
Fast Many-to-Many Routing for Dynamic Taxi Sharing with Meeting Points*

Moritz Laupichler� Peter Sanders�

Abstract

We introduce an improved algorithm for the dynamic taxi

sharing problem, i.e. a dispatcher that schedules a fleet of

shared taxis as it is used by services like UberXShare and Lyft

Shared. We speed up the basic online algorithm that looks for

all possible insertions of a new customer into a set of existing

routes, we generalize the objective function, and we efficiently

support a large number of possible pick-up and drop-off

locations. This lays an algorithmic foundation for taxi sharing

systems with higher vehicle occupancy – enabling greatly

reduced cost and ecological impact at comparable service

quality. We find that our algorithm computes assignments

between vehicles and riders several times faster than a

previous state-of-the-art approach. Further, we observe that

allowing meeting points for vehicles and riders can reduce

the operating cost of vehicle fleets by up to 15% while also

reducing rider wait and trip times.

1 Introduction

Current transportation systems are largely based on a
combination of individual transport (often with heavy,
polluting cars that consume a lot of energy and space)
and public transportation that is often slow, inconve-
nient, and underdeveloped. Recently, taxi sharing sys-
tems that intelligently control fleets of shared taxi-like
vehicles have garnered a lot of attention as a promis-
ing means of interpolating between the economical and
ecological benefits of public transportation and the con-
venience and flexibility of individually used cars. The
traffic engineering community has extensively studied
the possible advantages of such systems in a large num-
ber of simulation studies [8, 45, 2, 20] and real-world
field tests [27, 44, 68, 66, 40, 65, 24, 70]. A widespread
adaptation of taxi sharing is expected to coincide with
an increased demand for sustainable personal transporta-
tion [63, 68] and the availability of autonomously piloted
vehicles [20, 21, 55, 19, 6].

A main issue of current such systems is that the
potential for shared rides is usually limited as each
additional stop made to pick up or drop off a rider causes
delays for other riders. This makes taxi sharing less

*The full version of this paper [46] is available on arXiv.
�Karlsruhe Institute of Technology, Institute for Theoretical

Informatics, Algorithm Engineering.

attractive and makes larger capacity vehicles infeasible.
We focus on the question of how riders can use local

transportation (e.g., walking, bicycles or scooters) to
reach a pickup or dropoff location (meeting point) that
causes less delay for a vehicle [64, 4], may be shared with
other customers [64, 42], and may alleviate concerns
of privacy for riders [29]. This acts as a first step
towards a hierarchy of personal transportation consisting
of local transportation, taxi sharing, and public transit,
promising economical and ecological benefits compared
to current transportation systems.

Our starting point is the dynamic taxi sharing
dispatcher by Buchhold et al. [11]. It uses one-to-
many routing based on bucket contraction hierarchies
(BCHs) [43, 26] to efficiently compute the best feasible
assignments of riders to vehicles. This is a crucial step for
handling large fleets in real time and computing realistic
simulations of such systems in transportation research.

We introduce the KaRRi (Karlsruhe Rapid
Ridesharing) algorithm that extends the dispatcher with
the possibility of performing the pickup and dropoff of a
rider not at fixed locations but at meeting points which
can be any location close to the rider’s origin and desti-
nation. The algorithm computes optimal assignments of
riders to vehicles including locations for the pickup and
dropoff. We adapt the dispatcher’s objective function to
this new scenario by incorporating rider trip times and
overheads for local travel to and from meeting points.

Finding not only the best vehicle for a request but
an optimal combination of a vehicle, a pickup location,
and a dropoff location leads to a much larger number of
possible assignments. To determine the best assignment,
we need to solve a number of many-to-many routing
problems between vehicle locations and all possible
meeting points. We use BCH queries to address this
issue and propose novel speedup techniques both for
general purpose bucket based queries and for the specific
case of localized sources or targets. We find that these
techniques are also applicable for faster routing in a
scenario without meeting points.

Our experimental evaluation uses realistic data sets
to evaluate the efficiency of these measures. In a scenario
without meeting points, our implementation is several
times faster than the state-of-the-art dispatcher [11]. For
multiple meeting points, our routing techniques are up to

Copyright © 2024
Copyright for this paper is retained by authors74

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

three orders of magnitude faster than a näıve extension
of previous techniques. We also give first indications
that meeting points can reduce the operating costs of
a taxi fleet by up to 15% without increasing rider wait
times or trip times. A closer investigation of possible
effects on the transport system is left to future work
likely in cooperation with application experts.

1.1 Related Work. Taxi sharing and related prob-
lems are well studied in transportation research. We
summarize existing solution approaches and research
into the effect of meeting points on such systems.

Taxi Sharing. Taxi sharing (also called ride pool-
ing) is the problem of dispatching rider requests asking
to go from an origin to a destination location to a fleet
of taxi-like vehicles while adhering to rider constraints
like a latest possible arrival time. The goal is to find as-
signments of riders to vehicles that optimize an objective
function such as the total vehicle operation time.

Taxi sharing can be seen as a special case of the
well studied Dial-a-Ride problem (DARP) [13, 32]. Most
research on taxi sharing deals with the static variant
of the problem where all rider requests are known in
advance, including their individual time constraints. The
static problem is known to be NP-complete [50, 61].
Small problem instances can be solved optimally using
integer programming [12, 5, 35, 13]. Other solutions
sacrifice optimality for better performance using meta-
heuristics like simulated annealing [48, 41], GRASP [60],
or the artificial bee colony algorithm [69].

We study the dynamic taxi sharing problem. Here,
the dispatcher is informed about requests as they come
in and has to assign riders to vehicles in that order
without knowing future requests. Though there is
increasing interest in dynamic ridesharing with stochastic
information about future rider demand [54, 62, 52], we
stick to the traditional agnostic view [59]. Thus, we are
concerned with local decision heuristics that try to find a
best assignment for each request, attempting to minimize
the negative impact on the global objective function or
cost of the chosen assignment. Note that the routing
techniques discussed in this paper are also applicable to
static and stochastic dispatchers as they, too, need to
compute many-to-many shortest path queries.

A lot of work on dynamic taxi sharing focuses on
enumerating assignments and assessing their feasibility
w.r.t. the riders’ time constraints [39, 53, 37]. For this,
the dispatcher needs to know the extent of the vehicle
detours made to service the new rider. Oftentimes, these
detours are simply assumed to be known [59, 39, 53,
33, 37, 38, 57, 49]. However, finding the shortest paths
that comprise the detours in the road network poses a
major time overhead and can become a bottleneck for

the performance of a taxi sharing dispatcher.
Some recent works acknowledge this overhead by first

employing filtering heuristics (e.g. based on geodesic
distances [8, 34] or spatial indices [50, 36, 51]) to find
a small set of candidate assignments s.t. shortest path
queries only have to be executed for these candidates.
These heuristic dispatchers use varying shortest path
algorithms as a black box, ranging in efficiency from
Dijkstra’s algorithm [18] to hub labeling [1].

Buchhold et al. [11] employ a more involved approach
by using the time constraints of already assigned
riders to prune bucket contraction hierarchy (BCH)
searches [43, 26], a state-of-the-art one-to-many shortest
path algorithm. This allows the shortest path algorithm
itself to act as a filter of feasible assignments, efficiently
computing both a set of candidate vehicles that is
guaranteed to contain the best assignment and the
required shortest paths. The algorithm is also equipped
to work with customizable contraction hierarchies [17]
which allow for fast readjustment of travel times in the
road network caused by changing traffic conditions.

Ride Matching. In taxi sharing, the vehicles’ only
purpose is to service riders. In contrast, the closely
related ride matching or ride sharing problem assumes
that each driver is a private entity with their own origin,
destination and time constraints [23, 3, 30].

Ride matching is largely faced with the same chal-
lenges as taxi sharing. Static solutions can be found
with integer programming [2, 64] and branch-and-bound
algorithms [9], or approximated with evolutionary algo-
rithms [30]. Approaches for the dynamic variant include
locality-constrained greedy matching algorithms [28, 58]
and the application of static solutions for buffered sets
of requests [30, 2]. As with taxi sharing, BCHs may be
suited to compute vehicle detours [25]. For overviews on
ride matching, we refer to [23] and [3].

Meeting Points in Taxi Sharing. Meeting points
allow riders to be picked up and dropped off at locations
close to their origin and destination, respectively. This
requires the rider to walk a small distance but potentially
reduces the cost of an assignment.

Taxi sharing with meeting points has started gar-
nering attention only recently. Most works that we are
aware of focus on the positive effects of meeting points
on the operation costs and service quality of dispatchers.

For this purpose, Fielbaum et al. [22] and Mounesan
et al. [56] independently extend a previous ILP formula-
tion of the static taxi sharing problem [5] with meeting
points and evaluate their impact in experiments on the
road network of Manhattan. Meeting points are found to
increase the rate of requests that can be serviced within
certain wait and trip time limits, while simultaneously
decreasing the total vehicle operation time.

75

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Lotze et al. [49] explore stop pooling, a restricted
form of meeting points, for a simple dynamic taxi sharing
model using requests distributed in a euclidian plane.
The authors find that stop pooling reduces both the
vehicle operation times and the rider trip times, breaking
a traditional trade-off between the two.

Mounesan et al. [56] focus not only on the impact
of meeting points on the quality of a dispatcher but also
consider the scalability for larger realistic inputs. The
authors develop the dynamic taxi sharing dispatcher
STaRS+ that extends STaRS [57] with meeting points.
Using a distance cache for pre-computed all-pairs short-
est path distances, STaRS+ is able to answer a request
on the road network of all five boroughs of New York
City in about 10ms with a fleet of 10000 vehicles.

All works mentioned here make significant simpli-
fications to the taxi sharing model or the dispatching
process with meeting points to maintain feasible running
times. Most importantly, shortest path distances are
generally pre-computed which hinders the scalability and
flexibility of the dispatchers. We detail how these sim-
plifications affect existing approaches, particularly our
most direct competitor STaRS+, in the full paper [46].

