
The Generalized Fibonacci Grid as Low-Discrepancy Point Set
for Optimal Deterministic Gaussian Sampling

Daniel Frisch and Uwe D. Hanebeck

Abstract— We propose a multivariate Gaussian sampling
scheme. The samples exhibit an “optimal deterministic” config-
uration. This entails better quadrature or cubature results than
with random or quasi-random samples. Our sampling is based
on the generalized Fibonacci grid that makes the remarkable
properties of the well-known two-dimensional Fibonacci grid
applicable in higher dimensions. Two options for generating the
multivariate generalized Fibonacci grid are presented, based on
a rotated grid and a linear programming counter, respectively.
Various options for covariance matching are explored to obtain
an unscented transform.

This work is an enhanced and extended version of the
FUSION 2021 conference paper [1].

Matlab source code is available here: https://
codeocean.com/capsule/5750645/tree

I. INTRODUCTION

A. Context

In many practical applications such as nonlinear filtering
and control, moments of nonlinear functions of Gaussian
random vectors must be approximated in real-time. Mathe-
matically, this is a multi-dimensional integration, or cubature,
that can be computationally very expensive. Nevertheless,
filters and controllers often have to run under real-time
constraints. A standard way to perform such integration is
Monte Carlo simulation using random samples. However,
the convergence rate with independent samples is quite poor.
Variance reduction techniques help to improve the efficiency
of stochastic expectation value computations. After giving an
overview on state-of-the-art variance reduction methods, we
introduce novel Gaussian sampling schemes.

B. Considered Problem

We present a Gaussian sampling method for multivariate
Gaussian densities based on a higher-dimensional generaliza-
tion of the two-dimensional Fibonacci grid. See Figure 1 for
a visual comparison between random samples and proposed
variance-reduced samples.

C. State-of-the-art

Variance reduction techniques for expectation value calcula-
tions include antithetic variates [2], control variates [3], impor-
tance sampling [4], stratified sampling [5], low-discrepancy
or quasi-random sampling [6], [7], moment matching [8],
[9], [10], Localized Cumulative Distribution based sampling
[11], [12], and Projected Cumulative Distribution based
sampling [13], [14]. These methods can also be combined, for
example, Localized Cumulative Distribution based sampling
with moment matching and antithetic variates [15]. In this

Fig. 1: Independent random samples (left) and Fibonacci-
based samples (right) approximating a Gaussian density with
covariance C = diag([1, 0.32]). A total of 300 samples are
drawn.

work, we focus on Gaussian sampling and therefore present
various state-of-the-art methods to obtain Gaussian samples in
more detail. We comment on sampling techniques in common
Gaussian estimators like the Cubature Kalman Filter (CKF),
Unscented Kalman Filter (UKF), and Gaussian particle filter
(GPF) and compare our proposed method against them.

The “standard” way of sampling from the normal dis-
tribution employs independent identically distributed (iid)
samples, e.g., by transforming iid uniform samples with the
Box-Muller method [16]. This corresponds to standard Monte

Carlo simulation. According to the Central Limit Theorem
(CLT) [17, p. 244], the standard deviation of the integration
error equals the standard deviation of the integrand divided by
the square root of the number of samples used [18, Sec. 2.1].
This slow convergence makes the computation inefficient.

Gauss-Hermite quadrature entails a finite set of predefined,
weighted evaluation points for integration. It is ideally suited
for scalar integrals of polynomial-like functions multiplied
with a univariate Gaussian density function [19]. Extensions
to higher dimensions require a Cartesian product of the
evaluation points [20, Eq. 3.3], [21], [22, Eq. 17], thus the
number of required points increases exponentially with the
number of dimensions. Kalman filters using this method for
moment computation are called Gauss-Hermite quadrature
filters (GHQF).

To avoid the “curse of dimensionality”, one can place
samples on the main axes only [23]. A more radical variant is
the Unscented Kalman Filter (UKF), where only two samples,
“sigma points”, are placed on each coordinate axis [24], [8],
plus one in the center, i.e., the number of samples is L = 2D+
1 for dimension D. The distances are chosen such that mean
and covariance match. Very similarly, the 3rd order Cubature
Kalman Filter (CKF) places two samples on each coordinate
axis, without the sample at the mode, hence L = 2D [25].
The 5th order CKF employs instead L = 2D2 + 1 weighted
samples [26], see also [27, Sec. 7], [28, Eq. 48+49]. The
smallest possible sample set suitable to propagate mean and
covariance has been explored in [29], [30] – it takes only
L = D + 1 or L = D + 2 samples.

All these filters belong to the class of Linear Regres-
sion Kalman filters (LRKFs), introducing the 2nd Gaussian
assumption in the joint state and measurement space and
thus performing an implicit linearization of the measurement
equation. Particle filters avoid this and follow Bayes’ theorem
more directly. Thereby the Gaussian Particle Filter (GPF) [31],
[32], its progressive variant [33], [34], and many other particle
filters [35] need to draw medium to high numbers of samples
from Gaussian priors where our proposed Gaussian sampling
technique could increase efficiency.

Now we focus on methods allowing the number of samples
to be flexibly adapted to the problem and the desired accuracy.
Given a suitable distance or optimality measure such as
the Localized Cumulative Distribution (LCD) [11], optimal
deterministic Gaussian sample sets can be computed using
gradient optimization [36]. As this kind of sampling process
is itself computationally expensive, for practical filtering
it is necessary to compile a library of standard normally
distributed samples beforehand, and transform them to the
desired arbitrary Gaussian density online using the Cholesky
factorization of its covariance matrix [37], [12], [15]. After
such transformation, however, the samples are usually no
longer optimal as before [38, Fig. 4a+5a].

Therefore, it is convenient to use low-discrepancy se-
quences. They are exactly made to achieve optimal conver-
gence when used for numerical integration – better than the
well-known convergence rate of 1√

L
for L samples obtained

with independent random samples according to the Central

Limit Theorem. This is also referred to as quasi-Monte Carlo
integration [7] – as opposed to Monte Carlo integration with
independent random samples. Refer to section IV-C.2 for
a formal definition of discrepancy (40) and its relation to
approximate cubature (41).

Low-discrepancy sequences can under some constraints
be transformed to densities other than uniform while pre-
serving their low discrepancy. These point sets have already
successfully been applied to nonlinear filtering problems [39],
[40], yet not using a discrepancy-preserving transformation
as we propose, see Figure 8 for a visual comparison. In
the one-dimensional case, equidistant samples make the best
possible low-discrepancy point set. In higher dimensions,
Frolov and Fibonacci grids are the only low-discrepancy
sequences known to attain the theoretical optimum under
very universal conditions [41] – they are, so to speak, the
“lowest-discrepancy grids”. Thus, we can expect them to
provide results similar to the optimal deterministic samples
based on the LCD with nonlinear optimization while being
transformable without compromising the quality.

In 2008, James Purser published generalized Fibonacci
grids for certain higher dimensions [42]. He formulates the
reason why two-dimensional grids are optimal in such a deep
way that higher-dimensional generalizations become tangible.
The generalized Fibonacci grid has already been applied to
Gaussian sampling [1] and rejection sampling [43].

D. Key Idea

To produce univariate Gaussian samples, uniform samples
can be transformed by the inverse Gaussian distribution. For
multivariate Gaussians, this scalar transformation is applied
along the directions of the eigenvectors of the covariance
matrix, respectively. By doing so, the distribution of samples
should stay locally homogeneous, i.e., without forming
clumps or gaps. Therefore, we need a uniform point set
being collision-avoiding under rescaling along certain axes.

An ideal candidate is the Fibonacci grid, as it can be
anisotropically rescaled along the main axes while preserving
the uniformity of points. Instead of colliding, Fibonacci grid
points automatically get new neighbors, depending on the
amount of rescaling. Refer to Figure 2a for a visual demonstra-
tion of how the well-known two-dimensional Fibonacci grid
remains uniform under inhomogeneous horizontal scaling,
very much unlike the axis-aligned regular grid in Figure 2b.
This remarkable property is what we take advantage of in this
work. Grids with equivalent properties also exist in higher
dimensions – the generalized Fibonacci grids [42].

With a suitable mapping, these uniform samples can be
transformed to an arbitrary density, similar to the well-known
“inverse transform sampling” method. We introduce such
a mapping for the Gaussian density. Refer to Figure 3a
for a visual demonstration of the mapping workflow using
Fibonacci samples as compared to, e.g., a regular grid
Figure 3b. In addition, we introduce some methods for
moment matching so that the covariance of the samples is
accurate to machine precision.

