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Abstract—Windscreen optical quality is an important aspect
of any advanced driver assistance system, and also for future
autonomous driving, as today at least some cameras of the
sensor suite are situated behind the windscreen. Automotive mass
production processes require measurement systems that charac-
terize the optical quality of the windscreens in a meaningful
way, which for modern perception stacks implies meaningful
for artificial intelligence (AI) algorithms. The measured optical
quality needs to be linked to the performance of these algorithms,
such that performance limits – and thus production tolerance
limits – can be defined. In this article we demonstrate that
the main metric established in the industry – refractive power
– is fundamentally not capable of capturing relevant optical
properties of windscreens. Further, as the industry is moving
towards the modulation transfer function (MTF) as an alterna-
tive, we mathematically show that this metric cannot be used on
windscreens alone, but that the windscreen forms a novel optical
system together with the optics of the camera system. Hence,
the required goal of a qualification system that is installed at
the windscreen supplier and independently measures the optical
quality cannot be achieved using MTF. We propose a novel
concept to determine the optical quality of windscreens and to
use simulation to link this optical quality to the performance
of AI algorithms, which can hopefully lead to novel inspection
systems.

Index Terms—windscreen optical quality, AI algorithms, com-
puter vision, refractive power, MTF

I. INTRODUCTION

Every car has a windscreen. The number of newly pro-
duced windscreens therefore ranges in the millions every year.
Following quality processes for automotive mass production
established since the 1960ies – like the outdated ISO/TS 16949
[18] or the more recent VDA6.3 [31] – these windscreens are
tested end-of-line (EOL) at the suppliers (Tier 1) production
line using well-defined optical measurements. Importantly, the
windscreen quality is measured at the production site alone,
independent of any production tolerances that may arise during
assembly of the whole car at the site of the car manufacturer
(original equipment manufacturer, OEM). Economically, this
is mandatory, as a thorough testing of the whole windscreen
after assembly by the OEM is prohibitively expensive.

For several decades the optical quality of these windscreens
has been judged acceptable if humans could look through
it with low impact on the perception of the driver. With
the rise of advanced driver assistance systems (ADAS) and

the future promise of autonomous driving (AD) many cars
nowadays are equipped with several camera systems, many
of which are situated behind the windscreen. A camera is
not a human observer, and it is now not enough to qualify a
windscreen using human perception, especially as the quality
and resolution of the cameras are steadily increasing. The
influence of the optical quality on the image quality and further
on the computer vision algorithms evaluating these images has
to be precisely determined.

In theory, the working limits of the computer vision al-
gorithms are determined, and production tolerance limits are
derived from these algorithmic working limits through a num-
ber of processes defined in the above mentioned quality norms.
Opto-mechanical tolerance calculations, numerical simulations
and test campaigns in the real world form three important
pillars of these studies accompanied by environmental stress
tests and aging simulations [7], [15].

In practice, though, modern camera-based ADAS appli-
cations are based on artificial intelligence (AI) and employ
deep convolutional neural networks, due to their superior
performance in comparison to traditional, rule-based computer
vision algorithms. The difference in performance is such that
currently there is no alternative to using AI algorithms. As
these AI algorithms are ’black boxes’ in nature [13], i.e. the
output cannot be predicted, the link between optical quality
and AI algorithm performance cannot be easily established
[25]. And due to the lack of quantitative working limits
w.r.t. the AI algorithms, production tolerance limits for the
windscreens can not be straightforwardly deduced [4].

In this article we are evaluating the two main measurement
processes that are currently used in the automotive industry
to qualify windscreen optical quality: refractive power and the
modulation transfer function (MTF). While refractive power is
the established measurement method and has been standard-
ized already in the 1990ies [6], [9], the MTF – or equivalently
the spatial frequency response (SFR) – has gained recent
attention as automotive researchers [32] look for alternatives
to refractive power because of the increasing ADAS camera
performances in terms of the number of pixels per field angle.
Novel startups are even forming around the promise of using
MTF to characterize windscreens.

We find and mathematically demonstrate in this work that
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both refractive power and MTF are not sufficient to quantify
windscreen quality for AI algorithm performance. This is
a fundamental finding in that our results are derived from
first principles of optics, and apply very generally. First, we
recapitulate the optical basics in Sec. II. Importantly, the
optical quality is described in terms of wavefront aberrations,
using the Zernike formalism to mathematically decompose the
nature of the optical perturbations. Then in Sec. III, using
these basics we show how refractive power is fundamentally
not capable of accounting for a distinct number of wavefront
aberrations, while at the same time these aberrations have a
demonstrable effect on AI algorithm performance [24], [26].

