∥R

iπ
(k|r +R|)|l|

·
∞∫

0e−iπ2

dt t2|l|−3+de−
(k|r+R|t)2

2
+ 1

2t2

{
(−1)

l−|l|
2 eilφ−r−R d = 2√

π
2Ylm(−r −R) d = 3

,

(3.5)

where we split the integral in two parts by introducing the parameter η. The integration
from 0e−iπ

2 to η is the long-range contribution and is transformed to Fourier space. The
short-range contribution corresponds to the remaining integration from η to ∞. Note that
we use the notation Ylm(r) = Ylm(θr, φr) in this chapter.

3.2 Real space sum
First, we examine the short-range contribution, which we can be, for a large part, generally
solved for all lattice and space dimensions. Separating the integration over t from the rest,
we have to evaluate

In(z, η) =

∞∫
η

dt tne−
z2t2

2
+ 1

2t2 (3.6)
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3.3 Reciprocal space sum

for integers n ≥ −1. However, the derivations below are valid for n ∈ Z, which includes
also the necessary cases that appear in the reciprocal sum. The integral can be conve-
niently solved by using the recursion formula

In(z, η) = (n+ 3)In+2(z, η)− z2In+4(z, η) + ηn+3e
− z2η2

2
+ 1

2η2 , (3.7)

which is obtained by integrating ∂
∂t t

n+3e−
z2t2

2
+ 1

2t2 on the interval [η,∞). This recursion,
actually, separates two sets of the integral, namely those for n even and odd. For each
of those sets we need two starting values. Hence, we evaluate the integral explicitly for
n ∈ {−3,−2,−1, 0} (see Appendix H). The recursion formula can be used backward and
forward to obtain values for all n ∈ Z. A similar recursion formula is derived in [50, 63].

Once the integral values are known, we can express the d = 2 contribution in real space
by

D
(2)
l,2 (Λd′ , k,k∥, r) =

(−1)
l−|l|
2 2

iπ

∑′

R∈Λd′

eik∥R(k|r +R|)|l|I2|l|−1(k|r +R|, η)eilφ−r−R (3.8)

and the d = 3 contribution by

D
(2)
lm,3(Λd′ , k,k∥, r) = −i

√
2

π

∑′

R∈Λd′

eik∥R(k|r +R|)|l|I2|l|(k|r +R|, η)Ylm(−r −R) . (3.9)

From the integral in Eq. (3.6), we can roughly estimate that for increasing values of
z2, which corresponds to large values of |R| when r is in the Wigner-Seitz cell, the
contributions to the sum are exponentially suppressed. Also, the contribution summed in
real space depends on the parameter η in the following way: Larger values of η shift more
of the individual term’s contribution to the reciprocal space and, conversely, smaller values
increase the integration’s value. This shift is explored numerically in Subsection 3.4.2.

It was not necessary so far to assume a particular alignment of the lattice with the
coordinate axis for our derivation. But, we do so to simplify the reciprocal space sum
in the following section. Hence, these alignments can already be used here to simplify
the expressions when r⊥ = 0. These simplifications are summarized in Table 3.1. The
additional symmetry in the expressions leads to selection rules for the d = 3 cases. With
d′ = 2, only even values of l+m result in non-vanishing sums and with d′ = 1 only m = 0
terms are non-zero.

3.3 Reciprocal space sum

Finding reciprocal space sum expressions, which converge quickly, requires significantly
more work than the real space sums. As a preparation, we need to transform the quasi-
periodic sum to a fully periodic sum to apply Poisson’s formula. Then, we treat each
case separately: Full lattices, i.e., cases where the lattice extends in all spatial directions –
mathematically expressed as d′ = d – are treated in Subsection 3.3.1, the remaining three
cases, where d′ ≤ d, are individually examined in Subsections 3.3.2 to 3.3.4.
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3 Lattice sums with complex unit cells for solutions of the Helmholtz equation

Table 3.1: Simplifications of the real space sum for r⊥ = 0 in different lattices. Adapted
with permission from [P4]. Copyright 2023 American Physical Society.

d d′ Lattice position Simplification

3 2 z = 0

Ylm(θ−r∥−R, φ−r∥−R) = Ylm

(
π
2 , φ−r∥−R

)
=


√

2l+1
4π

(l−m)!(l+m)!(−1)
l+m
2

2l( l+m
2 )!( l−m

2 )!
e
imφ−r∥−R l +m even

0 l +m odd

3 1 x = 0 = y Ylm(θ−r∥−R, φ−r∥−R) =
√

2l+1
4π (sign((−r∥ −R)ẑ))lδm0

2 1 y = 0 e
ilφ−r∥−R = (sign((−r∥ −R)x̂))l

In each case, we have to correct for the omission of r = 0 to always have a fully periodic
lattice, which results in

D
(1)
ν,d(Λd′ , k,k∥, r) +D

(0)
ν,d(r)

=
∑

R∈Λd′

2eik∥R

iπ
(k|r +R|)|l|

η∫
0e−iπ2

dt t2|l|−3+de−
(k|r+R|t)2

2
+ 1

2t2

{
(−1)

l−|l|
2 eilφ−r−R d = 2√

π
2Ylm(−r −R) d = 3

− δr0 lim
r→0

2

iπ
(k|r|)|l|

η∫
0e−iπ2

dt t2|l|−3+de−
(k|r|t)2

2
+ 1

2t2

{
(−1)

l−|l|
2 eilφ−r d = 2√

π
2Ylm(−r) d = 3

,

(3.10)

where the first term, D(1)
ν,d(Λd′ , k,k∥, r), is the – fully periodic – sum, which needs to be

transformed to reciprocal space, and the second term, D(0)
ν,d(r), corresponds to the origin

correction. The origin correction is, as indicated by the arguments, independent of the
lattice geometry and the wave parameters.

The limit of r → 0 is easily taken due to the factor |r||l|. Thus, only the l = 0 term
contributes and we arrive at

D
(0)
ν,d(r) = −δl0δr0

iπ

η∫
0e−iπ2

dt e
1

2t2

{
2
t d = 2
1√
2

d = 3
. (3.11)

Also, the l = 0 part has no angular dependence, so, D(0)
ν,d(r) neither has one. By substi-

tuting u = e−iπ

2t2
, we can transform the previous equation to

D
(0)
ν,d(r) = δl0δr0

∞∫
e−iπ

2η2

du

u
e−u

{
i d = 2

u− 1
2

4 d = 3
. (3.12)

Note that the phase defined in the substitution is necessary to convert the lower boundary
to the correct upper limit of +∞. Now, we can identify the integrals as the incomplete
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3.3 Reciprocal space sum

gamma function [64–66]

D
(0)
ν,d(Λd′ , k,k∥, r) = δl0δr0


i
πΓ
(
0, e

−iπ

2η2

)
d = 2

1
4πΓ

(
−1

2 ,
e−iπ

2η2

)
d = 3

. (3.13)

The factor e−iπ in the argument indicates the branch choice, namely, for the branch cut
along the negative real axis we have to take the value for − 1

2η2
− iϵ with ϵ → 0+ when

η is real. Having the origin contribution solved, we can turn to the main difficulty in
deriving quickly convergent series, which is transforming the reciprocal lattice sum to
simple enough expressions that lend themselves to an implementation in efficient code.

To compute D
(1)
ν,d(Λd′ , k,k∥, r), we first decompose r = r∥ + r⊥ into a contribution

r∥ that lies in the d′ dimensional space spanned by the lattice and a perpendicular con-
tribution r⊥ for the remaining d − d′ dimensions. Next, we want to transition to the
reciprocal space. For this purpose, we separate the real space sum from the rest of the
complicated expression by replacing every occurrence of R by r′ and add an additional
integral

∫
Rd d

d′r′δ(d
′)(R− r′). Then, we can apply Poisson’s formula from Eq. (A.5) for

∑
R∈Λd′

δ(d
′)(R− r′) =

(2π)d
′

Vd′

∑
Q∈Λ∗

d′

eiQr′
, (3.14)

to transform the sum to the reciprocal space. Next, we can also shift the integral variable
by r∥ in an additional step to simplify the integral over r′. This leads to the expression

D
(1)
ν,d(Λd′ , k,k∥, r) =

2k|l|

iπVd′

∑
Q∈Λ∗

d′

e−i(k∥+Q)r∥

η∫
0e−iπ2

dt t2|l|−3+de
1

2t2

·
∫
Rd′

dd
′
r′|r′ − r⊥||l| exp

(
−(k|r′ − r⊥|t)2

2

)
e−i(k∥+Q)r′

{
(−1)

l−|l|
2 e

ilφr′−r⊥ d = 2√
π
2Ylm(r′ − r⊥) d = 3

,

(3.15)

which serves as a starting point for the following individual derivations. The component
r∥ only appears as a simple phase factor, making cases where r⊥ = 0 almost identical
to the simple unit cell case. The expression in Eq. (3.15) is treated now case-by-case.
First, we consider full lattices, where d = d′. In that case, the vector r lies in the same
space as the one spanned by the lattice vectors, so essentially r⊥ = 0. This considerably
simplifies the lattice sum. The remaining three lattice sums are all treated individually
in the following subsections.

3.3.1 Lattices filling all spatial dimensions
In the case of full lattices, we can apply the simplifications d = d′ and r⊥ = 0 to Eq. (3.15).
Then, the spatial integral becomes∫

Rd

ddr′ r′|l|e−
(kr′t)2

2 e−i(k∥+Q)r′

{
eilφr′ d = 2

Ylm(r′) d = 3
, (3.16)
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3 Lattice sums with complex unit cells for solutions of the Helmholtz equation

where, next, we can insert plane wave expansions for the exponential e−i(k∥+Q)r′ that
matches the spatial dimension (Appendix G), namely the spherical wave expansion for
d = 3 and the cylindrical wave expansion for d = 2. By evaluating the angular integral, we
get two different expressions for the two cases. In d = 2 dimensions, the integral becomes

(−i)|l|e
ilφk∥+Q

∞∫
0

dr′ r′|l|+1e−
(kr′t)2

2 J|l|(βkr
′) , (3.17)

and in d = 3 dimensions it is

4π(−i)lYlm(k∥ +Q)

∞∫
0

dr′ r′|l|+2e−
(kr′t)2

2 jl(βkr
′) , (3.18)

with β =
|k∥+Q|

k . For later use, we also define γ =
√
1− β2. Both of these integrals have

well-known closed form results [64, Eq. 6.631 4.] and we arrive at

D
(1)
ν,d(Λd, k,k∥, r) =

4(−i)l

iVdkd

∑
Q∈Λ∗

d

e−i(k∥+Q)rβ|l|
η∫

0e−iπ2

dt

t3
e

γ2

2t2

{
eilφk+Q d = 2

πYlm(k∥ +Q) d = 3
,

(3.19)

where only the integration over t is left. Now, we can substitute u = e−iπ γ2

2t2
to obtain a

simple integration over an exponential that can easily be solved. We finally express the
result using the upper incomplete gamma function as

D
(1)
ν,d(Λd, k,k∥, r) =

4(−i)l−1

Vdkd

∑
Q∈Λ∗

d

e−i(k∥+Q)rβ|l|

· γ−2Γ

(
1, e−iπ γ2

2η2

){
eilφk+Q d = 2

πYlm(k∥ +Q) d = 3
.

(3.20)

Here, that seems to be a superfluous step, however, the general structure of the expression
shows similarities to the expression derived in the following better.

3.3.2 Two-dimensional lattice for spherical wave solutions
The two-dimensional sum of spherical waves is solved in [50, 51]. Here, we show that our
direct approach reproduces these results, without the need to evaluate a limit to obtain the
solution. We start by explicitly writing the spherical harmonics as a normalization factor
Nlm, an exponential for the azimuthal part, and the associated Legendre polynomials

D
(1)
lm,3(Λ2, k,k∥, r) =

√
2

π

kl

iV2

∑
Q∈Λ∗

2

e−i(k∥+Q)r∥

η∫
0e−iπ2

dt t2le
1

2t2

·
∫
R2

d2r′(r′2 + z2)
l
2 e−

k2(r′2+z2)t2

2 e−i(k∥+Q)r′
Nl|m|e

imφr′ (−1)
m−|m|

2 P
|m|
l

(
−z√

r′2 + z2

)
.

(3.21)
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3.3 Reciprocal space sum

The lattice is conventionally placed in the x-y-plane. Thus, the shift perpendicular to
the lattice r⊥ = zẑ can be expressed by the z-component. As in the case of d = d′,
we first focus on the integration over r′. However, we now have the difficulty that, in
general, z ̸= 0. The integration over angles can still be performed straightforwardly after
using, again, a suitable expansion of the plane wave (Eq. (G.1)). In this case, we use the
expansion in cylindrical Bessel functions due to the two-dimensional integration domain
for r′. The radial integration left after the angular integral is

∞∫
0

dr′ r′(r′2 + z2)
l
2J|m|(βkr

′)e−
(kr′t)2

2 P
|m|
l

(
−z√

r′2 + z2

)
. (3.22)

To proceed, we can find an expansion of the associated Legendre polynomials, such that
the factor (r′2+z2)

l
2 is eliminated, because it complicates the integral expression especially

for odd values of l. We achieve this by using the expansion of the associated Legendre
polynomials derived in Appendix C that replaces the complicated integrand involving
square roots by a more tractable finite sum over powers of r′, that are of the shape

∞∫
0

dr′ r′1+|m|+2sJ|m|(βkr
′)e−

(kr′t)2
2 =

(s+ |m|)!

|m|!βk
(
k2t2

2

) 1+|m|
2

+s
e−

β2

4t2 M 1+|m|
2

+s,
|m|
2

(
β2

2t2

)

=
(s+ |m|)!

βk

(
β

kt2

)1+|m|+2s

(−1)se−
β2

2t2

s∑
n=0

(
s

n

) (
− β2

2t2

)−n

(s+ |m| − n)!
,

(3.23)

which, as can be seen, is an integral that is solved by the Whittaker functions [64, Eq.
6.631 1.]. The combinations of the parameters 1+|m|

2 + s and |m|
2 are special cases of that

function that are expressible as finite sums of simpler functions [67], which is summarized
in Appendix I.

Combining the result of the angular integral, the expansion of the associated Legendre
polynomials, the result of the radial integral, and the expansion of the Whittaker function,
we now arrive at the expression

D
(1)
lm,3(Λ2, k,k∥, r) =

√
2(2l + 1)(l −m)!(l +m)!

im−1

V2k2

∑
Q∈Λ∗

2

e−i(k∥+Q)r∥e
imφk∥+Q

·
η∫

0e−iπ2

dt e
γ2

2t2
− k2z2t2

2

⌊
l−|m|

2

⌋∑
s=0

s∑
n=0

t2l−2−2|m|−4s+2n

· β|m|+2s−2n(−kz)l−|m|−2s(−1)n

22s+|m|−n(s+ |m| − n)!n!(s− n)!(l − |m| − 2s)!
,

(3.24)

which is more complicated than in the full lattice case. Instead of a simple single integral
over t, we now have two sums – one from the expansion of the associated Legendre
polynomials and one from the expansion of the Whittaker functions – that bring additional
factors of t. To proceed, we rearrange the sums such that the inner one is independent
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3 Lattice sums with complex unit cells for solutions of the Helmholtz equation

of the integral t. This is useful to evaluate certain limits like β → 0 or z → 0 later to
find simplified expressions. Also, it is beneficial for simple and fast implementations in
treams, because the evaluation of the integral result can be done independently from the
inner sum.

After rearranging the sums according to Eq. (J.1) and substituting u = e−iπγ2

2t2
, we

obtain

D
(1)
lm,3(Λ2, k,k∥, r)

=
∑
Q∈Λ∗

2

e−i(k∥+Q)re
imφk∥+Q

l−|m|∑
n=0

S3,lmn,2(k, β, z)γ
2n−1

∞∫
e−iπ γ2

2η2

du

u
u

1
2
−ne−u+

(γkz)2

4u ,

(3.25)

with

S3,lmn,2(k, β, z) =

√
(2l + 1)(l −m)!(l +m)!

(−2)limV2k2

·
min(l−|m|,2n)∑

s=n

(−kz)2n−sβl−s

(2n− s)!(s− n)!( l+m−s
2 )!( l−m−s

2 )!
.

(3.26)

The phase factor in the substitution is, as for the origin contribution, necessary in the
given form to transform the lower boundary to the correct upper limit of +∞ and leads to
a particular branch choice for the lower limit to obtain the correct result. The remaining
integral needs further treatment in the general case, but for z = 0 it simplifies to the
gamma function Γ

(
1
2 − n, e

−iπγ2

2η2

)
. In the general case though, it is possible to convert it

to the same form as Eq. (3.6). We show this in Appendix H.
The sum over s in S3,lm,2(k, β, z) only runs over every other integer: s has to have the

same parity as l +m such that the factorials only contain integer arguments. The factor
S3,lm,2(k, β, z) simplifies greatly for z = 0 or β = 0 with, at maximum, a single summand
contributing. If z = 0, only the term with s = 2n contributes as

S3,lmn,2(k, β, 0) =

√
(2l + 1)(l −m)!(l +m)!

(−2)lV2k2
βl−2n

n!
(
l−m
2 − n

) (
l+m
2 − n

) , (3.27)

which only happens for l + m even and n ≤ l−|m|
2 . For β = 0, only the s = l term

contributes.
The result derived here is equivalent to the result in [51]. This gives us confidence

that we can also apply the direct evaluation approach to the one-dimensional lattice case,
where expressions for lattices with complex unit cells are not present in literature [57].
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3.3.3 One-dimensional lattice for spherical wave solutions
In the case of d = 3 and d′ = 1, we have to evaluate

D
(1)
lm,3(Λ1, k, k∥, r) =

√
2kl

i
√
πV1

∑
Q∈Λ∗

1

e−i(k∥+Q)r∥

η∫
0e−iπ2

dt t2le
1

2t2

·
∞∫

−∞

dr′(r′2 + ρ2)
l
2 e−

k2(r′2+ρ2)t2

2 e−i(k∥+Q)r′Nl|m|(−1)
m−|m|

2 eimφ−r⊥P
|m|
l

(
r′√

r′2 + ρ2

)
,

(3.28)

where we use an explicit expression for the spherical harmonics again. The lattice is
placed along the z-axis. Thus, the absolute value of the shift vector perpendicular to the
lattice is ρ = |r⊥|. Furthermore, we can replace the vectors r∥ = r∥ẑ, k∥ = k∥ẑ, and
Q = Qẑ through scalar values in a one-dimensional lattice. We use again the closed form
expression Eq. (C.12) for the associated Legendre polynomials to eliminate the factor
(r′2 + ρ2)

l
2 . Thereby, the integral over r′ becomes

∞∫
−∞

dr′e−
k2r′2t2

2 e−i(k∥+Q)r′r′l−|m|−2s

=
(l −m− 2s)!

√
2π

kt
e−

β2

2t2

(
− iβ

kt2

)l−|m|−2s

⌊
l−|m|

2
−s

⌋∑
n=0

(
− t2

2β2

)n
(l − |m| − 2s− 2n)!n!

,

(3.29)

which is known in literature [64, Eq. 6.462 2.]. We use β =
k∥+Q

k for the one-dimensional
case. We can now collect the results of the integral and the expansion to obtain

D
(1)
lm,3(Λ1, k, k∥, r) =

√
2l+1
π (l −m)!(l +m)!

ikV1
(−i)l+m

·
∑
Q∈Λ∗

1

e−i(k∥+Q)r∥

η∫
0e−iπ2

dt e
γ2

2t2
− k2ρ2t2

2 eimφ−r⊥

·
⌊ l−|m|

2
⌋∑

s=0

⌊
l−|m|

2
−s

⌋∑
n=0

(kρ)2s+|m|

22s+|m|+n(s+ |m|)!s!
t4s+2|m|+2n−1βl−|m|−2s−2n (−1)n

(l − |m| − 2s− 2n)!n!

(3.30)

with the sum over the reciprocal lattice and two finite sums. We substitute again the
integration variable t and rearrange the two finite sums using Eq. (J.2) to arrive at

D
(1)
lm,3(Λ1, k, k∥, r)

= eimφ−r⊥
∑
Q∈Λ∗

1

e−i(k∥+Q)r∥

l∑
n=|m|

S3,lmn,1(k, β, ρ)
γ2n

4n

∞∫
e−iπγ2

2η2

du

u
u−ne−u+

(γkρ)2

4u ,

(3.31)
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with the factor

S3,lmn,1(k, β, ρ) =
(−i)l+1im

2V1k

√
2l + 1

π
(l −m)!(l +m)!

·
min(2n−|m|,l)∑

s=n

(kρ)2n−sβl−s(
n− s+m

2

)
!
(
n− s−m

2

)
!(l − s)!(s− n)!

,

(3.32)

which is independent of the integration. Note that the sum over s contains only values
where the factorial has integer argument, namely s + m must be even. The integral
simplifies to the incomplete gamma function for ρ = 0, similarly to the simplification in
the previous section for z = 0, and for non-zero values of ρ it can be transformed to the
structure of the integral in Eq. (3.6).

The simplification of the factor S3,lmn,1(k, β, ρ) for ρ = 0 is

S3,lmn,1(k, β, 0) =

{
(−i)l+1l!
2V1k

√
2l+1
π

βl−2n

n!(l−2n)! n ≤
⌊
l
2

⌋
and m = 0

0 otherwise
, (3.33)

where we find that the sums with m ̸= 0 are zero for the real space sum due to the restored
symmetry.

3.3.4 One-dimensional lattice for cylindrical wave solutions

Eventually, the last case to cover are cylindrical waves on a one-dimensional lattice. A
discussion of this case is contained in the supplementary material of [56]. We place the
lattice along the x-axis. We write the vectors Q = Qx̂, r∥ = r∥x̂, and k∥ = k∥x̂ as
scalar quantities similar to the one-dimensional lattice case with spherical waves. The
shift component perpendicular to the lattice is r⊥ = yŷ. We start with

D
(1)
l,2 (Λ1, k, k∥, r) =

2k|l|(−1)
l−|l|
2

iπV1

∑
Q∈Λ∗

1

e−i(k∥+Q)r∥

η∫
0e−iπ2

dt t2|l|−1e
1

2t2

·
∞∫

−∞

dr′(r′2 + y2)
|l|
2 e−

k2(r′2+y2)t2

2
−i(k∥+Q)r′

(
r′ − i sign(l)y√

r′2 + y2

)|l|

,

(3.34)

where the exponential eilφr′−r⊥ is rewritten such that the factor (r′2 + y2)
|l|
2 is eliminated.

Thus, similar to the role previously taken by the associated Legendre polynomials the
angles φr′−r⊥ and, where applicable, θr′−r⊥ are useful to simplify the expressions.

Next, we take the binomial expansion of (r′ − i sign(l)y)|l| to then integrate over the
variable r′. This integral evaluates to [64, Eq. 6.462 2.]

∞∫
−∞

dr′ r′se−
kr′2t2

2 e−i(k∥+Q)r′ =
s!
√
2π

kt
e−

β2

2t2

(
− iβ

kt2

)s ⌊ s
2⌋∑

n=0

(
− t2

2β2

)n
(s− 2n)!n!

. (3.35)
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Inserting this result back into the expression for D
(1)
l,2 (Λ1, k, k∥, r), we get

D
(1)
l,2 (Λ1, k, k∥, r) =

2il
√
2

i
√
πkV1

∑
Q∈Λ∗

1

e−i(k∥+Q)r∥

·
η∫

0e−iπ2

dt e
γ2

2t2
− k2y2t2

2

|l|∑
s=0

⌊ s
2⌋∑

n=0

t2(|l|−1−s+n)(−1)s+n |l|!(− sign(l)ky)|l|−sβs−2n

(s− 2n)!n!2n(|l| − s)!

(3.36)

including two finite sums that come from the binomial expansion and the integration
result. Then, after reordering the sums and substituting the summation variables, we
obtain

D
(1)
l,2 (Λ1, k, k∥, r) =

∑
Q∈Λ∗

1

e−i(k∥+Q)r∥

|l|∑
n=0

S2,ln,1(k, β, y)γ
2n−1

∞∫
e−iπ γ2

2η2

du

u
u

1
2
−ne−u+

(γky)2

4u ,

(3.37)
with the factor

S2,ln,1(k, β, y) =
(−i)l2√
πV1k

min(2n,|l|)∑
s=n

(− sign(l)ky)2n−sβ|l|−s

2s(2n− s)!(|l| − s)!(s− n)!
(3.38)

completing the set of lattice summations for all combination of d and d′. Here, the sum
over s includes all values in the given range. The integral appearing is similar to the one
for the d = 3, d′ = 2 case. Therefore, this part of the result seems to depend on the
difference d− d′. The factor

S2,ln,1(k, β, 0) =

{
2(−i)l√
πV1k

β|l|−2n

4nn!(|l|−2n)! n ≤
⌊
|l|
2

⌋
0 otherwise

(3.39)

can, again, be significantly simplified for the case of y = 0.
This result concludes the derivations of suitable expressions for the lattice sum defined

in Eq. (3.1). All cases of lattice dimension d′ for spherical and cylindrical solutions have
been converted to exponentially convergent expressions in the presence of complex unit
cells, i.e., for r⊥ ̸= 0. Furthermore, these expressions reproduce the correct previously
known results for r⊥ = 0 [54]. The real space sum is given in Eqs. (3.8) and (3.9).
The reciprocal space sum requires the specialized expressions for the different lattices in
Eqs. (3.20), (3.25), (3.31), and (3.37), and the correction for the omission of the origin is
given in Eq. (3.13). The validation of all expressions is mainly covered in the following
section.