Meeting Points in Ride Matching. Several
publications have studied meeting points on the closely
related ride matching problem and have found a positive
impact on the quality of matches [4, 64].

Li et al. [47] show that it is NP-hard to find optimal
meeting points for a set of ride matching requests even
when considering only a single vehicle. The authors
present multiple dynamic programming based solution
algorithms for a slightly relaxed problem variant.

Goel et al. [29, 28] show that meeting points can
also be used to facilitate privacy-aware ride matching.
They choose a set of potential meeting points that cover
the road network in such a way that any rider can
communicate a small subset of meeting points close
to their origin location to the driver without allowing
them to identify the rider’s true origin location.

1.2 Paper Overview. After a more detailed problem
statement in section 2 we introduce basic notation and
techniques in section 3. Section 4 describes the KaRRi
algorithm and section 5 evaluates it experimentally.

2 Problem Statement

This section describes the formal foundations for the dy-
namic taxi sharing problem considered by our approach.

Road Network. We consider a road network to be
a directed graph G = (V,E) where edges represent road
segments and vertices represent intersections. Every
edge e = (v, w) ∈ E has a travel time ℓ(e) = ℓ(v, w). We
denote the shortest path distance (i.e. travel time) from

a vertex v to a vertex w by δ(v, w).
Vehicle, Stop. Our algorithm has access to a

fleet F of vehicles. The current route R(ν) =
⟨s0(ν), . . . , sk(ν)(ν)⟩ of a vehicle ν is a sequence of stops
scheduled for the vehicle. The vehicle’s current location
is always somewhere between its previous (or current)
stop s0(ν) and its next stop s1(ν). We update the routes
accordingly as vehicles reach stops or are assigned new
stops. Thus, k(ν) = |R(ν)| − 1 is the number of stops
that the vehicle yet has to visit. Each stop s is mapped
to a vertex loc(s) ∈ V in the graph. Given a sufficiently
clear context, we may write si instead of si(ν) and only
si instead of loc(si).

Request. In our scenario, the dispatcher receives
ride requests and immediately assigns them to vehicles.
A request r = (orig, dest, treq) has an origin location
orig ∈ V , a destination location dest ∈ V and a time
treq at which the request is issued. We do not allow
pre-booking, i.e. the request time is also the earliest
possible departure time.

Meeting Points. We assume that riders can reach
meeting points in their vicinity using local transportation
such as walking or cycling. We represent the paths
accessible to this mode of transportation in a road
network Gpsg = (Vpsg, Epsg). For any request r, any
two subsets of Vpsg ∩ V can be chosen as the sets of
potential pickup and dropoff locations for r.

We use a set of pickup locations (or pickups) Pρ(r)
that contains all eligible vertices that the rider can reach
in Gpsg from orig(r) within a time radius ρ. Analogously,
our default set of dropoff locations (or dropoffs) Dρ(r)
contains all eligible vertices from which the rider can
reach dest(r) within ρ. We collectively refer to the
pickups and dropoffs of r as the meeting points of r.
Let Np

ρ (r) = |Pρ(r)| and Nd
ρ (r) = |Dρ(r)|. We call a

pair of pickup and dropoff a PD-pair and the distance
between a pickup and a dropoff a PD-distance. If the
context allows it, we omit r in the notation of the terms
defined above. The radius ρ is a model parameter. For
the sake of simplicity, we use the same ρ for every request
but the model also permits varying ρ with each request.

Insertion. For each request r, our dispatcher finds
an insertion of a pickup and dropoff of r into any vehicle’s
route s.t. the cost of that insertion according to a cost
function is minimized. We formalize an insertion as
a tuple (r, p, d, ν, i, j) indicating that vehicle ν picks
up request r at pickup location p ∈ Pρ immediately
after stop si and drops off r at dropoff location d ∈ Dρ

immediately after stop sj with 0 ≤ i ≤ j ≤ k(ν).

2.1 Cost Function and Constraints. The cost
c(ι) of an insertion ι = (r, p, d, ν, i, j) represents the
associated vehicle operation cost and the rider service

376

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

quality in a linear combination of the form

c(ι) = tdetour(ι) + τ · (ttrip(ι) + t+trip(ι))+

ω · twalk(ι) + cviowait(ι) + cviotrip(ι).
(2.1)

Here, the added vehicle operation time tdetour(ι) de-
scribes the time that vehicle ν needs for the detour
it makes to accommodate the pickup at p and dropoff
at d in its route. The trip time ttrip(ι) denotes the time
that passes between the issuing of request r (treq(r))
and the arrival of the rider at their destination dest(r),
including waiting and walking times. The detours made
by ν may increase this trip time for existing riders of ν.
The added trip time t+trip(ι) is the sum of these increases
for all affected riders. The walking time twalk(ι) repre-
sents how long the rider needs to move from their origin
to the pickup and from the dropoff to their destination
using local transportation. We weight the importance of
rider trip times and walking times relative to the vehicle
operation time using the model parameters τ and ω.

The remaining terms cviowait(ι) and cviotrip(ι) describe
penalties for violating constraints on the service quality
of the new rider. We consider a total of four constraints
originally put forth in [11]. After the insertion, the
following must hold: First, the occupancy of ν must
never exceed a fixed capacity. Second, the vehicle must
still reach its last stop before a fixed end of its service
time. Third, every rider already assigned to ν must still
be picked up at their pickup stop within a maximum
wait time tmax

wait. Fourth, every rider r̂ already assigned to
ν must still arrive at their destination within a maximum
trip time tmax

trip (r̂) = α · δ(orig(r̂), dest(r̂)) + β where
δ(orig(r̂), dest(r̂)) is the direct vehicle travel time from
the origin to the destination of r̂. The values tmax

wait, α
and β are model parameters.

All four constraints are hard constraints w.r.t.
requests already assigned to ν. If ι breaks a hard
constraint, we set the cost to ∞. For the request r
to be inserted, we treat the wait time and trip time
constraints as soft constraints, i.e. violating them leads
to the cost penalties cviowait(ι) and cviotrip(ι). Assume, the
rider is picked up at p at time tdep. We define

cviowait(ι) = γwait ·max{tdep − treq(r)− tmax
wait, 0},

cviotrip(ι) = γtrip ·max{ttrip(ι)− tmax
trip (r), 0}

with model parameters γwait and γtrip that scale the
severity of the penalties.

For formal definitions of the terms used in our cost
function, we refer to the full paper [46].

3 Preliminaries

In this section, we describe several shortest path algo-
rithms used in this work. Furthermore, we summarize

the dynamic taxi sharing dispatcher introduced by Buch-
hold et al. [11] that serves as the basis of our work.

3.1 Shortest Path Algorithms. In the following,
we explain a number of algorithms that compute different
variants of shortest path queries on road networks.

Dijkstra’s Shortest Path Algorithm. Dijkstra’s
shortest path algorithm [18] computes the shortest path
from a source s ∈ V to all other vertices in a weighted
graph G = (V,E, ℓ).

The algorithm stores a distance label δ̃(s, v) for
every v ∈ V . An addressable priority queue Q with
key(v) = δ̃(s, v) contains active vertices. Initially,
Q := {s}, δ̃(s, s) := 0 and δ̃(s, v) := ∞ for v ≠ s.
The algorithm repeatedly extracts the vertex with the
smallest distance label from Q and settles it. To settle
u ∈ V , each outgoing edge (u, v) ∈ E is relaxed by trying
to improve the distance label δ̃(s, v) with δ̃(s, u) + ℓ(e).
If the distance is improved, v is inserted into Q. The
algorithm stops when Q becomes empty.

Contraction Hierarchies. Contraction Hierar-
chies (CHs) [26] speed-up shortest path computations
by exploiting the hierarchical nature of road networks.
A CH is constructed in a pre-processing phase. Then,
shortest path queries can be computed on the CH using
restricted Dijkstra searches.

To construct a CH, all vertices in a road network
G = (V,E) are ordered heuristically by their importance
or rank [26]. Vertices are contracted in the order of
increasing rank. The contraction of v ∈ V temporarily
removes v from the graph. To preserve shortest paths,
a shortcut edge (u,w) is created if (u, v, w) ∈ E2 is the
only shortest path between u and w.

Let E+ contain all original edges E as well as
all shortcut edges. The graph G+ = (V,E+) con-
stitutes the CH. The length ℓ+(e) of a shortcut
edge e is the sum of the lengths of replaced orig-
inal edges while δ+ is the according distance func-
tion. For the query phase, we partition E+ into
up-edges E↑ = {(u, v) ∈ E+ | rank(u) < rank(v)} and
down-edges E↓ = {(u, v) ∈ E+ | rank(u) > rank(v)}.
We define an upwards search graph G↑ := (V,E↑) and a
downwards search graph G↓ := (V,E↓). The distances
δ↑ and δ↓ represent δ+ constrained to G↑ and G↓.

For any two vertices s, t ∈ V , it can be shown that
there is a shortest path from s to t that is an up-down
path in the CH, i.e. consists of only up-edges followed
by only down-edges [26]. A CH query from a source
s ∈ V to a target t ∈ V runs a forward Dijkstra search
from s in G↑ and a reverse Dijkstra search from t in G↓.
Whenever the searches meet, they find an up-down-path
from s to t, eventually finding a shortest path. The
query can stop once the radius of either Dijkstra search

77

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

s1

s2

u

v

t

1

6
5

4
2

1
ra
n
k ra

n
k

E↑ E↓

Figure 1: Example CH. Edges are annotated with
weights. Vertical order of vertices indicates rank.
Upward edges are blue and downward edges are red.

exceeds the best previously found distance from s to t.
Bucket Contraction Hierarchy Searches.

Bucket Contraction Hierarchy (BCH) searches [43, 26]
find all shortest path distances from a set of sources
S ⊆ V to a target t ∈ V in a road network G = (V,E).
A CH G+ of G is used as the basis of the algorithm.