In Sec. IV we then show how the windscreen and the camera
system form a joint optical system, that – again fundamentally
– cannot be separated into two distinct optical systems. This
separation, though, is a necessary requirement in linear system
theory for the multiplicativity of the system MTF w.r.t. the
individual optical elements [12]. Therefore, this prohibits any
MTF measurement on the windscreen alone, and thus from
using MTF as a qualifying measurement at the production site
of the Tier 1.

Optical quality has many different aspects. For this article,
we concentrate solely on the ’sharpness’ of the camera image,
which is deteriorated by optical path variations across the
windshield plane and is typically quantified by the MTF in
optical linear system theory. In general, lens distortions, which
describe the failure of a lens to map lines into lines and
represent a curvilinear mapping [28], might also deteriorate
the performance of ADAS functionalities. Effects of optical
distortions will not be considered in the following.

In summary, we will show how the two only current
measurement techniques in the automotive industry are not
sufficient to measure the sharpness of the windscreen alone.
These results have far reaching implications for the automotive
industry, which needs to focus more effort on finding alterna-
tives. We finally propose a concept on how to find a novel
measurement process, combining optical modeling, numerical
simulation and AI algorithms to link the optical quality of
windscreens to the performance of AI algorithms.

II. OPTICAL QUALITY AND MATHEMATICAL MODELS

Maxwell’s equations are the fundamental physical model of
electromagnetic radiation, and the wave equation forms the
basis for the technological application of light. If all elements
in the optical system are large compared to the wavelength
of the light, geometrical optics may be used. It plays an
important role in the development of optical systems as well,
in the form of raytracing simulations. A windscreen is large
in mechanical dimensions, both laterally as well as axially,
but previous work has shown that the aberrations originating
inside the windscreen cannot be neglected [5], [20]. Thus, it
is not sufficient to take only the geometry of the windscreen
into account – which would allow for a raytracing approach –
but a comprehensive optical model needs to be based on the
wave description of light. This is why in the following we use
the fundamental Zernike approach [10] to model wavefront

aberrations, where the optical path difference mathematically
models the aberrations present in the windscreen.

A. Wavefront Modelling with Zernike Polynomials

The optical path difference W , defined on the principle
plane, is usually expressed as a decomposition into Zernike
polynomials Zn with corresponding Zernike coefficients cn
(in units of meters) as [3]:

W (ρ, ϕ) =

∞∑
n=0

cnZn(ρ, ϕ) , cn :
(2)
= ⟨W, Zn⟩ . (1)

Here, the domain of the principle plane of the optical element
is parameterized by normalized polar coordinates with radius ρ
and polar angle ϕ. There are different numbering schemes for
Zernike polynomials, i.a. a linear numbering scheme according
to the American National Standards Institute (ANSI) which
has been adopted within this work. The Zernike polynomi-
als reproduce the aberration pattern on the unit circle and
correspond to different, independent optical perturbations like
defocus or astigmatism.

The independence of the perturbations is mathematically
reflected by the orthogonality relation of the scalar product:

⟨Zi, Zj⟩ :=
2πˆ

0

1ˆ

0

Zi(ρ, ϕ)·Zj(ρ, ϕ)·ρ dρ dϕ = π ·δij . (2)

This is important, because we will demonstrate how certain
Zernike polynomials are simply not present in the refrac-
tive power measurement, and the orthogonality fundamentally
implies that this information can not be recovered. Table I
indicates the normalized Zernike polynomials defined by ISO
24157 [17] up to the third order.

B. Refractive Power

Refractive power measures how much focusing power a lens
has. It is given in units of diopters, i.e. in inverse distance of
the focal length of the lens. A comprehensible way to visualize
refractive power is two parallel light rays entering the optical
system – here: the windscreen – and upon exit are not parallel
anymore, but either divergent or convergent. In the convergent
case, the focal length is the distance from the refractive
element to the intersection of the two rays, and its inverse is the

Zi Zernike polynomial Harmonic
Polar coordinates Cartesian coordinates

Z0 1 1 ✓
Z1 2ρ sinϕ 2y ✓
Z2 2ρ cosϕ 2x ✓
Z3

√
6ρ2 sin 2ϕ 2

√
6xy ✓

Z4

√
3(2ρ2 − 1)

√
3(2x2 + 2y2 − 1) ×

Z5

√
6ρ2 cos 2ϕ

√
6(x2 − y2) ✓

Z6

√
8ρ3 sin 3ϕ

√
8(3x2y − y3) ✓

Z7

√
8(3ρ3 − 2ρ) sinϕ

√
8(3x2y + 3y3 − 2y) ×

Z8

√
8(3ρ3 − 2ρ) cosϕ

√
8(3x3 + 3xy2 − 2x) ×

Z9

√
8ρ3 cos 3ϕ

√
8(x3 + 3xy2) ✓

TABLE I: Zernike polynomials up to the third order.