We want to shortly discuss the general structure of the reciprocal space expressions.
Besides the sum over reciprocal lattice vector Q, the phase factor e−i(k∥+Q)r∥ , and in-
dividual prefactors, an integral over u appears, which has a form that mostly depends
on d − d′. For r⊥ = 0, this integral is essentially the incomplete gamma function. The
first argument of the incomplete gamma function depends on the value of d − d′: For
d − d′ = 0, the argument is 1, for d − d′ = 1 it is in {1

2 ,−
1
2 ,−

3
2 , . . . }, and for d − d′ = 2

it is in {0,−1,−2, . . . } [53]. This structure is maintained for r⊥ ̸= 0, but the integral is
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3 Lattice sums with complex unit cells for solutions of the Helmholtz equation

now given by Eq. (3.6). Moreover, for d ̸= d′, two finite sums appear. In comparison to
the conventional approach presented in Section 2.3, we can avoid the process of taking a
limit here and, hence, also the difficulties arising at that step for lattices with complex
unit cells.

3.4 Assessment of the derived expressions
We perform several tests to assess our expressions. First, we cover the general accuracy
and the achieved speed improvement in Subsection 3.4.1. Second, we discuss the influence
of the splitting parameter η between the real and reciprocal space sums on the accuracy
and convergence of the individual contributions in Subsection 3.4.2 to arrive at the choice
that is finally implemented in treams.

3.4.1 Validation of the results by direct sum comparisons
To assess the accuracy of the derived expressions from the previous section, we compare
them to the direct sum. Depending on the difference d−d′, the direct sum converges with
different speed. As a first example, we analyze the expression and, equally important for
such complicated mathematical functions, their implementation in treams for the following
parameters. In the d = 3 case, we choose l = 2 and m = 0, and in the d = 2 case we set
m = 0. Note that for these parameters, there is also a contribution to the lattice sums if
we had r⊥ = 0: The d = 3 and d′ = 2 case has non-zero values for l + m even and the
d = 3 and d′ = 1 case has non-zero values for m = 0. Thus, these first examples test if the
inclusion of non-zero r⊥ changes the non-zero values correctly by setting the shift vectors
to r = 0.2x̂+ 0.1ŷ + 0.3ẑ for d = 3 and r = 0.1x̂+ 0.3ŷ for d = 2. The tangential wave
vector components are chosen to be k∥ = 0.3 for the d′ = 1 lattices, k∥ = −0.1x̂ + 0.2ŷ
for the d′ = 2 lattices, and k∥ = 0.3x̂ − 0.1ŷ + 0.2ẑ for the d′ = 3 lattice. In all cases,
we use the common variables k = 3 and lattice pitch a = 1.9. We use a square or cubic
lattice geometry for the two- or three-dimensional lattices, respectively.

In Fig. 3.3, we show the result for the direct sum and the result obtained with the
expressions derived above. Each panel shows one combination of d and d′. The first row,
panels (a) to (c), shows the d = 3 results and the second row the d = 2 results. The
columns correspond to d′ ∈ {1, 2, 3} from left to right. We plot for each lattice sum its
real part, its imaginary part, and the relative differences of the value obtained with our
approach to the direct sum. For the direct summation, we include an increasing number
of lattice points starting with the closest lattice points. For lattices with d′ > 1 there
are different methods to generalize the distance, e.g., one can use the Euler distance√

|r1|2 + |r2|2 or the Chebyshev distance max(|r1|, |r2|) between two points r1 and r2.
We choose the latter due to a better convergence behavior [54]. Each layer increases the
Chebyshev distance by the value of the lattice pitch.

Panel (a) shows the result for d = 3 and d′ = 1, where the direct sum converges to
the same value as our expressions. However, during the calculation, the result is highly
oscillatory, such that the blue lines appear as solid areas. With 105 layers, the relative
difference is slightly above 10−4. For d′ = 2 the convergence is slightly slower as shown
in panel (b), even though a maximal number of 1000 layers corresponds to approximately
4 · 106 lattice points considered in the sum, so an order of magnitude more than in the
d′ = 1 case. This highlights how the use of Ewald’s method improves the speed of the
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Figure 3.3: Comparison of the direct evaluation and the exponentially fast converging
expressions. The panels correspond the five combinations of lattices with
dimension d′ and spatial dimensions d shown in Fig. 3.1. It can be seen that
the exponentially fast convergence shown as orange line matches with the
highly oscillatory result of the direct sum in the limiting case of a very larger
layer number. Panel (f) shows timings for the exponentially fast sums (orange)
and the direct sums (blue). Note that times are presented on logarithmic
scale. Adapted with permission from [P4]. Copyright 2023 American Physical
Society.
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Figure 3.4: Comparison of the direct evaluation with oscillation averaging and the ex-
ponentially fast converging expressions. The panels show to the same five
combinations of lattices with dimension d′ and spatial dimensions d with the
same parameters as in Fig. 3.3. However, the direct sum is averaged such that
the oscillations around the true value are reduced. Reprinted with permission
from [P4]. Copyright 2023 American Physical Society.

calculation especially for higher-dimensional lattices. Even with this high number of
particles included, the lattice difference between the two approaches is with 10−2 greater
than for the d′ = 1 case. Panel (c) shows the case d′ = 3, which only exists for the
spherical solutions. Here, we include up to 300 layers which means approximately 2 · 108
lattice points considered in the sum. However, the convergence of the direct approach
is not even visible, clearly illustrating the usefulness of the Ewald method. We observe,
however, that the result obtained with the direct sum oscillates around the value from
the expression we derived.

The second row, containing panels (d) and (e), shows the results for the cylindrical
solutions, i.e., d = 2. The sum for d′ = 1 in panel (d) converges with a similar speed as
the d = 3 and d′ = 2 case in panel (b), achieving also a relative difference of about 10−2.
Thus, the convergence of the sums seem to be closely linked to the difference d− d′. This
can also be seen in panel (e), where – analogous to panel (c) – the direct approach does
not lead to a visible convergence, but to an oscillation around the result obtained with
Ewald’s method.

Panel (f) shows the computation times for the direct sums in comparison to our expres-
sions for the five presented cases. Our expressions compute the final value on a timescale
of several milliseconds. Moreover, the time to compute the result shows no strong depen-
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Figure 3.5: Comparison of direct evaluation and the exponentially fast converging expres-
sions for large shifts perpendicular to the lattice. The panels show the three
cases, where d > d′. Reprinted with permission from [P4]. Copyright 2023
American Physical Society.

dence on the lattice dimensions. This behavior is in strong contrast to the direct sums.
Here, the dependence on the lattice dimension is quite strong. It scales, unsurprisingly,
similarly as the number of terms that are required for a convergent solution. Even for
one-dimensional lattices, where the individual sum takes about 100ms, our approach is
two orders of magnitude faster. This improvement of the computation time gets even
stronger for higher-dimensional lattices. In the case of a three-dimensional lattice, the
direct sum needs several minutes to be computed.

A common and simple method to improve the direct summation approach is the aver-
aging of the sum for different numbers of layers. The idea behind that approach is to
compensate for the oscillation around the true value of the sum. The same sums, but with
the use of such an averaging scheme are shown in Fig. 3.4. In panels (a), (b), and (d),
where d > d′ and we already had convergent sums previously, we find that this approach
leads to relative differences approximately an order of magnitude smaller than the ones
shown in Fig. 3.3. However, we still need to include a large number of lattice points to
achieve this result.

In panels (c) and (e), the improvement due to the averaging is even more substantial
in comparison to the simpler approach in Fig. 3.3. Now, these sums converge in the first
place and we have a relative difference in the order of 10−2. Overall, our studies show
that for all five different combinations of d and d′ our approach leads to the same results
as could be obtained with the direct approach, but with a dramatically improved speed.

Next, we turn to combinations of l and m in combination with larger values of |r⊥|.
Therefore, these studies are only done for the cases with d > d′, because |r⊥| is not
present for d = d′. In the case d = 3, we use l = 2 and m = 1. The shift vector is
r = 1.5x̂+ 1.1ŷ + 0.3ẑ for d′ = 2 and r = 0.2x̂+ 0.1ŷ + 1.3ẑ for d′ = 1. For the chosen
values of l and m the sum would be zero for r⊥ = 0. Thus, this example particularly
tests the correct result for lattices with complex unit cells. In the case d = 2 and d′ = 1
we use m = 2. The shift perpendicular to the lattice is also increased in this case to
r = 0.1x̂ + 1.3ŷ. The remaining parameters of k, k∥, and the lattice geometry stay the
same as for Fig. 3.3.
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3 Lattice sums with complex unit cells for solutions of the Helmholtz equation

Figure 3.5 shows that the direct sum and the exponentially convergent expressions
result in the same values. For the chosen parameters, the result for d = 3 and d′ = 1 as
shown in panel (a) matches very good. We observe that the direct sum also converges
very quickly and the relative difference gets below 10−7. In the other two cases, the
convergence is slower and it only reaches accuracies of approximately 10−3 and 10−1 in
panel (b), showing the d = 3 and d′ = 2 case, and panel (c), showing the d = 2 and d′ = 1
case, respectively.

3.4.2 Choice of the splitting parameter
As the only freely settable argument of the expressions we derived, the value of the splitting
parameter η assumes an important role in the numerical evaluation of the lattice sums. Its
influence mainly appears in two ways: From an analytical perspective, an optimal choice
of the splitting parameter means a quick convergence of both sums, but from a numerical
perspective, suboptimal convergence has to be balanced with the stability of summing
floating point numbers in a computer. We first want to motivate the analytically optimal
choice of the splitting parameter. Then, we show that this choice has to be modified to
ensure convergence in the actual implementation.

In principle, the addition of the real and reciprocal space sums should always result
in the correct total value independently of η. Even more, the limits of η → 0 and
η → ∞ should result in the original sum and its complete Fourier transform, respectively.
However, the full sums in real and reciprocal space have poor convergence. So, the correct
choice of the splitting parameter ensures a quick convergence of both sums that appear
when using Ewald’s method. This mathematically optimal choice for square or cubic
lattices can be found in [54, 68, 69]. While we do not rigorously cover the derivation here,
it can be motivated by a simple argument. The exponential decay of the real space sum
in Eqs. (3.8) and (3.9) is primarily a result of the factor

e−
k2(r+R)2η2

2 (3.40)

in Eq. (3.6). Likewise, for the reciprocal space expression of Eqs. (3.20), (3.25), (3.31),
and (3.37), the exponential factor dominating the convergence is

e
−

(k∥+Q)2

2k2η2 . (3.41)

A simple balancing of the two exponentials leads to

η =
1

k

√
|k∥ +Q|
|r +R|

, (3.42)

where, subsequently, we neglect r and k∥. We can justify this approximation, if these
vectors lie in the Wigner-Seitz cell or first Brillouin zone, respectively, because then their
length is small in comparison to the real and reciprocal lattice vectors R and Q for an
increasing number of layers in the sum. Next, we need the relevant length scales for these
vectors. In a one-dimensional, square, or cubic lattice, the obvious choice is the lattice
pitch a and the reciprocal lattice pitch 2π

a . Hence, we arrive at an optimal choice of [68–71]

η =

√
2π

ka
. (3.43)
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(a) (b)

(c) (d)

Figure 3.6: Convergence of the real and reciprocal lattice sums depending on wave number
k and convergence parameter η. We show the absolute value of the contribu-
tions D(1) and D(2) of the lattice sum in panels (a) and (b) on a logarithmic
scale. The gray areas correspond to a zero value in the double precision float-
ing point calculation. The chosen example is the lattice sum for cylindrical
waves in a one-dimensional lattice with m = 2, k∥ = 0.5, the lattice pitch
a = 1, and r = 0.1x̂− 0.2ŷ. The dashed line indicates the values of η =

√
2π
ka

and the dotted line indicates η =
√
2π
8 . Panel (c) shows the sum of the two

sums to the total value and shows the relative difference to the reference value
computed with direct summation. Panel (d) shows the logarithmic ratio of
reciprocal and real space sum. Areas were either of the values in the ratio are
zero appear as gray.
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Different methods to generalize this result to non-square or non-cubic lattices have been
employed [70–73]. For simplicity, we use the square or cube root of the unit cell area or
volume in d′ = 2 and d′ = 3, respectively, to obtain the splitting value used in treams.

It is known that this analytically optimal choice of η needs to be modified for large wave
numbers k in comparison to the lattice pitch [68, 69, 71]. We illustrate the dependence of
the real sum, the reciprocal sum, and the total result on k and η in Fig. 3.6. As example,
we choose the sum of cylindrical waves on a one-dimensional lattice with pitch a = 1.
The further parameters are m = 2, k∥ = 0.5, and r = 0.1x̂ − 0.2ŷ. The reciprocal space
sum in panel (a) has very small values for small values of k and η. The value zero in
the double precision floating point calculation is shown on the logarithmic scale as gray
color. However, at larger values of k but values of η <

√
2π
8 , which is indicated by a dotted

line, the sum reaches very large absolute values. We further indicate the mathematically
optimal value of Eq. (3.43) by a dashed line. Panel (b) shows the behavior of the real
space lattice sum. Here, large values of k or η result in vanishing lattice sums. Also,
the real space sum results in large values for η <

√
2π
8 . Panel (c) shows a comparison

of the value obtained with the exponentially convergent expressions with the direct sum.
Over a large region of k and η, our approach results in a good agreement. The main
discrepancy is exactly in the area of η <

√
2π
8 , where the large values of the real and

reciprocal sum either do not cancel each other to arrive at the correct value or do not
converge at all. The only other large differences appear as vertical lines. Here, the lattice
sums diverge. This divergence appears directly in the reciprocal space sum as vanishing
values of γ. In panel (d), we compare the relative size of reciprocal and real space sum on
a logarithmic scale. The reciprocal space contribution dominates in the red region and the
real space contribution in the blue region. In the gray areas either the real or reciprocal
sum have a vanishing value. The choice of η =

√
2π
ka as indicated by the dashed line

balances these contributions and, thus, avoids numerical inaccuracies due to the floating
point computation. Moreover, it ensures equally quick convergence of both contributions.
Thus, this is the default choice for η implemented in treams. Deviating from this value
either leads to many contributing terms to be considered in the real or reciprocal lattice
sum. In the limiting cases, we either arrive at the initial direct sum of Eq. (3.1) or at the
pure reciprocal space sum. However, we restrict η in treams to values above the dashed
line, to avoid the region of very large individual contributions of the real and reciprocal
space sum.

We test the choice to follow Eq. (3.43) for the value of η except for large wave numbers
k, where we set it to be constant for the other expressions. These studies are shown
with one example each in Fig. 3.7. In two and three dimensions, we set the lattice to be
hexagonal, with a =

√
V2 = 1 and a = 3

√
V3 = 1. Moreover, we set m = 2 for d = 2

and l = 2, m = 0 for d = 3. The shift vectors are r = 0.1x̂ − 0.2ŷ for d = 2 and
r = 0.1x̂− 0.2ŷ+0.2ẑ for d = 3. Lastly, the wave vectors are k∥ = 0.5, k∥ = 0.5x̂+0.5ŷ,
and k∥ = 0.1x̂+0.2ŷ+0.3ẑ for d′ = 1, 2, 3, respectively. In all four panels of Fig. 3.7, we
can observe the very large sum values for small η that, however, is limited to values below
the dotted line. Furthermore, we find that in all cases the choice of Eq. (3.43) indeed
leads to comparable contributions of the real and reciprocal space sums.

With this study on the splitting parameter, we conclude the chapter. Starting from the
definition of the lattice sum in Eq. (3.1) and the integral representations of the Hankel
and spherical Hankel functions in Eqs. (3.3) and (3.4), we split the integral into the real
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(a)

(b)

(c)

(d)

Figure 3.7: Convergence of the real and reciprocal lattice sums depending on wave number
k and convergence parameter η for different lattice dimensions. Similar to
panels (a), (b), and (d) in Fig. 3.6, we show the individual contributions of
the reciprocal sum, the real sums, and their logarithmic ratio for the remaining
cases of lattice sums. These are the two-dimensional sum of cylindrical waves
in panel (a) and the one-, two- and, three-dimensional sums of spherical waves
in panels (b), (c), and (d).
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3 Lattice sums with complex unit cells for solutions of the Helmholtz equation

space sum and the contribution to be converted to reciprocal space. For the integral in
the real space sum, we find a relatively simple recurrence relation similar to previously
known results [50]. For the transformation of the long-range part to a reciprocal space
sum, we introduce a second integral over the real space coordinate. We can transform
this integral such that it can be solved directly. This is in contrast to the process of
taking a limit that is used in the conventional approach. Avoiding the limit also avoids
the appearance of other more complicated expressions [57]. Thereby, we can apply our
approach to all lattice dimensions, especially in the presence of complex unit cells. We
test the derived results by comparison with the direct summation approach, which verifies
the accuracy and also shows their usefulness in avoiding the slow convergence and highly
oscillatory behavior of the direct sum. We finish with an analysis of the correct choice of
the splitting parameters balancing the convergence of the reciprocal space and the real
space part of the derived expressions.
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4 The program treams
In Chapter 2, we introduced several solution sets to Maxwell’s equations and their usage
for solving electromagnetic scattering with the T- and S-matrix methods, where we focused
in particular on the presence of periodic boundary conditions. In Chapter 3, we derived
efficient expressions for the lattice sums, which occur in the solution of such periodic
structures. These results are the foundation of the novel Python program treams, which is
available open-source. We present the program also in a published manuscript describing
its core features and functionalities [S1]. The software treams is written completely from
scratch. However, a preceding program, written in Matlab, was developed by Achim
Groner, which implements functions for single layers of two-dimensional lattices of achiral
scatterers with simple unit cells [74].

This chapter is structured as follows. Section 4.1 gives an overview of the design goals
and core features of treams. The structure of treams and the implementation of the main
functionality are described in Section 4.2. We show examples to validate and examine
computations with treams in Section 4.3. These examples include self-consistency tests
of the results obtained by using different basis sets and direct comparisons of the electric
field values with independent results from simulations made with finite-element methods.
We use the latter to also benchmark the speed of treams. In Section 4.4, we give an
overview of the actions taken to assess and maintain the code quality.

4.1 Overview of the program
In essence, treams performs scattering calculations based on the T-matrix method for
vector spherical and cylindrical waves. The interaction can be calculated with the trans-
lation coefficients for finite clusters of particles or for clusters with periodic boundaries.
In the case of periodic boundary conditions, we use the highly specialized and efficient
methods from Chapter 3. treams includes the analytical computation of T-matrices for
multi-layered spheres and infinitely long cylinders. For scatterers with other shapes, an
interface to load their data into treams is implemented. treams supports T-matrices with-
out restricting the multipolar order and it can handle them in the local and global basis.
All methods are written for the commonly used parity basis and for the helicity basis. The
latter greatly simplifies the computations in the presence of chiral matter in the scatterers
or the embedding medium.

Before starting to describe treams in detail, we shortly outline other important T-matrix
codes. While not being an exhaustive treatment, we use this overview to highlight some
of the unique features of treams. A comprehensive list of scattering software is main-
tained online [75, 76]. The software NFM-DS is aimed at the calculation of scattering
from non-spherical particles, especially with high aspect ratios, by complementing the
extended boundary condition method with discrete sources [77, 78]. These particles can
also be chiral. Furthermore, the scattering from clusters of these particles can be calcu-
lated. treams, however, is less aimed at computing the T-matrices but implementing the
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calculation of their interaction with, in particular, periodic boundary conditions. Another
program for non-spherical particles and clusters thereof is FASTMM [79], which combines
the T-matrix method with a volume integration method to compute the T-matrix of par-
ticles whose shape deviates strongly from spheres. Smuthi is another solver for clusters
of particles [80]. While the previous publications focus on the calculation of the T-matrix
for non-spherical particles, the focus of Smuthi lies on the correct calculation of their
interaction in close proximity. An intermediate plane wave expansion is used to overcome
the limitation of the overlapping circumscribing spheres. treams does not implement finite
clusters of particles on an interface, but it still benefits from using plane wave expansions
in two-dimensional periodic system. Thereby, as we demonstrate in Section 4.3, it is pos-
sible to place objects, such as disks, on top of a planar film. CELES [81] implements fast
methods for clusters of spheres. While being restricted to spheres, the iterative solution
approach can handle very large clusters and is further accelerated by using GPU computa-
tion with the Cuda-framework. TERMS [82], also provides several algorithms for clusters
to solve the interaction problem with high numerical stability and is able to import exter-
nally calculated T-matrices. Obviously the biggest difference to all these programs is the
inclusion of the periodic boundary conditions in treams. Furthermore, treams is adapted
to treat chiral media in the scatterers as well as chiral embedding media.

The programs MULTEM [39] and MULTEM 2 [83] implement periodic boundary con-
ditions for two-dimensional arrays. Moreover, the plane wave basis and the S-matrix
formulation is used to describe arrays efficiently. However, theses programs are limited
to spheres as scatterers and simple unit cells. The recently published coed QPMS [57]
also implements periodic boundary conditions for T-matrices in one-, two-, and three-
dimensional arrays in the parity basis. However, efficient expressions for one-dimensional
arrays in complex unit cells are missing. Furthermore, we provide more flexibility for the
type of structures by also using T-matrices for vector cylindrical waves.

The program treams is intended to provide a framework around various T-matrix meth-
ods, with the principal goals to be: easy to use, fast, and comprehensive. Hence, the
specialized methods for T-matrix calculations become more accessible for researchers in
natural sciences and engineering. Especially with the implementation of the intricate lat-
tice sums, the program or parts of it can be reused for other purposes than those shown
here, e.g., the T-matrix method can also be used for acoustic scattering [84].

Although the usability depends also on the cumulated design choices throughout the
development, we took several general decisions to improve the success chances. The first
step toward an easy to use program is its accessibility. We decided to publish treams open-
source and free of charge under the permissive MIT license. Thus, treams is available
to a large audience. Moreover, we use the programming language Python. Programs
written in Python are wide-spread in the scientific community, such that many researchers
are familiar with Python code and, furthermore, many high-quality introductions and
tutorials as well as other infrastructure such as integrated development environments
exist. By having treams added to the Python Package Index (https://project.pypi.
org/treams), it is simple to install. To simplify the usage of the program, we provide
an extensive documentation that is available online (https://tfp-photonics.github.
io/treams), which also includes many example scripts with step-by-step explanations.
We also use the platform Github (https://github.com/tfp-photonics/treams) as a
convenient and established way to interact with issues raised by users.
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4.2 Main components and their implementation

Scientific and numeric computing in Python is often associated with the packages
numpy [85] and scipy [86]. These packages provide many functions for linear algebra, anal-
ysis, and statistics. Since potential users might already be familiar with these packages
and their interfaces and especially with numpy-arrays, which are used to represent vec-
tors, matrices, and other higher-order tensors, we include treams into this well-established
framework. These packages are also known to be considerably faster than pure Python due
to many functionalities being implemented as compiled code or by interfacing to compiled
external libraries. Since we want to achieve comparable speeds, we choose to also imple-
ment the computationally expensive functions as compiled code. Hence, a fair amount
of treams is implemented in Cython, which, essentially, is a Python-like language, that
gets converted to C code. By using Cython, we can also easily use functions from scipy,
which offers a Cython-interface to some of its functions besides their Python-interface.
The addition of compiled parts to the code base can be a hurdle for users. However,
as we explain in Section 4.4, we automatically compile new versions and distribute the
pre-compiled Python-packages for all three major operating systems, Microsoft Windows,
Apple macOS, and Linux using the Python Package Index. Therefore, we assume that the
benefits, in particular the better integration into the numpy- and scipy-framework and
the faster execution times, outweigh the additional complexity of adding non-interpreted
code to treams.

Besides its core feature of T-matrix calculations with periodic boundary conditions, we
aim to provide a comprehensive package for general applications of the T-matrix and S-
matrix methods. By using both, parity and helicity modes, as well as the three different
basis sets introduced in Subsection 2.1.3, we can cover a wide range of scattering scenarios.
Moreover, we implement many transformations within these basis sets, such as rotations
or translations. The most important functions are given in Subsection 2.2.3. Furthermore,
we include functions to evaluate common quantities such as the extinction, scattering, and
absorption cross-sections [23, 31], transmittance and reflectance [39], chirality, or duality
breaking [P7]. The structure of all these functions and their modularization, such that
parts of treams can also be easily reused, is outlined in the following section.