0

2

le
n
g
th

0

45

90

a
n
gl

e

(a) Rescaled Fibonacci Grid.

0

2

le
n
g
th

0

45

90

an
gl

e

(b) Rescaled Regular Grid.

Fig. 2: Anisotropic scaling demonstration for Fibonacci grid (a) and regular grid (b). Scaling is altered exponentially along
horizontal axis. Blue dots indicate grid points, black net the Delaunay triangulation of the same points. Note how in (a) the
grid rearranges itself into square configurations of different size six times, evenly filling the space at any scaling, while in (b)
there is only one square configuration (near the center) and away from that points clump together into horizontal or vertical
lines, yielding bad space filling. For more quantitative assessment, maximum and minimum angle in Delaunay triangles, as
well as maximum and minimum triangle side length, (normalized to the side length of a square of appropriate size) is shown
as well.

E. Overview

This paper is structured as follows: After explaining well-
known and optimal two-dimensional uniform samples in
section II, we generalize to higher-dimensional uniform
samples in section III+IV. Then in section V, we explain how
to obtain Gaussian instead of uniform samples and evaluate
their optimality in section VI.

The merits of our Gaussian samples lie in i) providing
superior coverage of the state space and ii) free choice of the
number of samples. Thus, they can improve the convergence
and accuracy of algorithms that utilize Gaussian samples, e.g.,
sample-based Gaussian state estimation filters and controllers.

II. THE TWO-DIMENSIONAL FIBONACCI GRID

Two-dimensional Fibonacci grids have been known for a
long time since they are ubiquitous in plant life. Seed heads

are often arranged as a polar Fibonacci grid. Due to the size
of its seeds, this is best seen in the sunflower, but a close
look reveals similar structures in many other flower heads.
It is well known that the two-dimensional Fibonacci grid is
the best possible low-discrepancy point set [44, p. 186], [45,
p. 61].

Arranging the seeds as a Fibonacci grid has two advantages.
First, the space is well utilized and second, the arrangement
is flexibly scalable along the radius. The former is important
to utilize biological resources as efficiently as possible, and
the latter is necessary because the whole thing is growing,
with bigger seeds at the outside and younger, smaller seeds
near the center. Although a hexagonal arrangement would
make even better use of the space, this would require all
seeds to always be of the same size.

(a) Discrepancy-Preserving Transformation: Low-Discrepancy / Fibonacci Uniform → Arbitrary Gaussian.

(b) Same Transformation, but: Regular (not low-discrepancy) Uniform → Arbitrary Gaussian.

(c) Gaussian Copula Distribution (only for reference).

Fig. 3: (a) Transformation workflow from uniform distribution to arbitrary Gaussian. As opposed to the commonly used
transformation via Cholesky factorization, see Figure 8a, our approach preserves the discrepancy of the input point set and is
therefore better suited for low-discrepancy sequences. (b) Same transformation applied to axis-aligned regular grid instead of
low-discrepancy. Note how resulting Gaussian samples fill the space less homogeneously. (c) Gaussian copula, shown only
for reference. Note that the first step in its transformation pipeline is related to what we discuss here.

In summary, the polar Fibonacci grid can be anisotropically
rescaled along the radius – and the angle, for that matter, i.e.,
both main axes of the polar coordinate system. In Cartesian
coordinates, the Fibonacci grid allows anisotropic scalings
along the horizontal and vertical axes. This can be seen
in Figure 2a, where the horizontal scaling of a Fibonacci
grid is varied while the vertical scaling stays constant.
Instead of colliding, the points change their neighborhood
relationships periodically. Note how the Fibonacci grid
repeatedly returns to a “regular grid” configuration, i.e., the
Delaunay interior angles are 45° and 90°, and the normalized
side lengths are 1 and

√
2 over and over again, only at

different scales. For comparison, the same anisotropic scaling
performed on a regular axis-aligned grid does produce point
collisions, Figure 2b.

A. Fibonacci Matrix

The Fibonacci numbers Fk are defined as [46, Sec. 6.6]

Fk+1 = Fk + Fk−1 , F0 = 0 , F1 = 1 . (1)

This recurrence can be expressed with the Fibonacci matrix

M =

[
1 1
1 0

]
, (2)

(a) Lattice Rule – Polar. (b) Lattice Rule – Cartesian. (c) Lattice Rule – Gaussian.

(d) Frolov – Polar. (e) Frolov – Cartesian. (f) Frolov – Gaussian.

Fig. 4: Fibonacci grids computed via the lattice rule (a-c) and Frolov method (d-e). Points are arranged uniformly in polar
coordinates on the left, in Cartesian coordinates in the middle, and as Gaussian density on the right.

where Fibonacci numbers are then generated as[
Fk+1

Fk

]
= M ·

[
Fk

Fk−1

]
. (3)

With the eigenvalue decomposition of the Fibonacci matrix

M = V ·D ·V⊤ , (4)

we define the orthogonal unitary matrix V containing the
eigenvectors of M, and diagonal matrix D containing the
eigenvalues.

Note that M is unimodular, i.e., it consists of integers and
has a unit absolute determinant. The former implies that M
transforms integer vectors z into other integer vectors Mz,
and the latter implies that convex sets of integer vectors z
stay convex after transformation, i.e., no empty holes would
appear. When the entire integer lattice Z2 is transformed by
M, exactly the same integer lattice comes out, as lattice points
are indistinguishable. Relaxing the unit determinant restriction
and including intermediate configurations in between the
square-lattice configurations, we can apply continuous scaling,
as visualized in Figure 2a, where square lattice configurations
are reached at six instances. But the fact that we run into
square lattice configurations again and again guarantees that

the points will always have a homogeneous microstructure
and never collide as in Figure 2b.

B. Rank-One Lattice

Mathematically, the Fibonacci grid is often represented as
a rank-1 lattice rule. To produce lattice point xi, a generating
vector is multiplied with an integer index i, and the result is
taken modulo 1

xi =
i

Fk+1
·
[
1
Fk

]
mod 1 , (5)

i = 0, 1, . . . , Fk+1 − 1 ,

where Fk is the k-th Fibonacci number [7, Ex. 2.8]. The
result is a Cartesian Fibonacci grid with Fk+1 samples in
[0, 1)2. An example with Fk = 144 is shown in Figure 4b.
The grid can not only be anisotropically re-scaled along its
coordinate axes (as demonstrated in Figure 2a), but also
transformed to other coordinate systems while maintaining its
packing efficiency. Transformation to polar coordinates (and
proper scaling along the radius axis) yields the conspicuous
sunflower pattern, see Figure 4a.

C. Frolov Lattice

A slightly different Fibonacci grid can be computed as a
Frolov lattice. Here, the regular axis-aligned integer grid Z2

is re-scaled with factor δ (to achieve the desired number of
points L) and linearly transformed with matrix T (e.g., a
rotation matrix). The result is then confined to the unit square
[0, 1]2

{xi}
L
i=1 =

{
T · δ · z : z ∈ Z2

}
∩ [0, 1]2 . (6)

Now we use the eigenvectors of the Fibonacci matrix (4) as
the linear transformation T

T = V⊤ , (7)

with V⊤ meaning the transpose of V. This again yields a
two-dimensional Cartesian Fibonacci grid, see Figure 4e.
As opposed to (5), this grid is not periodic, therefore a
transformation to polar coordinates is not smooth at the
angular coordinate’s transition between 0 and 2π, see the red
box in Figure 4d.

In this work, we focus on the non-periodic Fibonacci lattice
that is computed via Frolov-like construction. The advantages
of non-periodic generalized Fibonacci grids are their visually
appealing symmetry, and that they can be generated for
arbitrary numbers of points. On the downside, their generation
becomes more difficult in higher dimensions.

III. PURSER’S GENERALIZED FIBONACCI GRID

James Purser showed that higher-dimensional general-
izations with optimality properties analogous to the two-
dimensional Fibonacci grid do exist [42]. Purser’s higher-
dimensional Fibonacci grid is based on a new theory that
captures the concept behind two-dimensional Fibonacci grids
on a deep level. From that perspective, it is then easy to see
how Fibonacci-type grids can be conceptualized in higher
dimensions as well. The theory involves Quasi-Fibonacci
matrices that generalize (2) to higher dimensions. Specific
constructions are stated for dimensions D with the restriction
that (2D + 1) is a prime number.