The idea is to construct a (source) bucket B↑(v)
at each vertex v ∈ V . Conceptually, B↑(v) is a list of
entries, each one of which stores the upwards distance
from one of the sources to v. For each source s ∈ S, a
forward search inG↑ is run that adds an entry (s, δ↑(s, v))
to B↑(v) for every settled v ∈ V . Then, a reverse
search from t in G↓ can compute tentative shortest path
distances as δ↑(s, v) + δ↓(v, t) for every bucket entry
(s, δ↑(s, v)) ∈ B↑(v) at every settled vertex v.

Consider the example CH depicted in fig. 1. A
BCH for S = {s1, s2} would have the buckets B↑(u) =
⟨(s1, 5), (s2, 9)⟩ and B↑(v) = ⟨(s1, 6), (s2, 1))⟩. A reverse
search from t traverses G↓ and finds shortest up-down
paths between s1, s2 and t by scanning B↑(u) and B↑(v).

BCH searches can analogously compute the distances
from a single source to a set of targets. In that case, we
speak of target buckets B↓(v) for every v ∈ V .

The advantage of BCH searches over point-to-point
CH queries is that the search space of each source and
each target is only traversed once, either to generate
bucket entries or to scan bucket entries. However, BCH
searches require more memory to store the bucket entries.

Bundled Searches. Dijkstra-based shortest path
algorithms for multiple sources can be bundled s.t. the
searches for k sources are advanced simultaneously. A
bundled search maintains k tentative distance labels at
each vertex. When the search relaxes an edge (u, v) ∈ E,
it tries to update all k distance labels at v.

A bundled relaxation can be more cache efficient
than k individual relaxations as all k distances are stored
in consecutive memory. However, the relaxation of
(u, v) ∈ E may perform unproductive work if not all k
searches have reached u yet. Thus, bundling is effective
if all k searches relax largely the same edges. The value
of k is a tuning parameter.

Bundled searches were first introduced for Dijkstra
searches used for the computation of arc-flags under
the name centralized searches [31]. Since then, bundled
searches have been used in a number of Dijkstra-based
shortest path algorithms [7, 67, 14, 15, 16], including
point-to-point queries in CHs [10].

SIMD Parallelism in Bundled Searches. Bun-
dled searches can be sped up substantially using single-
instruction multiple-data (SIMD) parallelism [10]. Mod-
ern CPUs provide special vector registers and instruc-
tions that can store and manipulate multiple data items
at once. We can vectorize the computations needed dur-
ing edge relaxations s.t. k computations are performed
at the same time using a single vector instruction.

3.2 LOUD. Our algorithm is based on the dynamic
taxi sharing dispatching algorithm LOUD [11].

Given a fleet of vehicles and routes, the online
algorithm matches incoming taxi sharing requests to
vehicles. For each request, a feasible insertion of the
request’s origin o and destination d into a vehicle’s route
is found s.t. the detour of the vehicle is minimized.

Elliptic Pruning. To compute the costs of possible
insertions, the algorithm requires the distances between
existing vehicle stops and o and d. LOUD computes
these distances using BCHs with bucket entries for each
vehicle stop and queries run from o and d.

We refer to these BCH searches as elliptic BCH
searches since they utilize a pruning technique for
these buckets called elliptic pruning : Each insertion
is subject to the same soft and hard constraints that
we describe in section 2.1. The wait time and trip
time hard constraints of riders already assigned to
a vehicle ν ∈ F define a leeway λ(si, si+1), i.e. a
maximum permissible detour, between each pair of
consecutive stops (si, si+1) ∈ R(ν). Any detour that
exceeds λ(si, si+1) breaks some hard constraint and is
infeasible. The leeway λ(si, si+1) defines a detour ellipse
that contains all vertices at which a pickup or dropoff
may be made between si and si+1 without breaking a
hard constraint. Thus, bucket entries for si and si+1

only need to be generated at vertices within the ellipse.
Elliptic pruning vastly reduces the number of bucket
entries that need to be scanned by the BCH searches and
limits the number of candidate vehicles for insertions [11].

Last Stop Distances. LOUD also allows the
insertion of the origin and/or destination after the last
stop of a vehicle’s route. Here, elliptic pruning is not
applicable since the leeway of any vehicle is unbounded
after its last stop. Instead, LOUD uses reverse Dijkstra
queries in the road network rooted at o or d to find
the distances from last stops to o or d. These Dijkstra
queries, particularly for the destination of a request,

578

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

constitute a significant part (at least 60% and up to
more than 90%) of the total running time of LOUD.

4 The Algorithm

We introduce the KaRRi algorithm that efficiently
answers taxi sharing requests with multiple meeting
points using fast many-to-many routing.

4.1 Algorithm Outline. The KaRRi algorithm dy-
namically accepts requests and finds an insertion for
each request that has optimal cost according to the cost
function and current system state.

For a request r, the algorithm first finds the possible
meeting points in a walking radius ρ around the origin
and destination using bounded Dijkstra searches. Then,
the algorithm evaluates all insertions in the order of types
illustrated in fig. 2. For each insertion, KaRRi computes
the cost according to the cost function (see section 2.1).
The insertion with the smallest cost ι∗ is repeatedly
updated and eventually returned.

Since we consider sets of possible meeting points,
the number of potential insertions becomes the main
challenge of the algorithm. In particular, we face the
issue of computing the shortest paths between existing
vehicle stops and every meeting point to filter out
infeasible insertions and to determine the cost of the
remaining candidate insertions. In the following, we
describe the bundling and filtering methods that we
employ to limit the running time of the required many-
to-many shortest path queries.

4.2 Many-to-Many Routing Techniques. We il-
lustrate our contributions for pickup after last stop
(PALS) searches, i.e. the problem of finding the dis-
tances between last stops and pickups. This particular
many-to-many shortest path problem serves as a good
overview since all of our techniques can be applied. We
explain how we can apply the techniques for the remain-
ing shortest path computations in the next section. For
the rest of this section, let ĉ denote an upper bound on
the cost of the best insertion of r. For example, this can
be the cost c(ι∗) of the best insertion ι∗ seen so far.

Bundled Searches with Localized Sources.
Buchhold et al. [11] find the distances from last stops
to pickups using a reverse Dijkstra search rooted at the
request’s origin. The search is stopped when the smallest
distance to any active vertex along with a lower bound on
the PD-distance no longer admit a PALS insertion with
smaller cost than ĉ. We can extend this technique to
multiple pickups by analogously running reverse Dijkstra
searches for each pickup.

We find that bundled searches (see section 3.1) work
particularly well here. Since the pickups are localized,

every individual search has highly similar search trees.
This is further reinforced due to the hierarchical nature
of road networks. Thus, each individual search performs
largely the same edge relaxations which allows effective
bundling of these relaxations. Additionally, bundled
searches can parallelize edge relaxations with SIMD
instructions. These advantages of bundled searches are
not limited to Dijkstra searches for PALS distances but
hold true for any shortest path queries that need to be
repeated for every meeting point.

BCH Searches with Sorted Buckets. Since
Dijkstra’s algorithm is inefficient for road networks, we
introduce an approach for the computation of PALS
distances with bucket contraction hierarchies (BCHs).

For this, we maintain a bucket B↑(v) for every
v ∈ V . For every last stop sk(ν), we generate an

entry (sk(ν), δ
↑(sk(ν), v)) ∈ B↑(v) at each vertex v in

the upward CH search space rooted at sk(ν). Then, for
every pickup p ∈ Pρ, we run an individual (last stop)
BCH query in the reverse CH search space rooted at p
that scans the bucket at each settled vertex to compute
the shortest path distances from last stops to p. When
the search scans an entry (sk(ν), δ

↑(sk(ν), v)) ∈ B↑(v), it

tries to improve the tentative distance δ̃(sk(ν), p) with

δ↑(sk(ν), v) + δ↓(v, p). Eventually, the shortest distance
δ(sk(ν), p) is found for every last stop sk(ν). Both edge
relaxations and bucket scans can be bundled to run k
searches simultaneously. Similarly to Dijkstra searches,
we apply a cost-based stopping criterion: As soon as the
smallest distance to any active vertex along with a lower
bound on the PD-distance no longer admit an insertion
with smaller cost than ĉ, the search is stopped.

A yet unmentioned issue of this approach is the
fact that elliptic pruning is not applicable since there
are no time constraints of existing riders after the last
stop that would define a detour leeway (cf. section 3.2).
Thus, the number of entries per bucket may grow very
large, especially at vertices that have a high rank in the
CH. In effect, a lot of time may be spent on scanning
bucket entries and every vehicle has to be considered
when enumerating PALS insertions after the queries.

To address this issue, the future work section of [11]
suggests sorting the entries within each last stop bucket
to be able to stop each bucket scan early. For each
v ∈ V , we sort the entries in B↑(v) by their distance
δ↑(sk(ν), v) in increasing order. Suppose a pickup query

rooted at p ∈ Pρ scans the bucket B↑(v). For each
entry e = (sk(ν), δ

↑(sk(ν), v)) ∈ B↑(v), we can compute
a vehicle-independent lower bound cmin(e) on the cost of
any PALS insertion ι where the vehicle drives a distance
of at least δ↑(sk(ν), v) + δ↓(v, p) to p. Since cmin(e) then

increases monotonously with δ↑(sk(ν), v), we can stop

79

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Ordinary 0 < i < j < k(ν)
si si+1 sj sj+1

p d

Ordinary
Paired (OP)

0 < i = j < k(ν)
si si+1

p d

Pickup Before
Next Stop (PBNS)

0 = i ≤ j < k(ν)
s0 s1 sj sj+1

p d

Pickup After
Last Stop (PALS)

0 ≤ i = j = k(ν)
sk(ν)

p d

Dropoff After
Last Stop (DALS)

0 < i < j = k(ν)
si si+1 sk(ν)

p d

Figure 2: Insertion types. Shows characterization of each type based on the pickup and dropoff insertion points
i and j of an insertion ι = (r, p, d, ν, i, j). Illustrations depict the current route of ν (solid arrows) with stops
s ∈ R(ν) as well as the detours to and from p and d (dashed lines).

scanning the sorted bucket as soon as we read an entry
with cmin(e) > ĉ.