4.2 Main components and their implementation

A coarse overview of the general structure of treams is shown in Fig. 4.1. The widest pillar,
representing the core of treams’ functionality, contains classes, methods, and functions,
which are directly associated with the scattering processes. Two further pillars provide
support to complete the functionality of treams: First, classes and methods that define
and manipulate ancillary physical quantities with respect to the scattering process and,
second, further functions, for example, to import externally computed T-matrices and,
also, export them. The main pillar is further subdivided into three levels. The higher
levels include a higher complexity of its data structures, which are intended to take work
off from the user. However, they come with a slight penalty on execution times. For the
lower levels, these data structures are not present, which improves speed and also gives
maximal freedom to the user but with less safety nets in the form of additional checks on
the given argument. In Subsection 4.2.1, we discuss the underlying low-level functions,
and in Subsection 4.2.2, we give an overview how these functions are interfaced by the
high-level classes for a more comfortable use.

63



4 The program treams

Figure 4.1: General structure of treams. The functionality of treams can be divided into
three pillars. The main part of the code, corresponding to the widest pillar,
are functions, classes, and methods that are directly related to the scattering
calculations. The second pillar contains classes that are used to describe phys-
ical parameters, such as the material parameters or the lattice geometry. The
last pillar completes the functionality with, for example, functions to load and
store T-matrices. Adapted from [S1].

4.2.1 Low-level functions

At the base of treams, we have two subpackages, i.e., parts of the program that are
independent from the rest of the code and, therefore, can be reused conveniently. The
first subpackage, lattice, contains the lattice sums. In there, we mostly implement the
mathematical functions as described in Chapter 3. The second package is named special
in analogy to the module special in scipy. It contains mathematical functions, e.g., an
implementation of the incomplete gamma function for integer and half integer order and
complex argument. The next higher level bundles these functions and lattice sums into
several modules for applications specific for electromagnetic scattering calculations: they
are divided into the categories sw, cw, and pw for functions related to vector spherical,
cylindrical, and plane waves, respectively. Finally, we include a fourth package, named
coeffs, containing functions to calculate the T-matrix coefficients for multi-layered chiral
spheres and cylinders given in Subsection 2.2.1 as well as the Fresnel coefficients for the
scattering of plane waves at planar interfaces, which are the entries of the S-matrix [P2].

All these functions are implemented in Cython. Most of them are wrapped for the user
as so-called numpy-universal functions. These functions are tailored for arguments and re-
sults in the form of arrays. Hence, they are useful for computational methods using array-
like data structures, such as the T- or S-matrices. The individual functions in Cython
are implemented for a single argument. Once they are wrapped to be a numpy-universal
function, the wrapper takes care of iterating over the input and output arguments. The
benefits of implementing the functions that way include faster execution speeds, reusing
of an established behavior for array-like arguments, and the automatic support of further
methods. The faster execution times are achieved by performing all steps in compiled
code in comparison to the typically interpreted pure Python. The established behavior
for array-like arguments is, for example, the possibility to call a function with arrays as
argument to apply the function to all elements. This behavior is further enhanced by the
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Table 4.1: Categories of functions included in the subpackage special

Category Example functions Reference
Common functions sphercial_hankel1, wignerd, incgamma
Coordinate conversions car2sph, car2cyl Appendix B
Vector cylindrical waves vsw_M, vsw_N Eq. (2.17)
Vector plane waves vpw_M, vpw_N Eq. (2.15)
Vector spherical harmonics vsh_X, vsh_Y, vsh_Z Eq. (2.19)
Vector spherical waves vcw_M, vcw_N Eq. (2.23)

so-called broadcasting, which is a well-defined set of rules on how to combine multiple
array-like arguments. We use this property in Listing 4.2. Lastly, the further methods
include, e.g., the reduction along an array dimension.

The subpackage lattice contains implementations of the expressions derived in the
previous chapter. More precisely, the real space sums in Eqs. (3.8) and (3.9) are con-
tained, with specialized functions for the case that the simplifications of Table 3.1 can
be applied, and the reciprocal space sums in Eqs. (3.20), (3.25), (3.31), and (3.37) also
with their possible simplifications. The functions for the reciprocal space sum also con-
tain the correction for the omission of the origin from Eq. (3.13). The lattice sums can
be conveniently obtained with the two functions lattice.lsumcw and lattice.lsumsw.
They automatically dispatch, based on the given arguments, to the correct lattice sum.
Moreover, the automatic choice of the parameter η based on the results of Subsection 3.4.2
is implemented in this function. Finally, the subpackage also includes functions for the
direct summation lattice.dsumcw and lattice.dsumsw for reference.

The subpackage special contains mathematical functions that are not directly imple-
mented in scipy or numpy. An overview of the different function categories is given in
Table 4.1. A large part of the implemented functions are the basis sets for the vector
spherical, cylindrical, and plane waves. To implement these basis sets and to provide
implementations of mathematical functions for other parts of treams, we added, e.g., the
spherical Hankel functions, the Wigner-D symbols, or the incomplete gamma function.
Some functions, such as the spherical Hankel functions, can be derived from existing func-
tions, in that case the Hankel functions. Other custom implementations are necessary
to include complex arguments, e.g., for the spherical harmonics. The incomplete gamma
function and the integral Eq. (3.6) are implemented by their recursion formulas. More
complicated recursions are used for the Wigner-D matrix elements [87] and the Wigner-3j
symbols [88], which are necessary for the translations and rotations of vector spherical
waves. A final set of functions include the coordinate and vector transformation between
the three used coordinate systems (Appendix B).

Based on these functions, we add the modules pw, cw, and sw. While the subpack-
ages special and lattice contain mathematical functions, these modules are intended
to combine them for their simplified use in scattering calculations. The module names
separate the functions for the different basis sets. An overview of all functions is given
in Table 4.2. Many of the transformations defined in Subsection 2.2.3 are included in
these modules. Finally, we add the module coeffs. It contains functions to compute the
analytically known coefficients for multi-layered chiral spheres and cylinders, as well as
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Table 4.2: Overview of the functions in the modules pw, sw, sw, and coeffs

Module Function name Purpose Equation
pw to_cw Basis change (2.73)

to_sw Basis change (2.72)
translate Translation (2.71)
permute_xyz Permute axis labels (K.4)

cw periodic_to_pw Basis change (2.84)
rotate Rotation (2.69)
to_sw Basis change (2.74)
translate Translation (2.51) and (2.54)
translate_periodic Translation with periodicity

sw periodic_to_cw Basis change (2.73)
periodic_to_pw Basis change (2.80)
rotate Rotation (2.70)
translate Translation (2.50) and (2.53)
translate_periodic Translation with periodicity

coeffs mie T-matrices of spheres (2.45)
mie_cyl T-matrices of cylinders (2.45)
fresnel S-matrices for planar interfaces

the Fresnel coefficients for planar interfaces between chiral media. Due to the inclusion of
chiral material parameters, they are implemented using the helicity basis. However, they
can easily be transformed to the parity basis, when only achiral media are involved.

As an example for these functions, we can calculate the translation coefficient in helicity
basis along the spherical coordinates kr = 1.2, θ = π

2 , and φ = π by

Listing 4.1: Calculation of a translation coefficient
1 >>> import numpy as np
2 >>> import treams
3 >>> treams.sw.translate(2, -2, 1, 1, -1, 1, 1.2, np.pi / 2, np.pi)
4 (0.40412456738474173-2.826374554471906j)

from the mode with l = 1, m = −1 to the mode l = 2, m = −2 for positive helicity.
However, by using the broadcasting feature, we can easily create, e.g., the full translation
matrix for the dipolar modes

Listing 4.2: Calculation of a translation coefficient
1 >>> ms = np.array([-1, 0, 1, -1, 0, 1])
2 >>> pols = np.array([0, 1, 0, 1, 0, 1)
3 >>> treams.sw.translate(
4 ... 1,
5 ... ms[:, None],
6 ... pols[:, None],
7 ... 1,
8 ... ms,
9 ... pols,

10 ... 1.2,
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11 ... np.pi / 2,
12 ... np.pi,
13 ...)
14 array([[ 0.79832728-0.86918395j, 0. +0.j ,
15 -0.06488414+1.70165747j, 0. +0.j ,
16 1.09071564+0.36622959j, 0. +0.j ],
17 [ 0. +0.j , 0.73344315+0.83247352j,
18 0. +0.j , -1.09071564-0.36622959j,
19 0. +0.j , -1.09071564-0.36622959j],
20 [-0.06488414+1.70165747j, 0. +0.j ,
21 0.79832728-0.86918395j, 0. +0.j ,
22 1.09071564+0.36622959j, 0. +0.j ],
23 [ 0. +0.j , -1.09071564-0.36622959j,
24 0. +0.j , 0.79832728-0.86918395j,
25 0. +0.j , -0.06488414+1.70165747j],
26 [ 1.09071564+0.36622959j, 0. +0.j ,
27 1.09071564+0.36622959j, 0. +0.j ,
28 0.73344315+0.83247352j, 0. +0.j ],
29 [ 0. +0.j , -1.09071564-0.36622959j,
30 0. +0.j , -0.06488414+1.70165747j,
31 0. +0.j , 0.79832728-0.86918395j]])

by using lists of all possible combinations of m and the two polarizations, which are
indexed with 0 and 1. In the result array, we can observe the non-mixing of modes
with opposite helicity, which result in the entries containing the value zero. Most of the
additional functions in Table 4.2 behave similarly when called with scalar or array-like
arguments.

We conclude the overview of the implemented low-level functions here and refer to the
online documentation of all individual functions (https://tfp-photonics/github.io/
treams). In summary, these functions are implementations of the mathematical expres-
sions derived in the previous chapters. They form the basis of the high-level classes and
their methods.

4.2.2 High-level classes and methods
While the low-level functions, in principle, cover all mathematical capabilities of treams
using only them can be tedious and error prone. Thus, we add another interface to
simplify their use. For the final T-matrix and S-matrix classes, we combine two concepts:
We introduce the class PhysicsArray that is intended to create “physics-informed” numpy-
arrays and we define a class Operator to encode most of the transformations that can
be applied to expansions in vector spherical, cylindrical, and plan wave basis sets and,
thereby, T- and S-matrices. The class PhysicsArray keeps track of physical quantities
associated with it, such as the wave number associated with the coefficients it holds.
The class Operator is intended to replicate the way in which operators are symbolically
used in mathematical text. These concepts are accompanied by a range of additional
data structures for, e.g., basis sets, material parameters, or lattices. In the following, we
first explain the class PhysicsArray, and we shortly summarize the ancillary classes for
lattices, wave numbers, basis sets, and material parameters. Then, we introduce the class
Operators and, finally, show how the different parts work together to create the classes
for the T- and S-matrices.
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Figure 4.2: Inheritance and composition of AnnotatedArray and PhysicsArray. The
class AnnotatedArray is an implementation of custom arrays that are inter-
operable with numpy-arrays, which is achieved through inheriting from
numpy.lib.mixinis.NDArrayOperatorsMixin and further customizations for
using numpy-universal functions on them. It keeps track of data annotations
in a sequence of dictionaries AnnotationDict with one dictionary per array
dimension. The child class PhysicsArray restricts the annotations to physical
parameters as given in Table 4.3.

Two of the relevant concepts used to structure the relation of the different classes is
inheritance and composition, which we show with diagrams using simplified elements of
the unified modeling language [89], e.g., in Fig. 4.2. The different classes are shown as
labeled boxes. Inheritance is used to create a new class based on a more general parent
class. This relation is shown as an arrow pointing from the child class to the parent
class. We use this, for example, to define the class PhysicsArray as a child of the general
AnnotatedArray. Composition is used, when an instance of one class has an instance
of another class as attribute. The owning class is shown with a diamond at the line
connecting the composed class.

The class PhysicsArray

The class PhysicsArray implements functionality to have “physics-informed” numpy-
arrays. This means that the class keeps track of relevant physical parameters and checks
for compliant values, if one, for example, adds or multiplies two arrays. Such a check
is useful in cases such as the transformation of the local to the global T-matrix as writ-
ten in Eq. (2.57): Each row and column of the matrices C

(1)
0,j must refer to the correct

values of l and m, the polarization, and the position. treams does not implement re-
strictions on the modes and their order, useful to change them, e.g., based on symmetry
considerations [57]. Thus, that data needs to be annotated to the matrix. Figure 4.2
shows the inheritance structure of the class PhysicsArray. We start with the class
numpy.lib.mixins.NDArrayOperatorsMixin, which is provided by numpy. It imple-
ments an interface to obtain comparison operations and arithmetic functions that behave
identical to numpy-arrays. The class AnnotatedArray is used to provide the functionality
of keeping track of annotated data. The annotated data is simply collected in a dictionary
AnnotationDict. Since each dimension of an AnnotatedArray can hold its own set of an-
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notations, we collect these dictionaries in a sequence. Now, we can use these annotations,
as shown in the following example.

Listing 4.3: Example for using objects of the class AnnotatedArray
1 >>> m = AnnotatedArray([[1, 2], [3, 4]], x=("a", "b"))
2 >>> v = AnnotatedArray([5, 6], x="b")
3 >>> res = m @ v
4 >>> print(res)
5 [17 35]
6 >>> res.x
7 'a'

We create a two-by-two matrix with an annotations called x, holding the values "a" and
"b" for its first and second dimension. We multiply it by a vector with annotation x =
"b" for its only dimension. For the matrix multiplication, the annotations of the matrix’
second dimension and the vector match and the result is a vector, where the annotations
x is "a". If the annotations do not match, a warning is given:

Listing 4.4: Example of a warning for non-matching annotations
1 >>> v = AnnotatedArray([5, 6], x="b")
2 >>> w = AnnotatedArray([7, 8], x="c")
3 >>> res = v + w
4 AnnotationWarning: at index 0: overwriting key 'x'
5 >>> print(res)
6 [12 14]

However, by default the computation is still performed. We can also combine a numpy-
array and an AnnotatedArray

Listing 4.5: Example for using AnnotatedArray with numpy-arrays
1 >>> AnnotatedArray([5, 6], x="b") * np.array([-1, 2])
2 AnnotatedArray(
3 [-5, 12],
4 AnnotationSequence(AnnotationDict({'x': 'b'})),
5 )

The numpy-array is treated like an AnnotatedArray without annotations. The lack of a
correspondingly named annotation does not lead to a warning, only contradicting values.
In practice, these warnings are intended to notify the user about non-matching parameters,
e.g., matrices which are computed for different wave numbers.

The class AnnotatedArray is not specifically aimed at arrays containing physics-related
quantities. This property is implemented in the child class PhysicsArray, where the num-
ber of annotations is limited to a fixed set with well-defined properties. Those properties
are listed in Table 4.3. The same parameters are also used as arguments to use the class
Operators. While a detailed discussion of these operators follows below, we want to
remark that they are also composed with the class PhysicsArray after being wrapped
as OperatorAttribute, as shown in Fig. 4.3. The type of these parameters is restricted
to the seven quantities listed in Table 4.3: The basis set definition in basis, especially
the information about which modes are included, the definition of the lattice geometry in
lattice, the wave vector parallel to this lattice in kpar, and the definition of the material
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Table 4.3: Parameters used in treams for annotating objects of the class PhysicsArray

Name Description Type
basis Definition of the basis set and its modes BasisSet
k0 Vacuum wave number float
kpar Tangential wave vector WaveVector
lattice Lattice definition Lattice
material Material parameters Material
modetype Mode type specification string
poltype Polarization (parity or helicity modes) string

Figure 4.3: Compostion of PhysicsArray and its child classes. The class PhysicsArray
stores a numpy-array and combines it with a range of physical parameters
as listed in Table 4.3. As shown, four of these parameters, which have cus-
tom classes, are part of the class PhysicsArray by composition. Further-
more, they are used for a range of Operators that are composed with the
PhysicsArray wrapped as OperatorAttribute. The three specialized classes
TMatrix, TMatrixC, and SMatrix are derived from PhysicsArray. They are
the main objects to describe the scattering in the vector spherical, cylindrical,
and plane wave basis in treams. To completely describe a stratified structure,
we combine four S-matrices (see Eq. (2.92)), stored in the class SMatrices.
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Figure 4.4: Inheritance structure of different types of basis sets. All basis sets in treams
inherit from the base class BasisSet. These are the classes PlaneWaveBasis,
CylindricalWaveBasis, and SphericalWaveBasis, corresponding to the so-
lutions defined in Subsection 2.1.3. The plane wave basis is further subdivided
to separate the two cases, if the plane wave is defined by the normalized wave
vector k̂ or by the two components of k∥.

parameters in material are defined in custom classes to ensure they obey physical restric-
tions. The vacuum wave number is physically a real-valued number, so represented by a
floating point number in k0. Lastly, the polarization type poltype specifies the use of
the helicity or parity modes and the type of mode used, e.g., to differentiate the singular
or regular vector spherical waves, is defined in modetype.

A short overview of the ancillary classes is given below.
Basis sets The class BasisSet contains the indices of the modes and defines their order.
Thereby, they can be used to index each individual entry of a vector. For example, for
spherical waves those are the values of l, m, and an index for the polarization. Moreover,
a local basis can be defined, where additionally an index for the position of the wave’s
origin is used.

Listing 4.6: Example for spherical wave basis definitions
1 >>> treams.SphericalWaveBasis.default(2)
2 SphericalWaveBasis(
3 pidx=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0],
4 l=[1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2],
5 m=[-1 -1 0 0 1 1 -2 -2 -1 -1 0 0 1 1 2 2],
6 pol=[1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0],
7 positions=[[0. 0. 0.]],
8 )
9 >>> positions = [[0, 0, 1.5], [0, 0, -1.5]]

10 >>> treams.SphericalWaveBasis.default(1, 2, positions)
11 SphericalWaveBasis(
12 pidx=[0 0 0 0 0 0 1 1 1 1 1 1],
13 l=[1 1 1 1 1 1 1 1 1 1 1 1],
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14 m=[-1 -1 0 0 1 1 -1 -1 0 0 1 1],
15 pol=[1 0 1 0 1 0 1 0 1 0 1 0],
16 positions=[[ 0. 0. 1.5], [ 0. 0. -1.5]],
17 )

The example above shows both cases. First, the spherical wave basis up to the multi-
pole order lmax = 2. Second, the spherical wave basis for only dipoles, but in a local
description as indicated by giving two different positions. The base class BasisSet is the
parent class for different implementations as shown in Fig. 4.4. They are the classes for
SphericalWaveBasis, which is used in the example above, and the CylindricalWaveBasis.
The third child class PlaneWaveBasis is further subdivided into two separate classes
PlaneWaveBasisByUnitVector and PlaneWaveBasisByComponent to separate the case
of using k̂ from using k∥ to index different modes as described in Subsection 2.1.3.

Material parameters The material parameters are stored as relative permittivity, rela-
tive permeability, and the chirality parameter. The class Material is used for convenience,
to quickly convert between the description of a medium with the aforementioned param-
eters and other frequently used descriptions, most importantly, the refractive index and
the relative impedance.

Lattice The lattice geometry is stored in the class Lattice. It can be used for one-, two-,
and three-dimensional lattices. Similar to the case of material parameters, it is mainly
used to conveniently create frequently used geometries, e.g., hexagonal lattices.

Listing 4.7: Example use of the class Lattice
1 >>> treams.Lattice.hexagonal(2)
2 Lattice([[2. 0. ]
3 [1. 1.73205081]], alignment='xy')
4 >>> treams.Lattice.hexagonal(2) | treams.Lattice(3, "z")
5 Lattice([[2. 0. 0. ]
6 [1. 1.73205081 0. ]
7 [0. 0. 3. ]], alignment='xyz')

As shown, it is also possible to combine multiple lattices in a simple manner, which is
convenient, if a structure is built in a step-by-step process from multiple lower dimensional
lattices, for example as we do later in the example of Fig. 4.8.

Wave vector The wave vector components tangential to the lattice are stored in a
separate class to keep track of which Cartesian components of the wave are fixed.

The class Operators

The seven parameters from Table 4.4 are also important for using the class Operator.
The core idea of the class Operator is to translate the way how transformations, such as
the rotation of a matrix M, are written mathematically, namely

Rz(φ)MR−1
z (φ) , (4.1)

to a similar representation in a script using treams. In Eq. (4.1), Rz(φ) is the abstract
representation of the rotation operator for a rotation by the angle φ about the z-axis.
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Table 4.4: Operators in treams
Name Description

Rotate Rotation coefficients for the different basis sets according to
Eqs. (2.66), (2.69), and (2.70)

Translate Translation coefficient along a specified vector, as given in
Eqs. (2.53), (2.54), and (2.71)

Permute Permutation of the labels of the Cartesian axis (see Appendix K)

Expand Expand the description of the electric field in a different basis
or at a different position

ExpandLattice Similar to Expand but assuming periodic boundary conditions
ChangePoltype Switch between parity and helicity basis

FieldOperator Parent class to further operators evaluating the fields, e.g.,
the electric field, at specified coordinates

However, the concrete action of the operator depends on the contents of the matrix M
and related physical parameters. For example, the abstract operator behaves differently,
if the matrix contains coefficients for an expansion in the spherical, cylindrical, or plane
wave basis, where we need to apply either Eq. (2.66), Eq. (2.69), or Eq. (2.70). Thus, the
rotation depends on the definition of the class BasisSet for the matrix M. This property
can be defined in the annotations of the class PhysicsArray. However, to reduce the
dependence of the class Operator on implementation details, such as the annotations
added to the PhysicsArray, we simply require a corresponding attribute. For rotations,
this is the basis set stored in basis. Then, we can use, e.g.,

Listing 4.8: Example use of the class Operator
1 >>> mat = treams.PhysicsArray(np.eye(6))
2 >>> mat.basis = treams.SphericalWaveBasis.default(1)
3 >>> rot = treams.Rotate(np.pi)
4 >>> rot @ mat @ rot.inv
5 PhysicsArray(
6 ...

to write Eq. (4.1) using treams. Note the similarity of line 4 with Eq. (4.1). We omit
giving the whole output of the function in the listings here. If we directly need the
transformation matrix for a particular basis, we can use

Listing 4.9: Direct evaluation of the operator
1 >>> rot(basis=treams.SphericalWaveBasis.default(1))
2 PhysicsArray(
3 ...

For the class PhysicsArray, we also provide the operators wrapped as OperatorAttribute,
which can be used as follows:

Listing 4.10: The class Operator as attribute
1 >>> mat.rotate(np.pi/3)
2 PhysicsArray(
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3 ...

This is equivalent to the example in Listing 4.8.
Besides the rotation operator, which we use in the example above, we implement also

other common transformations. We list these operators in Table 4.4. The operator
Translate translates the field, which is described by the coefficients in a particular basis,
along a given vector. The classes Expand and ExpandLattice include the expansion of a
given field in a different basis or at a different position, either without or with periodic
boundary conditions. The class ChangePoltype can be used to change between parity
and helicity basis. The operator Permute has a special role in treams. Due to the use
of different alignments of the lattices with respect to the Cartesian axes, it can become
necessary to permute the labels of the axes. The most important case, when this becomes
necessary, are cylindrical waves in a one-dimensional array. The definition of the cylindri-
cal waves that is used results in a periodicity in the z-direction and the one-dimensional
lattice of the cylindrical waves is conventionally placed along the x-axis. However, we
usually describe systems with periodicity in two dimensions with the lattice vectors lying
in the x-y-plane. Hence, the labels must be permuted according to the procedure detailed
in Appendix K. The last class of operators are used to evaluate the field expansion at
specified coordinates r to obtain the electric E(r; k0), the magnetic field H(r; k0), the
displacement field D(r; k0), the magnetic flux density B(r; k0), or the Beltrami fields
G(r; k0) or F(r; k0) (see Appendix D).

The combination of the properties of an AnnotatedArray for the predefined set of
parameters as listed in Table 4.3 with the operators of Table 4.4 makes the PhysicsArray
“physics-informed”. The PhysicsArray is used in treams to store the data, e.g., of a plane
wave and its expansion into a spherical wave basis.