Fig. 1: Refractive power measurement of the ADAS camera
area of a VW series production windshield under an inclination
angle of ϵ = 63°. The difference in magnitude between
horizontal and vertical direction originates from the inclination
angle, which amplifies the refractive power according to the
Kerkhof model [33].

numerical value of the refractive power. For concave lenses,
the diverging rays are extended in the negative direction until
these two rays intersect, and the negative distance now forms
the focal length.

For windscreens, the refractive power is not a single num-
ber for the whole glass, but the measurement has a spatial
resolution as depicted by Fig. 1. In the early days, two actual
parallel laser beams were deflected, and the whole setup was
laterally moved to achieve a certain spatial resolution [6]. More
modern systems such as the one produced by ISRA use the
Moiré effect to spatially resolve the refractive power over
a limited area by observing the location dependency of the
perturbed grid spacing between Moiré interferences [23]. In
addition, new refractive power measurement systems like the
one produced by LaVision [22] use the Background Oriented
Schlieren (BOS) imaging method to overcome the resolution
limitation of the Moiré approach [33].

Importantly, the refractive power depends on the direction,
as the two parallel lines form a plane together with the princi-
pal plane of the optical element. In principle, this direction can
be rotated full circle by 360◦, but in practice, the refractive
power is determined and specified only in the horizontal and
vertical direction.

C. Modulation Transfer Function

The modulation transfer function (MTF) – and its non-
harmonic equivalent, the spatial frequency response (SFR) –
are established metrics to characterize optical systems, based
on linear system theory and scalar diffraction theory [2], [10].
In image space, the transfer function of the system under test is
called the point spread function (PSF), and in frequency space,
it is denoted as the optical transfer function (OTF). The MTF
is given by the absolute value of the OTF and is of particular
importance if the intensity distribution is the matter of interest.
The PSF and the MTF are highly non-linear functions over
the image field (radius, azimuth), and they also depend on the
defocus ∆z, due to the refractions on different lens element
surfaces. Hence, the input space of the PSF is in general three
dimensional.

The MTF is measured by using either harmonic input
signals (MTF, e.g. sinusoidal Siemens star) or a step function
type input (SFR, e.g. slanted edge). ISO12233 defines a norm

to measure the MTF [16], and IEEE P2020 is currently
finalizing an automotive extension of this norm [14]. In this
article, we will use slanted edge measurements.

According to scalar diffraction theory, the MTF is propor-
tional to the absolute value of the Fourier transform of the
wavefront in the aperture plane of the lens (more general: the
optical element). The wavefront is transformed, normalized,
and the absolute value is taken to yield the MTF. This
allows for an analytical relationship between the MTF and the
wavefront aberrations, which can be parameterized by Zernike
coefficients cn:

MTF(k⃗|λ) =

∣∣∣∣∣∣∣∣∣∣∣

‚
P+∩P−

exp

(
2πi

λ

∞∑
n=0

cn

[
Zn(ξ⃗ + ∆⃗)− Zn(ξ⃗ − ∆⃗)

])
dξ2

˜
R2 | P (ξ⃗) |2 dξ2

∣∣∣∣∣∣∣∣∣∣∣
. (3)

Eq. (3) is motivated by Goodman [10] and the domain of
integration is determined by the aperture stop of the camera.
In detail, P describes the 2D aperture stop function, which
is given by a circular top hat function with magnitude one
and baseline zero. The displaced aperture stop function P+ is
shifted by:

∆⃗ := λza 7→o
k⃗

2
≈ λf

k⃗

2
. (4)

The intersection of P+ and P− (shift by −∆⃗) determines the
domain of integration in Eq. (3). In addition, λ characterizes
the wavelength under consideration and za7→o quantifies the
distance on the optical axis from the aperture stop to the
observer plane, which roughly equals the focal length f of
the camera lens if the Gaussian lens equation is approximated.
This simplification holds if the working distance is by magni-
tudes larger than the image distance za7→o. Finally, k⃗ denotes
the spatial frequency vector.