A. The Quasi-Fibonacci Matrix

The D-dimensional quasi-Fibonacci matrix M according
to Purser [42, Appendix A] is given by

[M]i,j =

{
1, i+ j ≤ D + 1

0, i+ j > D + 1
, (8)

for example,

M(D=2) =

[
1 1
1 0

]
, M(D=3) =

1 1 1
1 1 0
1 0 0

 . (9)

Note that M(D=2), also (2), is known as “Fibonacci Q-Matrix”
[47], but attempts to generalize to higher dimensions, e.g., in
[47] are different from the concept in [42, Appendix A] that
we pursue here. An eigenvalue decomposition

M = V ·D ·V⊤ , (10)

again splits M into unitary V and diagonal D. The eigen-
vectors V can also be obtained by properly normalizing the
unnormalized eigenvector matrix Vu which is given in closed
form by [42, Eq. A.4]

[Vu]i,j = cos

(
π

2
· (2i− 1) (2j − 1)

2D + 1

)
, (11)

i, j ∈ {1, 2, . . . , D} . (12)

B. Dimensions With (2D + 1) Prime

In dimensions where (2D + 1) is prime, the eigenvector
matrix V of the generalized Fibonacci matrix M is used in
Frolov lattice creation (6) just as in the two-dimensional case
(7).

C. Other Dimensions

In dimensions where (2D + 1) is not prime, (8) is not
well suited: one column of V has entries with identical
fractional parts because in (11) the numerator (2i−1) (2j−1)
“interferes” with the denominator 2D + 1. However, it is
possible to search for alternative matrices. An example for
D = 4 is given in [42, Sec. 7] as

M(D=4) =


1 1 0 0
1 0 0 0
0 0 1 1
0 0 1 0

 . (13)

It consists of block-diagonal replications of M(D=2).

IV. OPTIMAL DETERMINISTIC UNIFORM
FIBONACCI GRIDS

In this section, we describe how to enumerate the L
samples xi of the generalized Fibonacci grid using Frolov-like
construction

{xi}
L
i=1 =

{
V⊤ · δ · z : z ∈ ZD

}
∩
[
−1

2
,
1

2

]D
, (14)

where δ specifies the number of points L approximately
according to δ ≈ L−1/D, see section IV-C for more
details. Note that to simplify notation, we changed the unit
hypercube under consideration from [0, 1]D to

[
− 1

2 ,
1
2

]D
. The

computation can be done by i) enumerating the grid points of
a regular grid inside the rotated hypercube, or ii) enumerating
the grid points of a rotated regular grid in an axis-aligned
hypercube.

A. Enclosing Hypercube Counter

The most simple and obvious method works as follows.
Find the smallest axis-aligned hyperrectangle or hypercube
that encloses the desired rotated hypercube. Iterate through
all the points of the axis-aligned hyperrectangle or hypercube,
check if the point is inside or outside the rotated hypercube,
and return all points that are inside [1, Alg. 1].

How large is the smallest axis-aligned unit hyperrectangle
enclosing a rotated unit hypercube? To find out it is sufficient

0 5 10 15 20

Dimension

100

105

1010

R
at

io

Volume - Hypercube
Volume - Hyperrectangle
Surface

Fig. 5: Volume of smallest hypercube (blue) and smallest
hyperrectangle (yellow) that encloses the unit hypercube that
is rotated by V⊤. Note that there is no big difference between
hypercube and hyperrectangle. Note also that the ratio for
both increases exponentially with the dimension. For the
linear programming method, the ratio between surface (red)
and volume is more important. It increases much slower with
the number of dimensions.

to examine the 2D corners xcrn of the centered rotated
hypercube. Their coordinates are

xcrn,j = V · uj , (15)

uj ∈
{
−1

2
,
1

2

}D

, (16)

j ∈
{
1, 2, . . . , 2D

}
. (17)

Therefore, the side lengths βd of the smallest enclosing
hyperrectangle are

βd =

D∑
j=1

|Vd,j | , d ∈ {1, 2, . . . , D} , (18)

and the side length β of the smallest enclosing hypercube is

β = max
d


D∑

j=1

|Vd,j |

 = ∥V∥∞ . (19)

For simplicity, we will focus on the hypercube instead of the
hyperrectangle here, as for generalized Fibonacci matrices
obtained by (8), the smallest hyperrectangle is very close to
a hypercube, see Figure 5.

We can now define a sampling vector r ∈ RL1 with
centered, equidistant elements rj that represent the grid
coordinates along each dimension

rj = δ ·
(
j +

1− L1

2

)
, (20)

j ∈ {0, 1, . . . , L1 − 1} . (21)

After replicating r we obtain a regular grid with LD
1

elements and spacing δ, stored column-wise in the matrix
Xreg ∈ RD×LD

1 . If L1 is odd, there will be a sample at
the origin, otherwise not. This grid is then transformed
according to V⊤Xreg, followed by a rejection of points
outside the centered unit hypercube

[
− 1

2 ,
1
2

]D
. The result

are L2 Fibonacci grid points XFib ∈ RD×L2 that uniformly
cover the centered unit hypercube

[
− 1

2 ,
1
2

]D
. By adding 1

2
this can be transformed to cover the “standard” unit hypercube
[0, 1]

D. See Figure 6 for a visualization of the finally obtained
samples inside the square for D = 2.

The volume ratio between the smallest enclosing hypercube
βD and a unit hypercube 1D = 1 increases exponentially
with the dimension D, see Figure 5. This means that the
majority of samples are rejected in higher dimensions and
the method is applicable in dimensions smaller than 10 only,
refer to Figure 11c for more details.

B. Linear Programming Counter

In this section, we describe a method that avoids the
excessive rejection of the enclosing hypercube counter. It
is based on linear programming. The complexity is related
more to the surface of the unit hypercube than to the volume
of the enclosing hypercube, see Figure 5. The generalized
Fibonacci grid can be written as a system of linear inequalities
for integer vectors that describe a bounded polytope – so
to speak, a “Diophantine inequality system”, yet with real
(instead of rational) coefficients. In this perspective, the first
step is to find all integer vectors z such that

A z ≤ b , (22)

with coefficient matrix A ∈ RNc×D, desired vectors z ∈ ZD,
and vector b ∈ RNc . Thereby Nc is the number of linear
inequality constraints that define the bounded polytope. For
Fibonacci sampling, we define

A = δ ·
[

V⊤

−V⊤

]
, b =

1

2
·

1...
1

 , (23)

and find all integer vectors z with A z ≤ b .
The method to obtain these points can best be described as a

recursive procedure. Initially, we focus on the first coordinate
z1 and find its minimum and maximum values inside the
polytope A z ≤ b via linear programming or integer linear
programming. Then, recursively for each integer value ẑ1,k
between said minimum and maximum: fix z1 = ẑ1,k as a
constant temporally. In the thus defined polytope

A · z ≤ b ∩ z1 = ẑ1,k , (24)

find the minimum and maximum values of z2. Repeat for
all integer values ẑ2,k in that range. By doing so recursively
for all dimensions 1 . . . D, all L2 integer vectors that fulfill
(22) are visited and collected in a matrix Z ∈ ZD×L2 .
The Fibonacci point set XFib ∈ RD×L2 that is uniform

in
[
− 1

2 ,
1
2

]D
can then be derived from the obtained integral

vectors Z via

XFib = V⊤ · δ · Z . (25)

An iterative version of this algorithm avoiding explicit
recursion has been implemented in this work. For better
efficiency it uses the GNU Linear Programming Kit GLPK
[48].

Unfortunately, computational complexity increases expo-
nentially with the dimension here as well, yet slower than
in the enclosing hypercube counter. This method is practical
for dimensions up to about 20, see Figure 11c. Note that the
samples, once created, can be stored and used henceforth to
obtain sample sets of the same dimensionality.

!0:5 0 0:5

!0:5

0

0:5

Fig. 6: Fibonacci grid with unit cells of side length δ =
50−1/2, calculated by Lvol = 50 according to (27). The
actual number of grid points turns out to be L2 = 49.

C. Number of Points Obtained

In this section, we will elaborate on the number L2 of
grid points that can be expected to be inside a rotated
hypercube, or equivalently, how many rotated grid points
can be expected inside an axis-aligned hypercube. Of course,
a rough estimate Lvol is the ratio between the volume of a
unit cell δD representing one sample and the volume of the
rotated hypercube, which is one, therefore

L2 ≈ Lvol = δ−D , (26)

δ = Lvol
−1/D . (27)

However, due to the rotation between unit cells and the
rotated hypercube, this estimate is not necessarily correct,
see Figure 6.