Sorted buckets can reduce the number of entries
scanned for any BCH searches where an upper bound
on the required distance is known.

Collective Last Stop Searches. Note that we do
not actually need to know the distance between every
last stop and every pickup. If we knew the best PALS
insertion ι∗pals = (r, p, d, ν, k(ν), k(ν)) already, we would
only need to find δ(sk(ν), p). We propose a collective
BCH search that directly finds ι∗pals by propagating labels
that represent PD-pairs through the search graph and
pruning labels by comparing them to one another.

A label (p, d, δ↓(v, p)) at a vertex v ∈ V consists
of the pickup p ∈ Pρ, dropoff d ∈ Dρ and downwards
distance δ↓(v, p). For each label l, we store a lower bound
cmin(l) for the cost of any PALS insertion that can be
found for l in the search sub-tree rooted at v.

Our search maintains a priority queue Q that
contains all active labels ordered increasingly by cmin.
Initially, at each pickup p ∈ Pρ, an open label (p, d, 0)
is created for each d ∈ Dρ. As long as Q contains a
label l with cmin(l) < ĉ, our search proceeds with a next
step. In each step of the search, the label l := min(Q) is
removed from Q and settled.

Settling a label l = (p, d, δ↓(v, p)) consists of two
steps: First, we search for a new best insertion by
traversing all entries in the last stop bucket B↑(v) for l.
For each entry e = (sk(ν), δ

↑(sk(ν), v)) ∈ B↑(v), we get a

tentative distance δ̃(sk(ν), p) = δ↑(sk(ν), v) + δ↓(v, p).
With this tentative distance, we compute an upper
bound cmax(l, e) on c(ι) for ι = (r, p, d, ν, k(ν), k(ν)). If

cmax(l, e) < ĉ, we mark ι as the best seen PALS insertion
and update ĉ := cmax(l, e). As we have full information
except for the last stop distance, we can ensure that
cmax(l, e) = c(ι) if the tentative distance is exact. Thus,
we eventually find the best PALS insertion since our BCH
search finds shortest up-down-paths. We still use sorted
buckets so bucket scans may be stopped early. Second,
we propagate l to each neighboring vertex w of v where
we create a new open label l′ = (p, d, ℓ+(w, v)+ δ↓(v, p)).
We discard l′ if cmin(l

′) > ĉ.
The central idea of collective searches is that we can

additionally prune l′ if it is dominated by any of the
open or already settled labels at w. Intuitively, a label
l dominates a label l′ at a vertex v if any vehicle that
drives via v for a PALS insertion should perform the
pickup and dropoff at p and d instead of p′ and d′ to
minimize the cost of the insertion.

To formalize this, we define an upper bound for
the cost of a PALS insertion that can be found for
l = (p, d, δ↓(v, p)) in the search sub-tree rooted at
v. Let G↓

v = (V ↓
v , E

↓
v) denote the sub-graph of G↓

consisting of all paths to v. Consider a vertex w ∈
V ↓
v and an entry e = (sk(ν), δ

↑(sk(ν), w)) ∈ B↑(w).
Let cmax(l, v, e) := c((r, p, d, ν, k(ν), k(ν))) under the

assumption δ(sk(ν), p)
!
= δ↑(sk(ν), w)+δ↓(w, v)+δ↓(v, p).

Definition 4.1. A label l dominates another label l′ at
a vertex v ∈ V exactly if cmax(l, v, e) < cmax(l

′, v, e) for
every w ∈ V ↓

v and e ∈ B↑(w).

Theorem 4.1. If a label l dominates another label l′ at
v, we do not need to settle l′ at v.

Proof. Omitted for brevity. See full paper [46].

780

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Table 1: Key figures of our benchmark instances.

Instance |V | |E| #veh. #req.

B-1% 94422 193212 1000 16569

B-10% 94422 193212 10000 149185

Since cmax(l, v, e) increases (almost) linearly with
δ↑(sk(ν), w) + δ↓(w, v), we can (almost) test whether l
dominates l′ at v in constant time without having to
look at any bucket entries in G↓

v. The cost function
is not linear, though, due to the rider walking time
and the potential penalties for violating soft constraints.
However, we can still compute a very good under-
approximation of the domination relation in constant
time. For details on this approximation as well as a
minor limitation of collective searches w.r.t. the service
time constraint, we refer to the full paper [46].

4.3 Applying Routing Techniques to Other
Insertion Types. We briefly explain how bundled
searches, sorted buckets, and collective BCH searches
can be applied for shortest path queries needed for the
other insertion types (see fig. 2). More details on these
approaches can be found in the full paper [46].

Elliptic pruning enables BCH searches to efficiently
compute the shortest paths to and from stops that are
not last stops (see section 3.2). We can further reduce the
number of scanned bucket entries by sorting each source
bucket by the remaining leeway λ(si, si+1)− δ↑(si, v) of
each entry (si, δ

↑(si, v)) (analogous for target buckets),
allowing us to stop each bucket scan early. Additionally,
we can bundle elliptic BCH searches.

For paired insertions, we compute the distance
between every pickup and dropoff using BCH searches.
We generate bucket entries for dropoffs and scan the
entries in queries rooted at the pickups. We can bundle
the searches for generating and scanning entries.

For a pickup before next stop (PBNS) insertion, we
need to know the distance from the vehicle’s current
location to the pickup. We filter out the vast majority
of PBNS insertions based on a cost lower bound as
introduced by Buchhold et al. [11]. Then, we use bundled
BCHs to find these distances for the remaining insertions.

For dropoff after last stop (DALS) insertions, we
need to compute the distances from every last stop to
every dropoff. Similar to the PALS case, we can use
bundled Dijkstra or BCH searches, or a collective BCH
search with domination pruning.

5 Experimental Evaluation

Our source code1 is written in C++17 and compiled
with GCC 9.4 using -O3. We run our experiments
on a machine with Ubuntu 20.04, 512 GiB of memory
and two 16-core Intel Xeon E5-2683 v4 processors at
2.1GHz. We use 32-bit distance labels and the AVX2
SIMD instruction set with 256-bit registers to compute
up to 8 operations in one vector instruction.

We evaluate KaRRi on the Berlin-1pct (B-1%)
and Berlin-10pct (B-10%) request sets [11] that repre-
sent 1% and 10% of taxi sharing demand in the Berlin
metropolitan area on a weekday. The request sets were
artificially generated based on the Open Berlin Sce-
nario [71] for the MATSim transport simulation [34]2.
The underlying road networks are obtained from Open-
StreetMap data3 and CHs are computed using the open-
source library RoutingKit4. The sizes of the instances
are shown in table 1. We consider walking as a mode of
local transportation for riders. We scale the number of
pickups Np

ρ and dropoffs Nd
ρ by using increasing walking

radii ρ ∈ {0s, 150s, 300s, 450s, 600s} which lead to rough
averages of Np

ρ ≈ Nd
ρ ∈ {1, 12, 44, 100, 180} for our in-

stances. We run five iterations of every experiment, and
report average running times.

For our cost function (see eq. (2.1)), we adopt a
basic “time is money” approach. We use τ = 1 to weight
the time of a driver and a rider equally. By setting ω = 0
we do not penalize walking over driving. This choice
maximizes the effect of meeting points on vehicle detours.
In accordance with the MATSim transport simulation,
we choose α = 1.7 and β = 2min which means that
each trip may take up to a maximum trip time of
1.7δ(orig, dest) + 2min. For the remaining parameters,
we choose tmax

wait = 600s, γwait = 1, and γtrip = 10.

5.1 Effectiveness of Many-to-Many Routing
Techniques. We evaluate the effectiveness of the pro-
posed routing techniques for the last stop searches used
for the PALS and DALS insertion types. We show the re-
sults for elliptic BCH searches and PD-distance searches
in the full paper [46].

Bundled Searches. We experimentally evaluate
the impact of bundling Dijkstra and individual BCH
searches on the Berlin-1pct and Berlin-10pct in-
stances with ρ ∈ {150s, 300s, 450s, 600s}. We depict the
speedups observed for bundled searches for the PALS
and DALS cases in fig. 3. In preliminary experiments,

1Available at https://github.com/molaupi/karri.
2MATSim generates realistic demand data but considering more

than 10% of taxi sharing demand would take processing times in

the order of multiple months. For details, see [11].
3https://download.geofabrik.de/, accessed Oct 30th 2023.
4https://github.com/RoutingKit, accessed Oct 30th 2023.

81

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://github.com/molaupi/karri
https://download.geofabrik.de/
https://github.com/RoutingKit

0

5

10

15

20

0 50 100 150

Np
ρ , N

d
ρ

sp
ee
d
u
p
(D

ij
k
st
ra
)

0

1

2

3

4

5

0 50 100 150

Np
ρ , N

d
ρ

sp
ee
d
u
p
(i
n
d
.
B
C
H
) Config.

PALS bundled

PALS SIMD

DALS bundled

DALS SIMD

Instance

B-1%

B-10%

Figure 3: Mean speedups for bundling without SIMD instructions (bundled) and with SIMD instructions (SIMD)
over non-bundled searches for Dijkstra searches (left) and individual BCH searches (right). Considers the PALS
and DALS cases on the B-1% and B-10% instances with ρ ∈ {150s, 300s, 450s, 600s}. Note the different y-axes.

we found k = 64 to be best suited for Dijkstra searches.
For individual BCH searches, k = 8, k = 16, or k = 32
may be optimal, depending on the input instance and
whether SIMD instructions are used. For details, we
refer to the full paper [46].

We find that Dijkstra searches are well suited for
bundling. Since Dijkstra searches do not use shortcut
edges, the searches for each individual source meet much
earlier than BCH searches. Thus, the vast majority of
the large number of edge relaxations of Dijkstra searches
can be bundled well. This is evidenced by the fact that
bundled Dijkstra searches experience good speedups of
up to 3.09 in the PALS case and 5.96 in the DALS
case even without SIMD instructions. Using SIMD
instructions, we can improve these speedups to up to
7.60 and 19.71. Even larger values of k > 64 may be
useful for larger numbers of sources but eventually we
will run into cache limitations as hundreds of bytes of
distance labels need to be handled per vertex.