As a side note, the MTF depends on the wavelength λ
according to Eq. (3). The polychromatic MTF can be retrieved
by integrating the conditioned, monochromatic MTF over the
normalized power spectral density PSD of the light source.
The area under the PSD curve quantifies the likelihood of
emitting a photon in the wavelength range [λ, λ+∆λ] by the
light source. As a result, the polychromatic MTF is given by:

MTF(k⃗) =

∞̂

0

MTF(k⃗|λ) · PSD(λ) dλ . (5)

Consequently, chromatic aberrations will potentially also influ-
ence the performance of AI-based algorithms for autonomous
driving but they are not discussed in detail in this paper.

At this point, it has to be emphasized, that the first three
Zernike coefficients for piston and tilt do not represent optical
aberrations in the classical sense. Even though there is a
wavefront perturbation of the light beam, the image quality
is not influenced by those terms because the curvature of
the wavefront is not affected. Instead, tilts induce image
distortions and generate a non-conformal mapping. As we
focus in this article on the sharpness of the optical system
we will not further investigate this influence.



If the Zernike polynomials of Table I are transformed into
Cartesian coordinates it becomes obvious that the difference
in Eq. (3) vanishes for Zernike polynomials of zeroth order.
For the y-tilt Z1 and the x-tilt Z2, the integrand evaluates to
a constant phasor. Hence, it holds that:

MTF(k⃗|λ) (3)
=

∣∣∣∣∣∣∣ e(2πi·c1,2·za7→o ·⃗k) ·

‚
P+∩P−

1 dξ2

˜
R2 | P (ξ⃗) |2 dξ2

∣∣∣∣∣∣∣
⇔ MTF(k⃗|λ) =

∣∣∣ e(2πi·c1,2·za7→o ·⃗k)
∣∣∣ ·

‚
P+∩P−

1 dξ2

˜
R2 | P (ξ⃗) |2 dξ2

⇔ MTF(k⃗|λ) :=
∣∣∣ e(2πi·c1,2·za7→o ·⃗k)

∣∣∣ ·MTFdiff(k⃗|λ)

⇔ MTF(k⃗|λ) = MTFdiff(k⃗|λ) .
(6)

As a consequence, the diffraction limited MTF is not mod-
ulated by the Zernike coefficients c0 up to c2. Therefore, the
second order Zernike coefficients are those of main interest for
studying the effect of optical aberrations in terms of sharpness
degradation on convolutional neural networks for autonomous
driving. Nonetheless, the optical distortion does influence the
rectilinear mapping, but as stated before this is an independent
effect we do not study in this work.

Finally, note that the MTF is unfortunately currently not
traceable to fundamental physical quantities, and therefore a
calibration chain to national metrological institutes like the
PTB in Germany or the NIST in the US can not be established
at the moment. For the automotive industry, this is a major
source of discussion, as the implementations of ISO12233
are very sensitive to many diverse influences: stable lighting
conditions (spectrum, intensity, direction, homogeneity), a
reproducible mechanical setup (target distance, field-of-view)
and well-defined camera settings (gain, exposure, HDR, ISP
. . . ) are the goal, which are not met in practice. Instead,
comparability of two camera systems is only possible to a
(relatively) good accuracy within measurements from the very
same experimental setup. Comparison between two different
measurement sites – even with the same nominal setup – is
quite difficult and error-prone [1], [19], [27].

III. REFRACTIVE POWER

In this section, we will demonstrate how relevant Zernike
polynomials are not captured by refractive power measure-
ments. Our argument is based on the theory that the refractive
power is given by the second derivative of the wavefront
modulation of a plane wave passing a refractive element [29].
Using this relationship, we demonstrate how several Zernike
polynomials are simply not covered by a refractive power
measurement, as zeroth and first order polynomials in x and
y vanish if the second derivative is considered. We start by
introducing the measurement principle of a Shack-Hartmann
sensor in Sec. III-A to motivate how the Zernike coefficients
ci are retrieved. In Sec. III-C, we then mathematically derive

Fig. 2: Sketch of the measurement principle of a Shack-
Hartmann sensor [34].

which Zernike polynomials are not present in the refractive
power measurement. As the Zernike polynomials form an
orthogonal function basis, this proves that there are optical
aberrations that cannot be captured by the refractive power.
Finally, we experimentally demonstrate the validity of our
assumption in Sec. III-D by using a Shack-Hartmann sensor to
measure the wavefront modulation induced by a high-quality
convex lens of well-known refractive power.