Therefore we aim to quantify the worst case of how many
“missing” or “surplus” points we can expect in L2 compared

to Lvol. This is related to the Gauss circle problem, where
the number of two-dimensional integer lattice points inside a
circle with a given radius is determined or approximated. It
is even more related to the convergence rate of Monte Carlo
and quasi-Monte Carlo methods. To quantify this, we define
a “hypercube function” ha(·) centered around the origin

ha(x) =

{
1, |xi| < a

2 ∀ i ∈ [1, D]

0 otherwise ,
(28)

0 < a < 1 , (29)

and a centered unit-size hypercube

I =

[
−1

2
,
1

2

]D
. (30)

1) Central Limit Theorem: The Central Limit Theorem
(CLT) states [18, Sec. 2.1] that the Monte Carlo integration
error ϵL,f of an arbitrary function f(x) over a unit cube I

ϵL,f =

∣∣∣∣∣
(

1

L

L∑
n=1

f(xn)

)
−
(∫

I
f(x) dx

)∣∣∣∣∣ (31)

(with a large number L of i.i.d. uniform random samples
xn on I) is normally distributed with standard deviation
σf · L−1/2, where

σf =

√∫
I

(
f(x)−

(∫
I
f(x̃) dx̃

))2

dx . (32)

Thus, relying on a c-sigma-bound, we may assume

ϵL,f ≤ c · σf · L−1/2 (33)

with high probability. Now we multiply both sides with L
and insert ha for f . This yields∣∣L2 − L · aD

∣∣ ≤ c · σh ·
√
L , (34)

σh =
√
aD − a2D , (35)

and with Lvol = L · aD, we write

|L2 − Lvol| ≤ c ·
√
(1− aD) · Lvol . (36)

For a → 0, this finally becomes

|L2 − Lvol| ≤ c ·
√
Lvol , (37)

L2 ≥ Lvol − c ·
√
Lvol . (38)

Solving this for Lvol, we see that we should select

Lvol ≥ L2 +
c2

2
+

√
L2 · c2 +

c4

4
, (39)

and then δ according to (27), to always obtain at least
the desired number of samples L2. Figure 7a shows a
numerical overview, where c = exp

{
D+1
4

}
has been selected

heuristically as the y-intercept. Note that for large L and in
dimensions lower than 10, the CLT is a rather conservative
estimate because the generalized Fibonacci points have a
lower discrepancy and therefore better convergence rate than
iid samples that the CLT assumes.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Lvol

100

101

102

103

104

105

106

m
a
x
jL

2
!

L
vo

lj

D=36
D=35
D=33
D=30
D=29
D=26
D=23
D=21
D=20
D=18
D=15
D=14
D=11
D=09
D=08
D=06
D=05
D=04
D=03
D=02

(a) CLT

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Lvol

100

101

102

103

104

105

106

m
ax

jL
2
!

L
vo

lj

(b) Discrepancy

Fig. 7: Absolute difference between the expected number of points due to the volume and the obtained number of points in
generalized Fibonacci grids (solid lines). Dotted lines show bounds based on the Central Limit Theorem (a) and the point
discrepancy (b). For all sets of curves, the lowest dimension D = 2 appears at the bottom, with the higher dimensions
following upwards according to the legend.

2) Discrepancy: We give an intuitive definition of the
discrepancy of a point set x̂i ∈ [0, 1]D, i ∈ [1, 2, . . . , L].
Consider the volume of a hyperrectangle spanned between
the origin 0 and point x ∈ [0, 1]D. The proportion of points
inside this hyperrectangle minus its volume yields the local
discrepancy function ∆(x) of the point set. Aggregating all
local discrepancies via a p-norm yields the discrepancy [7]

discrp =

(∫
x∈[0,1]D

|∆(x)|p
) 1

p

(40)

According to the Koksma-Hlawka identity∣∣∣∣∣ 1L
L∑

i=1

g(x̂i)−
∫
[0,1]D

g(x) dx

∣∣∣∣∣ ≤ discrp · V (g) , (41)

i.e., the integration error is bounded by the discrepancy of
the point set times the variation V (g) of the integrand, a
constant that depends on the smoothness of g(·). Hence the
discrepancy, as a function of the number of samples L, is a
measure for integration error, similar to the L−1/2 term in

the CLT integration error estimate. A proven lower bound on
the L2 discrepancy of any finite point set is [49, Sec. 2]

L · discr2 ≥ c · (logL)(D−1)/2
. (42)

For D = 2, this is also known to be the best possible bound
[49, Sec. 3]. Unfortunately, there is currently no known upper
bound on the L∞ discrepancy. Conjectures include

L · discr∞ ≤ c · (logL)D−1
, (43)

L · discr∞ ≤ c · (logL)D/2
, (44)

with respective unknown constants c that depend on the
dimension [50, Sec. 4.2]. In Figure 7b we plot the function

|L2 − Lvol| ≤ log(Lvol)
√
D−1 . (45)

It can be seen in Figure 7b that (45) is an upper bound only
for higher numbers of samples, but there it is a tighter bound
than the CLT-based bound (38), see Figure 7a.

3) Removing Excess Samples: If too many samples have
been generated, the excess samples can easily be removed
using the following strategy: Sort the samples with respect

(a) Non-discrepancy-preserving transformation. (b) Discrepancy-preserving transformation.

Fig. 8: Low-discrepancy point set transformed from uniform to Gaussian via non-discrepancy-preserving transformations
[39], [40] (a) and via discrepancy-preserving transformations as proposed here (b). Wile in (a) the sampling quality depends
on the orientation of the Gaussian, in (b) it is always the same.

to the value of the first coordinate. Then, half the necessary
number of points to remove are deleted at the beginning
and at the end of that sorted list of samples, respectively.
Finally, the first coordinate is stretched to fully cover the
unit cube again. This is similar to the process depicted in [1,
Fig. 3 (c,d)].

Removing samples equally on both ends, instead of simply
removing them at the end, preserves the symmetry of the
point set and also the first moment, which is zero due to the
symmetry. However, configurations with an odd number of
samples can only be reduced to other odd configurations then.
The same applies to even configurations. For the enclosed
hypercube method, an even configuration is produced if the
sampling vector (20) has an even number of entries, i.e., if
L1 is even and therefore has no entry at zero. For the linear
programming counter, an odd grid is produced when the
integer vectors z ∈ Z are offset by 1

2 .
4) Sample Library: Since sample computation using

Frolov-like methods as proposed here is quite expensive in
higher dimensions, it makes sense to calculate and save the
samples in advance for each dimension in an odd and an even
configuration, respectively. The CLT formula can be solved
in closed form (39) and hence allows direct computation of a
scaling factor such that at least the wanted number of samples
is generated in any case and therefore helps to avoid “trial and
error” in producing the desired number of samples. In the real-
time application, the respective number of samples can then
be extracted from this library as described in section IV-C.3.

V. OPTIMAL DETERMINISTIC GAUSSIAN

FIBONACCI GRIDS

At this point it has been shown how to find a given number
L of uniform Fibonacci samples XFib ∈ RD×L in the unit
hypercube I . Now we will see how these can be transformed
into Gaussian samples with various levels of sophistication.

A. Types of Transformations

The Fibonacci grid has the unique property that point col-
lisions are avoided under anisotropic rescaling along certain
directions. We begin with reiterating two common conditions
on transformations, before quantifying the “discrepancy-
preserving” property that we need here.

1) Rigid transformations preserve angles and distances.
They are in the class of linear transformations, where the
determinant of the transformation matrix is either 1 or
−1. Rigid transformations are translations, rotations, and
reflections.

2) Conformal maps preserve angles locally. Everywhere,
the respective local Jacobian matrices are orthogonal matrices
multiplied with a scalar.

3) Discrepancy-Preserving transformations preserve the
uniformity of Fibonacci grids. Therefore, their Jacobian
matrices must be orthogonal matrices multiplied with a
diagonal matrix from left. That is, the right angles between
the main axes are preserved.

In the following, we describe a discrepancy-preserving
mapping that transforms the uniform density on I to arbitrary
Gaussian densities.

B. Standard Normal Samples

First of all, we apply the usual inverse transform to obtain
standard normal samples

[Xstd]d,i =
√
2 · erf−1(2 · [XFib]d,i) , (46)

with the Gauss error function

erf(z) =
2√
π

∫ z

0

exp
{
−t2

}
dt . (47)

This transformation maps samples uniform in
[
− 1

2 ,
1
2

]D
to

standard normal samples in RD. Refer to Figure 4f for a
visualization.