Contrarily, individual last stop BCH searches cannot
be bundled as well due to two opposing properties:
Firstly, most work is performed close to the sources.
With sorted buckets, more bucket entries are scanned
at vertices closer to the sources. Additionally, the cost
based stopping criterion of last stop BCH searches limits
the search radius. Secondly, due to the usage of shortcut
edges, the search trees of individual searches only
overlap at larger distances from the sources. Thus, edge
relaxations and bucket entry scans cannot be bundled
well in the proximity of the sources. In effect, most work
performed by individual last stop BCH searches is not
well suited for bundling.

In the PALS case, we see speedups of only up to
2.04 with SIMD instructions. In fact, bundled searches
without vector instructions are slower than non-bundled

searches in the PALS case. Speedups are better in
the DALS case as the searches explore a larger search
radius due to the fact that the cost based stopping
criterion cannot take any information about the pickup
into account. In the DALS case, bundling with SIMD
instructions achieves speedups of up to 3.90.

Sorted Buckets. In the following, we analyze the
effect of sorted buckets on individual and collective
last stop BCH searches. We experimentally evaluate
both searches with sorted and unsorted buckets on
the Berlin-1pct and Berlin-10pct instances with
ρ ∈ {0s, 150s, 300s, 450s, 600s} and k = 1. The speedups
achieved with sorted buckets are shown in fig. 4.

For last stop BCH searches, sorted buckets are vital
to reduce the number of bucket entries scanned since
we cannot use elliptic pruning. For individual BCH
searches, more than 97% and 89% fewer bucket entries
are scanned with sorted buckets in the PALS and DALS
cases, respectively. This reduces search times by factors
of up to 9.09 and 7.14.

For collective searches, the number of bucket entries
scanned decreases by similar rates of 97% and 87%.
However, the resulting speedups are less pronounced,
particularly for larger numbers of meeting points in the
PALS case. We attribute this to the fact that collective
searches spend comparatively more time on pruning
the searches. This means that the searches need to
spend less time scanning bucket entries, which limits
the impact of sorted buckets. Notably, collective PALS
searches generate initial labels for every PD-pair but
prune almost all of them immediately. As the number
of PD-pairs is proportional to ρ4, this initialization can
constitute up to 85% of the search time for larger values
of ρ but sorted buckets have no effect on it.

Consequently, we observe speedups of only 1.96

982

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

0.0

2.5

5.0

7.5

10.0

0 50 100 150

Np
ρ , N

d
ρ

sp
ee
d
u
p
(i
n
d
.
B
C
H
)

0.0

2.0

4.0

6.0

0 50 100 150

Np
ρ , N

d
ρ

sp
ee
d
u
p
(c
ol
.
B
C
H
)

Config.

PALS sorted

DALS sorted

Instance

B-1%

B-10%

Figure 4: Mean speedups for individual (left, k = 1) and collective (right) BCH queries with sorted
buckets over unsorted buckets. Considers the PALS and DALS cases on the B-1% and B-10% instances for
ρ ∈ {0s, 150s, 300s, 450s, 600s}. Note the different y-axes.

(PALS) and 3.22 (DALS) for ρ = 600s on Berlin-10pct.
If we disregard the overhead for initial labels, these
speedups increase to 7.51 and 3.63.

Maintaining sorted last stop buckets incurs an aver-
age overhead per request of about 10µs for Berlin-1pct
and about 35µs for Berlin-10pct while the reduction
in search time is one to three orders of magnitude larger.

Collective BCH Searches. In table 2, we compare
the search times and the times needed to enumerate
candidate insertions for the three last stop search
approaches. Additionally, we show the number of relaxed
edges and scanned bucket entries. We report the results
for ρ ∈ {0s, 300s, 600s} on the B-1% and B-10% instances.
We use the optimal configuration for each combination
of search type, insertion type, and radius.

At ρ = 0s, collective searches are slower than indi-
vidual BCH searches as there is only a single pickup and
dropoff so the overhead for explicitly maintaining labels
instead of a single distance per vertex is unwarranted.
At ρ = 300s and ρ = 600s, collective searches offer the
best search times, though. In the PALS case, collective
searches are up to 4 times faster than individual BCH
searches. In the DALS case, this relative speedup is even
larger at up to 14. We attribute the better scalability of
collective searches to two main advantages:

Firstly, collective searches use more precise lower
bounds on the cost of specific PD-pairs or dropoffs
instead of a general lower bound that applies for every
PD-pair or dropoff. Thus, both bucket scans and the
search as a whole can be stopped earlier.

Secondly, collective searches consider all sources
in one search, maximizing the amount of information
available for domination pruning. Contrarily, bundled
searches only consider k sources at once, so work may
be repeated up to Np

ρ /k times. Thus, the number of

edge relaxations and bucket entry scans increases faster
with the number of pickups (Np

ρ , N
d
ρ ∼ ρ2) for individual

BCH searches than for collective BCH searches.
In addition, the enumeration times remain small for

collective searches while they increase massively with ρ
for individual BCH searches. This is due to the fact that
collective searches identify a single candidate insertion
in the PALS case or a small set of candidate vehicles
and dropoffs in the DALS case. Contrarily, individual
BCH searches first find all distances and then enumerate
an insertion for each combination of candidate vehicle,
pickup and dropoff. As the number of PD-pairs is
proportional to ρ4, enumeration times of individual BCH
searches quickly become very large with tens to hundreds
of thousands of insertions tried.

For a similar reason, collective searches scale worse in
the PALS case than in the DALS case. In the PALS and
DALS cases, one initial label is generated for every PD-
pair and every dropoff, respectively. Thus, the number
of initial labels increases much stronger with growing ρ
in the PALS case. As stated before, with large ρ, the
majority of the running time of collective PALS searches
is spent on generating and pruning initial labels.

5.2 Comparison with Baseline Dispatcher. In
this section, we compare KaRRi with the baseline
dispatcher by Buchhold et al. [11].

Running Times. We give the running times for
the different phases of both our algorithm (K) and the
baseline (B) on B-1% and B-10% in table 3.

First, we consider the scenario without meeting
points (ρ = 0s) and compare KaRRi with the baseline
dispatcher. Here, sorted buckets have no positive impact
on the search times of elliptic BCH searches even though
the number of bucket entries scanned is reduced. We

83

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Table 2: Comparison of the PALS and DALS running times (in µs) of collective BCH searches (Coll.), individual
BCH searches (BCH), and Dijkstra searches (Dij.) in their optimal configurations for three radii ρ ∈ {0s, 300s, 600s}
on the B-1% and B-10% instances. Shows average number of edge relaxations (#rel.), number of bucket entries
scanned (#scans), search time (tsearch) and time for enumerating insertions (tenum) per request. Bold numbers
indicate smallest times per radius.

Berlin-1pct Berlin-10pct

Type ρ Search #rel. #scans tsearch tenum #rel. #scans tsearch tenum

PALS

0
Coll. 40 8 4.96 0.04 19 11 3.89 0.06
BCH 37 8 3.63 0.37 18 10 3.11 0.56
Dij. 577 2 43.44 0.36 225 4 18.75 0.52

300
Coll. 412 57 70.16 0.08 168 58 41.95 1.49
BCH 967 274 73.95 44.12 797 1011 103.36 155.86
Dij. 4302 17 497.94 40.4 3533 99 433.66 138.16

600
Coll. 806 108 286.11 0.09 219 82 213.9 23.90
BCH 5555 2514 424.65 812.64 4734 12214 823.72 3475.00
Dij. 41092 137 4481.08 812.24 38102 960 4412.38 3098.09

DALS

0
Coll. 210 676 36.56 0.76 191 5066 95.37 2.74
BCH 216 721 23.78 0.72 197 5419 87.14 2.96
Dij. 19063 − 1665.24 15.60 14920 − 1344.48 58.98

300
Coll. 253 662 58.04 5.20 235 5049 117.04 20.97
BCH 2015 4116 182.81 145.01 1961 32487 623.84 596.46
Dij. 26567 − 3561.61 232.62 22228 − 3014.30 984.84

600
Coll. 296 656 93.11 13.84 277 5091 157.07 53.61
BCH 8042 14602 685.23 1227.00 7683 115912 2214.15 4261.21
Dij. 98143 − 12453.92 3063.71 88021 − 11307.36 12665.75

attribute this to the fact that our implementation is
meant to deal with any number of meeting points while
the baseline is specialized for the case of Np

ρ = Nd
ρ = 1.

Our last stop BCH searches are well suited for ρ = 0s,
though. They are up to 14 and 70 times faster than
the baseline Dijkstra searches in the PALS and DALS
cases. Note that maintaining sorted buckets does lead to
increased update times, though. In total, we can reduce
the average time per request by factors of almost 5 and
2 for B-1% and B-10% compared to the baseline. In the
full paper [46], we show that KaRRi compares even more
favorably on other instances that are three times larger.

Unfortunately, the source code of KaRRi’s closest
existing competitor STaRS+ [56] is currently not pub-
licly available, making an experimental comparison of
both approaches difficult. Instead, we validate the effec-
tiveness of our approach by comparing it with a näıve
extension of the techniques used by our baseline algo-
rithm. For this, we configured KaRRi to use no bundled
searches or sorted buckets, to use Dijkstra searches for
the PALS and DALS cases, and to use point-to-point CH
queries to compute PD-distances. We report the running

times of this extension for ρ = 300s and ρ = 600s on the
B-10% instance and compare them to KaRRi.

We find that bundling the elliptic BCH searches
and using sorted buckets make them about one order of
magnitude faster than the näıve extension. PD-distances
can be computed around two orders of magnitude faster
with our bucket based approach than with individual
CH queries. Our collective searches for the PALS and
DALS cases beat the näıve approach by two and three
orders of magnitude, respectively.