Listing 4.11: Plane wave expansion in spherical waves
1 >>> plw = treams.plane_wave([2, 3, 6], 1, k0=7, material=(1,))
2 >>> treams.Expand(treams.SphericalWaveBasis.default(1)) @ plw
3 PhysicsArray(
4 [ 3.64911124e-01-0.24327408j, 0.00000000e+00+0.j ,
5 -1.36932032e-16-2.23626979j, 0.00000000e+00+0.j ,
6 -4.74384461e+00-3.16256307j, 0.00000000e+00+0.j ],
7 basis=SphericalWaveBasis(
8 pidx=[0 0 0 0 0 0],
9 l=[1 1 1 1 1 1],

10 m=[-1 -1 0 0 1 1],
11 pol=[1 0 1 0 1 0],
12 positions=[[0. 0. 0.]],
13 ),
14 k0=7.0,
15 material=Material(1, 1, 0),
16 modetype='regular',
17 poltype='helicity',
18 )

The created plane wave has the defined wave number and material parameters. A suitable
basis set for the given wave vector and polarization is created automatically. In line 2, we
can then simply use the operator Expand to expand the plane wave in the spherical wave
basis.
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The classes TMatrix and SMatrices

The classes TMatrix, TMatrixC, and SMatrix, that provide more specialized functionality,
are derived form the PhysicsArray, as shown in Fig. 4.3. Due to all the preparatory
work, where the class AnnotatedArray is responsible for warnings, the PhysicsArray is
responsible for the validation of the parameters in Table 4.3, and since the operators in
Table 4.4 are implementing most transformations, we can keep the definition of the class
TMatrix shorter. It includes mostly specialized functions, e.g., to compute the T-matrix
of a sphere. In the example below, we compute T-matrices for a sphere, a dimer of two
spheres, and a two-dimensional array. We start by calculating the T-matrix for a chiral
sphere with TMatrix.sphere in a chiral embedding.

Listing 4.12: T-matrix of a sphere and its average scattering and extinction cross-section
1 >>> lmax = 3
2 >>> k0 = 2 * np.pi
3 >>> radius = 0.3
4 >>> kpar = [0, 0]
5 >>> mat = treams.Material(
6 ... epsilon=4 + 0.1j,
7 ... mu=1 + 0.1j,
8 ... kappa=0.5 + 0.05j,
9 ... )

10 >>> embedding = treams.Material(epsilon=1.2, kappa=0.1)
11 >>> sphere = treams.TMatrix.sphere(lmax, k0, radius, [mat, embedding])
12 >>> sphere.xs_sca_avg , sphere.xs_ext_avg
13 (0.5523124393002752, 0.8150074754351935)

We compute in line 12, as example, the rotation and polarization average of the scattering
and extinction cross-section [23]. We can also define a plane wave and calculate the cross-
sections for a particular illumination, for which we use the method TMatrix.xs.

Listing 4.13: Polarization-dependent cross-section of a chiral sphere
1 >>> minus = treams.plane_wave(kpar, 0, k0=k0, material=embedding)
2 >>> plus = treams.plane_wave(kpar, 1, k0=k0, material=embedding)
3 >>> sphere.xs(plus)
4 (0.7416545069275621, 1.1262954452171179)
5 >>> sphere.xs(minus)
6 (0.36297037167298807, 0.5037195056532691)

We first define plane waves with helicity plus and minus. The cross-sections calculated for
both helicities in lines 4 and 6 give the average values above. The T-matrix of clusters of
scatterers can be computed with TMatrix.cluster. We proceed our example by building
a dimer structure made from two spheres.

Listing 4.14: Local T-matrix of a dimer
1 >>> positions = [[0, 0, -0.4], [0, 0, 0.4]]
2 >>> dimer = treams.TMatrix.cluster([sphere, sphere], positions)
3 >>> dimer_local = dimer.interaction.solve()
4 >>> dimer_local.xs(plus)
5 (0.8063538295616933, 1.361945075463769)
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In line 2, we create the block-diagonal matrix Tdiag introduced in Eq. (2.52). After solving
the interaction problem in line 3, we obtain the T-matrix in the local basis. We compute
the cross-sections for a positive helicity plane wave illumination directly in the local basis.
We can also compute the cross-sections in the global basis, however, we need a higher
multipolar order. Here, we expand the field in a global basis with maximal multipolar
order 10 by using the correspondingly named operator.

Listing 4.15: Global T-matrix of a dimer
1 >>> dimer_global = dimer_local.expand(
2 ... treams.SphericalWaveBasis.default(lmax=10)
3 ... )
4 >>> dimer_global.xs(plus)
5 (0.806332465067321, 1.3620440875499482)

As we see, the results for the local and global basis match to an extraordinary degree.
Other transformations, such as rotations are equally possible. As example we use the
operator in the form similar to Eq. (4.1).

Listing 4.16: Rotation of a T-matrix
1 >>> rot = treams.Rotate(0, np.pi / 2)
2 >>> treams.TMatrix(rot @ dimer_global @ rot.inv).xs(plus)
3 (1.4537126271649905, 2.249697110473253)

The dimer is perpendicular to the illumination now and has, therefore, different cross-
sections. All these operations are similarly available for cylindrical T-matrices.

We can also compute the S-matrices for an array of those particles. A single object of the
class SMatrix holds one of the blocks defined in Eq. (2.92) and derives from PhysicsArray.
To fully describe a layer, we need four S-matrices with matching parameters. These are
stored in the class SMatrices, which is composed of exactly four S-matrices. We can
perform the transition from the T-matrix, where we solve now the interaction in a given
lattice, by using Eq. (2.59).

Listing 4.17: Square array of chiral spheres
1 >>> square_lat = treams.Lattice.square(0.8)
2 >>> square = treams.SMatrices.from_array(
3 ... sphere.latticeinteraction.solve(square_lat , kpar),
4 ... plus.basis
5 ... )
6 >>> square.tr(plus)
7 (0.10257705043268761, 0.049281191151479914)
8 >>> square.tr(minus)
9 (0.6712023070848361, 0.04928119115147981)

This step is done in lines 2 to 5. The transmittance and reflectance can now be computed
directly from the S-matrices.

Although this example is mostly showing how the different classes can be used and
interact, it also shows a counter-intuitive result for chiral structures. Note that the re-
flectance of the array, consisting of chiral spheres in a chiral embedding medium is exactly
the same for plane waves with positive and negative helicity as we see in the second entry
in lines 7 and 9. This result can be explained by using the symmetry of the lattice and
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scatterers on the one hand and reciprocity on the other hand. The reflected wave from
a non-diffracting structure with a at least three-fold discrete rotational symmetry, when
illuminated with a plane wave of well-defined helicity under normal incidence, flips its
helicity [90]. Thus, a plane wave with positive helicity has a reflected wave of pure neg-
ative helicity. By using reciprocity we find, that the opposite case of an incoming wave
with negative helicity and a purely positive helicity reflected wave must have the same
reflection coefficient.

This explanation can be tested numerically by using a rectangular lattice. Then, the
rotational symmetry of the lattice is only two-fold instead of the four-fold rotational
symmetry of the square lattice. Therefore, we expect different reflectance values.

Listing 4.18: Rectangular array of chiral spheres
1 >>> rectangular_lat = treams.Lattice.rectangular(0.81, 0.79)
2 >>> rectangular = treams.SMatrices.from_array(
3 ... sphere.latticeinteraction.solve(rectangular_lat , kpar),
4 ... plus.basis
5 ... )
6 >>> rectangular.tr(plus)
7 (0.11170611461145395, 0.055004933348812145)
8 >>> rectangular.tr(minus)
9 (0.6646890023481664, 0.05074200890256325)

Indeed, we find, that this is the case. With this short step-by-step example, we conclude
this section. The results for more complex examples are provided below and in Chapter 5.
As for the low-level functionality, the high-level classes and methods are also documented
online in more detail and with many additional examples.

4.3 Validation and benchmark
The program treams contains many functions and methods. The verification that each of
them returns the correct result for the range of allowed argument values is a large part of
the programming work. Furthermore, we need to validate that the different components
also correctly interact with each other. On the level of the individual functions, treams
contains a large testing suite, as we outline in Section 4.4, as part of the quality assessment
and maintenance. Here, we want to provide examples, that include full simulations. These
validation studies can be separated in two groups. First, we perform self-consistency
checks for the various basis sets used in treams. Second, we perform direct comparisons
with full wave solvers.

As self-consistency tests, we simulate periodic structures of spheres and infinitely long
cylinders, because we can compute their scattering response analytically. Each of the
examples has a complex unit cell to verify the correctness of the lattice sums and their
use in the computation of the translation coefficients. Another important aspect of this
simulation are the transitions between the different basis sets implemented in treams.
The result of the computations are shown in Fig. 4.5. Each of the panels shows a three-
dimensional graphics of the scattering structure in gray to indicate the simulated system
and three mutually perpendicular cut planes through it. These planes show the real part
of one selected component of the calculated electric field. Also, we indicate the transition
between basis sets by black dotted lines. By showing the real part of the electric field,
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(a) (b)

Figure 4.5: Electric field in example lattice structures with complex unit cells combining
multiple domains of validity. We show one selected component of the electric
field in each of the two examples. Within different regions of the structure
different basis sets are used. Therefore, the data is spliced from different
parts. The domains, where different expansions are used, are indicated by
dashed lines. Panel (a) shows four unit cells of a two-dimensional lattice. Two
spheres in each unit cell requires the expression for complex unit cells from
Chapter 3. Between the spheres we use the spherical wave basis. Thus, the
computation of each field value involves a lattice sum. In the region above and
below the lattice, we can use the vector plane wave basis (see Fig. 2.5). Panel
(b) shows two unit cells of a two-dimensional lattice in the x-z-plane. Each
unit cell contains one cylinder and one chain of spheres. To solve the multi-
scattering equations for this structure, we use the one-dimensional lattice sums
for vector spherical waves for the chain, then, we use vector cylindrical waves
to couple the cylinders and the chain in the second lattice direction, namely
along the y-direction. Finally, we can compute the field values in front of and
behind this structure using vector plane waves. Adapted from [S1].
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an error or deviation in the definition of the complex electric field’s phase would become
visible.

Panel (a) shows a two-dimensional lattice containing two spheres with relative permit-
tivity ϵ = −16 + 0.4i. In total four adjacent unit cells of the square lattice with pitch
900 nm are shown and the domain above and below the lattice. The spheres have the radii
225 nm and 195 nm and are separated by the distance vector r = (240x̂+300ŷ+360ẑ) nm.
They are illuminated by a plane wave with the wave vector k = 2π

600 nm(sin(π6 ) cos(
2π
3 )x̂+

sin(π6 ) sin(
2π
3 )ŷ + cos(π6 )ẑ) and TE polarization. We solve the scattering problem using

the T-matrices in the spherical wave basis up to order lmax = 4. To compute the fields
in the region between the spheres, we use the spherical wave basis. Thus, each point at
which the field is evaluated requires a separate lattice sum. The electric field component
is continuous at the boundary of two neighboring unit cells, confirming the correct im-
plementation of the lattice sums, especially considering the vector k∥, which defines the
phase relation of the unit cells. The region above and below this lattice can be described
in the plane wave basis, which is much more efficient for the evaluation of the fields. At
the transition from the domain, where we use the spherical wave basis, to the domain,
where we use the plane wave basis, there is also no discontinuity visible.

Panel (b) shows examples using the one-dimensional lattice sums of spherical waves and
one-dimensional lattice sums of cylindrical waves to, in total, describe a two-dimensional
periodic structure. Instead of the alignment of the lattice with the x-y-plane, we align
it here with the x-z-plane. The calculation of the interaction is, essentially, a three step
procedure. First, we consider the spheres in the spherical wave basis. In this basis, we
calculate their interaction, which involves the one-dimensional lattice sum along the z-axis.
The result can be converted to a cylindrical T-matrix. Second, we use the cylindrical
T-matrix of the chain and the cylindrical T-matrix for the infinitely long cylinder to
calculate their interaction in the cylindrical wave basis. Finally, similar to the procedure
for panel (a), we transition to a plane wave description in front of and behind the lattice.
Analogously to the computation of the interaction, we also divide the computational
domain to calculate the values of the electric field. Between the spheres, only the spherical
wave description is valid. Next, between the cylinder and the chain, we use the cylindrical
wave basis. These separations are again indicated by dotted lines. Panel (b) also shows
no discontinuity between different domains.

While the tests of the calculation in the various different basis sets confirms the con-
sistency of the different approaches within treams, we also test it against an independent
solution. Moreover, some aspects of the complete functionality of treams are not covered so
far. This includes, the use of a non-zero chirality parameter, T-matrices for non-spherical
particles, and the implementation of planar interfaces, which will all be covered in the
next tests.

These comparison tests are also intended to benchmark the speed of calculating so-
lutions with treams in comparison to general purpose solvers for Maxwell’s equations.
Therefore, we also report the computation times. Note, however, that the examples com-
pare mostly the field values close to the scatterers, which is a computationally expensive
operation in treams for values inside a lattice, because it essentially means, going from
the efficient description in an analytical basis set to numerical values. Nevertheless, the
computation of the electric field between particles in a lattice benefits greatly from the
fast evaluation of the lattice sums as shown in Fig. 3.3 panel (f).
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(a) (b)

Figure 4.6: Comparison of treams with finite-element calculation for a one-dimensional
lattice in the spherical wave basis. Panel (a) shows the field intensity obtained
with the finite-element method on a cut plane through the unit cell, which is
periodically repeated in the z-direction. The unit cell contains a cylinder,
which appears as square, and a chiral sphere. Panel (b) shows the relative
difference between the finite-element method result and treams. The objects
are shown as gray areas and the circumscribing spheres are indicated in black.

We compute the T-matrix for the disk, that is used in the examples, with the software
JCMsuite, which uses the finite-element method to compute the electromagnetic scatter-
ing. The computation of the T-matrix for a single frequency takes 40 s for the solution
up to the multipole order lmax = 3. The computation in the case of rotationally sym-
metric particles can be done using a two-dimensional domain. Thus, the solution can be
computed with a very fine mesh in comparison to full three-dimensional lattices. The
disk has a radius of 100 nm and a height of 200 nm. The relative permittivity is set to
ϵ = 11. The T-matrix of the sphere is computed to the order lmax = 4 for a chiral sphere
with relative permittivity ϵ = 3.5+0.1i, relative permeability µ = 2.5+0.1i, and chirality
parameter κ = 0.1 + 0.05i. The structure is illuminated by a circularly polarized plane
wave with wave vector k = 2π

600 nm(
√

3
8 x̂+

√
3
8 ŷ− 1

2 ẑ) and positive helicity. The reference
simulations are done using the finite-element method with the commercially available pro-
gram COMSOL Multiphysics. We use a custom alteration of the constitutive relations
to include chiral material parameters in COMSOL Multiphysics [91]. We compare the
absolute values of the electric fields at each point in the domain, normalized to their sum
to get a measure of their relative accuracy.

Figure 4.6 shows the example of a one-dimensional lattice. The cylinder and the sphere
form a complex unit cell, which is periodic in the z-direction with the pitch 650 nm. Panel
(a) shows the electric field intensity in the unit cell in the x-z-plane computed with COM-
SOL Multiphysics. The relative difference to treams is shown in panel (b). In the region
between the particles, we need to compute the fields using the lattice sums. Although
the lattice sums are accelerated considerably in comparison to a direct approach, this is
computationally expensive in comparison to solving the problem. At the left and right
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Table 4.5: Comparison of COMSOL Multiphysics and treams computation timings. All
times are given in seconds. The computation of the T-matrix with JCMsuite
took 40 s.

Figure COMSOL Multiphysics treams
solution field evaluation

4.6 211 0.5 160
4.7 115 0.2 37
4.8 291 2.0 194

border of panel (b), we can use the cylindrical wave expansion. Besides being considerably
faster, this also improves the region of convergence. The black circles show the sizes of
the circumscribing spheres of both objects. For the cylinder, the regions below and, espe-
cially, above it show deviations between both approaches. This is an expected behavior,
because in that region neither the expansion in spherical nor in cylindrical waves is valid.
However, on the sides of the cylinder, we benefit from the cylindrical wave expansion not
only by the faster computation times but also from the altered computational domains
(see Fig. 2.5). We also find a region in the bottom right corner of panel (b) which shows
a larger relative difference between both approaches. However, this deviation is likely an
artifact of the low field values, which are visible in panel (a).

The solution with COMSOL Multiphysics takes, as given in Table 4.5, 211 s, the solution
with treams only 0.5 s. Even if the time for computing the T-matrix is included, the total
time for the calculation is smaller. Furthermore, each variation of the lattice constant
or illumination direction or polarization does not require a recalculation of the T-matrix.
However, the evaluation of the electric field takes comparably long with 160 s, because
for each value in the near filed the lattice sums have to be computed. For regions, where
the one-dimensional chain can be described by cylindrical waves, this limitation does not
apply.

In the example of Fig. 4.7, we use the same cylinder and sphere, but in a two-dimensional
array that is placed in the x-y-plane. We simulate a honeycomb lattice with the cylinders
on one hexagonal sublattice with lattice constant 650 nm and the spheres on the second
hexagonal sublattice of the same lattice constant. Both sublattices are shifted with respect
to each other by 650 nm√

3
. The centers of the scatterers are at different heights, thus,

requiring again lattice sums for r⊥ ̸= 0. The scatterers are placed on a slab with relative
permittivity ϵ = 6 + 0.1i, µ = 1.5 + 0.1i, and κ = 0.1 + 0.08i. Its thickness is 100 nm.

Figure 4.7 shows the intensity in panel (a) and the relative difference of COMSOL
Multiphysics and treams in panel (b). We find a very good agreement between both
methods, besides the region within the circumscribing sphere of the cylinder. We note
that the region below the cylinder immediately on top of the slab is represented correctly.
This is a result of the transition to a plane wave expansion for computing the coupling
of the honeycomb lattice with the slab. Thereby, we can benefit from the different region
of convergence. This approach is used for finite clusters also in Smuthi [80]. The spot
around x = −100 nm and z = −200 nm is likely a result of the low overall intensity that
causes the large relative difference. The computation times show a similar pattern as for
the first example.
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(a) (b)

Figure 4.7: Comparison of treams with finite-element calculation for a two-dimensional
lattice using the spherical wave basis. Panel (a) shows the field intensity
obtained with the finite-element method on a cut plane through the unit cell,
which is periodically repeated in the x-direction. The unit cell contains a
cylinder, which appears as square, and a chiral sphere. Panel (b) shows the
relative difference between the finite-element method result and treams. The
objects are shown as gray areas and the circumscribing spheres are indicated
in black.

(a) (b)

Figure 4.8: Comparison of treams with finite-element calculation for a one-dimensional
lattice using the cylindrical wave basis. Panel (a) shows the field intensity
obtained with the finite-element method on a cut plane through the unit cell,
which is periodically repeated in the y-direction. The unit cell contains a chain
of cylinders of finite length, which appears as the smaller circle, and a chiral
infinitely long cylinder. Panel (b) shows the relative difference between the
finite-element method result and treams. The objects are shown as gray areas
and the circumscribing cylinders are indicated in black.
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The last example, shown in Fig. 4.8, is aimed at testing one-dimensional lattices in the
cylindrical wave basis. Instead of the sphere used in the previous examples, we have an
infinitely long cylinder with 150 nm radius. The other object in the unit cell is a chain
of the cylinder with 100 nm radius. The pitch of that chain is 350 nm. We place the
infinitely long cylinder and the chain next to each other with a distance of 325 nm on the
same slab as in the example for Fig. 4.7. This unit cell is repeated periodically with a
lattice constant of 800 nm.

This example tests, in particular, the computation of the coefficients for the scattering
from the chiral cylinder, the one-dimensional lattice sums, and the permutation of the
axes’ labels. The coupling of the cylinders is computed in the x-z-plane. Then, to include
the slab, we change the labels such that it lies in the x-y-plane. We find a good agreement
of treams with the finite-element method result and also similar computation times as in
the previous examples.

We conclude that treams can solve scattering problems highly efficiently. The combina-
tion of the different basis sets is possible seamlessly. Also, we find very good agreement
with results computed with the finite-element method, even for complicated systems that
also include chiral matter. The solution times using treams are drastically reduced by
roughly two orders of magnitude in comparison to finite-element methods.

4.4 Quality assessment and maintenance

As a program with a wide range of functions and intended for a wide audience of scientific
users, we implemented multiple measures to track, maintain, and, in perspective, further
improve the code quality and the infrastructure around the code. These measures make
treams also compliant with the FAIR data principles: findable, accessible, interoperable,
and reusable [92].

The full software development was assisted using the version control software git. Thus,
all changes and additions to the code during the development are tracked. The repository
is published on the widely used platform Github (https://github.com/tfp-photonics/
treams). Moreover, we use continuous integration to automatically compile new versions
and package them to be uploaded to the Python Package Index. An article describing
treams is submitted to a dedicated journal for scientific code for publication [S1]. Addi-
tionally, the program is listed on the platform https://helmholtz.software/software/
treams for research software. Thereby, we increase the findability of treams.

To improve the accessibility of the code, we have an extensive dedicated documenta-
tion of the software (https://tfp-photonics/github.io/treams). Besides installation
instructions and dedicated information for developers, the documentation includes many
examples and a detailed reference describing its functions and classes. The documenta-
tion uses the software sphinx to extract the documentation from the source code. It is
automatically updated for newer versions with continuous integration. The publication of
the full source code under the permissive MIT license makes treams also legally accessible.

The implementation of treams, which is described in detail in this chapter, is intended
to be interoperable, e.g., by using the interfaces for arrays provided by numpy and by also
implementing many functions as numpy-universal functions. Also, the modularization of
treams encourages reusing functions, and the MIT license permits such reuse.
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In addition to these measures that provide treams under the FAIR data principles to
the scientific community and the public, we further use several approaches to ensure the
quality and correctness of the code. These include foremost the many implemented tests
for the functions and classes of treams using the package pytest. Continuous integration
methods are used to automatically run these tests for each change of the code and report
the coverage, i.e., the percentage of executed code lines by the test.

In conclusion, this chapter gave an overview of treams. We provided an outline of
the general considerations in the development of treams in Section 4.1. We describe the
structure and different components in detail in Section 4.2. While the low-level functions
provide full control of the computations to users, another interface to the functionality
of treams is provided with several different classes. These include the class Operator
to represent transformations, such as those defined mathematically in Subsection 2.2.3,
the class PhysicsArray to combine the numerical array with physical properties, and
the classes TMatrix, TMatrixC, and SMatrices derived from PhysicsArray to provide
specialized objects for T-matrices with a spherical or cylindrical wave basis and S-matrices
for the plane wave basis. We showed the properties of these classes in several examples.
In Section 4.3, we studied the results computed by treams and, thus, validated the correct
implementation and integration of its various parts. Finally, we outlined the actions taken
to maintain and improve the quality of the code and its compliance with the FAIR data
principles, such that treams is useful for its audience.
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5 Applications of the T-matrix and plane
wave methods

This chapter is dedicated to highlight several applications of the T-matrix, S-matrix, and
transfer matrix methods described in the previous chapters to highlight the capabilities
of treams. These applications emerged in close collaboration with different researchers as
stated in the beginning of each section. The first example, in Section 5.1, discusses the
enhancement of the optical rotation, which is one measurable quantity to characterize the
interaction of light with chiral materials. Another related quantity is circular dichroism.
We investigate structures to enhance optical rotation based on ideas previously used to
investigate circular dichrosim. In Section 5.2, we calculate the focal spot properties in
different setups for multi-photon direct laser writing [93, 94]. Section 5.3 describes how
treams can be used as part of a multi-scale modeling workflow for molecular arrays, and
Section 5.4 shows the application of treams to homogenize photonic materials by assigning
effective material parameters to them.

5.1 Helicity preserving cavities for optical rotation
enhancement

The first application revolves around the enhancement of optical rotation in helicity pre-
serving cavities. This work was published in [P2]. The enhancement of the optical rotation
is an extension to the work on similar helicity preserving cavities designed to enhance the
circular dichroism [P6, P15].

The starting point for that research was the appreciation that many molecules, espe-
cially for biochemical or pharmaceutical applications [95], are geometrically chiral. Thus,
it is not possible to superimpose such a molecule with its mirror image by any means of
rotation or translation. Molecules that have the same chemical structure but differ in their
chirality, sometimes also denoted as handedness, are called enantiomers. The distinction
of enantiomers is important for many applications because biochemical interactions often
show a preference for one particular enantiomer due to the lock-and-key principle [96], for
example, in enzymatic reactions. However, chemical reactions are usually not sensitive
to chirality, so they cannot be used to distinguish different enantiomers, neither during
synthesis nor in sensor applications. A possibility to distinguish different enantiomers
are methods based on special physical properties, such as their interaction with chiral
light. We can exploit that the geometrical chirality usually also results in an electro-
magnetic chirality, even though, there is not a one-to-one mapping of geometrical and
electromagnetic chirality [P7, 97]. The electromagnetic chirality measures how different
the interaction of light with opposite helicity with the molecule is. We can measure the
electromagnetic chirality by probing the response of the molecules to light of well-defined
helicity. For a dense arrangement of molecules, the electromagnetic chirality manifests
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in the phenomenological description using material parameters as a non-zero value for
the chirality parameter κ(k0). The main challenge in measuring the chirality parameter
is its small value [98, 99]. For example, the vibronic resonances of molecules are in the
infrared frequency range [99]. The size of the molecule, however, is much smaller than
the wavelength leading to small chiral effects.