A. From Shack-Hartmann Measurements to the Wavefront
Aberration Map

Fig. 2 demonstrates the method of operation of a Shack-
Hartmann wavefront sensor. If a collimated light beam is
transmitting a refractive optical element then the wavefront
gets modulated. A Shack-Hartmann sensor consists of a mi-
crolens array, which resolves the local wavefront perturbations
by focusing a wavefront snippet on a CCD or CMOS sensor.
Without any aberrations, the wavefront sensor will capture the
light in the center of each pixel. If aberrations are present,
then the focusing spot will be displaced locally by dx and dy ,
respectively. The resulting local gradient of the optical path
difference (W ) is given by:

β⃗ :=
[

βx

∣∣∣
x⃗1

. . . βx

∣∣∣
x⃗m

βy

∣∣∣
x⃗1

. . . βy

∣∣∣
x⃗m

]T
⇔ β⃗ =

[
dx1√

f2
sh + d2x1

. . .
dxm√

f2
sh + d2xm

dy1√
f2
sh + d2y1

. . .
dym√

f2
sh + d2ym

]T
.

(7)

Here, fsh denotes the focal length of the microlenses and m
specifies the number of microlenses within the array. With the
Shack-Hartmann measurement of the local wavefront gradients
βi, the Zernike coefficients ci of the wavefront aberration map
are determined by:

β⃗ =
1

ρa
·



∂Z4

∂x̃

∣∣∣
x⃗1

. . .
∂Zn

∂x̃

∣∣∣
x⃗1

...
. . .

...
∂Z4

∂x̃

∣∣∣
x⃗m

. . .
∂Zn

∂x̃

∣∣∣
x⃗m

∂Z4

∂ỹ

∣∣∣
x⃗1

. . .
∂Zn

∂ỹ

∣∣∣
x⃗1

...
. . .

...
∂Z4

∂ỹ

∣∣∣
x⃗m

. . .
∂Zn

∂ỹ

∣∣∣
x⃗m


·

 c4
...
cn

 =:
1

ρa
·M · c⃗ .

(8)



The Zernike decomposition coefficients ci are uniquely deter-
mined if |MTM| ≠ 0. In other words, the Gramian matrix
MTM has to be invertible, wherefore MTM needs to
have full rank. If this condition is fulfilled, then the Zernike
coefficient vector c⃗ can be retrieved from the measured local
wavefront gradient vector β⃗ by:

c⃗
(8)
= ρa ·

[
MTM

]−1

·MT · β⃗ . (9)

B. From Wavefront Aberration Maps to local Refractive Power

From Sec. III-A we know how to determine the Zernike
coefficients ci, wherefore we can reconstruct the wavefront
aberration map according to Eq. (1). If the reference wave-
front has been characterized by a plane wave, then the local
refractive power of an optical element is given by the second
derivative of the wavefront aberration map W with respect to
the axis of interest [29], [30]. Hence, the refractive power Dxi

along the axis xi is given by:

Dxi(x⃗a) =
∂2

∂x2
i

W (x⃗a) . (10)

Here, the input vector x⃗a ∈ R2 is restricted to the principal
plane of the refractive element. The validity of Equation (10)
can be proven for the special case of a spherical thin lens:

f2
xa1

= x2
a1

+
(
fxa1

−W (xa1)
)2

, w.l.o.g.: xa2

!
= 0

⇒ W (xa1) = fxa1

1−

√√√√1−

(
xa1

fxa1

)2


⇔ W (xa1
) = fxa1

1−

1− 1

2

(
xa1

fxa1

)2

+O


(

xa1

fxa1

)4



⇒ W (xa1) ≈
x2
a1

2fxa1

=:
Dxa1

2
· x2

a1

⇒ Dxa1

(10)
=

∂2

∂x2
a1

W (xa1
) = Dxa1

. ■

(11)

C. Information Content of Refractive Power Measurements

Eq. (10) determines the relationship between refractive
power measurements D and wavefront aberration measure-
ments W via the curvature of the optical path difference map.
In Sec. II-C we introduced the concept of the PSF as a Fourier
optical merit function, which serves as the impulse response
function or the Green’s function of an optical system [21].
In addition to the Fourier optical approach there is also a
ray optics approximation to describe the PSF in terms of the
area of a blurring ellipse, which encloses a certain amount of
light around the focusing spot in relation to the total amount
of energy entering the system through the aperture stop. The
area of this blurring ellipse is proportional to the Gaussian
curvature [8] of the wavefront aberration map or equivalently

speaking, proportional to the determinant of the Hessian matrix
of the wavefront aberration function [29]:
‹