C. Variance Correction

Due to the discrete sample locations, the diagonal elements
of the covariance matrix Cstd of the resulting point set Xstd

are only approximately one and the off-diagonal elements
are only approximately zero. We can easily correct the
former because rescaling along the coordinate axes, i.e.,
multiplication with a diagonal matrix, is a discrepancy-
preserving transformation. So we calculate the variances

νd =
1

L

L∑
i=1

[Xstd]
2
d,i (48)

and correct the variance of the samples accordingly, by
rescaling the coordinates individually

[XstdD]d,i =
[Xstd]d,i√

νd
. (49)

D. Arbitrary Gaussian Samples

Now we want to transform the standard normal samples
XstdD with a covariance of approximately I (the off-diagonals
are not entirely zero) to a sample set with a given, arbitrary
positive definite covariance C ∈ RD×D. Usually, this is done
via the Cholesky decomposition C = L · L⊤ according to
XGauss = L · XstdD. However, this transformation is not
discrepancy-preserving as the orthogonality of the D main
axes is not being preserved, see Figure 8a. Therefore we have
to calculate the eigenvalue decomposition V ·D ·V⊤ = C,
with V orthogonal and D diagonal, and transform the samples
according to

XGauss1 = V ·
√
D ·XstdD . (50)

Refer to Figure 3a for a visual description of the transfor-
mation workflow. While Cholesky decomposition requires
1
3D

3 floating point operations, eigenvalue decomposition
is an iterative procedure with computational complexity
O(D3) per iteration step. A quick test in Matlab showed
that the eigenvalue decomposition takes up to 70x longer
than the Cholesky decomposition, see Figure 9. This is a
small disadvantage that we have to accept when working
with Fibonacci grids or other low-discrepancy point sets.

0 5 10 15 20 25 30

Dimension

101

102

F
a
ct

o
r

Fig. 9: Ratio of computation time between eigenvalue de-
composition and the faster Cholesky factorization of random
symmetric and positive definite matrices in Matlab.

E. Fast Cholesky Covariance Correction

Because the off-diagonals of CstdD are not exactly zero,
CGauss1 in (50) will not mach C exactly. We can correct this
by using a transformation that is not discrepancy-preserving.
As the amount of correction is rather small, the downside that
the transformation is not discrepancy-preserving should have
a rather small effect. We determine CStdD and its Cholesky
decomposition LStdD

CStdD =
1

L
·XStdD ·X⊤

StdD = LStdD · L⊤
StdD (51)

and perform the correction

XGauss = V ·
√
D · L−1

StdD ·XStdD , (52)

resulting in unscented samples XGauss with matching covari-
ance.

F. Fast Eigenvalue Covariance Correction

Instead of the Cholesky decomposition of CstdD, we can
also use its eigenvalue decomposition

CStdD = VStdD ·DStdD ·V⊤
StdD (53)

and obtain unscented samples XGauss via

XGauss = V ·
√
D ·VStdD ·

√
D−1

StdD ·V⊤
StdD ·XStdD .

(54)

Again, this transformation is not discrepancy-preserving, but
due to the rather small amount of correction necessary, this
should not cause real problems.

G. Discrepancy-Preserving Covariance Correction

Now we will derive a different covariance correction
method that is discrepancy-preserving. Recall that the problem
with CstdD from (49) was that the off-diagonals are not
exactly zero. That is, there are small correlations present that
are expressed in inequality of eigenvalues, i.e., the Gaussian
contour map looks like an ellipse (ellipsoid, hyperellipsoid)
instead of a circle (sphere, hypersphere) – where the principal
axes of the ellipse (ellipsoid, hyperellipsoid), i.e., the eigen-
vectors of the covariance matrix, do not coincide with the

principal axes of the coordinate system. If we only manage
to deform that covariance in a discrepancy-preserving way
such that the eigenvalues match the wanted eigenvalues in
D, we can easily find an appropriate rotation that puts the
covariance in the right orientation subsequently.

Therefore, we have to find D deformations along the
coordinate axes, collected in the vector a ∈ RD, such that
the eigenvalues of

Cstd,a = a⊙Cstd ⊙ a⊤ , (55)

where ⊙ is the pointwise product, i.e., the Hadamard product,
match the targeted eigenvalues in D.

Note that eigenvalues must be compared with a Wasserstein
or earth mover’s distance, i.e., the eigenvalues from both sets
have to be associated appropriately. For real eigenvalues, this
can be done by sorting both sets of eigenvalues [52, Sec. 3].

The search for a is now a gradient-based nonlinear opti-
mization problem with D variables. Derivatives of eigenvalues
can be calculated analytically [53, Eq. 11], [54, Eq. (5)]

∂λ

∂a
= V⊤ · ∂C

∂a
·V , (56)

where V is the normalized right eigenvector matrix of
symmetric matrix C, and λ the corresponding eigenvalues.
With the optimal deformation vector â obtained by nonlinear
optimization, and the eigenvector matrix Vstd,â of Cstd,â,
we get the transformed Gaussian samples

XGauss = V ·V⊤
std,â · (â⊙Xstd) , (57)

where V is again the eigenvector matrix of the wanted
covariance C.

The transformation (55) can only increase the ratio between
eigenvalues. Therefore, if some eigenvalues of C are equal
or nearly equal, the optimization cannot match the eigen-
values perfectly, and some residual distance to the desired
eigenvalues remains. Again, this can be fully matched via a
non-discrepancy-preserving transformation

XGauss = V ·
(
b⊙V⊤

std,â · (â⊙Xstd)
)

, (58)

with non-discrepancy-preserving deformation vector b

b =
√

diag(D)⊘ diag(V⊤
std,âCstd,âVstd,â) , (59)

where ⊘ denotes element-wise division. The amount of
non-discrepancy-preserving deformation encoded in b that is
needed to match the covariance exactly is rather small, so
point collisions will not occur.

VI. EVALUATION

The application we had in mind when developing this
method is the “unscented transform” for nonlinear Gaussian
filtering. Approximating first and second moments, i.e., means
and covariances of nonlinear functions of Gaussian random
variables facilitates probabilistic Kalman filtering based on
stochastic linearization, i.e., the various forms of LRKFs,
and also GPFs. Low-discrepancy sequences like the proposed
Fibonacci grid and other deterministic sampling methods like
LCD allow for better accuracy by using more samples than

only L = 2 ·D as in the standard unscented transform. In [1,
Sec. IV], we used one specific nonlinear function to compare
various deterministic sampling methods. After showing a
similar, simple evaluation, we evaluate Gaussian sample sets
based on a linear space of nonlinear functions.

A. Simple Evaluation

To evaluate different sampling methods, we define a
nonlinear system model with additive noise

yyy = ∥xxx∥33 + vvv , E{vvv} = 0 , E
{
vvv2
}
= 302 . (60)

Given prior moments

xp =

[
2
−2

]
, Cp =

[
12 0
0 52

]
(61)

and the measurement

ŷ = 30 , (62)

we compute a UKF as well as a Gaussian Filter update step
with various methods for Gaussian sampling.

For the UKF case, we take Gaussian samples x̂i, i ∈
{1, . . . , L} from the prior Gaussian N (x;xp,Cp) using the
respective sampling method, insert them into the measurement
equation, add samples from the measurement noise, compute
the empirical moments in the joint state and measurement
space

zp =

[
xp

yp

]
, Cz =

[
Cp Cxy

Cyx Cyy

]
, (63)

and obtain the posterior estimate

xe = xp +CxyC
−1
yy (ŷ − yp) . (64)

Refer to Figure 10a for a quantitative evaluation of the root
mean square error (RMSE) of the estimated posterior. Note
that the real bottleneck here is the 2nd Gaussian assumption,
i.e., the statistical linearization between state space x and
measurement y.

For GPF-style filtering, we take again L Gaussian samples
x̂i from the prior Gaussian N (x;xp,Cp) using the respective
sampling method and apply individual sample weights wi

according to the likelihood function value at the respective
sample

wi ∝ N
(
ŷ; ∥x̂i∥

3
3 , C

v
)

,

L∑
i=1

wi = 1. (65)

The posterior mean is then approximated as the empirical
average of the weighted samples. Refer to Figure 10b for
a quantitative evaluation of the RMSE of the estimated
posterior.