The chirality parameter can be measured by its influence on circular dichroism and
optical rotation. Both quantities, circular dichroism and optical rotation, are phenomena
to express the different interaction of matter with light of opposite helicity. The circular
dichroism is the differential absorption of positive and negative helicity waves, and the
optical rotation is the difference in phase accumulation. The optical rotation is usually
observed as the rotation of the polarization plane of a linearly polarized plane wave, which
is a superposition of positive and negative helicity plane waves. For the purpose of this
investigation, we define the optical rotation as

OR =
1

2
arg(E+ · E∗

−) , (5.1)

where E± is the complex electric field coefficient after passing through the chiral medium
for positive or negative helicity plane waves. In a homogeneous medium, we can associate
the optical rotation with the difference in the real part and the circular dichroism with
the difference in the imaginary part of the wave numbers

√
ϵ(k0)µ(k0)±κ(k0) for light of

positive and negative helicity. Thus, they probe essentially the real and imaginary part
of the chirality parameter κ(k0), analogously to the relation of phase accumulation and
absorption with the real and imaginary part of the wave number in an achiral medium.
However, the circular dichroism or optical rotation signal and, thereby, the chirality pa-
rameter is often not measured in a homogeneous bulk but by using additional structures,
that enhance the signal. Hence, the assumption of a homogeneous medium is no longer
applicable, and a simple mapping of optical rotation and circular dichroism on the one
hand and real and imaginary part of the chirality parameter κ(k0) on the other hand is
not possible. As already stated in Subsection 2.1.2, the real and imaginary part of κ(k0)
are related by Kramers-Kronig relations, so the full spectrum of the dispersive media
parameter contains redundant information. However, the real and reciprocal part of the
complex κ(k0) in a finite range of frequencies contain complementary information and
can, thus, be combined to provide a more complete picture of the measured sample.

In our model, we assume the molecules are in a solution that surrounds the chirality
signal enhancing structures. The purpose of this structure is the creation of a strong
chirality density to increase the sensitivity on the chirality parameter. We define the
chirality by

C(r; k0) =
|G+(r; k0)|2 − |G−(r; k0)|2

C0
, (5.2)

where we normalize the value to the chirality density of a circularly polarized plane wave
C0 in vacuum. Although many chiral structures that generate a strong chirality density
have been proposed [100–108], it is difficult to separate the signals originating from the
enhancing structure from the signals that originate from the solution. Therefore, achiral
structures are beneficial in many sensing applications [109–123]. Based on designs to
enhance the circular dichroism [P6, P15] we use silicon cylinders arranged in a hexagonal
array to enhance the optical rotation. Our investigation includes a single array of such
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Figure 5.1: Scattering from a single cylinder and a cylinder array under plane wave illu-
mination of positive helicity. Panel (a) shows the sum of the squared absolute
values of the scattering coefficients for an illumination with plane waves of pos-
itive helicity. The solid lines show the sum for the positive helicity coefficients
and the dashed lines the sum for the negative helicity coefficient. In blue, we
show the values for the array and in green for the single cylinder. Note the
different scales of these amplitudes. Panel (b) shows the local chirality density
for the single cylinder, and panel (c) shows it for the cylinder in a hexagonal
array. The gray contours indicate the area, where the chirality density ex-
ceeds the value of 5. Reprinted with permission from [P2]. Copyright 2021
AIP Publishing.

cylinders and a cavity formed by stacking two of these arrays and, thereby, forming a
cavity. The relative permittivity of the cylinders is approximated by the non-dispersive
value ϵ = 11.9, and we set the height to 1082 nm. The radius of the cylinder is taken as
optimization parameter.

We model the chiral material parameters with a Lorentzian resonance. The resonance
is placed in the infrared at the angular frequency ω̄ = 2π · 44.21THz and has a width
of γ = 0.258THz [P15]. The dispersive functions for the relative permittivity, relative
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permeability, and the chirality parameters are

ϵ(k0) = ϵsol +
Aϵsol

1− c2k20
ω̄2 − i cγk0

ω̄2

(5.3a)

µ(k0) = 1 +
Aβ

1− c2k20
ω̄2 − i cγk0

ω̄2

(5.3b)

κ(k0) =
A
√
βϵsol

1− c2k20
ω̄2 − i cγk0

ω̄2

, (5.3c)

where the amplitude of the resonance is set to A = 1.27·10−5 and the parameter β = 1.12·
10−7. The variable β parametrizes the electromagnetic duality of the chiral medium. The
solvent permittivity is set to ϵ = 1.8912. These relations fulfill the passivity condition [17]√

Im ϵ(k0) Imµ(k0) ≥ Imκ(k0) . (5.4)

The real part of the Lorentzian decays with k−2
0 far away from the resonance, whereas the

imaginary part decays with k−3
0 . Thus, using the optical rotation for sensing off-resonance

could yield higher absolute signals in comparison to circular dichroism.
We first investigate the optical rotation enhancement by a single cylinder. We optimize

the cylinder radius for this resonance, to achieve an approximately dual response, by
maximizing the scattering response of the same helicity. The dual response is necessary
because only a dual scatterer preserves the helicity in the scattering response, which
maximizes the measurable chiral signatures. The result of the optimization is shown in
panel (a) of Fig. 5.1. The green line shows the sum of the scattering amplitude coefficients
squared under the illumination of a circularly polarized plane wave with positive helicity.
At the design frequency, the contribution to the helicity-preserving scattering response,
which is shown as solid line, is strongest and the helicity-changing scattering, shown as
dashed line, is weak.

The interaction within a lattice can change the scattering behavior of the lattice sig-
nificantly. We use the lattice pitch of a = 3.807µm to compare the results of the single
cylinder with the response within an array, since it shows a good enhancement of the
optical rotation in Fig. 5.2. Note that in this section, the lattice pitch is defined in anal-
ogy to [P15] such that the basis vectors of the reciprocal lattice have the length 2π

a . For
a hexagonal lattice, it follows that the cylinders in the real lattice have a center to cen-
ter distance of

√
4
3a. As the blue line in panel (a) of Fig. 5.2 shows, the influence of

the lattice mostly broadens the frequency range with a good helicity preserving behavior.
Panels (b) and (c) in Fig. 5.2 show the chirality density in the vicinity of the cylinders
when illuminated by a plane wave of positive helicity propagating along the z-direction.
The single cylinder has no region around it, where the chirality density is negative for pos-
itive helicity illumination confirming its high degree of helicity preservation. However, the
enhancement of the chirality density is limited to only its immediate vicinity, as indicated
by the gray contour line for the threshold value of 5. Panel (c) in Fig. 5.2, showing the
chirality density of the cylinder in the array, has a much larger area of positive chirality
density and also higher values in the immediate vicinity of the cylinder. Thus, a larger
volume of the sample enhances the measurement signal.

We simulate the array for a large parameter sweep from the lattice pitch of 2.3µm to
4.3µm in the frequency range between 35THz to 50THz. The lower bound of the lattice
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Figure 5.2: Optical rotation and circular dichroism enhancement of a hexagonal array of
cylinders. We investigate a single achiral array to enhance the optical rotation
around the resonance frequency 44.21THz, which is shown as blue dotted line
for an array pitch between 2.3µm and 4.3µm. Panel (a) shows the optical
rotation enhancement and panel (b) the transmittance of the lattice. The
optical rotation enhancement by the array for a pitch of 3.807µm is shown in
the top of panel (c). At the bottom of panel (c), we show the optical rotation
value. Panel (d) shows the circular dichroism in transmittance for the same
structure. Reprinted permission from [P2]. Copyright 2021 AIP Publishing.
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Figure 5.3: Optical rotation and circular dichroism enhancement of an achiral cavity. We
use a cavity formed by two hexagonal arrays with the lattice pitch 4.956µm. In
our study, we vary the cavity length between 5µm and 20µm. Panel (a) shows
the optical rotation enhancement and panel (c) the transmittance circular
dichroism enhancement. For the chosen cavity length of 17.4µm, indicated
by the black dotted line, we find an enhancement factor of 270, as shown in
panel (b). Reprinted permission from [P2]. Copyright 2021 AIP Publishing.

pitch is defined by the minimal distance to avoid touching cylinders. The upper bound
is defined such that higher-order propagating diffraction orders modes are avoided. Oth-
erwise, the definition of the optical rotation signal has to be modified. We use a sample
volume with a thickness of 10µm perpendicular to the lattice to compute the optical rota-
tion. The results for the optical rotation enhancement and the transmittance are shown
in panels (a) and (b) of Fig. 5.2. The reference for the enhancement calculation is a ho-
mogeneous slab of chiral material of the same thickness. We find sharp lines with strong
enhancements for frequencies above approximately 46THz. However, those enhancement
factors are in exactly those regions, where the transmittance is very low, thus, posing a
challenge to be used in practice. A broader resonance that can be tuned by the lattice
pitch traverses the design frequency of 44.21THz at the lattice pitch 3.807µm. Here, we
achieve an enhancement factor of roughly 4, as shown in panel (c). For comparison, we
also show the transmittance circular dichroism for the single cylinder in panel (d). The
transmittance circular dichroism measures the difference in transmittance only instead of
using transmittance and reflectance to calculate absorption. Hence, not only the differen-
tial absorption contributes to the signal strength. Focusing on the frequency band near
the resonance, since the enhancement becomes large due to the low reference value far
off-resonance, we also find enhancement values up to 2 for the circular dichroism signal.

The enhancement of chiral signals with a single array is limited to the near-field en-
hancement of the chirality density. Thus, a limiting factor is the affected sample volume.
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In a cavity, strong fields can be obtained covering a large volume. However, a large
chirality density is difficult to achieve, because, conventional mirrors flip the helicity for
light at normal incidence. By using array structures instead of flat mirrors, light can be
diffracted to modes with gracing incidence onto the opposite array. The reflection coeffi-
cient gets unity at grazing incidence on the one hand, resulting in a high-quality cavity,
and the reflection becomes helicity preserving on the other hand. Thereby, the arrays
couple the incident light into guided modes, that experience many consecutive reflections
in the structure that acts as a wave guide. A design for such a helicity preserving cavity
was investigated previously for the enhancement of circular dichroism, and we use the
same radius 1.574µm and the lattice pitch 4.956µm for the design of the array [P15].

In Fig. 5.3, we show the enhancement of optical rotation for the frequency range between
42THz and 50THz. To identify an optimal cavity, we vary the cavity length between 5µm
and 20µm. Similar to the previous investigations, we find strong enhancements at sharp
lines for frequencies above the resonance 44.21THz. They are a result of the onset of
diffraction, and their position is defined by

l

√
k2 −

(
2π

a

)2

= 2πm , m ∈ N , (5.5)

which is the condition for a 2π phase accumulation within one round-trip of a mode in
the cavity. We find the strongest enhancement by a factor of 207 at the cavity length of
17.4µm. The enhancement is shown as a line plot in panel (b) together with the absolute
value of the optical rotation. Panel (c) shows the transmittance circular dichroism for the
investigated system, that shows a similar pattern depending on Eq. (5.5) as the optical
rotation.

Our simulations assume an infinitely periodic system in the x-y-direction. Since the
strong enhancement at the onset of diffraction can be effected detrimentally in systems of
finite size, we estimate the required size of the system for the case of a cavity with 17.4µm
length by taking the angle of the first diffraction order and assuming 100 round-trips in
the cavity are necessary. This results in a cavity size of approximately 500µm to achieve
the result with finite arrays.

In conclusion, we find that it is possible to not only enhance circular dichroism with
array structures or cavities, but also the optical rotation. These studies were performed
with a development version of treams. Besides their immediate physical findings, they
show, how large parameter studies can be performed very efficiently with the methods of
treams, as long as parameters such as pitch and cavity length are concerned, that do not
require the calculation of a new T-matrix. Moreover, by the separation of the optimization
of the individual cylinder and the lattice, we benefit from the separation of object and
lattice influence in the T-matrix method with periodic boundary conditions.

5.2 Simulation of the electromagnetic fields in 3D direct laser
writing

In this section, we discuss the application of the T-matrix and the transfer matrix method
to simulate focal spots in multi-photon 3D direct laser writing processes [93, 94, 124]. We
examine two examples: First, Subsection 5.2.1 describes the application of the Richards
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Figure 5.4: Focus calculation in a birefringent medium with director angle α = 0. Hence,
the extraordinary axis is aligned with the z-direction. From left to right, the
panels show the intensity around the focal spot normalized to the peak value
of all setups for four different polarizations: (a) x-polarized, (b) y-polarized,
(c) azimuthally polarized, and (d) circularly polarized light. The top part of
each panel shows the x-z-plane and the bottom part shows a close up of the
x-y-plane, as indicated by a black bar in the top part.

and Wolf integrals in combination with the transfer matrix method to calculate the focus
in anisotropic media introduced in Section 2.4. Then, we combine the focus calculation
with the T-matrix method to study the impact of the presence of additional scatterers
with a low refractive index contrast on the focus spot quality in Subsection 5.2.2.

5.2.1 Focusing in anisotropic media

The simulations presented in this section were performed for a collaboration with Alexan-
der Münchinger from the group of Martin Wegener at KIT, who developed and experimen-
tally realized the process of printing in birefringent liquid crystal-based resists to obtain
4D microstructures [P12]. The designation 4D comes from the combination of a structure
that can be designed in the three spatial dimensions and, furthermore, having a temporal
response to external stimuli, e.g., a temperature change [125–129].

Direct laser writing is an important method for the additive manufacturing of fully
three-dimensional microstructures. Essentially, a two-photon absorption process is used
to polymerize a resist, which defines the three-dimensional structure that is obtained after
development. One important aspect to obtain a fine resolution of the printed structure
and a small feature size is having a precisely defined focal spot. However, to obtain
a temporal response with the printed structures, liquid crystal-based resists are used
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Figure 5.5: Focus calculation in a birefringent medium with director angle α = π
2 . Hence,

the extraordinary axis is aligned with the x-direction. From left to right, the
panels show the intensity around the focal spot normalized to the peak value
of all setups for four different polarizations: (a) x-polarized, (b) y-polarized,
(c) azimuthally polarized, and (d) circularly polarized light. The top part of
each panel shows the x-z-plane and the bottom part shows a close up of the
x-y-plane, as indicated by a black bar in the top part.

that are birefringent [129–131]. Thus, two foci are generally found during the printing
process. The presence of two foci can be avoided by a careful choice of the direction of
the extraordinary axis of the liquid crystal elastomer and the polarization of the beam
focused into the resist. The former can be achieved with a quasi-static electric field
applied to the liquid crystal elastomer, thus, defining a director along which it is aligned.
This director can also be switched for different parts of the printed structure during the
printing, thereby, obtaining a spatial variation of the director in the final structure to
more precisely tailor the response to temperature variations.

We examine the focal spot for four different polarization setups: Linear polarization
along the x- and y-axis, azimuthal polarization, and circular polarization. Furthermore
we analyze three different alignments of the director defined by the angle α with respect
to the z-axis in the x-z-plane. We model the resist with an ordinary refractive index of 1.5
and an extraordinary refractive index of 1.7. The objective lens has a numerical aperture
of 0.8 and an entrance pupil of 5.3mm. Between the lens and the birefringent resist we
place an isotropic layer of 100µm thickness with refractive index 1.5, which models the
immersion oil of the lens and the cover slip. The monochromatic illumination has a wave-
length of 790 nm and a Gaussian profile with a radius of 4.75mm at which the intensity
drops to e−2. Figure 5.4 shows the result for the four polarizations and the angle α = 0,
i.e., the extraordinary axis is aligned with the z-axis. We use these model parameters
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Figure 5.6: Focus calculation in a birefringent medium with director angle α = π
4 . Hence,

the extraordinary axis bisects the angle between x- and z-axis. From left to
right, the panels show the intensity around the focal spot normalized to the
peak value of all setups for four different polarizations: (a) x-polarized, (b)
y-polarized, (c) azimuthally polarized, and (d) circularly polarized light. The
top part of each panel shows the x-z-plane and the bottom part shows a close
up of the x-y-plane, as indicated by a black bar in the top part.

of the illumination and the lens to calculate the angular spectrum of the focused elec-
tromagnetic wave according to Eq. (2.110). Then, the angular spectrum is propagated
through the anisotropic medium using the transfer matrix algorithm as described in Sec-
tion 2.4. Linearly polarized light gets focused in two spots corresponding to the ordinary
and extraordinary rays. For the azimuthally polarized light, the extraordinary focus can
be suppressed. Thereby, it allows the direct laser writing process with a single focal spot,
however, with a toroidal shape. Circularly polarized light also creates two foci, like the
linear polarizations. In Fig. 5.5, we show the results for the same polarizations but with
the director with an angle α = π

2 , i.e., along the x-direction. With x-polarized light, we
only observe a weak and distorted focus. In contrast, by using y-polarized light, which is
perpendicular to the director, we find a strong well-defined focal spot. In the remaining
two cases of azimuthally and circularly polarized light, the focal spot is weaker again,
however, it is still comparatively well-defined in a small volume.

The case of an oblique director at an angle of α = π
4 is shown in Fig. 5.5. The x-

polarized illumination shows an off-axis, distorted, and weak focal spot. As can be seen
in the x-y plane, a second focal spot, having the shape of a lobe, is present at the position
expected for the ordinary rays. The azimuthal polarization has a single larger focal spot.
The circularly polarized case shows two foci.
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Figure 5.7: Focus calculation in the presence and absence of scatterers.

In summary, depending on the director angle, different polarizations need to be used
to obtain a single, well-defined focal spot. We successfully applied the simulation method
combining the approach from Richards and Wolf for high numerical aperture lenses with a
transfer matrix algorithm to simulate birefringent structures. Besides the results presented
here, they were also used in the simulation of the focal spots in an inverted direct laser
writing setup, that avoids a large separation of the foci by minimizing the distance the
electromagnetic fields travel through the resist [P17].

5.2.2 Focal spot distortions by the presence of large scatterers

We also combined the approach with the ordinary treams capabilities to simulate the
focus during direct laser writing in the presence of scatterers in the resist. This work is
complementary to experimental work using optical coherence tomography for in-situ mea-
surements performed and analyzed by Roman Zvagelsky in the group of Martin Wegener
at KIT [P21]. These measurements revealed inhomogeneities in five-year old resists in com-
parison to fresh resists. These differences were interpreted as “blobs” of oligomer groups
due to thermal activation. We performed simulations to assess if these inhomogeneities
have an influence on the shape of the focal spot.
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5 Applications of the T-matrix and plane wave methods

We model the process with a monochromatic illumination of 790 nm wavelength. We
approximate the inhomogeneities as spheres with a radius of 6.5µm, which is the inter-
mediate value between the observed size between 2.5µm and 12.5µm. The density of
scatterers is chosen such that their volume matches the experimentally observed volume
occupied by the inhomogeneities. The refractive index of the isotropic resist is 1.51 and
the refractive index of the inhomogeneities is assumed to be 1.545. We use a maximal mul-
tipole order of lmax = 13 and simulate these systems in lowest-order Born approximation,
i.e., we neglect multi-scattering events. This approximation avoids the computational
expensive inversion of the matrix in Eq. (2.52). Figure 5.7 shows the results of the simu-
lations. The central panel shows a cut plane through the focal spot. No distortions are
visible. The comparison with the unperturbed focus shape along the x- and z-axis also
shows a negligible influence of the inhomogeneities on the shape of the focal spot.

These examples show how treams and its methods are flexible enough to interact with
other approaches, such as the use of angular spectra for focus calculations and the transfer
matrix approach.

5.3 Multi-scale methods for molecular arrays

In this section, we discuss the application of treams and its methods as a tool to perform
simulations bridging scales from the size of individual molecules to cavities of macroscopic
sizes [P18]. The main development of the multi-scale method was done by Benedikt
Zerulla, Marjan Krstić, and Ivan Fernandez-Corbaton.

We use the example of surface-anchored metal-organic frameworks (SURMOFs) in a
Fabry-Perot cavity formed by silver mirrors [132] to describe how treams can be used to-
gether with complementary theoretical approaches to allow ab-initio multi-scale modeling
of complex physical systems. The fabrication of such complicated novel materials and
their experimental investigation is a rapidly developing field. However, the theoretical
description of these novel materials has to keep up.

Metal-organic frameworks are crystalline structures build from organic molecules to
link metal ions [133]. Due to the well-defined chemical bonds, their physical properties
are highly configurable. Their applications include luminescence [134], second harmonic
generation [135], and Raman scattering [136]. SURMOFs are a class of metal-organic
frameworks that are attached to functionalized surfaces [137].

The properties of the SURMOF’s building blocks, the linkers and metal ions in their
periodic structures can be calculated ab-initio using quantum-chemical methods [138,
139]. The polarizability tensors can be calculated with time-dependent density functional
theory [140]. These polarizabilites can be related to the dipolar coefficients of the T-
matrix [P7]. Thereby, the quantum-chemical simulations and the T-matrix method can
be connected. These steps are summarized in the first part of the workflow shown in
Fig. 5.8. They are shown in the green boxes of the first row, which include the quantum
interaction of the electrons of the molecules. First, the structure of the SURMOF is
determined taking into account the full periodic environment of the linkers and metal
ions. Second, time-dependent density functional theory is used to calculate the response
from an externally applied field, which, then, results in the polarizabilites.

The bottom row of Fig. 5.8 shows the part of the workflow using classical electromag-
netic scattering theory. We use the T-matrix of the molecules to simulate the response
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Figure 5.8: Workflow for the ab-initio calculation of the optical properties of macroscopic
structures containing SURMOFs. The quantum-chemical simulations are
shown with green boxes, and the optical simulations are shown in blue. First,
the periodic structure of the SURMOFs is calculated. Second, in time-domain
density functional theory, the response to an external electromagnetic field
is computed. Third, the polarizability tensors are calculated, which, fourth,
provide the connection to the dipolar T-matrix and, thus, the electromag-
netic scattering simulations. In the fifth step, treams is involved to calculate
the response, e.g., of the SURMOF in the cavity, bridging from the scale of
nanometers for the individual molecules to films of micrometer thickness. Fi-
nally, the results allow a theoretical analysis of the structure. Reprinted with
permission from [P18]. Copyright 2022 John Wiley and Sons.
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5 Applications of the T-matrix and plane wave methods

Figure 5.9: Absorption of a circularly polarized plane wave by a Zn-SiPc-SURMOF-2 film.
Panel (a) shows the absorption for the film without any additional structure.
Panel (b) shows the absorption of the film inside a cavity formed by silver
mirrors with 10 nm thickness on the illumination side and 30 nm thickness on
the transmission side. Reprinted with permission from [P18]. Copyright 2022
John Wiley and Sons.

of large SURMOFs. By using the T-matrix method with periodic boundary conditions,
as implemented in treams, we take the full periodic structure of the SURMOFs into ac-
count. Furthermore, we can also calculate the interaction with other structures that can
be represented by the methods implemented in treams. The first step in the second part
of the workflow is translating of the dipolar polarizability tensors αee, αem, αme, and αmm,
which relate the electric and magnetic fields with Cartesian electric and magnetic dipoles,
to T-matrices. This step is done by using(

TNN TNM
TMN TMM

)
=

ichZhk
3
h

6π

(
CαeeC−1 − i

Zh
CαemC−1

i
ch
CαmeC−1 1

chZh
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)
. (5.6)

The quantities ch, Zh, and kh are the speed of light, wave impedance, and the wave number
in the host medium, respectively. The matrix
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gives the transition from Cartesian to spherical dipoles [P7, P14]. The three-by-three
blocks Tij , where the indices refer to the functions defined in Eq. (2.23), define the T-
matrix in dipolar approximation. In principle, the inclusion of higher order multipoles
is possible. However, for the small size of the molecules, they have a negligible contri-
bution. By calculating the interaction of the scattered fields from each molecule in the
periodic arrangement using treams, we can calculate and analyze the optical properties of
SURMOFs in cavities, for example. The layer-doubling technique is extremely useful to
implement the calculation of thick layers of SURMOFs, because it allows an exponential
scaling of the thickness [39, 52, 141].

In a concrete example, a molecular array consisting of stacked sheets of Zn-paddle-
wheels and Si-Phthalocyanine linker molecules form a type-2 SURMOF [132], which we
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abbreviate with Zn-SiPc-SURMOF-2. The unit cell size is 21Å by 21Å by 11Å for a sin-
gle sheet. To obtain the T-matrix for an approximately round object, three stacked unit
cells are used in the calculation of the polarizabilities. Figure 5.9 shows the simulation
of absorption from a film consisting of Zn-SiPc-SURMOF-2 with up to 500 nm thickness
in the range between 1.4 eV to 2 eV, which corresponds to the wavelengths 885 nm and
620 nm. In panel (a), showing the result for the SURMOF illuminated by a circularly
polarized plane wave without a cavity surrounding the structure, we find multiple reso-
nances in the range between 1.7 eV and 1.9 eV. This mode structure changes drastically
in cavity consisting of a 10 nm thickness silver mirror on the illumination side and a 30 nm
thickness mirror on the transmission side. The permittivity of the silver mirrors is taken
from [142]. The resonances are strongly bent due to the cavity. Furthermore, we find
that every mode appears in pairs, which is a result of the SURMOFs anisotropy. We can
use these results, together with a further analysis of the mode structures, to refine the
interpretation of experimental findings [132].