We also equipped KaRRi with the possibility to
use customizable CHs (CCHs) [17] with elimination tree
searches that are well suited for bundling [10]. This
allows us to adapt our CH to changed travel times in
the road network in less than 100ms at the cost of an
increase in KaRRi’s running time of less than 1ms per
request on average. Thus, KaRRi with CCHs combines
fast dispatching with the ability to react to changing
traffic conditions in real time. For a full evaluation of
KaRRi with CCHs, we refer to the full paper [46].

Solution Quality. In the following, we summarize
how meeting points affect the quality of assignments.

1184

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Table 3: Running times (in µs) of the baseline (B), näıvely extended baseline (B∗), and KaRRi (K) with
ρ ∈ {0s, 300s, 600s} on B-1% and B-10%. Shows mean times for finding Pρ and Dρ, PD-distance searches, elliptic
BCH searches, enumerating ordinary and PBNS insertions, PALS and DALS searches, and updating routes and
buckets as well as the mean total time per request.

Inst. ρ Alg.
find

Pρ, Dρ
PD

Ell.
BCH

Ord.&
PBNS

PALS DALS update total

B-1%

0
B 0 21 113 68 55 1682 97 2036
K 2 74 115 41 4 24 151 413

300 K 173 300 617 151 72 63 154 1530

600 K 617 1536 2536 881 298 107 155 6129

B-10%

0
B 0 19 328 247 27 1361 94 2076
K 3 73 351 346 4 88 245 1111

300
B∗ 194 30600 20196 905 2275 54270 119 108559
K 195 308 1770 783 51 138 246 3490

600
B∗ 716 513788 77813 3313 28901 220555 118 845204
K 708 1662 6891 3227 312 211 249 13260

Table 4: Solution quality of KaRRi with different radii
(ρ ∈ {0s, 300s, 600s}) on B-1% and B-10%. For riders, we
report the average wait and trip times (in mm:ss). For
vehicles, we give the average occupancy while driving
and average total operation time (in hh:mm).

Inst. ρ wait trip occ op

B-1%

0 3:44 16:53 0.88 4:28
300 3:15 15:54 0.93 4:00
600 3:27 16:02 0.94 3:54

B-10%

0 2:40 15:34 1.06 3:14
300 2:36 15:21 1.20 2:44
600 2:53 15:40 1.24 2:38

In table 4, we compare the solution quality of KaRRi
with ρ ∈ {0s, 300s, 600s}. At ρ = 300s, we observe
improvements for both riders and vehicles. Here, existing
wait times are replaced with walking which leads to
benefits for all agents. By allowing longer walking
distances with ρ = 600s, we can further improve the
vehicle operation times. However, since we equally
weight vehicle and rider times (τ = 1), riders are
often required to walk further to save time for vehicles,
increasing the average wait and trip times. Different
values for the cost function parameters may be better
suited to reflect the needs of riders, particularly in a
future of autonomously piloted taxis. We defer an
according analysis to future work.

6 Conclusions and Future Work

KaRRi develops efficient many-to-many routing with
bucket contraction hierarchies for dynamic taxi sharing.
This allows real-time dispatching systems to enjoy
benefits like a reduction in operating costs and air
pollution even with large vehicle fleets and many meeting
points. A flexible cost function allows configuration to
many situations, e.g. using walking, bicycles or scooters.
We expect that the new techniques like sorted buckets
can also be applied for other problems that use many-
to-many routing with correlated sources and targets.

KaRRi’s small running times open dynamic taxi
sharing up to a variety of extensions that promise to
improve the quality of service. We are particularly in-
terested in going away from greedy online scheduling,
instead taking into account pre-booked trips and op-
portunities to transparently change existing trips for
local search style optimizations. Additionally, we expect
that we can generalize KaRRi to integrate it with pub-
lic transportation s.t. meeting points can be stops of
buses or trains and the cost function has to take into
account the public transportation schedule. A longer
term perspective is to allow transfers between vehicles
during a trip. This may increase the number of shared
rides, eventually leading to a highly adaptive software
defined public transportation system. These extensions
imply interesting algorithmic challenges as they lead to
a combinatorial explosion of possible route options.

Future parallelization both over over different meet-
ing points and over entire requests can improve scalability
to even larger metropolitan regions.

85

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

References

[1] Ittai Abraham, Daniel Delling, Andrew V. Gold-
berg, and Renato F. Werneck. A hub-based labeling
algorithm for shortest paths in road networks. In
Lecture Notes in Computer Science, volume 6630
LNCS, pages 230–241. Springer, Berlin, Heidelberg,
2011. doi:10.1007/978-3-642-20662-7 20.

[2] Niels Agatz, Alan Erera, Martin Savelsbergh, and
Xing Wang. Dynamic ride-sharing: A simulation
study in metro Atlanta. Transportation Research
Part B: Methodological, 45:1450–1464, 2011. ISSN
01912615. doi:10.1016/j.trb.2011.05.017.

[3] Niels Agatz, Alan Erera, Martin Savelsbergh,
and Xing Wang. Optimization for dynamic ride-
sharing: A review. European Journal of Opera-
tional Research, 223:295–303, 2012. ISSN 03772217.
doi:10.1016/j.ejor.2012.05.028.

[4] Kamel Aissat and Ammar Oulamara. A priori
approach of real-time ridesharing problem with
intermediate meeting locations. Journal of Artificial
Intelligence and Soft Computing Research, 4:287–
299, 2014. ISSN 2083-2567. doi:10.1515/jaiscr-2015-
0015.

[5] Javier Alonso-Mora, Samitha Samaranayake, Alex
Wallar, Emilio Frazzoli, and Daniela Rus. On-
demand high-capacity ride-sharing via dynamic
trip-vehicle assignment. Proceedings of the Na-
tional Academy of Sciences of the United States
of America, 114:462–467, 2017. ISSN 10916490.
doi:10.1073/pnas.1611675114.

[6] Claudine Badue, Rânik Guidolini, Raphael Vi-
vacqua Carneiro, Pedro Azevedo, Vinicius B.
Cardoso, Avelino Forechi, Luan Jesus, Rodrigo
Berriel, Thiago M. Paixão, Filipe Mutz, Lucas
de Paula Veronese, Thiago Oliveira-Santos, and
Alberto F. De Souza. Self-driving cars: A survey.
Expert Systems with Applications, 165, 2021. ISSN
09574174. doi:10.1016/j.eswa.2020.113816.

[7] Reinhard Bauer and Daniel Delling. SHARC: Fast
and robust unidirectional routing. ACM Journal
of Experimental Algorithms (JEA), 14, 2010. ISSN
1084-6654. doi:10.1145/1498698.1537599.

[8] Joschka Bischoff, Michal Maciejewski, and Kai
Nagel. City-wide shared taxis: A simulation study
in Berlin. In IEEE 20th International Conference
on Intelligent Transportation Systems (ITSC), 2017.
doi:10.1109/ITSC.2017.8317926.

[9] Filippo Bistaffa, Alessandro Farinelli, and Sarvapali
Ramchurn. Sharing rides with friends: A coalition
formation algorithm for ridesharing. Proceedings of
the AAAI Conference on Artificial Intelligence, 29,
2015. ISSN 2374-3468. doi:10.1609/aaai.v29i1.9242.

[10] Valentin Buchhold, Peter Sanders, and Dorothea
Wagner. Real-time traffic assignment using engi-
neered customizable contraction hierarchies. ACM
Journal of Experimental Algorithms (JEA), 24, 2019.
ISSN 1084-6654. doi:10.1145/3362693.

[11] Valentin Buchhold, Peter Sanders, and Dorothea
Wagner. Fast, exact and scalable dynamic rideshar-
ing. In 2021 Proceedings of the Workshop on Algo-
rithm Engineering and Experiments (ALENEX),
pages 98–112. Society for Industrial and Ap-
plied Mathematics, 2021. ISBN 9781611976472.
doi:10.1137/1.9781611976472.8.

[12] Jean François Cordeau. A branch-and-cut algo-
rithm for the dial-a-ride problem. Operations
Research, 54:573–586, 2006. ISSN 0030364X.
doi:10.1287/opre.1060.0283.

[13] Jean François Cordeau and Gilbert Laporte. The
dial-a-ride problem: Models and algorithms. Annals
of Operations Research, 153:29–46, 2007. ISSN
02545330. doi:10.1007/s10479-007-0170-8.

[14] Daniel Delling, Andrew V. Goldberg, and Re-
nato F. Werneck. Faster batched shortest
paths in road networks. In 11th Work-
shop on Algorithmic Approaches for Transporta-
tion Modelling, Optimization, and Systems (AT-
MOS). LIPIcs, 2011. ISBN 978-3-939897-33-0.
doi:10.4230/OASIcs.ATMOS.2011.52.

[15] Daniel Delling, Andrew V. Goldberg, An-
dreas Nowatzyk, and Renato F. Werneck.
PHAST: Hardware-accelerated shortest path
trees. Journal of Parallel and Distributed
Computing, 73:940–952, 2013. ISSN 07437315.
doi:10.1016/j.jpdc.2012.02.007.

[16] Daniel Delling, Andrew V. Goldberg, Thomas Pajor,
and Renato F. Werneck. Customizable route plan-
ning in road networks. INFORMS Transportation
Science, 51, 2017. doi:10.1287/trsc.2014.0579.

[17] Julian Dibbelt, Ben Strasser, and Dorothea Wagner.
Customizable contraction hierarchies. ACM Journal
of Experimental Algorithmics, 21:1–49, 2016. ISSN
1084-6654. doi:10.1145/2886843.

1386

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1007/978-3-642-20662-7_20
https://doi.org/10.1016/j.trb.2011.05.017
https://doi.org/10.1016/j.ejor.2012.05.028
https://doi.org/10.1515/jaiscr-2015-0015
https://doi.org/10.1515/jaiscr-2015-0015
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1016/j.eswa.2020.113816
https://doi.org/10.1145/1498698.1537599
https://doi.org/10.1109/ITSC.2017.8317926
https://doi.org/10.1609/aaai.v29i1.9242
https://doi.org/10.1145/3362693
https://doi.org/10.1137/1.9781611976472.8
https://doi.org/10.1287/opre.1060.0283
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.4230/OASIcs.ATMOS.2011.52
https://doi.org/10.1016/j.jpdc.2012.02.007
https://doi.org/10.1287/trsc.2014.0579
https://doi.org/10.1145/2886843

[18] Edsger W. Dijkstra. A note on two problems in
connexion with graphs. Numerische Mathematik, 1,
1959.