B. Measure of Quality

In this section, we will define a general quality measure for
Gaussian samples. It describes how well expected values of
Gaussian random variables are estimated using the respective

101 102 103

Samples

10!3

10!2

10!1

100

101

R
M

S
E

Random
Halton
LCD
FibonacciD
FibonacciE
FibonacciHQ
UKF
CKF3
CKF5

(a) UKF, cubic measurement update

101 102 103

Samples

10!3

10!2

10!1

100

101

R
M

S
E

Random
Halton
LCD
FibonacciD
FibonacciE
FibonacciHQ
UKF
CKF3
CKF5

(b) GPF, cubic measurement update

Fig. 10: Cubic measurement update, system model as explained in section VI-A. Out of 100 trials, minimum, maximum, and
mean root mean square error (RMSE) between estimated and true posterior mean are indicated, respectively. FibonacciD
means diagonal variance matching according to (49); the same correction method has been applied to the quasi-random
Halton [51] samples. FibonacciE means exact covariance matching by the eigenvalue method (54) that is however non
discrepancy-preserving. FibonacciHQ means “high quality” covariance matching (58). Also included are UKF samples [9]
with scaling such that they have equal weights, CKF3 samples [25], and CKF5 samples [26].

sample sets. Thereby, instead of focusing on one specific
nonlinear function, e.g., ∥xxx∥33

Θ =
∣∣∣E{∥xxx∥33}− Ê

{
∥xxx∥33

}∣∣∣ , (66)

where E{·} is the true expected value, Ê{·} is the sample
approximation, and Θ is an optimality measure for the
employed samples, we take a broad class of smooth nonlinear
functions into account.

1) Harmonic Expectations: The expectation value of the
function g(·) of a random variable xxx is

E{g(xxx)} =

∫
RD

g(x) · f(x) dx , (67)

where xxx ∼ f(x), and g(·) is a smooth nonlinear function.
Numerical approximation of this integral with unweighted
samples x̂i, i ∈ {1, . . . , L} goes like

Ê{g(xxx)} =

∫
RD

g(x) · f̂(x) dx (68)

=

∫
RD

g(x) · 1
L

L∑
i=1

δ(x− x̂i) dx (69)

=
1

L

L∑
i=1

g(x̂i) . (70)

To obtain a representative comparison, we take into account
all possible smooth functions g(x) by using a Fourier basis

gt(x) = exp{i t · x} (71)
= cos(t · x) + i sin(t · x) . (72)

The true expected value of a harmonic function of xxx,

E
{
gt(xxx)

}
=

∫
RD

gt(x) · f(x) dx (73)

=

∫
RD

exp{i t · x} · f(x) dx (74)

= F (t) , (75)

is the characteristic function F (t) of the density f(x).
Furthermore, the approximated expectation

Ê
{
gt(xxx)

}
=

1

L

L∑
i=1

gt(x̂i) (76)

=
1

L

L∑
i=1

exp{i t · x̂i} (77)

= F̂ (t) , (78)

is the characteristic function of f̂(x).

2) Distance Measure: Now by averaging over all spatial
frequencies in domain T

Θ2 =

∫
T

∣∣∣E{gt(xxx)}− Ê
{
gt(xxx)

}∣∣∣2 dt (79)

=

∫
T

∣∣∣F (t)− F̂ (t)
∣∣∣2 dt , (80)

we obtain distance measure Θ that quantifies the approxi-
mation error of expectation values in the function space of
band-limited nonlinear functions. In other words, Θ quantifies
the average accuracy of an expectation value estimate of a
sample set for band-limited functions. Note that (80) computes
the square sum of the real and imaginary parts from (72),
representing cosine and sine parts appropriately, according to

|a+ i b|2 = (a+ ib)(a− ib) = a2 + b2 . (81)

We consider spatial frequencies t in a certain domain T

T =

{
t

∣∣∣∣∣
D⋂

d=1

t(d) ∈ [−τ, τ]

}
. (82)

around the origin, i.e., we focus on all sufficiently smooth
functions g(x) where the Fourier transform G(x) does not
have significant energy outside T . From the Nyquist–Shannon
sampling theorem we can try to derive a suitable bound for τ .
Given L optimal deterministic uniform samples on [0, 1], their
spacing is about L−1. When transforming these to arbitrary
densities by inverse transform sampling, the spacing of the
transformed samples at the point of maximum density is
(L · fmode)

−1, where fmode is the maximum derivative of
the cumulative density, i.e., the density value at the mode.
Therefore, the “sampling rate” is L · fmode at the mode, and
lower elsewhere. Thus, according to the Nyquist-Shannon,
we may conclude that the maximum spatial frequency that
can be represented by these samples is τ = L · fmode/2.
In higher dimensions, the hypercubic cell representing one
sample has volume L−1. Using the inverse function theorem,
the volume of this cell is transformed by the inverse of the
Jacobian determinant 1/ det(J(x)) of the mapping function
that maps f(x) to a uniform density. As a result, the new
side length is (L · det(J(x)))−1/D and we can choose τ =

(L · det(J(x)))1/D/ 2.
In our application, f(x) is a Gaussian density

f(x) = N
(
x;µ,C

)
(83)

=
1√

|2πC|
exp

{
−1

2

(
x− µ

)⊤
C−1

(
x− µ

)}
,

(84)

with µ ∈ RD, and positive definite component covariance
matrix C ∈ RD×D. The characteristic function of f(x) is

F (t) = exp

{
i µ· t− 1

2
t⊤C t

}
. (85)

To simplify the solution of (80), we choose

µ = 0 , (86)

Ck = diag(σ2
1 , σ

2
2 , . . . , σ

2
D) (87)

without restriction of generality, as the basis system and origin
of the coordinate system can always be chosen appropriately.
We obtain

Θ2 =

∫
T

∣∣∣∣∣exp
{
−1

2
t⊤C t

}
− 1

L

L∑
i=1

exp{i t · x̂i}

∣∣∣∣∣
2

dt

= Θxx − 2Θxy +Θyy , (88)

where

Θxx =

∫
T
exp
{
−t⊤C t

}
dt , (89)

Θxy =
1

L

∫
T
exp

{
−1

2
t⊤C t

}
·

L∑
i=1

cos(t · x̂i) dt , (90)

Θyy =
1

L2

∫
T

L∑
i=1

L∑
j=1

exp
{
i t · (x̂i − x̂j)

}
dt . (91)

For diagonal covariances (87) and T according to (82), this
can be simplified to

Θxx = πD/2
D∏

d=1

erf(τ · σd)

σd
, (92)

Θxy =
(2π)

D/2

L

L∑
i=1

D∏
d=1

1

σd
exp

{
−1

2

x2
i,d

σ2
d

}

↱ (93)

· real
{
erf

(
τσ2

d + i ·xi,d√
2σd

)}
, (94)

Θyy =
2D

L2

L∑
i=1

L∑
j=1

D∏
d=1

sin((xi,d − xj,d) · τ)
xi,d − xj,d

. (95)

The integration domain could be chosen as

τ =

√
π

2
·

(
L ·

D∏
d=1

σd

)1/D

. (96)

according to considerations relating to the sampling theorem.
However, we choose τ constant to make the optimality
measure better comparable over different L.

C. Gaussian Sampling Comparison

Now we will compare various Gaussian sampling methods
for their suitability for numerical approximation of expectation
values of band-limited nonlinear functions of Gaussian
densities. The state-of-the-art we compare against includes
LCD samples from the nonlinear estimation toolbox [55]
and the Halton sequence [51], a well-known low-discrepancy
sequence, that is transformed from uniform to Gaussian just
as explained for the proposed Fibonacci grids in (48).

In Figure 11a, we show how well the different methods can
approximate the three-dimensional standard normal density,
i.e., the isotropic case. We can see there that the LCD method
(yellow) generally provides the best results, closely followed
by the Fibonacci methods with covariance matching (cyan,
green). Note that L = 10 LCD or Fibonacci samples with
moment correction are as effective as L = 200 samples from
the Halton sequence, or more than 1000 iid samples.