C
PSF(x⃗o)

∣∣∣
ẑo
d2xo ∝

∣∣∣∣∣∣∣∣


∂2

∂x2
1

W (x⃗a)
∂

∂x1

∂

∂x2
W (x⃗a)

∂

∂x1

∂

∂x2
W (x⃗a)

∂2

∂x2
2

W (x⃗a)


∣∣∣∣∣∣∣∣ . (12)

Here, C denotes the contour confining the domain of inte-
gration, which is given by the blurring ellipse. Due to the
relationship presented in Eq. (10), this matrix is also known
as the dioptric power matrix D [11]. The determinant can be
rewritten in terms of the traces of the dioptric power matrix:‹

C
PSF(x⃗o)

∣∣∣
ẑo
d2xo

(12)
∝ 1

2

[
(tr (D))

2 − tr
(
D2
)]

. (13)

So far, the automotive industry exclusively specifies require-
ments in terms of the refractive power w.r.t. the horizontal
and vertical directions. Consequently, only the trace of D is
measured and off-diagonal elements in the Hessian matrix are
not investigated. This demonstrates that there is a blind spot
in the quality assurance chain at the moment. This conclusion
can be further underpinned by an mathematical argument. The
trace of D is given by:

tr (D) =

d∑
i=1

Dxi
(x⃗a) = △W (x⃗a) . (14)

Consequently, the trace of D is unaffected by wavefront
aberration fields, which fulfill the Laplace equation:

△Γ(x⃗a)
!
= 0 . (15)

As a result, the trace of D is Gauge invariant under aberration
fields Γ(x⃗a) that are composed of harmonic functions. Hence,
Zernike polynomials in Table I that are harmonic functions
(like astigmatism or trefoil) will not alter the trace of D.

In a nutshell, refractive power measurements are not sen-
sitive for optical distortions quantified by c1 and c2. Further-
more, the refractive power is invariant under oblique astig-
matism given by c3 if the refractive power requirements are
specified exclusively along the horizontal and vertical axis, as
it is the current governing standard in the automotive industry.
Finally, those quality standards are insufficient for extracting
more fundamental information about the optical system in
terms of the PSF. Nonetheless, the aberrations associated with
these polynomials have been proven to have an influence on
the performance of AI algorithms [24], [26].

D. Experimental Verification

Since Eq. (10) is not well established in the automotive
industry, we experimentally demonstrate the validity of the
relationship by a Shack-Hartmann wavefront measurement of a
calibration lens. The lens under test was produced by Zeiss and
is traced back to national standards by an accredited calibration
authority. The local wavefront gradients βi are measured
by a Shack-Hartmann sensor and the refractive power is
retrieved by utilizing Eq. (10). As demonstrated by Eq. 8 the
Shack-Hartmanm measurement yields the first derivative of
the wavefront. Here, we measure the lens and numerically



Fig. 3: Wavefront measurement performed on a
⟨D⟩ = 100.3mdpt reference lens. In order to cover the entire
aperture of the lens, several Shack-Hartmann measurements
have been stitched together. This procedure has introduced
artifacts, which are visible in the measurement data by
strongly pronounced vertical and horizontal lines. In total, 15
measurements have been performed over the calibration lens
aperture of d = 10 cm.

determine the second derivative by a simple central difference
scheme, which should result in the specified refractive power.
Fig. 3 illustrates the outcome w.r.t. the refractive power map
over the lens aperture. From the frequency distribution of
the local refractive power across the entire principal plane,
the expectation value for the global refractive power of the
optical element in the x- and y-plane can be deduced. The
expectation values meet the certified refractive power values of
the calibration lens within the uncertainty intervals. Hence, the
validity of Eq. (10) has also been experimentally confirmed.

Summarizing, we have demonstrated that fundamentally
several optical aberrations are not captured by a refractive
power measurement. The image quality can be deteriorated
even though the refractive power measurement indicates a
compliant windscreen sample. From previous studies on the
effect of oblique astigmatism (c3) on road sign classification
[24], [26] it becomes evident, that refractive power measure-
ments are insufficient for specifying the quality of a windshield
in order to ensure reliable computer vision for autonomous
driving vehicles.

IV. MODULATION TRANSFER FUNCTION

In this section, we will demonstrate why the windscreen
and the camera form a joint optical system that cannot be
separated into two independent constituents, such that the MTF
cannot be determined for the two systems separately. First,
we argue how the refractive power of the windscreen interacts
with the focal length of the camera system. In a second step,
this is experimentally verified using a MTF measurement with
and without a windscreen. A discussion elaborates on several
implications for the production and testing process.