[19] Fábio Duarte and Carlo Ratti. The impact of
autonomous vehicles on cities: A review. Journal of
Urban Technology, 25:3–18, 2018. ISSN 1063-0732.
doi:10.1080/10630732.2018.1493883.

[20] Daniel J. Fagnant and Kara M. Kockelman. The
travel and environmental implications of shared
autonomous vehicles, using agent-based model sce-
narios. Transportation Research Part C: Emerg-
ing Technologies, 40:1–13, 2014. ISSN 0968090X.
doi:10.1016/j.trc.2013.12.001.

[21] Daniel J. Fagnant and Kara M. Kockelman. Dy-
namic ride-sharing and fleet sizing for a system
of shared autonomous vehicles in Austin, Texas.
Transportation, 45:143–158, 2018. ISSN 0049-4488.
doi:10.1007/s11116-016-9729-z.

[22] Andres Fielbaum, Xiaoshan Bai, and Javier
Alonso-Mora. On-demand ridesharing with op-
timized pick-up and drop-off walking locations.
Transportation Research Part C: Emerging Tech-
nologies, 126:103061, 2021. ISSN 0968090X.
doi:10.1016/j.trc.2021.103061.

[23] Masabumi Furuhata, Maged Dessouky, Fernando
Ordóñez, Marc Etienne Brunet, Xiaoqing Wang,
and Sven Koenig. Ridesharing: The state-of-the-art
and future directions. Transportation Research Part
B: Methodological, 57:28–46, 2013. ISSN 01912615.
doi:10.1016/j.trb.2013.08.012.

[24] Eleonora Gargiulo, Roberta Giannantonio, Elena
Guercio, Claudio Borean, and Giovanni Zenezini.
Dynamic ride sharing service: Are users ready to
adopt it? Procedia Manufacturing, 3:777–784, 2015.
ISSN 23519789. doi:10.1016/j.promfg.2015.07.329.

[25] Robert Geisberger, Dennis Luxen, Sabine
Neubauer, Peter Sanders, and Lars Volker.
Fast detour computation for ride sharing. In
OpenAccess Series in Informatics, volume 14,
pages 88–99. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2010. ISBN 9783939897200.
doi:10.4230/OASIcs.ATMOS.2010.88.

[26] Robert Geisberger, Peter Sanders, Dominik
Schultes, and Christian Vetter. Exact routing
in large road networks using contraction hierar-
chies. INFORMS Transportation Science, 46, 2012.
doi:10.1287/trsc.1110.0401.

[27] Mireia Gilibert, Imma Ribas, Christian Rosen,
and Alexander Siebeneich. On-demand shared
ride-hailing for commuting purposes: Compar-
ison of Barcelona and Hannover case stud-
ies. In Transportation Research Procedia, vol-
ume 47, pages 323–330. Elsevier B.V., 2020.
doi:10.1016/j.trpro.2020.03.105.

[28] Preeti Goel, Lars Kulik, and Kotagiri Ramamoha-
narao. Privacy-aware dynamic ride sharing. ACM
Transactions on Spatial Algorithms and Systems, 2:
1–41, 2016. ISSN 2374-0353. doi:10.1145/2845080.

[29] Preeti Goel, Lars Kulik, and Kotagiri Ramamoha-
narao. Optimal pick up point selection for effective
ride sharing. IEEE Transactions on Big Data, 3:
154–168, 2016. doi:10.1109/tbdata.2016.2599936.

[30] Wesam Herbawi and Michael Weber. A genetic
and insertion heuristic algorithm for solving the dy-
namic ridematching problem with time windows. In
GECCO’12 - Proceedings of the 14th International
Conference on Genetic and Evolutionary Compu-
tation, pages 385–392, 2012. ISBN 9781450311779.
doi:10.1145/2330163.2330219.

[31] Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring,
and Heiko Schilling. Fast point-to-point shortest
path computations with arc-flags. The Shortest Path
Problem: 9th DIMACS Implementation Challenge,
2009.

[32] Sin C. Ho, W.Y. Szeto, Yong-Hong Kuo, Janny M.Y.
Leung, Matthew Petering, and Terence W.H. Tou.
A survey of dial-a-ride problems: Literature review
and recent developments. Transportation Research
Part B: Methodological, 111:395–421, 2018. ISSN
01912615. doi:10.1016/j.trb.2018.02.001.

[33] Mark E.T. Horn. Fleet scheduling and dispatching
for demand-responsive passenger services. Trans-
portation Research Part C: Emerging Technologies,
10:35–63, 2002. ISSN 0968090X. doi:10.1016/S0968-
090X(01)00003-1.

[34] Andreas Horni, Kai Nagel, and Kay W. Ax-
hausen, editors. The Multi-Agent Transport Sim-
ulation MATSim. Ubiquity Press, 2016. ISBN
9781909188754. doi:10.5334/baw.

[35] Hadi Hosni, Joe Naoum-Sawaya, and Hassan Ar-
tail. The shared-taxi problem: Formulation and
solution methods. Transportation Research Part B:
Methodological, 70:303–318, 2014. ISSN 01912615.
doi:10.1016/j.trb.2014.09.011.

87

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1080/10630732.2018.1493883
https://doi.org/10.1016/j.trc.2013.12.001
https://doi.org/10.1007/s11116-016-9729-z
https://doi.org/10.1016/j.trc.2021.103061
https://doi.org/10.1016/j.trb.2013.08.012
https://doi.org/10.1016/j.promfg.2015.07.329
https://doi.org/10.4230/OASIcs.ATMOS.2010.88
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.1016/j.trpro.2020.03.105
https://doi.org/10.1145/2845080
https://doi.org/10.1109/tbdata.2016.2599936
https://doi.org/10.1145/2330163.2330219
https://doi.org/10.1016/j.trb.2018.02.001
https://doi.org/10.1016/S0968-090X(01)00003-1
https://doi.org/10.1016/S0968-090X(01)00003-1
https://doi.org/10.5334/baw
https://doi.org/10.1016/j.trb.2014.09.011

[36] Yan Huang, Favyen Bastani, Ruoming Jin, and Xi-
aoyang Sean Wang. Large scale realtime ridesharing
with service guarantee on road networks. In Pro-
ceedings of the VLDB Endowment, volume 7, pages
2017–2028. Association for Computing Machinery,
2014. doi:10.14778/2733085.2733106.

[37] Brady Hunsaker and Martin Savelsbergh. Efficient
feasibility testing for dial-a-ride problems. Oper-
ations Research Letters, 30:169–173, 2002. ISSN
01676377. doi:10.1016/S0167-6377(02)00120-7.

[38] Carl H. Häll, Magdalena Högberg, and Jan T.
Lundgren. A modeling system for simulation of
dial-a-ride services. Public Transport, 4:17–37, 2012.
ISSN 1866-749X. doi:10.1007/s12469-012-0052-6.

[39] Jang-Jei Jaw, Amedeo R. Odoni, Harilaos N.
Psaraftis, and Nigel H.M. Wilson. A heuristic
algorithm for the multi-vehicle advance request dial-
a-ride problem with time windows. Transportation
Research Part B: Methodological, 20:243–257, 1986.
ISSN 01912615. doi:10.1016/0191-2615(86)90020-2.

[40] Jani-Pekka Jokinen, Teemu Sihvola, and Milos N.
Mladenovic. Policy lessons from the flexible trans-
port service pilot Kutsuplus in the Helsinki capital
region. Transport Policy, 76:123–133, 2019. ISSN
0967070X. doi:10.1016/j.tranpol.2017.12.004.

[41] Jaeyoung Jung, R. Jayakrishnan, and Ji Young
Park. Dynamic shared-taxi dispatch algorithm with
hybrid-simulated annealing. Computer-Aided Civil
and Infrastructure Engineering, 31:275–291, 2016.
ISSN 10939687. doi:10.1111/mice.12157.

[42] Levent Kaan and Eli V. Olinick. The vanpool
assignment problem: Optimization models and
solution algorithms. Computers and Industrial
Engineering, 66:24–40, 2013. ISSN 03608352.
doi:10.1016/j.cie.2013.05.020.

[43] Sebastian Knopp, Peter Sanders, Dominik Schultes,
Frank Schulz, and Dorothea Wagner. Comput-
ing many-to-many shortest paths using highway
hierarchies. In SIAM Workshop on Algorithm
Engineering and Experiments (ALENEX), 2007.
doi:10.1137/1.9781611972870.4.

[44] Nadine Kostorz, Eva Fraedrich, and Martin Kager-
bauer. Usage and user characteristics—insights
from MOIA, europe’s largest ridepooling service.
Sustainability, 13:958, 2021. ISSN 2071-1050.
doi:10.3390/su13020958.

[45] Nico Kuehnel, Hannes Rewald, Steffen Axer, Fe-
lix Zwick, and Rolf Findeisen. Flow-inflated se-
lective sampling for efficient agent-based dynamic
ride-pooling simulations. Transportation Research
Record: Journal of the Transportation Research
Board, page 036119812311706, 2023. ISSN 0361-
1981. doi:10.1177/03611981231170624.

[46] Moritz Laupichler and Peter Sanders. Fast many-to-
many routing for dynamic taxi sharing with meeting
points. arXiv, 2023.

[47] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui
Mao. Optimal multi-meeting-point route search.
IEEE Transactions on Knowledge and Data En-
gineering, 28:770–784, 2016. ISSN 1041-4347.
doi:10.1109/TKDE.2015.2492554.

