KIT | KIT-Bibliothek | Impressum | Datenschutz

Sensitivity analysis of AI-based algorithms for autonomous driving on optical wavefront aberrations induced by the windshield

Wolf, Dominik Werner; Ulrich, Markus ORCID iD icon 1; Kapoor, Nikhil
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract:

Autonomous driving perception techniques are typically based on supervised machine learning models that are trained on real-world street data. A typical training process involves capturing images with a single car model and windshield configuration. However, deploying these trained models on different car types can lead to a domain shift, which can potentially hurt the neural networks performance and violate working ADAS requirements. To address this issue, this paper investigates the domain shift problem further by evaluating the sensitivity of two perception models to different windshield configurations. This is done by evaluating the dependencies between neural network benchmark metrics and optical merit functions by applying a Fourier optics based threat model. Our results show that there is a performance gap introduced by windshields and existing optical metrics used for posing requirements might not be sufficient.


Preprint §
DOI: 10.5445/IR/1000167376
Veröffentlicht am 17.01.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 25.12.2023
Sprache Englisch
Identifikator ISBN: 979-83-503-0744-3
KITopen-ID: 1000167376
Erschienen in 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Paris, 25th December 2023
Veranstaltung IEEE/CVF International Conference on Computer Vision Workshops (ICCVW 2023), Paris, Frankreich, 02.10.2023 – 06.10.2023
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 4102–4111
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page