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Protoneutron stars formed during core-collapse supernovae are hot and dense environments that contain
a sizable population of muons. If these interact with new long-lived particles with masses up to roughly
100 MeV, the latter can be produced and escape from the stellar plasma, causing an excessive energy loss
constrained by observations of SN 1987A. In this article we calculate the emission of light dark fermions
that are coupled to leptons via a new massive vector boson, and determine the resulting constraints on the
general parameter space. We apply these limits to the gauged Lμ − Lτ model with dark fermions, and show
that the SN 1987A constraints exclude a significant portion of the parameter space targeted by future
experiments. We also extend our analysis to generic effective four-fermion operators that couple dark
fermions to muons, electrons, or neutrinos. We find that SN 1987A cooling probes a new physics scale up
to ∼7 TeV, which is an order of magnitude larger than current bounds from laboratory experiments.
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I. INTRODUCTION

Understanding the fundamental nature of dark matter
(DM), which comprises ∼84% of the matter of the
Universe [1], has become one of the most pressing
problems in contemporary physics (see Ref. [2] for a
review). Awide class of theoretical models describe DM as
new light (sub-GeV) particles, which couple only very
weakly to the particles of the Standard Model (SM). The
simplest possible interactions between these two sectors
have been systematically classified within the so-called
portal framework [3–20], giving rise to several benchmark
scenarios for SM interactions with a dark sector that can be
tested experimentally (see Refs. [21–25] for reviews).
Interestingly, if the dark particles are sufficiently light

to be produced in stellar plasmas, then their emission

modifies the standard picture of stellar evolution and
stringent constraints on SM interactions with the dark
sector can be obtained also from astrophysical observa-
tions [26–36]. Ordinary stars yield strong constraints on
DM coupled to electrons and photons [30], while the
extreme temperatures and densities reached in the proto-
neutron stars (PNS) formed during core-collapse super-
novae (SN) allow one to probe also DM couplings to
nucleons [31,32,37–51], pions [33,34,52–55], hyperons
[56–58], and muons [35,59–61]. Most of these analyses
focus on direct production and emission of light dark
bosons (such as axions or dark photons) from the stellar
medium.
In this article we aim to study instead the case where

these bosons merely serve as massive mediators between
dark fermions and SM leptons; i.e., they serve only as a
portal to the dark sector, which allows the production of
sufficiently light dark fermions in stellar plasmas.
Prominent examples of this scenario are gauged lepton
flavor models such as Uð1ÞLμ−Lτ

, which contain a light
massive gauge boson [62–74] and a dark sector charged
under the corresponding group [75–86]. This type of
scenario has attracted much attention as they can simulta-
neously address the ðg − 2Þμ anomaly [87–93], provide a
DM candidate with the right abundance, and contribute to
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the effective number of neutrino species, alleviating the
Hubble constant tension [1,94–97]. Although we will
present novel constraints on this scenario from SN
1987A later on, we perform our analysis within a more
general setup.
For definiteness, let us consider a vector mediator Z0 with

mass mZ0 and couplings to SM leptons and dark fermions χ
with mass mχ ,

L ⊃ Z0
νðgllγνlþ gνlνlγ

νPLνl þ gχ χ̄γνχÞ; ð1Þ

where l ¼ e, μ, τ, and gl, gνl and gχ are generic couplings.
Assuming that the dark fermions are sufficiently light
(mχ ≲ 150 MeV), we will show in the following that their
production from the PNS in SN 1987A leads to stringent
constraints on their couplings to SM leptons. For the
benchmark Uð1ÞLμ−Lτ

model, this excludes large regions

of the parameter space targeted by future experiments
[21,98–108].
While our analysis is valid for any mass of the Z0, we can

integrate it out and describe its contribution with an effective
four-fermion operator, if mZ0 is much larger than the PNS’s
temperature and chemical potentials. This leads to signifi-
cant simplifications in the analysis, and allows us to extend
it to derive SN 1987A bounds on completely generic
interactions of the dark sector with leptons through heavy
portal mediators. In the heavy Z0 limit, our calculations are
in fact analogous to the ones necessary to study the SM
production of neutrinos from leptons in stellar plasmas,
which have received much attention over the past half
century, since the seminal works in the 1960s [109–125]
(see also Refs. [115,126–128] for production of light dark
fermions from heavy new physics). On the other hand, in
case the Z0 is a light and narrow state, the calculation is
similar to the on shell production of massive vector bosons
coupled to leptons in the plasma [61,129–132] (see also
Refs. [35,59,61,133] for massive axions).
In this article we focus on the portal interactions with