101 102 103

Samples

10!4

10!3

10!2

10!1

100

R
M

S
E

(a) Optimality, Standard Normal, τ = 0.5

101 102 103

Samples

100

101

102

103

R
M

S
E

Random
Halton
LCD
FibonacciD
FibonacciE
FibonacciHQ
UKF
CKF3
CKF5

(b) Optimality, Gaussian with C = diag([1, 0.1, 0.01])2, τ = 50

0 5 10 15 20

Dimension

10!4

10!3

10!2

10!1

100

101

102

103

T
im

e
in

S
ec

on
d
s

LCD
Fib-Linprog
Fib-Hypercube
Halton

(c) Computation Time

100 101 102 103 104

NSamples

2

4

6

8

10

12

14

16

18

20

D
im

en
si
o
n

LCD
Fib-Linprog
Fib-Hypercube

(d) Fastest Method

Fig. 11: (a) Fourier-based optimality measure with isotropic Gaussian. (b) Fourier-based optimality measure with strongly
non-isotropic Gaussian. The best, worst, and mean RMSE of 100 trials is shown, respectively. Note that for a given accuracy,
far less Fibonacci samples than e.g. random samples are needed. (c) Calculation times for 1000 optimal deterministic samples.
Note that samples can be generated offline and tabulated for given D and L, for subsequent real-time use. (d) The fastest
optimal deterministic sampling method for given number of samples and dimension. Fibonacci samples are only given for
dimensions where 2D + 1 is prime and D = 4, i.e., where suitable unimodular matrices are currently known.

Figure 11b shows the same for an anisotropic Gaussian
with covariance C = diag([1, 0.1, 0.01])2. Here we see that
the Fibonacci and Halton samples generally provide the best
results, closely followed by LCD samples. This difference
compared to the standard normally distributed case is because
these LCD samples are produced by anisotropic transforma-
tion of standard normal ones, where some optimality is lost.
Fibonacci grids, however, can be rescaled without any quality
loss.

Figure 11c visualizes the computational effort to compute
L = 1000 LCD samples and Fibonacci samples computed
via the enclosing hypercube enumeration from section IV-
A and linear programming enumeration from section IV-B,
respectively, for various dimensions. For dimensions D < 6,
the enclosing hypercube method is fastest, for dimensions
6 ≤ D ≤ 15, the linear programming counter, and for D >
15, the LCD samples. Note that for all three methods, samples
can be computed beforehand and stored for later real-time
use. LCD samples have to be generated for every desired
dimension D and number of samples L, respectively, while
Fibonacci grids have to be generated separately for every
dimension D only, because subsets of Fibonacci grids can
easily be used, see section IV-C.

Figure 11d shows the overall fastest sampling method
out of LCD, Fibonacci linear programming, and Fibonacci
hypercube, for various dimensions and various numbers
of samples. Again, we find that the Fibonacci enclosing
hypercube method is fastest for smaller dimensions, and LCD
for higher dimensions, and Fibonacci linear programming in
between. Note that for D = 7 and D = 10, where 2D + 1
is not prime, suitable generalized Fibonacci matrices are not
yet known, therefore LCD is available only. Note also that
LCD with symmetric samples from the nonlinear estimation
toolbox [55] requires L ≥ 2D.

VII. CONCLUSION

We presented a new enumeration method for Fibonacci
grids that is based on linear programming. It is faster than the
existing enclosing hypercube method for dimensions D ≥ 6.
Furthermore, we introduced different methods for covariance
correction, including a simple and fast Cholesky correction
and a slower discrepancy-preserving method. We have also
investigated the possible range of enumerated points given
a certain scaling factor. The evaluation that was performed
for a broad function class suggests that Fibonacci samples,
together with the state-of-the-art LCD samples, yield the best
approximations of nonlinear Gaussian expectations.

In the future, we will look for generalized Fibonacci
matrices for dimensions where (2D + 1) is prime. We will
also look for lattice rule versions of the generalized Fibonacci
grid as they are faster to compute, and the number of resulting
samples is exactly known beforehand.

The authors acknowledge support by the state of Baden-
Württemberg through bwHPC.

REFERENCES

[1] D. Frisch and U. D. Hanebeck, “Deterministic Gaussian Sampling With
Generalized Fibonacci Grids,” in Proceedings of the 24th International
Conference on Information Fusion (Fusion 2021), Sun City, South
Africa, Nov. 2021.

[2] J. M. Hammersley and K. W. Morton, “A new Monte Carlo technique:
antithetic variates,” Mathematical Proceedings of the Cambridge
Philosophical Society, vol. 52, no. 3, p. 449–475, 1956.

[3] R. Y. Rubinstein and R. Marcus, “Efficiency of Multivariate
Control Variates in Monte Carlo Simulation,” Operations Research,
vol. 33, no. 3, pp. 661–677, 1985. [Online]. Available: https:
//doi.org/10.1287/opre.33.3.661

[4] S. T. Tokdar and R. E. Kass, “Importance Sampling: A Review,” WIREs
Computational Statistics, vol. 2, no. 1, pp. 54–60, 2010. [Online].
Available: https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wics.56

[5] V. L. Parsons, Stratified Sampling. John Wiley & Sons, Ltd, 2017,
pp. 1–11. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/9781118445112.stat05999.pub2

[6] I. H. Sloan, “Lattice Methods for Multiple Integration,” Journal of
Computational and Applied Mathematics, vol. 12, pp. 131–143, 1985.

[7] J. Dick, F. Y. Kuo, and I. H. Sloan, “High-Dimensional Integration:
The Quasi-Monte Carlo Way,” Acta Numerica, vol. 22, p. 133–288,
2013.

[8] S. J. Julier and J. K. Uhlmann, “New Extension of the Kalman Filter to
Nonlinear Systems,” in Signal Processing, Sensor Fusion, and Target
Recognition VI, vol. 3068. International Society for Optics and
Photonics, Jul. 1997, pp. 182–193.

[9] S. Julier and J. Uhlmann, “Unscented Filtering and Nonlinear Es-
timation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422,
2004.

[10] M. Roth, G. Hendeby, and F. Gustafsson, “Nonlinear Kalman Filters
Explained: A Tutorial on Moment Computations and Sigma Point
Methods,” Journal of Advances in Information Fusion, vol. 11, no. 1,
pp. 47–70, 2016, publisher: International society of information fusion.

[11] U. D. Hanebeck and V. Klumpp, “Localized Cumulative Distributions
and a Multivariate Generalization of the Cramér-von Mises Distance,” in
Proceedings of the 2008 IEEE International Conference on Multisensor
Fusion and Integration for Intelligent Systems (MFI 2008), Seoul,
Republic of Korea, Aug. 2008, pp. 33–39.

[12] J. Steinbring and U. D. Hanebeck, “LRKF Revisited: The
Smart Sampling Kalman Filter (S2KF),” Journal of Advances in
Information Fusion, vol. 9, no. 2, pp. 106–123, Dec. 2014. [Online].
Available: https://confcats_isif.s3.amazonaws.com/web-files/journals/
entries/441_1_art_11_17020.pdf

[13] U. D. Hanebeck, “Deterministic Sampling of Multivariate Densities
based on Projected Cumulative Distributions,” in Proceedings of the
54th Annual Conference on Information Sciences and Systems (CISS
2020), Princeton, New Jersey, USA, Mar. 2020.

[14] D. Prossel and U. D. Hanebeck, “Dirac Mixture Reduction Using
Wasserstein Distances on Projected Cumulative Distributions,” in
Proceedings of the 25th International Conference on Information Fusion
(Fusion 2022), Linköping, Sweden, Jul. 2022.

[15] J. Steinbring, M. Pander, and U. D. Hanebeck, “The Smart Sampling
Kalman Filter with Symmetric Samples,” Journal of Advances in
Information Fusion, vol. 11, no. 1, pp. 71–90, Jun. 2016.

[16] G. E. P. Box and M. E. Muller, “A Note on the Generation of
Random Normal Deviates,” The Annals of Mathematical Statistics,
vol. 29, no. 2, pp. 610 – 611, 1958. [Online]. Available:
https://doi.org/10.1214/aoms/1177706645

[17] W. Feller, “An Introduction to Probability Theory and Its Applications,
Volume 1, 3rd Edition | Wiley.” [Online]. Available: https://www.
wiley.com/en-us/An+Introduction+to+Probability+Theory+and+Its+
Applications%2C+Volume+1%2C+3rd+Edition-p-9780471257080

[18] R. E. Caflisch, “Monte Carlo and quasi-Monte Carlo methods,” Acta
Numerica, vol. 7, pp. 1–49, Jan. 1998, publisher: Cambridge University
Press. [Online]. Available: https://www.cambridge.org/core/journals/
acta-numerica/article/monte-carlo-and-quasimonte-carlo-methods/
FE7C779B350CFEA45DB2A4CCB2DA9B5C#

[19] N. Steen, G. Byrne, and E. Gelbard, “Gaussian Quadratures for the
Integrals

∫∞
0 exp (−x2)f(x) dx and

∫ b
0 exp (−x2)f(x) dx,” Math-

ematics of Computation, vol. 23, no. 107, pp. 661–671, 1969.
[20] K. Ito and K. Xiong, “Gaussian Filters for Nonlinear Filtering Problems,”

IEEE Transactions on Automatic Control, vol. 45, no. 5, pp. 910–927,
2000.