We conclude that the methods of treams are extremely useful in describing large molec-
ular arrays, and we can bridge from the nanometer size of a unit cell to several hundreds
of nanometer thickness materials in optical structures. Novel applications of this method
combine it with the homogenization method presented in the following section to model
even more complicated systems [P19].

5.4 T-matrix based homogenization methods

This section covers the use of the T-matrix method and lattice sums as one step in the
workflow to homogenize artificial photonic materials, where the individual components
can be described by T-matrices [P20]. This project was mainly developed by Benedikt
Zerulla, Ramakrishna Venkitakrishnan, and Ivan Fernandez-Corbaton.

In effective medium theories, the electromagnetic response from a discrete structure of
scatterers is described by effective material parameters. The process of calculating these
material parameters starting from the discrete structure is called homogenization, and
a field of active research [143–159]. Having an effective medium description is useful to
avoid computationally expensive simulations of the detailed response of every constituent
of the homogenized material. Furthermore, different shapes of the macroscopic object are
correctly described by the material parameters.

A widely used and simple approach for the homogenization are the Clausius-Mossotti
relations [16]. However, these relations only take dipole contributions into account. Fur-
thermore, many approaches suffer from conditions that are not generally fulfilled. Often,
a sparse lattice that, at the same time, has a lattice constant much smaller than the wave-
length is required. Other methods are based on the retrieval of the effective parameters,
by simulating a reference object, often a slab of the material to be homogenized, and
performing an optimization of the material parameters to replicate the transmission and
reflection for multiple angles of incidence. Such methods have the downside to already ex-
plicitly using a concrete shape, i.e. a slab, for the homogenization itself. Furthermore, the
retrieved parameters can be non-unique [158, 160] The homogenization based on T-matrix
calculations with periodic boundary conditions is a novel approach to address these issues.
It is emphasized, that no fit or something similar is necessary. Instead, effective material
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Figure 5.10: Homogenization of a cut-plate pair metamaterial. The abbreviation mpGMM
is used for a predecessor software of treams, which we also developed. It
has a subset of treams functionality. Panels (a) and (b) shows the band
structure of the metamaterial computed with the approach of Eq. (2.95),
which for a given frequency and fixed wave vector components kx and ky
calculates the value of kz for permissible modes. Large imaginary components
of kz, as shown in panel (b) in the range above 300THz indicate band gaps.
Panels (c) and (d) show the permeability and permittivity obtained with the
homogenization. These parameters are used to compute the transmission
and reflection parameters of the homogenized material, shown in panels (e)
and (f). Reprinted with permission from [P18]. Copyright 2022 John Wiley
and Sons.
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properties of the entire material are explicitly expressed based on the scattering properties
of the constituents, as expressed by the T-matrix.

The starting point of the calculation is the T-matrix of the individual scatterer and
the lattice geometry. Using Eq. (2.60), we can calculate the T-matrix in the full three-
dimensional lattice. This step is independent of the shape of the homogenized object.
The result of including the lattice interaction is the T-matrix T̃(k∥). However, it depends
on the direction of the wave vector of the illumination, as emphasized by the argument.
This dependence is know as spatial dispersion. To avoid this explicit dependence on the
direction of the wave vector for the illumination, we use a method that has similarities with
the approach to calculate a T-matrix with plane wave illuminations [33], but its validity to
find a wave vector independent T-matrix can be shown rigorously [P20]. We assume many
different illumination directions ki and decompose the incident field in vector spherical
waves aki

. Then, using T̃(ki), we can calculate the scattered wave coefficients pki
for each

such illumination. This approach needs many evaluations of the lattice sums for three-
dimensional lattices and, therefore, greatly benefits from the expressions implemented in
treams. With the incident and scattered field coefficients, we can define the linear system
of equations (

pk1 · · · pkN

)
= Teff

(
ak1 · · · pkN

)
(5.8)

for N different illuminations and the unknown effective T-matrix Teff, which is inde-
pendent of the illumination direction. We solve the equation for Teff. Next, we want
to relate the effective T-matrix to the six-by-six anisotropic tensor defined in Eq. (2.6).
Hence, we use the inverse of Eq. (5.6) to obtain the polarizability matrices relating the
external electromagnetic field to the polarization. This step requires an approximation,
since it only takes into account dipolar contributions. Note, however, that higher-order
multipoles are still considered in the interaction, i.e., they tend to renormalize the dipole
coefficients. Furthermore, it is possible to compare the dipolar coefficients of Teff with the
higher order multipoles to estimate the validity of this approximation. Having obtained
the polarizabilities, we take into account the depolarization matrix L to relate the exter-
nal fields with the internal fields in a unit volume [144]. This matrix is a purely lattice
dependent quantity. In a cubic lattice it is L = 1

31, but results for more complicated
lattices are known [161]. Combining the transition from the T-matrix to polarizabilities
and the depolarization matrix, we obtain(
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for the homogenized parameters, where Tcar
ij = C−1TijC are the dipolar coefficients of

the T-matrix in parity basis converted to the Cartesian basis and n is the concentration
of scatterers. In a reciprocal material, we have κ = κ̃. This equation can also be adapted
to include the permittivity of the host medium.

An example for the homogenization of a complex photonic material is shown in Fig. 5.10.
The unit cell of the cubic lattice with 200 nm pitch consists of a cut-plate pair, which is
expected to exhibit a magnetic resonance at low frequencies [162]. Two gold layers with
30 nm thickness, where we use the permittivity from [163], are separated by an insulator
with 5 nm thickness with ϵ = 2.25. The rather thin layer pushes the antisymmetric mode
of the coupled plates towards extremely long wavelengths, which is the key to achieve a
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magnetic response deep subwavelength. The radius of the cut-plate pair is 90 nm. It is
shown in the inset of panel (a). Before homogenizing this photonic material, we analyze
its band structure, which is obtained on the base of Eq. (2.95). Panels (a) and (b) show
the real and imaginary parts of kz of the lowest order mode computed with this method
as black dots. These dots are labeled mpGMM in the legend, which is the abbreviation
of the predecessor software of treams using the same methods. We find a band gap above
300THz, indicated by the large imaginary components of kz. The dispersion relation of
the homogenized material parameters is shown in red. It has a good agreement with
the dispersion relation except in the region where the bands are strongly modified at
the Bragg resonance near the Brillouin zone edges. Note that these regions, where the
homogenization is not possible can be identified a-priori by the mode bending at the edge
of the Brillouin zone. In all panels, this region is indicated by the grayed-out areas. Panels
(c) and (d) show real and imaginary part of one component of the relative permittivity
and the relative permeability tensor as retrieved with the procedure described above. We
find a strong magnetic resonance, which was also visible in the band structure diagrams.
Panels (e) and (f) show the reflection and transmission coefficients obtained from the
simulation of nine stacked layers of the cut-plate pairs and from a homogeneous slab of
1800 nm thickness with the derived material parameters. We find a very good agreement
in the a-priori identified areas where the homogenization is possible. Panel (f) shows,
furthermore, the quantity

τ =

√√√√√ Tr
[
(Tdip

eff −Teff)†(T
dip
eff −Teff)

]
2
[
Tr(Tdip†

eff Tdip
eff ) + Tr(T†

effTeff)
] , (5.10)

which can be used to determine the validity of the homogenization. In essence, this
quantity measures the dipolar content of the T-matrix as a normalized quantity. For
a value close to zero, the T-matrix is purely dipolar. A reasonably small value in this
parameter is acceptable to consider the material as homogenizable in the dipolar limit.

This example highlights how the three-dimensional lattice sums implemented in treams
can be used for the homogenization of photonic media by assigning effective material pa-
rameters to it and how its methods can also be used to calculate the band structure. Thus,
in summary, we demonstrated the versatility of treams: It is useful for large parameter
studies and computations using chiral matter. It can be interfaced with other methods
as shown in the focus calculations. It can be used as part of sophisticated multi-scale
modeling workflows, as shown for molecular arrays. Finally, we showed its application to
homogenize photonic materials by assigning effective parameters.
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This thesis shows how the T-matrix method and related approaches can be used to study
electromagnetic scattering with chiral matter in periodic structures. Based on the solu-
tion of the multi-scattering equations combined with a unified approach to evaluate the
arising lattice sums, we implemented and published a novel program treams. The derived
methods have several unique capabilities compared to other approaches to solve Max-
well’s equations, which we highlight in various applications analyzing physical problems
of contemporary interest. We give a summary of our main results in Section 6.1. The de-
rived methods and applications also have great potential for further research. We outline
several research directions based on the results of this thesis in Section 6.2.

6.1 Summary

The electromagnetic scattering calculations of this thesis are based on the theory derived
in Chapter 2. We carefully construct different basis sets solving Maxwell’s equations,
namely the vector spherical, cylindrical, and plane waves. By considering, in particular,
constitutive relations for chiral materials, we define these basis sets not only using parity
modes but also with modes of well-defined helicity, which greatly simplifies the description
of electromagnetic fields in chiral media. Furthermore, the preservation of helicity under
transformations, such as translations, renders these modes an efficient tool for scatter-
ing calculations. We formulate the T-matrix method for vector spherical and cylindrical
waves for two cases: Finite clusters and periodic arrays. To make this approach as ver-
satile as possible, the equations to describe scattering in periodic arrays incorporate the
case of complex unit cells, i.e., unit cells containing multiple objects. Furthermore, we
show connections between the different basis sets, which are incredibly useful for efficient
descriptions of the total response of periodic structures: One-dimensional arrays of vector
spherical waves solutions can be effectively described by vector cylindrical waves, and
two-dimensional arrays of vector spherical waves and one-dimensional arrays of vector
cylindrical waves can be described by plane waves. To describe scattering in a plane wave
basis, we usually use the related S-matrix or transfer matrix descriptions instead of the
T-matrix.

While the multi-scattering equations can be expressed concisely using the T-matrix
method with the above-mentioned basis sets, a major challenge in solving them for peri-
odic structures are slowly converging lattice sums. We treat these lattice sums in detail
in Chapter 3 using a unified approach based on Ewald’s method. The results are also
published in [P4]. We find exponentially fast converging expressions, for one-, two-, and
three-dimensional lattices of spherical and cylindrical waves. Again, we emphasize on
expressions for complex lattices, such that they can be combined with the results of
Chapter 2 for possible cases. We extensively test the accuracy and convergence of these
expressions and demonstrate a speed-up of the lattice sums by several orders of magnitude.
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We publish an implementation of the T-matrix method based on the multiple different
basis sets and their combination with the derived lattice sum expressions in the open-
source software package treams. This software is described in Chapter 4 and in [S1]. For
T-matrix calculations, treams has the following features:

• T-matrices for chiral multi-layered spheres and cylinders can be calculated analyti-
cally,

• an interface to externally calculated T-matrices is implemented,

• the interaction of T-matrices can be solved in clusters and complex periodic arrange-
ments, where exponentially convergent lattice sums are used,

• transformations of T-matrices, such as translations or rotations, are included,

• the transitions between expansions in different basis sets are available, and

• many quantities to analyze the results, such as cross-sections, transmittance, re-
flectance, or circular dichroism, are provided from the calculation results.

To simplify the access to all these and further features for the user, we provide an interface
combining a class for “physics-aware” arrays and a mathematics-inspired implementation
of operators. These data structures track and use physical parameters throughout the
computation and, hence, ensure unintentional changes or incompatible operations. More-
over, an emphasis is placed on integrating treams into the framework of scientific software
published for Python. Continuous integration methods are used to test, document, and
package each novel version of treams, such that the correctness of the calculations is
monitored, and all available resources are kept up-to-date.

We demonstrate the unique capabilities to solve physical problems at several examples
in Chapter 5. In the first example, we analyze the use of helicity preserving structures to
enhance the chirality density for sensing applications, especially for optical rotation. The
optical rotation is, besides the circular dichroism, a promising possibility to distinguish
enantiomers of a molecules. Especially with helicity preserving cavities, we find strong
enhancement factors [P2] comparable to previous results for similar cavities used for the
enhancement of circular dichroism [P6, P15]. The necessary large parameter sweeps for
the analysis are considerably simplified with fast solution approaches implemented in
treams. Unique to these cavities is the enhancement of the chirality density not just at
some isolated points but rather over an extended spatial domain. This is decisive for
future applications.

The second example revolves around the prediction of the focal spot in different setups
for multi-photon direct laser writing. In particular, we analyze different setups for avoiding
multiple focal spots in birefringent liquid-crystal based resists [P12]. Furthermore, we
combine the focal spot calculation using angular spectrum calculations with the T-matrix
approach to predict the influence of inhomogeneities in the resist on the focus [P21].
Thereby, we show the flexibility of treams to be interfaced with other methods. Another
application of this method, that is not presented in this thesis, is our analysis of an
inverted printing setup that minimizes the propagation distance through the resist [P17].

Our third example uses the capabilities of treams as part of a workflow for the ab-initio
multi-scale modeling of molecular arrays. Such arrays have applications in optics for, e.g.,
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luminescence or Raman scattering. Starting from the quantum level with time-dependent
density functional theory computations, we can obtain polarizabilities of the constituent
molecules. The connection of the quantum-chemical calculations to the T-matrix [P7]
can then be used to bridge from the nanometer scale of the individual molecular unit
cells to orders of magnitude larger array structures [P18]. Finally, the fourth example
demonstrates how treams can be used to homogenize periodic photonic materials based on
the T-matrix of the individual unit cell [P20]. Outside of the scope of this thesis but using
treams is further work, that combines the connection to quantum-chemical simulations
and homogenization approaches [P19] or that analyses second-harmonic generation by
molecular arrays [S2].

Besides the applications mentioned earlier, we contributed with the presented methods
to further scientific publications, which we want to briefly summarize as well. The derived
lattice sums and their implementation in treams was used to investigate atomic chains
forming one-dimensional moiré lattices [P5]. To investigate amorphous nanostructures
for light-harvesting on top of solar cells, the lattice sums are used to calculate the in-
teraction of larger super-cells, where a carefully chosen size of the super-cell avoids the
appearance of artifacts arising due to the periodicity [P16]. Such studies are only possible
by having the lattice sum expression derived for complex unit cells. Furthermore, one
benefits greatly from a fast implementation of the lattice sums. By having an analytical
approach to describe the scatterers and their lattice interaction, a general framework to
treat metasurfaces has been derived [P14] and inverse design approaches for bound states
in the continuum were used [P9]. By using the combination of T-matrices and a descrip-
tion of time-varying scatterers [164–166], it is also possible to analyze four-dimensional
metamaterials [P8]. We furthermore used the methods to simulate clusters of particles
fabricated with self-assembly methods [P10, P11, P13].

Thus, we have demonstrated the usefulness of the combination of the T-matrix method,
especially, its versatility by using different basis sets and modes of well-defined helicity
and fast lattice sums for the implementation of periodic boundary conditions.

6.2 Outlook

In the following, we want to outline multiple possible developments based on the results of
this thesis. Starting with the currently implemented methods, automatically differentiable
programs can be explored. These approaches allow the use of gradient based optimizations
that can be leveraged for the inverse design of structures. By having many analytic
formulas for operations, the T-matrix method is an excellent candidate for this method.
Furthermore, by being a method that relies on many linear algebra operations, treams
can benefit from acceleration by using computations on graphical processing units GPUs.
Furthermore, instead of using the T-matrix method for electromagnetic scattering, it can
also be applied to acoustic scattering [84]. Thus, many of the results of this thesis could
be reused or adapted to analyze acoustics.

A future enhancement of to treams could be including of T-matrices with distributed
sources. By describing an object by multipole expansions at multiple origins, similar
to the use of a local T-matrix for a cluster, the domain in the vicinity of the scatterer
that is excluded by the Rayleigh hypothesis can be reduced [167]. This approach could
enlarge the scope of treams considerably, e.g., by making close packings of objects with
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high aspect ratio possible. Another interesting possibility is the inclusion of not only
finite and infinite systems, but also semi-infinite lattices, which can be used to analyze
surface effects, such as surface second harmonic generation. Therefore, approaches to
efficiently calculate semi-infinite lattice sums can be investigated [168–171] or S-matrix
based methods can be used [172]. Moreover, the exploration of the influence of defects in
the lattice structure is a potential future research endeavor.

106



Bibliography
[1] D. Schurig et al., “Metamaterial Electromagnetic Cloak at Microwave Frequen-

cies,” Science 314, 977–980 (2006).
[2] S. Liu et al., “Huygens’ Metasurfaces Enabled by Magnetic Dipole Resonance

Tuning in Split Dielectric Nanoresonators,” Nano Letters 17, 4297–4303 (2017).
[3] K. Koshelev et al., “Asymmetric Metasurfaces with High- Q Resonances Governed

by Bound States in the Continuum,” Physical Review Letters 121, 193903 (2018).
[4] A. Overvig and A. Alù, “Diffractive Nonlocal Metasurfaces,” Laser & Photonics

Reviews 16, 2100633 (2022).
[5] N. Engheta, “Four-dimensional optics using time-varying metamaterials,” Science

379, 1190–1191 (2023).
[6] P. L. McMahon, “The physics of optical computing,” Nature Reviews Physics, 1–

18 (2023).
[7] I. Rodríguez-Ruiz et al., “Photonic Lab-on-a-Chip: Integration of Optical Spec-

troscopy in Microfluidic Systems,” Analytical Chemistry 88, 6630–6637 (2016).
[8] M. Deubel et al., “Direct laser writing of three-dimensional photonic-crystal tem-

plates for telecommunications,” Nature Materials 3, 444–447 (2004).
[9] O. Shekhah et al., “Step-by-Step Route for the Synthesis of Metal−Organic Frame-

works,” Journal of the American Chemical Society 129, 15118–15119 (2007).
[10] S. Dey et al., “DNA origami,” Nature Reviews Methods Primers 1, 1–24 (2021).
[11] E. Popov, ed., Gratings: Theory and Numeric Applications, Second Revisited Edi-

tion, 2nd ed. (Institut Fresnel, AMU, 2014).
[12] P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proceedings

of the IEEE 53, 805–812 (1965).
[13] P. P. Ewald, “Die Berechnung optischer und elektrostatischer Gitterpotentiale,”

Annalen der Physik 369, 253–287 (1921).
[14] B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, II. Struc-

ture of the image field in an aplanatic system,” Proceedings of the Royal Society
of London. Series A. Mathematical and Physical Sciences 253, 358–379 (1959).

[15] P. M. Morse and H. Feshbach, Methods of theoretical physics (McGraw-Hill, New
York, 1953).

[16] J. D. Jackson, Classical Electrodynamics (John Wiley & Sons Inc, July 27, 1998),
832 pp.

[17] G. Kristensson, Scattering of Electromagnetic Waves by Obstacles (SciTech Pub-
lishing Inc, Dec. 1, 2016), 760 pp.

107

https://doi.org/10.1126/science.1133628
https://doi.org/10.1021/acs.nanolett.7b01301
https://doi.org/10.1103/PhysRevLett.121.193903
https://doi.org/10.1002/lpor.202100633
https://doi.org/10.1002/lpor.202100633
https://doi.org/10.1126/science.adf1094
https://doi.org/10.1126/science.adf1094
https://doi.org/10.1038/s42254-023-00645-5
https://doi.org/10.1038/s42254-023-00645-5
https://doi.org/10.1021/acs.analchem.6b00377
https://doi.org/10.1038/nmat1155
https://doi.org/10.1021/ja076210u
https://doi.org/10.1038/s43586-020-00009-8
https://doi.org/10.1109/proc.1965.4058
https://doi.org/10.1109/proc.1965.4058
https://doi.org/10.1002/andp.19213690304
https://doi.org/10.1098/rspa.1959.0200
https://doi.org/10.1098/rspa.1959.0200


Bibliography

[18] R. W. Boyd, Nonlinear optics, 3rd ed (Academic Press, Amsterdam ; Boston, 2008),
613 pp.

[19] F. W. J. Olver et al., eds., NIST digital library of mathematical functions, Re-
lease 1.1.11, (Sept. 15, 2023) http://dlmf.nist.gov/.

[20] I. Fernandez-Corbaton, X. Zambrana-Puyalto, and G. Molina-Terriza, “Helicity
and angular momentum: A symmetry-based framework for the study of light-
matter interactions,” Physical Review A 86, 042103 (2012).

[21] L. Silberstein, “Elektromagnetische Grundgleichungen in bivektorieller Behand-
lung,” Annalen der Physik 327, 579–586 (1907).

[22] A. Lakhtakia, Beltrami fields in chiral media (World Scientific, Singapore; River
Edge, NJ, 1994).

[23] M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations
of light scattering by nonspherical particles: A review,” Journal of Quantitative
Spectroscopy and Radiative Transfer 55, 535–575 (1996).

[24] H. Huang et al., “Propagation of Waves in Randomly Distributed Cylinders Using
Three-Dimensional Vector Cylindrical Wave Expansions in Foldy–Lax Equations,”
IEEE Journal on Multiscale and Multiphysics Computational Techniques 4, 214–
226 (2019).

[25] G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,”
Annalen der Physik 330, 377–445 (1908).

[26] L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley
Series in Remote Sensing and Image Processing) (Wiley-Interscience, 1985).

[27] D. W. Mackowski, “Discrete dipole moment method for calculation of the T matrix
for nonspherical particles,” Journal of the Optical Society of America A 19, 881–
893 (2002).

[28] A. Rahimzadegan et al., “Minimalist Mie coefficient model,” Optics Express 28,
16511–16525 (2020).

[29] C. F. Bohren, “Light scattering by an optically active sphere,” Chemical Physics
Letters 29, 458–462 (1974).

[30] Q.-C. Shang et al., “Scattering from a multilayered chiral sphere using an iterative
method,” Journal of Quantitative Spectroscopy and Radiative Transfer 173, 72–82
(2016).

[31] F. Frezza, F. Mangini, and N. Tedeschi, “Introduction to electromagnetic scatter-
ing: tutorial,” Journal of the Optical Society of America A 35, 163–173 (2018).

[32] G. Demésy, J.-C. Auger, and B. Stout, “Scattering matrix of arbitrarily shaped
objects: combining finite elements and vector partial waves,” Journal of the Optical
Society of America A 35, 1401–1409 (2018).

[33] M. Fruhnert et al., “Computing the T-matrix of a scattering object with multiple
plane wave illuminations,” Beilstein Journal of Nanotechnology 8, 614–626 (2017).

[34] X. Garcia-Santiago et al., “Decomposition of scattered electromagnetic fields into
vector spherical wave functions on surfaces with general shapes,” Physical Review
B 99, 045406 (2019).

108

http://dlmf.nist.gov/
https://doi.org/10.1103/PhysRevA.86.042103
https://doi.org/10.1002/andp.19073270313
https://doi.org/10.1016/0022-4073(96)00002-7
https://doi.org/10.1016/0022-4073(96)00002-7
https://doi.org/10.1109/JMMCT.2019.2948022
https://doi.org/10.1109/JMMCT.2019.2948022
https://doi.org/10.1002/andp.19083300302
https://doi.org/10.1364/JOSAA.19.000881
https://doi.org/10.1364/JOSAA.19.000881
https://doi.org/10.1364/OE.390331
https://doi.org/10.1364/OE.390331
https://doi.org/10.1016/0009-2614(74)85144-4
https://doi.org/10.1016/0009-2614(74)85144-4
https://doi.org/10.1016/j.jqsrt.2015.12.030
https://doi.org/10.1016/j.jqsrt.2015.12.030
https://doi.org/10.1364/JOSAA.35.000163
https://doi.org/10.1364/JOSAA.35.001401
https://doi.org/10.1364/JOSAA.35.001401
https://doi.org/10.3762/bjnano.8.66
https://doi.org/10.1103/PhysRevB.99.045406
https://doi.org/10.1103/PhysRevB.99.045406


[35] N. Asadova, “Inverse design of three-dimensional arrangements of scatterers,” Mas-
ter’s thesis (Karlsruhe Institute of Technology (KIT), Oct. 2022).

[36] S. Stein, “Addition theorems for spherical wave functions,” Quarterly of Applied
Mathematics 19, 15–24 (1961).

[37] O. R. Cruzan, “Translational addition theorems for spherical vector wave func-
tions,” Quarterly of Applied Mathematics 20, 33–40 (1962).

[38] R. N. S. Suryadharma et al., “Studying plasmonic resonance modes of hierarchical
self-assembled meta-atoms based on their transfer matrix,” Physical Review B 96,
045406 (2017).

[39] N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crys-
tals: frequency bands and transmission coefficients,” Computer Physics Communi-
cations 113, 49–77 (1998).

[40] E. C. Le Ru, W. R. C. Somerville, and B. Auguié, “Radiative correction in ap-
proximate treatments of electromagnetic scattering by point and body scatterers,”
Physical Review A 87, 012504 (2013).