[48] Yeqian Lin, Wenquan Li, Feng Qiu, and He Xu. Re-
search on optimization of vehicle routing problem
for ride-sharing taxi. Procedia - Social and Behav-
ioral Sciences, 43:494–502, 2012. ISSN 18770428.
doi:10.1016/j.sbspro.2012.04.122.

[49] Charlotte Lotze, Philip Marszal, Malte Schröder,
and Marc Timme. Dynamic stop pooling for
flexible and sustainable ride sharing. New Journal
of Physics, 24:023034, 2022. ISSN 1367-2630.
doi:10.1088/1367-2630/ac47c9.

[50] Shuo Ma, Yu Zheng, and Ouri Wolfson. T-
Share: A large-scale dynamic taxi rideshar-
ing service. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE), pages
410–421. IEEE, 2013. ISBN 978-1-4673-4910-9.
doi:10.1109/ICDE.2013.6544843.

[51] Shuo Ma, Yu Zheng, and Ouri Wolfson.
Real-time city-scale taxi ridesharing. IEEE
Transactions on Knowledge and Data Engineer-
ing, 27:1782–1795, 2015. ISSN 1041-4347.
doi:10.1109/TKDE.2014.2334313.

[52] Tai Yu Ma, Saeid Rasulkhani, Joseph Y.J. Chow,
and Sylvain Klein. A dynamic ridesharing
dispatch and idle vehicle repositioning strategy
with integrated transit transfers. Transporta-
tion Research Part E: Logistics and Transporta-
tion Review, 128:417–442, 2019. ISSN 13665545.
doi:10.1016/j.tre.2019.07.002.

[53] Oli B. G. Madsen, Hans F. Ravn, and Jens Moberg
Rygaard. A heuristic algorithm for a dial-a-
ride problem with time windows, multiple capac-
ities, and multiple objectives. Annals of Opera-
tions Research, 60:193–208, 1995. ISSN 0254-5330.
doi:10.1007/BF02031946.

1588

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.14778/2733085.2733106
https://doi.org/10.1016/S0167-6377(02)00120-7
https://doi.org/10.1007/s12469-012-0052-6
https://doi.org/10.1016/0191-2615(86)90020-2
https://doi.org/10.1016/j.tranpol.2017.12.004
https://doi.org/10.1111/mice.12157
https://doi.org/10.1016/j.cie.2013.05.020
https://doi.org/10.1137/1.9781611972870.4
https://doi.org/10.3390/su13020958
https://doi.org/10.1177/03611981231170624
https://doi.org/10.1109/TKDE.2015.2492554
https://doi.org/10.1016/j.sbspro.2012.04.122
https://doi.org/10.1088/1367-2630/ac47c9
https://doi.org/10.1109/ICDE.2013.6544843
https://doi.org/10.1109/TKDE.2014.2334313
https://doi.org/10.1016/j.tre.2019.07.002
https://doi.org/10.1007/BF02031946

[54] Carlo Manna and Steve Prestwich. Online stochastic
planning for taxi and ridesharing. In Proceedings
- International Conference on Tools with Artificial
Intelligence, ICTAI, volume 2014-December, pages
906–913. IEEE Computer Society, 2014. ISBN
9781479965724. doi:10.1109/ICTAI.2014.138.

[55] Dimitris Milakis, Bart van Arem, and Bert van
Wee. Policy and society related implications of
automated driving: A review of literature and
directions for future research. Journal of Intelligent
Transportation Systems, 21:324–348, 2017. ISSN
1547-2450. doi:10.1080/15472450.2017.1291351.

[56] Motahare Mounesan, Vindula Jayawardana,
Yaocheng Wu, Samitha Samaranayake, and
Huy T. Vo. Fleet management for ride-pooling
with meeting points at scale: a case study in
the five boroughs of New York City. 2021.
doi:10.48550/arXiv.2105.00994.

[57] Masayo Ota, Huy Vo, Claudio Silva, and Ju-
liana Freire. STaRS: Simulating taxi ride
sharing at scale. IEEE Transactions on
Big Data, 3:349–361, 2017. ISSN 2332-7790.
doi:10.1109/TBDATA.2016.2627223.

[58] Dominik Pelzer, Jiajian Xiao, Daniel Zehe,
Michael H. Lees, Alois C. Knoll, and Heiko Aydt.
A partition-based match making algorithm for dy-
namic ridesharing. IEEE Transactions on Intelli-
gent Transportation Systems, 16:2587–2598, 2015.
ISSN 1524-9050. doi:10.1109/TITS.2015.2413453.

[59] Harilaos N. Psaraftis. A dynamic programming
solution to the single vehicle many-to-many im-
mediate request dial-a-ride problem. Transporta-
tion Science, 14:130–154, 1980. ISSN 0041-1655.
doi:10.1287/trsc.14.2.130.

[60] Douglas O. Santos and Eduardo C. Xavier. Taxi
and ride sharing: A dynamic dial-a-ride problem
with money as an incentive. Expert Systems with
Applications, 42:6728–6737, 2015. ISSN 09574174.
doi:10.1016/j.eswa.2015.04.060.

[61] Martin Savelsbergh. Local search in routing
problems with time windows. Annals of Opera-
tions Research, 4:285–305, 1985. ISSN 0254-5330.
doi:10.1007/BF02022044.

[62] Michael Schilde, Karl F. Doerner, and Richard F.
Hartl. Metaheuristics for the dynamic stochastic
dial-a-ride problem with expected return transports.
Computers and Operations Research, 38:1719–1730,
2011. ISSN 03050548. doi:10.1016/j.cor.2011.02.006.

[63] Changle Song, Julien Monteil, Jean-Luc Ygnace,
and David Rey. Incentives for ridesharing: A case
study of welfare and traffic congestion. Journal of
Advanced Transportation, 2021. ISSN 0197-6729.
doi:10.1155/2021/6627660.

[64] Mitja Stiglic, Niels Agatz, Martin Savelsbergh, and
Mirko Gradisar. The benefits of meeting points in
ride-sharing systems. Transportation Research Part
B: Methodological, 82:36–53, 2015. ISSN 01912615.
doi:10.1016/j.trb.2015.07.025.

[65] Chichung Tao and Chungjung Wu. Behavioral
responses to dynamic ridesharing services - the
case of taxi-sharing project in Taipei. In 2008
IEEE International Conference on Service Op-
erations and Logistics, and Informatics, pages
1576–1581. IEEE, 2008. ISBN 978-1-4244-2012-4.
doi:10.1109/SOLI.2008.4682777.

[66] Christoffer Weckström, Miloš N. Mladenović, Waqar
Ullah, John D. Nelson, Moshe Givoni, and Se-
bastian Bussman. User perspectives on emerg-
ing mobility services: Ex post analysis of Kutsu-
plus pilot. Research in Transportation Business
& Management, 27:84–97, 2018. ISSN 22105395.
doi:10.1016/j.rtbm.2018.06.003.

[67] Hiroki Yanagisawa. A multi-source label-correcting
algorithm for the all-pairs shortest paths prob-
lem. In 2010 IEEE International Symposium
on Parallel & Distributed Processing (IPDPS),
pages 1–10. IEEE, 2010. ISBN 978-1-4244-6442-
5. doi:10.1109/IPDPS.2010.5470362.

[68] Biying Yu, Ye Ma, Meimei Xue, Baojun Tang, Bin
Wang, Jinyue Yan, and Yi-Ming Wei. Environmen-
tal benefits from ridesharing: A case of Beijing.
Applied Energy, 191:141–152, 2017. ISSN 03062619.
doi:10.1016/j.apenergy.2017.01.052.

[69] Xingbin Zhan, W.Y. Szeto, and Xiqun Michael
Chen. The dynamic ride-hailing sharing problem
with multiple vehicle types and user classes. Trans-
portation Research Part E: Logistics and Trans-
portation Review, 168, 2022. ISSN 13665545.
doi:10.1016/j.tre.2022.102891.

[70] Dianzhuo Zhu. The limits of money in daily rideshar-
ing: Evidence from a field experiment in rural
France. Revue d’économie industrielle, pages 161–
202, 2021. ISSN 0154-3229. doi:10.4000/rei.9984.

[71] Dominik Ziemke, Ihab Kaddoura, and Kai Nagel.
The MATSim Open Berlin scenario: A multimodal
agent-based transport simulation scenario based on

89

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1109/ICTAI.2014.138
https://doi.org/10.1080/15472450.2017.1291351
https://doi.org/10.48550/arXiv.2105.00994
https://doi.org/10.1109/TBDATA.2016.2627223
https://doi.org/10.1109/TITS.2015.2413453
https://doi.org/10.1287/trsc.14.2.130
https://doi.org/10.1016/j.eswa.2015.04.060
https://doi.org/10.1007/BF02022044
https://doi.org/10.1016/j.cor.2011.02.006
https://doi.org/10.1155/2021/6627660
https://doi.org/10.1016/j.trb.2015.07.025
https://doi.org/10.1109/SOLI.2008.4682777
https://doi.org/10.1016/j.rtbm.2018.06.003
https://doi.org/10.1109/IPDPS.2010.5470362
https://doi.org/10.1016/j.apenergy.2017.01.052
https://doi.org/10.1016/j.tre.2022.102891
https://doi.org/10.4000/rei.9984

synthetic demand modeling and open data. Procedia
Computer Science, 151, 2019. ISSN 1877-0509.
doi:doi.org/10.1016/j.procs.2019.04.120.

1790

D
ow

nl
oa

de
d

01
/1

7/
24

 to
 4

6.
22

3.
16

2.
19

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/doi.org/10.1016/j.procs.2019.04.120

	Introduction
	Related Work.
	Paper Overview.

	Problem Statement
	Cost Function and Constraints.

	Preliminaries
	Shortest Path Algorithms.
	LOUD.

	The Algorithm
	Algorithm Outline.
	Many-to-Many Routing Techniques.
	Applying Routing Techniques to Other Insertion Types.

	Experimental Evaluation
	Effectiveness of Many-to-Many Routing Techniques.
	Comparison with Baseline Dispatcher.

	Conclusions and Future Work