A. Field Curvature

The focal length of an imaging system varies over the field
of view, with the so-called field curvature being a prominent
optimization goal for any lens designer. The semiconductor
production processes produce completely flat image sensors,
which for the imaging optics is a challenge, as the field
curvature needs to be flat as well to minimize aberrations.
This field curvature, as a design property of the lens, is given

by the offset ∆zfc over field in units of length, typically on
the micrometer range. A symbolic field curvature is visualized
in Fig. 4. As explained above, the refractive power of the
windscreen leads to parallel rays converging or diverging.
Taking the two elements windscreen and lens together yields
a second focus offset ∆zws for the camera system, as the
converging (diverging) rays will shorten (prolong) the focal
length of the camera system. Fig. 4 depicts this situation. The
two offsets are added for the system offset, such that:

∆z = ∆zws +∆zfc . (16)

Importantly, both ∆zws and ∆zfc can have positive or negative
values, and thus the overall offset may vanish when these terms
cancel. A vanishing offset value implies a sharpening of the
system. Here, a MTF measurement of the camera alone would
yield a certain number, while putting a windscreen in front of
the camera would act like glasses and the image would become
sharper. That this is indeed the case in practice is presented
in the following section.

B. Experimental Validation

Fig. 5 depicts two slanted edge measurements, one without
a windscreen (5a), and one with a windscreen placed in front
of the camera system (5b). The insets indicate the MTF values
derived from the numerical evaluation for all four edges,
using an ISO12233-compliant algorithm [16]. There are two
horizontal and two vertical values. The two vertical values
(top and bottom) distinctly decrease from 52 ± 1.5% [95%]
to 39 ± 1.7% [95%] when a windscreen is placed in front
of the camera. However, for the horizontal direction (left
and right) the MTF values both significantly increase from
45/47 ± 1.5% [95%] to 52/54 ± 1.6% [95%] when the
windscreen is placed in front of the camera. The results
experimentally confirm that the defocus ∆zws and ∆zfc may

Fig. 4: Windscreen and lens form a joint optical system. H
and H ′ are the principle planes of the lens, f is the nominal
focal length. The blue line visualizes the field curvature (not
to scale). Normally, parallel rays are focused onto the field
curvature (yellow line). Windscreen refractive power shortens
or prolongs the effective focal length of the lens (red line).
There are two different focus offsets ∆zfc and ∆zws which
may add or even cancel at different fields of view.



(a) ADAS camera (b) ADAS camera + windshield

Fig. 5: MTF measurement for an ADAS system based on the
Slanted Edge method according to ISO 12233 [16].

cancel to a certain degree, increasing the sharpness like glasses
would do for a myopic person. This conclusion is well
established in physics [12] for decades but the implications
for the quality assurance testing procedure of ADAS systems
in the automotive industry are not well prevalent.

C. Discussion

Both the field curvature of the lens and the refractive power
of the windscreen are spatially variant. The field curvature not
only varies over field (radially) as the name implies, but due
to production tolerances the rotation symmetry of the lens is
usually broken to a certain degree. The field of view of the
lens projected on the windscreen yields a trapezoidal cutout
(cf. Fig. 1). I.e., the (almost) rotational symmetry of the lens
projected on the windscreen combines with the local refractive
power variation of the windscreen in this cutout. Not only
that, but the windscreen also has distinctly different refractive
power for the horizontal and the vertical direction as given by
the Kerkhof model [33].

Taken together, it is apparent that a windscreen cannot
be qualified by a MTF measurement if both the windscreen
and the camera are measured separately. The experimental
sharpening unambiguously demonstrates a non-linear process,
proving that the two elements cannot be separated using
linear system theory (read: the individual MTFs cannot be
multiplied). The way individual production tolerances will add
is not predictable. In brief, it is not possible to determine indi-
vidual MTF limits, as the combination of individual tolerances
may hold both good and bad surprises, either sending a good
system to scrap or a bad system to the field.

Therefore, any solution using MTF would have to measure
the MTF on the combined system of produced windscreen
and camera system with their individual production tolerances.
This could be either at the production site of the Tier 1 or
the OEM. But there are still several important open questions
that make this an unattractive proposal: if an assembly is
non-compliant, is it worth finding a compliant combination,
does it make economically sense? How big are the assembly
tolerances fitting the windscreen into the car body? If the
OEM wants the measurement system at the site of the Tier 1,

one should be aware that the assembly of the windscreen
into the car produces distinct mechanical tolerances, changing
the shape and internal tension of the windscreen. As we are
looking for subtle differences in optical quality, this may
affect the pre-assembled camera system as well. Finally, from
an automotive process view it is clear that an independent
measurement of the camera and the windscreen is much
preferred.

