KIT | KIT-Bibliothek | Impressum | Datenschutz

Improved Arithmetic Performance by Combining Stateful and Non‐Stateful Logic in Resistive Random Access Memory 1T–1R Crossbars

Brackmann, Leon; Ziegler, Tobias; Jafari, Atousa 1; Wouters, Dirk J.; Tahoori, Mehdi B. 2; Menzel, Stephan
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)

Abstract:

Computing-in-memory (CIM) is a promising approach for overcoming the memory-wall problem in conventional von-Neumann architectures. This is done by performing certain computation tasks directly in the storage subsystem without transferring data between storage and processing units. Stateful and non-stateful CIM concepts are recently attracting lots of interest, which are demonstrated as logical complete, energy efficient, and compatible with dense crossbar structures. However, sneak-path currents in passive resistive random access memory (RRAM) crossbars degrade the operation reliability and require the usage of active 1 Transistor–1 Resistance (1T-1R) bitcell designs. In this article, the arithmetic performance and reliability are investigated based on experimental measurements and variability-aware circuit simulations. Herein, it is aimed for the evaluation of logic operations specifically with fully integrated 1T–1R crossbar devices. Based on these operations, an N-bit full adder with optimized energy consumption and latency is demonstrated by combining stateful and non-stateful CIM logic styles with regard to the specific conditions in active 1T–1R RRAM crossbars.


Verlagsausgabe §
DOI: 10.5445/IR/1000167419
Veröffentlicht am 18.01.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2640-4567
KITopen-ID: 1000167419
Erschienen in Advanced Intelligent Systems
Verlag Wiley-VCH Verlag
Seiten Art.-Nr.: 2300579
Vorab online veröffentlicht am 27.12.2023
Schlagwörter 1T–1R logics, computing-in-memory, resistive devices, valence change mechanism, Redox resistive random access memory (VCM–ReRAM)
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page