muons, but we also study neutrinos, which could be
naturally linked to muons via SUð2ÞL. Electrons however
form a highly degenerate and ultrarelativistic plasma in
the PNS, which might lead to important medium effects in
the electron and photon dispersion relations, requiring the
inclusion of other production mechanisms not relevant for
muons and neutrinos. With this caveat in mind, our
calculations are easily extensible to electrons, generaliz-
ing and updating the pioneering work of Ref. [127] and
improving the results presented in Ref. [128].
The rest of the paper is organized as follows. In Sec. II

we outline the classical SN argument to constrain new
exotic cooling agents using the neutrino flux observed
from SN 1987A. Besides describing the general theoreti-
cal framework, we specify the SN simulations that we

employ in our numerical analysis. In Sec. III we describe
and compute the rates of the main emission mechanisms
induced by the model in Eq. (1). We focus on extracting
the main physical features of the rates using different
approximations in the various regimes of the Z0 mass, and
on deriving analytical estimates. However, our final
results rely on exact numerical computations whose
details are deferred to Appendices. In Sec. IV, then, we
implement these calculations of the rates in the SN
simulations and derive the constraints on the parameter
space of the Z0 model in Eq. (1). We also generalize this
analysis in terms of effective operators in the heavy Z0
limit, and to one particular realization of the model arising
from a Lμ − Lτ gauged symmetry. Finally, in Sec. V we
summarize the results of our paper and close with a brief
outlook.

II. SUPERNOVA COOLING

In the dense and hot environment within protoneutron
stars [134–137] neutrinos become trapped and a thermal
population of muons is predicted to arise [138,139]. New
light dark particles that couple to leptons, e.g., via the
interactions in Eq. (1), can be produced efficiently in the
stellar plasma, leading to a significant loss of energy if they
can escape from the PNS. The corresponding dark lumi-
nosityLχ is then subject to the classical boundLχ ≲ Lν at 1 s
postbounce, where Lν is the neutrino luminosity [30,40,41].
This limit is obtained from the observation of a neutrino
pulse over ∼10 s [140,141] during SN 1987A [142–144],
which is in accordance with the predictions of the standard
theory of core-collapse SN (see Refs. [59,145,146] for a
critical reappraisal of this limit).1

Here, we apply this argument to scenarios where light
dark fermions couple to leptons with interactions such as
those in Eq. (1). One needs to distinguish two regimes
based on the mean free path (MFP) of the dark fermions in
the plasma or, equivalently, the strength of the portal
interactions. If the dark particles are very weakly coupled
(or the MFP is much larger than the radius of the PNS) then
they free stream out from the SN once produced, whereas
for large couplings (or MFP much shorter than the radius of
the PNS) they thermalize with the medium and get trapped
inside of the PNS.
In the free-streaming regime the general expression for

the total energy-loss rate per unit volume, Q, for a given
emission process is

1It has also been noted in Ref. [147] that there is a disagreement
between the results of simulations and the observed neutrino signal
of SN 1987A during the first second. However, this conclusion has
been disputed in Ref. [148], where a more extensive analysis with
a wider time window has been performed.
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Q ¼
Z �Y

init;i

d3pi

ð2πÞ32Ei
fi

��Y
final;j

d3pj

ð2πÞ32Ej
ð1� fjÞ

�

× ð2πÞ4δ4
�X

i

pi −
X
j

pj

�X
spins

jMj2Eχ : ð2Þ

These are thermal integrals over the phase space of all the
initial- and final-state particles weighted by their number
density distributions fi and the Pauli blocking or Bose
enhancement factors ð1 ∓ fjÞ, respectively. Furthermore,
jMj2 is the squared matrix element of the given production
process and Eχ is the total energy carried away by the dark
particles. In the calculations of the free-streaming regime,
one conventionally uses fχ ¼ 0 for the new particles,
because their occupation numbers inside the PNS are very
low and not thermalized by assumption.
In the deep trapping regime, on the other hand, the dark-

sector particles are in thermal equilibrium with the plasma
and they are emitted from a surface with radius rχ (dark
sphere) following a law analogous to the one of the black
body radiation,

Ltrap
χ ¼ gχ

π
r2χT4

χ

Z
∞

xm

dx
x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − x2m

p
ex þ 1

; ð3Þ

where gχ is the number of degrees of freedom of the χ
particle (gχ ¼ 2 for massive dark fermions), xm ¼ mχ=Tχ

and Tχ ¼ TðrχÞ is the temperature of the dark sphere. The
radius rχ is defined, as is conventional in astrophysics
[149–151], through the optical depth τχðrÞ, by requiring