Summarizing, the MTF is a measure of ’sharpness’ based
on linear system theory. The windscreen and the camera form
a combined optical system that cannot be separated, which
prohibits its use for windscreen characterization without the
actual, produced camera system in place. Taken together with
the possibility of finding a better metric we are skeptical that
the MTF should be prioritized for windscreen characterization
going forward.

V. SIMULATING OPTICAL PROPERTIES

Having shown that basically no current measurement sys-
tem in the automotive windscreen industry is capable of a
meaningful characterization of the windscreen optical quality
for downstream AI algorithm consumption, what could be
a way forward? A comprehensive experimental study using
thousands of actual cameras and windscreens is out of the
question. Therefore, the AI performance needs to be linked to
the windscreen optical quality by simulation, using physical-
realistic optic models. These simulations need to model the
production tolerances of both windscreens and cameras. Then,
the performance requirements of the AI-based ADAS func-
tionalities can be translated to optical quality specifications
for windscreen production.

The waveform description is fundamental and includes all
optical effects and aberrations, and can be measured by a
Shack-Hartmann sensor. Currently, this is not a viable ap-
proach to windscreen characterization at the site of the Tier 1,
as it is too expensive and more importantly, too slow for a
100 % part check. Nonetheless, we believe it is possible to
use special laboratory-grade equipment to create the physical-
realistic optical models necessary for the simulations, and then
derive from these simulations an understanding of the optical
properties that are really necessary for the AI performance.
Finally, from this we can deduce a simplified form of measure-
ment that captures this newfound knowledge of the required
optical properties. A first example of this process is published
in [20].

Therefore, the challenge is to understand those optical prop-
erties that are really necessary for a robust AI algorithm per-
formance. We believe that this is a necessary step, and without
it, the move from ADAS to AD will be prohibitively difficult,
as production tolerances combined with the complexity of the
world create an unmanageable number of combinations.

VI. SUMMARY

In automotive mass production, the inspection systems at
the suppliers need to measure the quality of windscreens in
a meaningful way for the final device performance. Modern



ADAS and future AD camera systems are based on AI algo-
rithms, wherefore the windscreen quality needs to be linked to
the performance of these algorithms. Currently, there are two
types of measurements established in the industry to measure
the optical quality of a windscreen: refractive power and MTF.
In this article, we demonstrated how both these measurements
are fundamentally not capable of capturing relevant optical
properties of the windscreen.

The refractive power measurement does not include several
aberrations – given by Zernike polynomials, e.g. oblique
astigmatism – while these aberrations obviously affect the
performance of the AI algorithms: oblique astigmatism causes
a directional blurring of the scene, and blurring causes a
degradation of the performance. Because of the orthogonality
of the Zernike polynomials, it is clear that this information is
simply lacking in refractive power measurements.

MTF is based on linear system theory, where independent
optical systems might be multiplied in frequency space to
yield the system MTF. This is, for example, the case for the
lens and the imager. Here, we demonstrated mathematically
and experimentally that the windscreen forms a novel optical
system together with the lens of the camera system, which
cannot be separated into individual components. Therefore,
measuring the MTF on the windscreen alone will not yield the
performance of the combined system. Thus, the final assembly
of the windscreen and camera system in the car may be both
better or worse than the EOL measurement at the windscreen
production site, either sending good parts to scrap or bad parts
into the field.

Every car has a windscreen. Using the knowledge presented
in this article we believe that the automotive industry needs
to focus their efforts on finding novel measurement methods
that qualify the optical quality of windscreens in a meaningful
way for the downstream AI algorithms. We propose a concept
using fundamental wave (and Fourier) optics to characterize
the windscreens and combine wavefront measurements and
physical-realistic simulations to reach an understanding of
what optical properties are really important for AI computer
vision algorithms. We believe that it cannot be said generally
that the optical quality of windscreens is too low – what is
currently lacking is not optical quality, but understanding about
the robustness of the algorithms against optical aberrations. We
simply do not know what optical quality is needed exactly.
Taking these elements together we believe that a novel metric
can be found that contains the relevant information, while at
the same time the measurement is practical enough to be used
stand-alone at the windscreen production site. This is the great
windscreen challenge the automotive industry currently faces.
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