[21] P. Jäckel, “A Note on Multivariate Gauss-Hermite Quadrature,” London:
ABN-Amro. Re, 2005.

[22] I. Arasaratnam, S. Haykin, and R. J. Elliott, “Discrete-Time Nonlinear
Filtering Algorithms Using Gauss–Hermite Quadrature,” Proceedings
of the IEEE, vol. 95, no. 5, pp. 953–977, 2007.

[23] M. F. Huber and U. D. Hanebeck, “Gaussian Filter based on
Deterministic Sampling for High Quality Nonlinear Estimation,”
IFAC Proceedings Volumes, vol. 41, no. 2, pp. 13 527–13 532,
2008, 17th IFAC World Congress. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1474667016411572

[24] S. J. Julier, “The Scaled Unscented Transformation,” in Proceedings
of the 2002 American Control Conference (IEEE Cat. No.CH37301),
vol. 6, May 2002, pp. 4555–4559 vol.6.

[25] I. Arasaratnam and S. Haykin, “Cubature Kalman Filters,” IEEE
Transactions on Automatic Control, vol. 54, no. 6, pp. 1254–1269,
2009.

[26] B. Jia, M. Xin, and Y. Cheng, “High-Degree Cubature Kalman Filter,”
Automatica, vol. 49, no. 2, pp. 510–518, 2013.

[27] R. Cools and P. Rabinowitz, “Monomial Cubature Rules Since
“Stroud”: A Compilation,” Journal of Computational and Applied
Mathematics, vol. 48, no. 3, pp. 309–326, 1993. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0377042793900279

[28] G. Phillips, “A Survey of One-Dimensional and Multidimensional
Numerical Integration,” Computer Physics Communications, vol. 20,
no. 1, pp. 17–27, 1980. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/0010465580901022

[29] S. Julier and J. Uhlmann, “Reduced Sigma Point Filters for the Propa-
gation of Means and Covariances through Nonlinear Transformations,”
in Proceedings of the 2002 American Control Conference (IEEE Cat.
No.CH37301), vol. 2, 2002, pp. 887–892 vol.2.

[30] K. G. Papakonstantinou, M. Amir, and G. P. Warn, “A Scaled
Spherical Simplex Filter (S3F) with a decreased n + 2
sigma points set size and equivalent 2n + 1 Unscented
Kalman Filter (UKF) accuracy,” Mechanical Systems and Signal
Processing, vol. 163, p. 107433, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0888327020308190

[31] J. Kotecha and P. Djuric, “Gaussian Particle Filtering,” IEEE Transac-
tions on Signal Processing, vol. 51, no. 10, pp. 2592–2601, 2003.

[32] V. Elvira, L. Martino, and P. Closas, “Importance gaussian quadrature,”
IEEE Transactions on Signal Processing, vol. 69, pp. 474–488, 2021.

[33] U. D. Hanebeck, “PGF 42: Progressive Gaussian Filtering with a Twist,”
in Proceedings of the 16th International Conference on Information
Fusion (Fusion 2013), Istanbul, Turkey, Jul. 2013.

[34] J. Steinbring and U. D. Hanebeck, “Progressive Gaussian Filtering
Using Explicit Likelihoods,” in 17th International Conference on
Information Fusion (FUSION), 2014, pp. 1–8.

[35] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002.

[36] U. D. Hanebeck, M. F. Huber, and V. Klumpp, “Dirac Mixture
Approximation of Multivariate Gaussian Densities,” in Proceedings
of the 2009 IEEE Conference on Decision and Control (CDC 2009),
Shanghai, China, Dec. 2009.

[37] J. Steinbring and U. D. Hanebeck, “S2KF: The Smart Sampling
Kalman Filter,” in Proceedings of the 16th International Conference
on Information Fusion (Fusion 2013), Istanbul, Turkey, Jul. 2013.

[42] R. J. Purser, “Generalized Fibonacci Grids; A New Class of Structured,
Smoothly Adaptive Multi-Dimensional Computational Lattices,” pp.

[38] D. Frisch and U. D. Hanebeck, “Efficient Deterministic Conditional
Sampling of Multivariate Gaussian Densities,” in Proceedings of
the 2020 IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems (MFI 2020), Virtual, Sep. 2020.

[39] D. Guo and X. Wang, “Quasi-Monte Carlo Filtering in Nonlinear
Dynamic Systems,” IEEE Transactions on Signal Processing, vol. 54,
no. 6, pp. 2087–2098, 2006.

[40] A. Rahimnejad, S. A. Gadsden, and M. Al-Shabi, “Lattice Kalman
Filters,” IEEE Signal Processing Letters, vol. 28, pp. 1355–1359, 2021,
conference Name: IEEE Signal Processing Letters.

[41] C. Kacwin, J. Oettershagen, M. Ullrich, and T. Ullrich, “Numerical
Performance of Optimized Frolov Lattices in Tensor Product
Reproducing Kernel Sobolev Spaces,” Foundations of Computational
Mathematics, vol. 21, no. 3, pp. 849–889, Jun. 2021. [Online].
Available: https://doi.org/10.1007/s10208-020-09463-y
1–38, May 2008. [Online]. Available: https://repository.library.noaa.
gov/view/noaa/6956

[43] D. Frisch and U. D. Hanebeck, “Rejection Sampling from Arbitrary
Multivariate Distributions Using Generalized Fibonacci Lattices,” in
Proceedings of the 25th International Conference on Information Fusion
(Fusion 2022), Linköping, Sweden, Jul. 2022.

[44] S. K. Zaremba, “A Remarkable Lattice Generated by Fibonacci
Numbers,” Fibonacci Quarterly, vol. 8, no. 2, pp. 185–198, 1970.

[45] H. Niederreiter et al., “Integration of Nonperiodic Functions of Two
Variables by Fibonacci Lattice Rules,” Journal of computational and
applied mathematics, vol. 51, no. 1, pp. 57–70, 1994.

[46] R. L Graham, Concrete Mathematics: A Foundation for Computer
Science. Addison-Wesley, 1994.

[47] H. W. Gould, “A History of the Fibonacci Q-Matrix and a Higher-
Dimensional Problem,” Fibonacci Quart, vol. 19, no. 3, pp. 250–257,
1981.

[48] A. Makhorin, “GLPK (GNU Linear Programming Kit).” [Online].
Available: http://www.gnu.org/software/glpk/glpk.html

[49] J. Dick and F. Pillichshammer, Explicit Constructions of Point Sets
and Sequences with Low Discrepancy. De Gruyter, 2014, pp. 63–86.
[Online]. Available: https://doi.org/10.1515/9783110317930.63

[50] D. Bilyk, Discrepancy Theory and Harmonic Analysis. Berlin,
Boston: De Gruyter, 2014, pp. 45–62. [Online]. Available:
https://doi.org/10.1515/9783110317930.45

[51] J. H. Halton, “On the Efficiency of Certain Quasi-Random Sequences
of Points in Evaluating Multi-Dimensional Integrals,” Numerische
Mathematik, vol. 2, no. 1, pp. 84–90, 1960.

[52] E. Levina and P. Bickel, “The Earth Mover’s Distance is the Mallows
Distance: Some Insights From Statistics,” in Proceedings Eighth IEEE
International Conference on Computer Vision. ICCV 2001, vol. 2, Jul.
2001, pp. 251–256 vol.2.

[53] D. V. Murthy and R. T. Haftka, “Derivatives of
Eigenvalues and Eigenvectors of a General Complex
Matrix,” International Journal for Numerical Methods in
Engineering, vol. 26, no. 2, pp. 293–311, 1988, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620260202. [On-
line]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.
1620260202

[54] P. Lancaster, “On Eigenvalues of Matrices Dependent on a Parameter,”
Numerische Mathematik, vol. 6, no. 1, pp. 377–387, Dec 1964.
[Online]. Available: https://doi.org/10.1007/BF01386087

[55] J. Steinbring, “Nonlinear Estimation Toolbox.” [Online]. Available:
https://bitbucket.org/nonlinearestimation/toolbox