[41] D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of
Angular Momemtum (World Scientific Pub Co Inc, Oct. 11, 1988), 528 pp.

[42] G. Molina-Terriza, “Determination of the total angular momentum of a paraxial
beam,” Physical Review A 78, 053819 (2008).

[43] G. Han, Y. Han, and H. Zhang, “Relations between cylindrical and spherical vector
wavefunctions,” Journal of Optics A: Pure and Applied Optics 10, 015006 (2007).

[44] R. C. Wittmann, “Spherical wave operators and the translation formulas,” IEEE
Transactions on Antennas and Propagation 36, 1078–1087 (1988).

[45] G. Cincotti et al., “Plane wave expansion of cylidrical functions,” Optics Commu-
nications 95, 192–198 (1993).

[46] D. Theobald et al., “Plane wave coupling formalism for T-matrix simulations of
light scattering by non-spherical particles,” Physical Review A 96, 033822 (2017).

[47] J. Korringa, “On the calculation of the energy of a Bloch wave in a metal,” Physica
13, 392–400 (1947).

[48] W. Kohn and N. Rostoker, “Solution of the Schrödinger Equation in Periodic
Lattices with an Application to Metallic Lithium,” Physical Review 94, 1111–
1120 (1954).

[49] F. S. Ham and B. Segall, “Energy Bands in Periodic Lattices—Green’s Function
Method,” Physical Review 124, 1786–1796 (1961).

[50] K. Kambe, “Theory of Low-Energy Electron Diffraction (I. Application of the
Cellular Method to Monatomic Layers),” Zeitschrift für Naturforschung A 22, 322–
330 (1967).

[51] K. Kambe, “Theory of Low-Energy Electron Diffraction (II. Cellular Method for
Complex Monolayers and Multilayers),” Zeitschrift für Naturforschung A 23, 1280–
1294 (1968).

109

https://doi.org/10.1090/qam/120407
https://doi.org/10.1090/qam/120407
https://doi.org/10.1090/qam/132851
https://doi.org/10.1103/PhysRevB.96.045406
https://doi.org/10.1103/PhysRevB.96.045406
https://doi.org/10.1016/s0010-4655(98)00060-5
https://doi.org/10.1016/s0010-4655(98)00060-5
https://doi.org/10.1103/PhysRevA.87.012504
https://doi.org/10.1103/PhysRevA.78.053819
https://doi.org/10.1088/1464-4258/10/01/015006
https://doi.org/10.1109/8.7220
https://doi.org/10.1109/8.7220
https://doi.org/10.1016/0030-4018(93)90661-N
https://doi.org/10.1016/0030-4018(93)90661-N
https://doi.org/10.1103/PhysRevA.96.033822
https://doi.org/10.1016/0031-8914(47)90013-x
https://doi.org/10.1016/0031-8914(47)90013-x
https://doi.org/10.1103/physrev.94.1111
https://doi.org/10.1103/physrev.94.1111
https://doi.org/10.1103/PhysRev.124.1786
https://doi.org/10.1515/zna-1967-0305
https://doi.org/10.1515/zna-1967-0305
https://doi.org/10.1515/zna-1968-0908
https://doi.org/10.1515/zna-1968-0908


Bibliography

[52] J. B. Pendry, Low Energy Electron Diffraction: The Theory and Its Application
to Determination of Surface Structure (Techniques of physics) (Academic Press,
1974).

[53] A. Moroz, “Quasi-periodic Green’s functions of the Helmholtz and Laplace equa-
tions,” Journal of Physics A: Mathematical and General 39, 11247–11282 (2006).

[54] C. M. Linton, “Lattice Sums for the Helmholtz Equation,” SIAM Review 52, 630–
674 (2010).

[55] V. Eyert, The augmented spherical wave method: a comprehensive treatment, Sec-
ond edition, Lecture Notes in Physics 849 (Springer, Heidelberg, 2012), 379 pp.

[56] K. Amemiya and K. Ohtaka, “Calculation of Transmittance of Light for an Array
of Dielectric Rods Using Vector Cylindrical Waves: Complex Unit Cells,” Journal
of the Physical Society of Japan 72, 1244–1253 (2003).

[57] M. Nečada and P. Törmä, “Multiple-Scattering T -Matrix Simulations for Nanopho-
tonics: Symmetries and Periodic Lattices,” Communications in Computational
Physics 30, 357–395 (2021).

[58] P. Yeh, “Electromagnetic propagation in birefringent layered media,” Journal of
the Optical Society of America 69, 742 (1979).

[59] P. Yeh, Optical waves in layered media, Wiley Series in Pure and Applied Optics
(Wiley, New York, 1988), 406 pp.

[60] L. Novotny and B. Hecht, Principles of nano-optics, 2nd ed (Cambridge University
Press, Cambridge, 2012), 564 pp.

[61] S. Wang et al., “Optical sharper focusing in an anisotropic crystal,” Journal of the
Optical Society of America A 32, 1026 (2015).

[62] K. Ohtaka, T. Ueta, and K. Amemiya, “Calculation of photonic bands using vector
cylindrical waves and reflectivity of light for an array of dielectric rods,” Physical
Review B 57, 2550–2568 (1998).

[63] H. Solbrig, “On the Ewald Summation Technique for 2D Lattices,” physica status
solidi (a) 72, 199–205 (1982).

[64] I. S. Gradštejn and I. M. Ryžik, Table of Integrals, Series, and Products, edited
by D. Zwillinger (Elsevier Science, Sept. 18, 2014), 1184 pp.

[65] R. B. Paris, Chapter 8 Incomplete Gamma and Related Functions, 2022.
[66] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover

Publications Inc., June 1, 1965), 1046 pp.
[67] W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and theorems for the

special functions of mathematical physics, Third, Vol. 52, Die Grundlehren Der
Mathematischen Wissenschaften in Einzeldarstellungen (Springer, Berlin, 1966).

[68] F. Capolino, D. Wilton, and W. Johnson, “Efficient computation of the 2-D Green’s
function for 1-D periodic structures using the Ewald method,” IEEE Transactions
on Antennas and Propagation 53, 2977–2984 (2005).

[69] F. Capolino, D. R. Wilton, and W. A. Johnson, “Efficient computation of the
3D Green’s function for the Helmholtz operator for a linear array of point sources
using the Ewald method,” Journal of Computational Physics 223, 250–261 (2007).

110

https://doi.org/10.1088/0305-4470/39/36/009
https://doi.org/10.1137/09075130X
https://doi.org/10.1137/09075130X
https://doi.org/10.1143/JPSJ.72.1244
https://doi.org/10.1143/JPSJ.72.1244
https://doi.org/10.4208/cicp.OA-2020-0136
https://doi.org/10.4208/cicp.OA-2020-0136
https://doi.org/10.1364/JOSA.69.000742
https://doi.org/10.1364/JOSA.69.000742
https://doi.org/10.1364/JOSAA.32.001026
https://doi.org/10.1364/JOSAA.32.001026
https://doi.org/10.1103/PhysRevB.57.2550
https://doi.org/10.1103/PhysRevB.57.2550
https://doi.org/10.1002/pssa.2210720120
https://doi.org/10.1002/pssa.2210720120
https://doi.org/10.1109/TAP.2005.854556
https://doi.org/10.1109/TAP.2005.854556
https://doi.org/10.1016/j.jcp.2006.09.013


[70] K. E. Jordan, G. R. Richter, and P. Sheng, “An efficient numerical evaluation of
the Green’s function for the Helmholtz operator on periodic structures,” Journal
of Computational Physics 63, 222–235 (1986).

[71] G. Lovat, P. Burghignoli, and R. Araneo, “Efficient Evaluation of the 3-D Periodic
Green’s Function Through the Ewald Method,” IEEE Transactions on Microwave
Theory and Techniques 56, 2069–2075 (2008).

[72] A. Kustepeli and A. Martin, “On the splitting parameter in the Ewald method,”
IEEE Microwave and Guided Wave Letters 10, 168–170 (2000).

[73] I. Stevanoviæ and J. R. Mosig, “Periodic Green’s function for skewed 3-D lattices
using the Ewald transformation,” Microwave and Optical Technology Letters 49,
1353–1357 (2007).

[74] A. Groner, “Analysing diffraction from periodically arranged scatterers while con-
sidering their T-Matrix,” Master’s thesis (Karlsruhe Institute of Technology (KIT),
June 2018).

[75] T. Wriedt and J. Hellmers, “New Scattering Information Portal for the light-
scattering community,” Journal of Quantitative Spectroscopy and Radiative Trans-
fer, X Conference on Electromagnetic and Light Scattering by Non-Spherical Par-
ticles 109, 1536–1542 (2008).

[76] J. Hellmers and T. Wriedt, “New approaches for a light scattering Internet infor-
mation portal and categorization schemes for light scattering software,” Journal
of Quantitative Spectroscopy and Radiative Transfer, XI Conference on Electro-
magnetic and Light Scattering by Non-Spherical Particles: 2008 110, 1511–1517
(2009).

[77] A. Doicu, Yu. A. Eremin, and T. Wriedt, “Convergence of the T-matrix method
for light scattering from a particle on or near a surface,” Optics Communications
159, 266–277 (1999).

[78] T. Wriedt, “Review of the null-field method with discrete sources,” Journal of
Quantitative Spectroscopy and Radiative Transfer, IX Conference on Electromag-
netic and Light Scattering by Non-Spherical Particles 106, 535–545 (2007).

[79] J. Markkanen and A. J. Yuffa, “Fast superposition T-matrix solution for clus-
ters with arbitrarily-shaped constituent particles,” Journal of Quantitative Spec-
troscopy and Radiative Transfer 189, 181–188 (2017).

[80] A. Egel et al., “Extending the applicability of the T-matrix method to light scatter-
ing by flat particles on a substrate via truncation of sommerfeld integrals,” Journal
of Quantitative Spectroscopy and Radiative Transfer 202, 279–285 (2017).

[81] A. Egel et al., “CELES: CUDA-accelerated simulation of electromagnetic scat-
tering by large ensembles of spheres,” Journal of Quantitative Spectroscopy and
Radiative Transfer 199, 103–110 (2017).

[82] D. Schebarchov et al., “Multiple scattering of light in nanoparticle assemblies: User
guide for the terms program,” Journal of Quantitative Spectroscopy and Radiative
Transfer 284, 108131 (2022).

111

https://doi.org/10.1016/0021-9991(86)90093-8
https://doi.org/10.1016/0021-9991(86)90093-8
https://doi.org/10.1109/TMTT.2008.2002232
https://doi.org/10.1109/TMTT.2008.2002232
https://doi.org/10.1109/75.850366
https://doi.org/10.1002/mop.22429
https://doi.org/10.1002/mop.22429
https://doi.org/10.1016/j.jqsrt.2007.11.008
https://doi.org/10.1016/j.jqsrt.2007.11.008
https://doi.org/10.1016/j.jqsrt.2007.11.008
https://doi.org/10.1016/j.jqsrt.2009.01.023
https://doi.org/10.1016/j.jqsrt.2009.01.023
https://doi.org/10.1016/j.jqsrt.2009.01.023
https://doi.org/10.1016/j.jqsrt.2009.01.023
https://doi.org/10.1016/S0030-4018(98)00586-0
https://doi.org/10.1016/S0030-4018(98)00586-0
https://doi.org/10.1016/j.jqsrt.2007.01.043
https://doi.org/10.1016/j.jqsrt.2007.01.043
https://doi.org/10.1016/j.jqsrt.2007.01.043
https://doi.org/10.1016/j.jqsrt.2016.11.004
https://doi.org/10.1016/j.jqsrt.2016.11.004
https://doi.org/10.1016/j.jqsrt.2017.08.016
https://doi.org/10.1016/j.jqsrt.2017.08.016
https://doi.org/10.1016/j.jqsrt.2017.05.010
https://doi.org/10.1016/j.jqsrt.2017.05.010
https://doi.org/10.1016/j.jqsrt.2022.108131
https://doi.org/10.1016/j.jqsrt.2022.108131


Bibliography

[83] N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: A new version of the
program for transmission and band-structure calculations of photonic crystals,”
Computer Physics Communications 132, 189–196 (2000).

[84] P. C. Waterman, “T-matrix methods in acoustic scattering,” The Journal of the
Acoustical Society of America 125, 42–51 (2009).

[85] C. R. Harris et al., “Array programming with NumPy,” Nature 585, 357–362
(2020).

[86] P. Virtanen et al., “SciPy 1.0: fundamental algorithms for scientific computing in
Python,” Nature Methods 17, 261–272 (2020).

[87] H. Dachsel, “Fast and accurate determination of the Wigner rotation matrices in
the fast multipole method,” The Journal of Chemical Physics 124, 144115 (2006).

[88] Y.-l. Xu, “Efficient Evaluation of Vector Translation Coefficients in Multiparti-
cle Light-Scattering Theories,” Journal of Computational Physics 139, 137–165
(1998).

[89] J. Rumbaugh, I. Jacobson, and G. Booch, The unified modeling language reference
manual, 2nd ed, The Addison-Wesley Object Technology Series (Addison-Wesley,
Boston, 2005), 721 pp.

[90] I. Fernandez-Corbaton, “Forward and backward helicity scattering coefficients
for systems with discrete rotational symmetry,” Optics Express 21, 29885–29893
(2013).

[91] F. Graf, “Electromagnetically Dual Nanostructures for Enhanced Circular Dichro-
ism Spectroscopy,” Master’s thesis (Karlsruhe Institute of Technology (KIT), Feb.
2018).

[92] M. Scheffler et al., “FAIR data enabling new horizons for materials research,”
Nature 604, 635–642 (2022).

[93] S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with
two-photon-absorbed photopolymerization,” Optics Letters 22, 132–134 (1997).

[94] L. Yang et al., “Multi-material multi-photon 3D laser micro- and nanoprinting,”
Light: Advanced Manufacturing 2, 296–312 (2021).

[95] L. A. Nguyen, H. He, and C. Pham-Huy, “Chiral Drugs: An Overview,” Interna-
tional Journal of Biomedical Science : IJBS 2, 85–100 (2006).

[96] J.-P. Behr, ed., The lock-and-key principle: the state of the art–100 years on,
Perspectives in Supramolecular Chemistry v. 1 (Wiley, Chichester [England] ; New
York, 1994), 325 pp.

[97] M. Vavilin and I. Fernandez-Corbaton, “Multidimensional measures of electromag-
netic chirality and their conformal invariance,” New Journal of Physics 24, 033022
(2022).

[98] L. D. Barron, Molecular light scattering and optical activity (Cambridge University
Press, Cambridge, 2004).

[99] L. A. Nafie, Vibrational optical activity: principles and applications (Wiley, Chich-
ester, West Sussex, 2011), 378 pp.

112

https://doi.org/10.1016/s0010-4655(00)00131-4
https://doi.org/10.1121/1.3035839
https://doi.org/10.1121/1.3035839
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1063/1.2194548
https://doi.org/10.1006/jcph.1997.5867
https://doi.org/10.1006/jcph.1997.5867
https://doi.org/10.1364/OE.21.029885
https://doi.org/10.1364/OE.21.029885
https://doi.org/10.1038/s41586-022-04501-x
https://doi.org/10.1364/OL.22.000132
https://doi.org/10.37188/lam.2021.017
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614593/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614593/
https://doi.org/10.1088/1367-2630/ac57e8
https://doi.org/10.1088/1367-2630/ac57e8


[100] E. Hendry et al., “Ultrasensitive detection and characterization of biomolecules
using superchiral fields,” Nature Nanotechnology 5, 783–787 (2010).

[101] B. Auguié et al., “Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic
Nanorods,” The Journal of Physical Chemistry Letters 2, 846–851 (2011).

[102] E. Hendry et al., “Chiral Electromagnetic Fields Generated by Arrays of Nanoslits,”
Nano Letters 12, 3640–3644 (2012).

[103] M. Hentschel et al., “Three-Dimensional Chiral Plasmonic Oligomers,” Nano Let-
ters 12, 2542–2547 (2012).

[104] M. Schäferling et al., “Tailoring Enhanced Optical Chirality: Design Principles for
Chiral Plasmonic Nanostructures,” Physical Review X 2, 031010 (2012).

[105] Y. Zhao et al., “Chirality detection of enantiomers using twisted optical metama-
terials,” Nature Communications 8, 14180 (2017).

[106] L. V. Poulikakos et al., “Chiral Light Design and Detection Inspired by Optical
Antenna Theory,” Nano Letters 18, 4633–4640 (2018).

[107] M. Rajaei et al., “Giant Circular Dichroism at Visible Frequencies Enabled by
Plasmonic Ramp-Shaped Nanostructures,” ACS Photonics 6, 924–931 (2019).

[108] T. Iida et al., “Super-chiral vibrational spectroscopy with metasurfaces for high-
sensitive identification of alanine enantiomers,” Applied Physics Letters 117, 101103
(2020).

[109] A. O. Govorov et al., “Theory of Circular Dichroism of Nanomaterials Comprising
Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions,
and Dielectric Effects,” Nano Letters 10, 1374–1382 (2010).

[110] M. Schäferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric
environment,” Optics Express 20, 26326–26336 (2012).

[111] A. García-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spec-
troscopy mediated by nonchiral nanoantennas,” Physical Review B 87, 235409
(2013).

[112] M. L. Nesterov et al., “The Role of Plasmon-Generated Near Fields for Enhanced
Circular Dichroism Spectroscopy,” ACS Photonics 3, 578–583 (2016).

[113] C.-S. Ho et al., “Enhancing Enantioselective Absorption Using Dielectric Nano-
spheres,” ACS Photonics 4, 197–203 (2017).

[114] E. Mohammadi et al., “Nanophotonic Platforms for Enhanced Chiral Sensing,”
ACS Photonics 5, 2669–2675 (2018).

[115] A. Vázquez-Guardado and D. Chanda, “Superchiral Light Generation on Degen-
erate Achiral Surfaces,” Physical Review Letters 120, 137601 (2018).

[116] J. Garcia-Guirado et al., “Enhanced chiral sensing with dielectric nano-resonators,”
Nano Letters, 10.1021/acs.nanolett.9b04334 (2019).

[117] F. Graf et al., “Achiral, Helicity Preserving, and Resonant Structures for Enhanced
Sensing of Chiral Molecules,” ACS Photonics 6, 482–491 (2019).

[118] B. Semnani et al., “Spin-Preserving Chiral Photonic Crystal Mirror,” Nov. 20,
2019.

113

https://doi.org/10.1038/nnano.2010.209
https://doi.org/10.1021/jz200279x
https://doi.org/10.1021/nl3012787
https://doi.org/10.1021/nl300769x
https://doi.org/10.1021/nl300769x
https://doi.org/10.1103/PhysRevX.2.031010
https://doi.org/10.1038/ncomms14180
https://doi.org/10.1021/acs.nanolett.8b00083
https://doi.org/10.1021/acsphotonics.8b01584
https://doi.org/10.1063/5.0012331
https://doi.org/10.1063/5.0012331
https://doi.org/10.1021/nl100010v
https://doi.org/10.1364/OE.20.026326
https://doi.org/10.1103/PhysRevB.87.235409
https://doi.org/10.1103/PhysRevB.87.235409
https://doi.org/10.1021/acsphotonics.5b00637
https://doi.org/10.1021/acsphotonics.6b00701
https://doi.org/10.1021/acsphotonics.8b00270
https://doi.org/10.1103/PhysRevLett.120.137601
https://doi.org/10.1021/acs.nanolett.9b04334
https://doi.org/10.1021/acsphotonics.8b01454


Bibliography

[119] M. L. Solomon et al., “Enantiospecific Optical Enhancement of Chiral Sensing and
Separation with Dielectric Metasurfaces,” ACS Photonics 6, 43–49 (2019).

[120] S. Droulias and L. Bougas, “Absolute Chiral Sensing in Dielectric Metasurfaces
Using Signal Reversals,” Nano Letters 20, 5960–5966 (2020).

[121] M. Hanifeh and F. Capolino, “Helicity maximization in a planar array of achi-
ral high-density dielectric nanoparticles,” Journal of Applied Physics 127, 093104
(2020).

[122] M. Hanifeh, M. Albooyeh, and F. Capolino, “Optimally Chiral Light: Upper Bound
of Helicity Density of Structured Light for Chirality Detection of Matter at Nano-
scale,” ACS Photonics 7, 2682–2691 (2020).

[123] M. L. Solomon et al., “Fluorescence-Detected Circular Dichroism of a Chiral Molec-
ular Monolayer with Dielectric Metasurfaces,” Journal of the American Chemical
Society 142, 18304–18309 (2020).

[124] V. Hahn et al., “3-D Laser Nanoprinting,” Optics and Photonics News 30, 28–35
(2019).

[125] J. del Barrio and C. Sánchez-Somolinos, “Light to Shape the Future: From Pho-
tolithography to 4D Printing,” Advanced Optical Materials 7, 1900598 (2019).

[126] C. M. González-Henríquez, M. A. Sarabia-Vallejos, and J. Rodriguez-Hernandez,
“Polymers for additive manufacturing and 4D-printing: Materials, methodologies,
and biomedical applications,” Progress in Polymer Science 94, 57–116 (2019).

[127] X. Kuang et al., “Advances in 4D Printing: Materials and Applications,” Advanced
Functional Materials 29, 1805290 (2019).

[128] S. Joshi et al., “4D printing of materials for the future: Opportunities and chal-
lenges,” Applied Materials Today 18, 100490 (2020).

[129] C. A. Spiegel et al., “4D Printing at the Microscale,” Advanced Functional Mate-
rials 30, 1907615 (2020).

[130] T. J. White and D. J. Broer, “Programmable and adaptive mechanics with liquid
crystal polymer networks and elastomers,” Nature Materials 14, 1087–1098 (2015).

[131] L. Tan, A. C. Davis, and D. J. Cappelleri, “Smart Polymers for Microscale Ma-
chines,” Advanced Functional Materials 31, 2007125 (2021).

[132] R. Haldar et al., “Guest-responsive polaritons in a porous framework: chromophoric
sponges in optical QED cavities,” Chemical Science 11, 7972–7978 (2020).

[133] S. L. James, “Metal-organic frameworks,” Chemical Society Reviews 32, 276–288
(2003).

[134] R. Gao, M. S. Kodaimati, and D. Yan, “Recent advances in persistent luminescence
based on molecular hybrid materials,” Chemical Society Reviews 50, 5564–5589
(2021).

[135] T. Viswanathan et al., “Enhancement of Second-Order Nonlinear Optical Prop-
erties of Centrosymmetric Ferrocenyl Borasiloxane by a Broken-Symmetry Ap-
proach,” The Journal of Physical Chemistry C 125, 8732–8740 (2021).

[136] Y. Wang et al., “Stimulated Raman scattering signal amplification in ethanol
molecules via resonant cascading,” Applied Physics Letters 118, 121102 (2021).

114

https://doi.org/10.1021/acsphotonics.8b01365
https://doi.org/10.1021/acs.nanolett.0c01938
https://doi.org/10.1063/1.5138600
https://doi.org/10.1063/1.5138600
https://doi.org/10.1021/acsphotonics.0c00304
https://doi.org/10.1021/jacs.0c07140
https://doi.org/10.1021/jacs.0c07140
https://doi.org/10.1364/OPN.30.10.000028
https://doi.org/10.1364/OPN.30.10.000028
https://doi.org/10.1002/adom.201900598
https://doi.org/10.1016/j.progpolymsci.2019.03.001
https://doi.org/10.1002/adfm.201805290
https://doi.org/10.1002/adfm.201805290
https://doi.org/10.1016/j.apmt.2019.100490
https://doi.org/10.1002/adfm.201907615
https://doi.org/10.1002/adfm.201907615
https://doi.org/10.1038/nmat4433
https://doi.org/10.1002/adfm.202007125
https://doi.org/10.1039/D0SC02436H
https://doi.org/10.1039/B200393G
https://doi.org/10.1039/B200393G
https://doi.org/10.1039/D0CS01463J
https://doi.org/10.1039/D0CS01463J
https://doi.org/10.1021/acs.jpcc.0c11242
https://doi.org/10.1063/5.0044353


[137] J.-L. Zhuang, A. Terfort, and C. Wöll, “Formation of oriented and patterned films
of metal–organic frameworks by liquid phase epitaxy: A review,” Coordination
Chemistry Reviews, Chemistry and Applications of Metal Organic Frameworks
307, 391–424 (2016).

[138] R. Bast et al., “The ab initio calculation of molecular electric, magnetic and geo-
metric properties,” Physical Chemistry Chemical Physics 13, 2627–2651 (2011).

[139] T. Helgaker et al., “Recent Advances in Wave Function-Based Methods of Molecular-
Property Calculations,” Chemical Reviews 112, 543–631 (2012).

[140] C. Holzer, “An improved seminumerical Coulomb and exchange algorithm for prop-
erties and excited states in modern density functional theory,” The Journal of
Chemical Physics 153, 184115 (2020).

[141] G. Gantzounis and N. Stefanou, “Layer-multiple-scattering method for photonic
crystals of nonspherical particles,” Physical Review B 73, 035115 (2006).

[142] Y. Jiang, S. Pillai, and M. A. Green, “Realistic Silver Optical Constants for Plas-
monics,” Scientific Reports 6, 30605 (2016).

[143] J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Physical Review Letters
85, 3966–3969 (2000).

[144] A. Ishimaru et al., “Generalized constitutive relations for metamaterials based on
the quasi-static Lorentz theory,” IEEE Transactions on Antennas and Propagation
51, 2550–2557 (2003).

[145] P. A. Belov and C. R. Simovski, “Homogenization of electromagnetic crystals
formed by uniaxial resonant scatterers,” Physical Review E 72, 026615 (2005).

[146] M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of $ϵ$-
negative rods,” Physical Review E 73, 046612 (2006).

[147] D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging
(invited paper),” Journal of the Optical Society of America B 23, 391–403 (2006).

[148] M. G. Silveirinha, “Metamaterial homogenization approach with application to the
characterization of microstructured composites with negative parameters,” Physi-
cal Review B 75, 115104 (2007).

[149] M. G. Silveirinha, “Generalized Lorentz-Lorenz formulas for microstructured ma-
terials,” Physical Review B 76, 245117 (2007).

[150] M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring
resonators with permeability near zero,” Physical Review B 77, 233104 (2008).

[151] A. Alù, “First-principles homogenization theory for periodic metamaterials,” Phys-
ical Review B 84, 075153 (2011).

[152] A. V. Chebykin, M. A. Gorlach, and P. A. Belov, “Spatial-dispersion-induced bire-
fringence in metamaterials with cubic symmetry,” Physical Review B 92, 045127
(2015).

[153] A. Ciattoni and C. Rizza, “Nonlocal homogenization theory in metamaterials: Ef-
fective electromagnetic spatial dispersion and artificial chirality,” Physical Review
B 91, 184207 (2015).

115

https://doi.org/10.1016/j.ccr.2015.09.013
https://doi.org/10.1016/j.ccr.2015.09.013
https://doi.org/10.1016/j.ccr.2015.09.013
https://doi.org/10.1039/C0CP01647K
https://doi.org/10.1021/cr2002239
https://doi.org/10.1063/5.0022755
https://doi.org/10.1063/5.0022755
https://doi.org/10.1103/PhysRevB.73.035115
https://doi.org/10.1038/srep30605
https://doi.org/10.1103/PhysRevLett.85.3966
https://doi.org/10.1103/PhysRevLett.85.3966
https://doi.org/10.1109/TAP.2003.817565
https://doi.org/10.1109/TAP.2003.817565
https://doi.org/10.1103/PhysRevE.72.026615
https://doi.org/10.1103/PhysRevE.73.046612
https://doi.org/10.1364/JOSAB.23.000391
https://doi.org/10.1103/PhysRevB.75.115104
https://doi.org/10.1103/PhysRevB.75.115104
https://doi.org/10.1103/PhysRevB.76.245117
https://doi.org/10.1103/PhysRevB.77.233104
https://doi.org/10.1103/PhysRevB.84.075153
https://doi.org/10.1103/PhysRevB.84.075153
https://doi.org/10.1103/PhysRevB.92.045127
https://doi.org/10.1103/PhysRevB.92.045127
https://doi.org/10.1103/PhysRevB.91.184207
https://doi.org/10.1103/PhysRevB.91.184207


Bibliography

[154] G. T. Papadakis, P. Yeh, and H. A. Atwater, “Retrieval of material parameters
for uniaxial metamaterials,” Physical Review B 91, 155406 (2015).

[155] K. Mnasri et al., “Beyond local effective material properties for metamaterials,”
Physical Review B 97, 075439 (2018).

[156] K. Mnasri et al., “Homogenization of wire media with a general purpose nonlocal
constitutive relation,” Journal of the Optical Society of America 36, F99–F108
(2019).

[157] K. Mnasri et al., “Retrieving effective material parameters of metamaterials char-
acterized by nonlocal constitutive relations,” Physical Review B 99, 035442 (2019).

[158] T. Repän, R. Venkitakrishnan, and C. Rockstuhl, “Artificial neural networks used
to retrieve effective properties of metamaterials,” Optics Express 29, 36072–36085
(2021).

[159] A. N. M. S. Hossain, I. Tsukerman, and V. A. Markel, “Homogenization of periodic
structures: One layer is “bulk”,” Europhysics Letters 138, 35001 (2022).

[160] C. R. Simovski, “On electromagnetic characterization and homogenization of nanos-
tructured metamaterials,” Journal of Optics 13, 013001 (2010).

[161] A. Aharoni, “Demagnetizing factors for rectangular ferromagnetic prisms,” Journal
of Applied Physics 83, 3432–3434 (1998).

[162] C. Menzel et al., “Extreme coupling: A route towards local magnetic metamateri-
als,” Physical Review B 89, 155125 (2014).

[163] S. Babar and J. H. Weaver, “Optical constants of Cu, Ag, and Au revisited,”
Applied Optics 54, 477–481 (2015).

[164] I. Sekulic, J. W. You, and N. C. Panoiu, “T -matrix method for calculation of
second-harmonic generation in clusters of spherical particles,” Journal of Quanti-
tative Spectroscopy and Radiative Transfer 268, 107643 (2021).

[165] G. Ptitcyn et al., “Scattering of light by spheres made from a time-modulated
and dispersive material,” in 2021 Fifteenth International Congress on Artificial
Materials for Novel Wave Phenomena (Metamaterials) (Sept. 2021), pp. 347–349.

[166] G. Ptitcyn et al., “Floquet–Mie Theory for Time-Varying Dispersive Spheres,”
Laser & Photonics Reviews 17, 2100683 (2023).

[167] A. G. Lamprianidis, C. Rockstuhl, and I. Fernandez-Corbaton, “Transcending the
Rayleigh Hypothesis with multipolar sources distributed across the topological
skeleton of a scatterer,” Journal of Quantitative Spectroscopy and Radiative Trans-
fer 296, 108455 (2023).

[168] C. Craeye, A. Tijhuis, and D. Schaubert, “An efficient MoM formulation for finite-
by-infinite arrays of two-dimensional antennas arranged in a three-dimensional
structure,” IEEE Transactions on Antennas and Propagation 52, 271–282 (2004).

[169] C. Craeye and F. Capolino, “Accelerated computation of the free space Green’s
function of semi-infinite phased arrays of dipoles,” IEEE Transactions on Antennas
and Propagation 54, 1037–1040 (2006).

116

https://doi.org/10.1103/PhysRevB.91.155406
https://doi.org/10.1103/PhysRevB.97.075439
https://doi.org/10.1364/JOSAB.36.000F99
https://doi.org/10.1364/JOSAB.36.000F99
https://doi.org/10.1103/PhysRevB.99.035442
https://doi.org/10.1364/OE.427778
https://doi.org/10.1364/OE.427778
https://doi.org/10.1209/0295-5075/ac56af
https://doi.org/10.1088/2040-8978/13/1/013001
https://doi.org/10.1063/1.367113
https://doi.org/10.1063/1.367113
https://doi.org/10.1103/PhysRevB.89.155125
https://doi.org/10.1364/AO.54.000477
https://doi.org/10.1016/j.jqsrt.2021.107643
https://doi.org/10.1016/j.jqsrt.2021.107643
https://doi.org/10.1109/Metamaterials52332.2021.9577064
https://doi.org/10.1109/Metamaterials52332.2021.9577064
https://doi.org/10.1002/lpor.202100683
https://doi.org/10.1016/j.jqsrt.2022.108455
https://doi.org/10.1016/j.jqsrt.2022.108455
https://doi.org/10.1109/TAP.2003.822405
https://doi.org/10.1109/TAP.2006.869945
https://doi.org/10.1109/TAP.2006.869945


[170] C. M. Linton and P. A. Martin, “Semi-Infinite Arrays of Isotropic Point Scatter-
ers. A Unified Approach,” SIAM Journal on Applied Mathematics 64, 1035–1056
(2004).

[171] C. M. Linton, “Schlömilch series that arise in diffraction theory and their efficient
computation,” Journal of Physics A: Mathematical and General 39, 3325–3339
(2006).

[172] L. C. Botten et al., “Photonic band structure calculations using scattering matri-
ces,” Physical Review E 64, 046603 (2001).

[173] G. Czycholl, Theoretische Festkörperphysik. Grundlagen: Phononen und Elektro-
nen in Kristallen, 4. Auflage (Springer Spektrum, Berlin Heidelberg, 2016), 410 pp.

117

https://www.jstor.org/stable/4096022
https://www.jstor.org/stable/4096022
https://doi.org/10.1088/0305-4470/39/13/012
https://doi.org/10.1088/0305-4470/39/13/012
https://doi.org/10.1103/PhysRevE.64.046603




Appendix

A Fourier transform and Poisson’s formula
We use the following definition of the function f(t) depending on the time t in terms of
its Fourier transform f̃(k0)

f(t) = c

∫ ∞

−∞
dk0 f̃(k0) e

−ick0t , (A.1)

where we express the dependence in frequency space by the wave number k0 = ω
c instead of

the angular frequency ω using the speed of light in vacuum c. The inverse transformation
is then defined by

f̃(k0) =
1

2π

∫ ∞

−∞
dt f(t) eick0t . (A.2)

Similarly, for a function f(r) in real space depending on the spatial coordinates r ∈ Rd,
we define

f(r) =

∫
Rd

ddqf(q)eiqr (A.3)

and its inverse

f(q) =
1

(2π)d

∫
Rd

ddrf(r)e−iqr , (A.4)

where q ∈ Rd is the reciprocal space coordinate vector.
Furthermore, these definitions lead to the Poisson sum formula for a lattice Λd =

{
∑d

i=1 niui|ni ∈ Z} of dimension d, where ui ∈ Rd, i ∈ {1, . . . , d} are its basis vectors,
given by [173] ∑

R∈Λd

f(R) =
(2π)d

Vd

∑
Q∈Λ∗

d

f(Q) . (A.5)

The vectors Q are elements of the reciprocal lattice Λ∗
d = {

∑d
i=1 nivi|ni ∈ Z}, with basis

vectors vj ∈ Rd, j ∈ {1, . . . , d} fulfilling vjui = 2πδij .

B Cylindrical and spherical coordinate systems
The cylindrical coordinates ρ, φ, and z are implicitly defined by

x = ρ cosφ (B.1a)
y = ρ sinφ (B.1b)
z = z (B.1c)
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in terms of the Cartesian coordinates x, y, and z. Likewise, the spherical coordinates r,
θ, and φ are

x = r sin θ cosφ (B.2a)
y = r sin θ sinφ (B.2b)
z = r cos θ . (B.2c)

With these definitions, a distinction between φ in cylindrical and spherical coordinates
is not necessary because it coincides. The unit vectors in these coordinate systems that
form a right-handed set are ρ̂, φ̂, and ẑ in cylindrical coordinates and r̂, θ̂, and φ̂ in
spherical coordinates, where the unit vectors are defined by

ρ̂ = x̂ cosφ+ ŷ sinφ (B.3a)
φ̂ = −x̂ sinφ+ ŷ cosφ (B.3b)
r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ (B.3c)
θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ . (B.3d)

The ambiguity of φ for x = 0 = y is lifted by setting φ = 0 in that case. If additionally
z = 0, we also set θ = 0.

We also use these coordinates in reciprocal space for the wave vectors k with Cartesian
components kx, ky, and kz instead of r with Cartesian components x, y, and z. We then
use the following notation: k instead of r, kρ instead of ρ, k̂ instead of r̂. For all other
quantities k is added as subscript, e.g., φk.

C Associated Legendre polynomials and spherical harmonics

The spherical harmonics used in this thesis are defined as

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ , (C.1)

where the polar dependency is given by the associated Legendre polynomials, which can
be derived from the Legendre polynomials Pl(x) by

Pm
l (x) =(−1)m

(
1− x2

)m
2

dm

dxm
Pl(x) (C.2)

=
(−1)m

2ll!

(
1− x2

)m
2

dl+m

dxl+m

(
x2 − 1

)l
. (C.3)

In the second equation, we used Rodrigues’ formula. While the first equation, strictly
speaking, is only valid for m ≥ 0 the second equation of this definition can be extended
to |m| ≤ l. However, associated Legendre polynomials of opposite m are related by

P−m
l (x) = (−1)m

(l −m)!

(l +m)!
Pm
l (x) . (C.4)
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C Associated Legendre polynomials and spherical harmonics

A very useful representation of the associated Legendre polynomials for this thesis in case
of the often encountered argument of cos θ = z√

ρ2+z2
is

P
|m|
l

(
z√

ρ2 + z2

)
=

⌊ l−|m|
2

⌋∑
j=0

(−1)j+|m|(l − 2j)!

2l(l − |m| − 2j)!

(
l

j

)(
2l − 2j

l

)
zl−|m|−2jρ|m|√
ρ2 + z2

l−2j
(C.5)

that is obtained by applying Eq. (C.2) to

Pl(x) =
1

2l

⌊ l
2
⌋∑

j=0

(−1)j
(
l

j

)(
2l − 2j

l

)
xl−2j . (C.6)

First, we pull out the factors independent of the sum

P
|m|
l

(
z√

ρ2 + z2

)
=

(−1)|m|ρ|m|

2l
√

ρ2 + z2
l

⌊ l−|m|
2

⌋∑
j=0

(−1)j(l − 2j)!

(l − |m| − 2j)!

(
l

j

)(
2l − 2j

l

)

·
j∑

s=0

(
j

s

)
ρ2szl−|m|−2s . (C.7)

After rearranging the two sums to get a factor independent of z and ρ, we have

P
|m|
l

(
z√

ρ2 + z2

)
=

(−1)|m|ρ|m|

2l
√

ρ2 + z2
l

⌊ l−|m|
2

⌋∑
s=0

ρ2szl−|m|−2s

s!

·
⌊ l−|m|

2
⌋∑

j=s

(−1)j(2l − 2j)!

(l − |m| − 2j)!(l − j)!(j − s)!
. (C.8)

The second sum now fulfills the formula

f(l,m, s) =

⌊ l−m
2

⌋∑
j=s

(−1)j(2l − 2j)!

(l −m− 2j)!(l − j)!(j − s)!
=

(−1)s(l +m)!2l−m−2s

(l −m− 2s)!(s+m)!
, (C.9)

for integer values l, m, and s with l ≥ m. This can be proven by recursion via

f(l + 1,m, s) = 2(f(l,m, s) + (l +m)f(l,m− 1, s)) (C.10)

and the starting value
f(l,−l, s) = δls(−1)l . (C.11)

Hence, we get

Pm
l

(
z√

ρ2 + z2

)
=
(−1)

|m|+m
2√

ρ2 + z2
l

⌊ l−|m|
2

⌋∑
s=0

(−1)s(l +m)!ρ2s+|m|zl−|m|−2s

22s+|m|(l − |m| − 2s)!(s+ |m|)!s!
, (C.12)

where we used Eq. (C.4) to also include negative values of m.
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D Displacement field and magnetic flux density expansion
Based on the expansions in Eqs. (2.31) and (2.32) and the constitutive relations Eq. (2.7),
we can expand the displacement field by

D(r; k0) =
1

Z(k0)

∑
s=±1

∑
ν

sns(k0)aνsAνs(r, ks(k0)) , (D.1)

the magnetic flux density as

B(r; k0) = −i
∑
s=±1

∑
ν

sns(k0)aνsAνs(r, ks(k0)) , (D.2)

and the alternative definition of the Riemann-Silberstein vectors

F±(r; k0) =

D(r;k0)
ϵ(k0)

± iB(r;k0)
n(k0)√

2

=
√
2
n±(k0)

n(k0)

∑
ν

aν±Aν±(r, k±(k0)) =
ns(k0)

n(k0)
G±(r; k0) (D.3)

that diagonalize the equations in chiral media like the fields G±(r; k0).

E Interface matrices for spheres and cylinders
We define the following quantities

anνsσ =

(
(x̃sz

(n)
l (x̃s))

′

x̃s
z
(ν)
l (xσ)− sσz

(n)
l (x̃s)

(xσz
(ν)
l (xσ))

′

xσ

)
Z̃ − sσZ

Z
x̃2s (E.1)

Anν
sσ =

(
Z

(n)
l

′
(x̃s)Z

(ν)
l (xσ)− sσZ

(n)
l (x̃s)Z

(ν)
l

′
(xσ)

) Z̃ − sσZ

Z
x̃s , (E.2)

where n, ν ∈ {1, 3} indicate the (spherical) Bessel and Hankel functions, and s, σ ∈ {−1, 1}
indicate the polarization. The quantities with a tilde use the material parameters outside
the interface and those without one use the material parameters inside the interface. These
quantities can then be used to give the compact closed-form matrix expressions

M = − i

2


a31−− a31−+ a33−− a33−+

a31+− a31++ a33+− a33++

−a11−− −a11−+ −a13−− −a33−+

−a11+− −a11++ −a13+− −a33++

 (E.3)

for spheres and

M = − iπ

4


A31

−− A31
−+ A33

−− A33
−+

A31
+− A31

++ A33
+− A33

++

−A11
−− −A11

−+ −A13
−− −A33

−+

−A11
+− −A11

++ −A13
+− −A33

++

 (E.4)

for cylinders under illumination perpendicular to their surface.

122



F Translation coefficients for vector spherical waves

F Translation coefficients for vector spherical waves
The translation coefficients for the vector spherical waves used in Eqs. (2.50) and (2.53)
are given by [26, 36, 37]

Aλµlm(r, k) =
iλ−l(−1)m

2

√
(2l + 1)(2λ+ 1)

l(l + 1)λ(λ+ 1)
ei(m−µ)φ

·
l+λ∑

p=max(|l−λ|,|m−µ|)

(2p+ 1)ip[l(l + 1) + λ(λ+ 1)− p(p+ 1)]

·

√
(p−m− µ)!

(p+m+ µ)!

(
l λ p
m µ µ−m

)(
l λ p
0 0 0

)
z(n)p (kr)Pm−µ

p (cos θ)

(F.1)

and

Bλµlm(r, k) =
iλ−l(−1)m

2

√
(2l + 1)(2λ+ 1)

l(l + 1)λ(λ+ 1)
ei(m−µ)φ

·
l+λ−1∑

p=max(|l−λ|,|m−µ|)

(2p+ 1)ip
√
((l + λ+ 1)2 − p2)((p2 − (l − λ)2)

·

√
(p−m− µ)!

(p+m+ µ)!

(
l λ p
m −µ µ−m

)(
l λ p− 1
0 0 0

)
z(n)p (kr)Pm−µ

p (cos θ) ,

(F.2)

where the terms in brackets are the Wigner 3j-symbols [88]. The sum over p only needs
to include values where l + λ+ p is even or odd, respectively.

G Plane wave expansion
In Chapter 3, we use the plane wave expansions [15] in cylindrical waves

e−ikr =

∞∑
l=−∞

(−i)|l|J|l|(kr)e
il(φk−φr) (G.1)

and in spherical waves

e−ikr =4π

∞∑
l=0

l∑
m=−l

(−i)ljl(kr)Ylm(θk, φk)Y
∗
lm(θr, φr) . (G.2)

H Real and reciprocal space integral
The integral

In(z, α) =

∞∫
α

dt tne−
z2t2

2
+ 1

2t2 (H.1)
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appears in the derivation of quickly converging series of Chapter 3. It is evaluated for
complex-valued variables z, α ∈ C and for the integer index n ∈ Z. The values with
n ≥ −1 appear in the real space sum and the values n ≤ 0 in the reciprocal space sum,
as shown below. With the recursion Eq. (3.7), we need for starting values for which we
choose n ∈ {−3,−2,−1, 0}. The starting value for n = 0 and n = −2 can be derived by
examining the combination [50, 55]

zI0(z, α)± iI−2(z, α) =

∞∫
α

dt

(
z ± i

t2

)
e−

(zt∓ i
t )

2

2
∓iz (H.2a)

= e∓iz
√
2

∞∫
1√
2
(αz∓ i

α
)

du e−u2 (H.2b)

=

√
π

2
e∓iz erfc

(
αz ∓ i

α√
2

)
(H.2c)

first. As shown, it can be transformed to a complementary error function integral. Imple-
mentations for the evaluation of this function are widely available. By undoing the sum
or difference above, we find

I0(z, α) =

√
π

2
√
2z

(
e−iz erfc

(
αz − i

α√
2

)
+ eiz erfc

(
αz + i

α√
2

))
(H.3)

I−2(z, α) =
−i

√
π

2
√
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(
e−iz erfc

(
αz − i

α√
2

)
− eiz erfc

(
αz + i

α√
2

))
. (H.4)

The other two cases can be evaluated by expanding the exponential in the integral as a
power series. Then, we can immediately identify the incomplete gamma function to arrive
at the series
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2
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2
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The equivalent procedure leads to

I−3(z, α) =
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n=0

1

n!

(
z2

4

)n+1

Γ

(
−n− 1,

z2t2

2
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for n = −3.
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I Whittaker function

In the reciprocal sum integral we find
∞∫

e−iπ γ2

2η2

du

u
une−u+

(γkz)2

4u (H.7)

with integer or half integer value n. By substituting 2u = (kγzt)2, we arrive at

2

(
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e
−iπ2
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2
+ 1

2t2 = 2

(
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2

)n

I2n−1

(
kγz,− i

kzη

)
, (H.8)

where we can easily identify the integral, for which we derived all necessary starting values
to apply the recursion formula in Eq. (3.7).

I Whittaker function
The Whittaker function with parameters 1+|m|

2 + s and |m|
2 can be written as [67]

M 1+|m|
2

+s,
|m|
2

(z) =
e

z
2 z

1−|m|
2 |m|!

(|m|+ s)!

ds

dzs
(e−zz|m|+s) (I.1)

for m ∈ Z and s ∈ N0. We use the generalized product rule for higher order derivatives
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n=0
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s
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)(
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)
, (I.2)

to rewrite Eq. (I.1) as

M 1+|m|
2
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z
2 |m|!
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(
s

n

)
z

1+|m|
2 (−z)s−n

(|m|+ s− n)!
(I.3)

and, thereby, in a closed-form expression.

J Sum manipulations
The following finite double sums appear in five cases of the derivation of the lattice sums
in Chapter 3. They are manipulated such that their argument takes a simple form. In
the case of spherical waves in three dimensions (Subsection 3.3.2), we have⌊
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2
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2
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(J.1)
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Appendix

where the sum over v only takes every other value. Next, for spherical waves in a one-
dimensional lattice (Subsection 3.3.3), it is
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2
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with again v only taking every other value in the sum. The last case are cylindrical waves
in a one-dimensional lattice (Subsection 3.3.4), where we have
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K Permutation of Cartesian axes
We want to derive the coefficients that are encoding the change in the definition of the
plane waves in parity and helicity basis, when we permute the axes labels from x, y, and
z to a system with x = y′, y = z′, and z = x′. By relabeling the axes, the wave vector is
now written as k = kxx̂+ kyŷ + kzẑ = kzx̂

′ + kxŷ
′ + kyẑ

′.
We introduce the vectors mk and nk that are the vector part of Mk̂(r) and Nk̂(r)

defined in Eq. (2.15), namely

mk = i
kyx̂− kxŷ

kxy
(K.1a)

nk =
−kxkzx̂− kykzŷ + k2xyẑ

kkxy
, (K.1b)

with kxy =
√
k2x + k2y. In the coordinate system with permuted axes labels, these vectors

are

m′
k = i
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′ − kzŷ

′

kxz
= i

kxẑ − kzx̂

kxz
(K.2a)

n′
k =

−kzkyx̂
′ − kxkyŷ

′ + k2xzẑ
′

kkxz
=

−kzkyẑ − kxkyx̂+ k2xzŷ

kkxz
, (K.2b)
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K Permutation of Cartesian axes

where kxz is defined analogously to kxy. The projections of the vectors in Eq. (K.1) onto
those in Eq. (K.2) are

−m′
kmk = − kykz

kxykxz
(K.3a)

−m′
knk = −i
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2
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2
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2
xz

kkxykxz
= −i

kxk

kxykxz
(K.3c)
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2
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2
xz

k2kxykxz
= − kykz

kxykxz
, (K.3d)

where the minus sign comes from m2
k = −1 in the convention we use. In summary, these

coefficients can be written compactly as

1

kxykxz

(
−kykz −ikkx
−ikkx −kykz

)
, (K.4)

which becomes (
0 −i
−i 0

)
(K.5)

for kx = ky = 0 and (
−ky

k 0

0 −ky
k

)
(K.6)

for kx = kz = 0. The transformations in the helicity basis are

−kykz ∓ ikkx
kxykxz

(K.7)

for helicity ±1.
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