τχðrχÞ ¼
Z

∞

rχ

dr
λðrÞ ¼

2

3
; ð4Þ

where λðrÞ is a suitable spectral average of the dark
fermion’s MFP at a radius r. In this work, we use a “naive”
thermal average

λðrÞ ¼ hλðr; pχÞiχ ≡ gχ
nχðrÞ

Z
d3pχ

ð2πÞ3
λðr; pχÞ

eEχ=TðrÞ þ 1
; ð5Þ

for computational simplicity2 (see Appendix A for our
definitions of thermal averages). The energy-dependent
MFP λðr; pχÞ is related to the total rate of interaction of a
dark-sector particle in the medium, Γχ ¼ vχ=λðr; pχÞ,
through its velocity vχ ¼ pχ=Eχ.

The contribution to Γχ of a given process with a bunch of
target particles b colliding with χ in the initial state is
defined through

Cbabs ¼ gχ

Z
d3pχ

ð2πÞ3 fχΓ
b
χ : ð6Þ

The quantity Cabs is the collision operator describing the
absorption rate per unit volume of the medium

Cbabs ¼
Z �Y

init;i

d3pi

ð2πÞ32Ei
fi

��Y
final;j

d3pj

ð2πÞ32Ej
ð1� fjÞ

�

× ð2πÞ4δ4
�X

i

pi −
X
j

pj

�X
spins

jMj2�; ð7Þ

which uses the same definitions as in Eq. (2), except for
jMj2 which is now the squared matrix element of the given
absorption process.3

For the numerical analyses of this paper we use SN
simulations including muons presented in Ref. [59] and
whose radial profiles for the relevant quantities are
reported in [152]. Our fiducial results are obtained using
the simulation labeled as SFHo-18.80, which reaches the
lowest temperatures and, therefore, will lead to the most
conservative limits on the dark luminosity (at 1 s post-
bounce). The upper bound is set by the neutrino luminosity
calculated within the same simulation, which for SFHo-
18.80 is given by4

Lχ ≤ Lν ¼ 5.7 × 1052 erg s−1: ð8Þ

For a rough estimate of the systematic uncertainties related
to SN modeling, we will also show the more stringent
limits obtained from using the hotter SFHo-20.0 simu-
lation, which gives Lχ ≤ 1.0 × 1053erg s−1. In the free-
streaming regime, the dark luminosity is obtained as a
volume integral of Eq. (2), Lχ ¼

R
QdV, while in the

trapping regime we use Eq. (3).
Finally, it will be useful to estimate the contributions to

the dark luminosity of the different processes to understand

2We have checked that other averages, such as the conventional
Rosseland MFP [149–151], give very similar results. In the recent
literature also other forms of taking the spectral average have been
discussed, for example by including an energy-dependent opacity
in the free-streaming spectral luminosity, integrating over the
energy only in the very end [61]. For a discussion and comparison
of the various approaches see Ref. [35].

3Denoting Γours for our definition, the standard approach in the
literature [35] is to work in terms of emission rates
ΓE ¼ gχfχΓours. However, one then has to use Boltzmann-
equation arguments to argue which rate has to be used for
absorptive processes, leading to the reduced absorption rate ΓA.
The definition Γours is chosen such that Γours ¼ Γb

χ ¼ nbhσvib,
which naturally leads to Γours ¼ ΓA (see Appendix A).

4We use the total comoving neutrino luminosities reported in
the simulations at the radius of the neutrino-sphere ∼16 km. Note
that including relativistic corrections would reduce both the
neutrino and the dark fermion flux as seen by a distant observer
by roughly 30% [35]. We thank R. Bollig and H-. T. Janka for
facilitating us the necessary data to make these estimates. See also
Ref. [35].
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their relative importance. For this, we define “typical PNS
conditions” as those at 1 s postbounce and at a radius
≈10 km. This region dominates the volume emission in Lχ

and is representative of the bounds in the free-streaming
regime. Using the simulation SFHo-18.80 [152], this
approximately corresponds to

Typical PNS conditions

T ¼ 30 MeV; ρ ¼ 2 × 1014 g cm−3;
μμ ¼ 100 MeV; μνe ¼ 20 MeV;

μνμ ¼ −10 MeV; μe ¼ 130 MeV;

Yμ ¼ 0.026; Ye ¼ 0.12:

ð9Þ

Here T denotes the temperature, ρ the density, μl the
chemical potential of the lepton l and Yl is the number
density fraction of the charged lepton l relative to the one
of baryons. For the Yl we quote the results derived from the
rounded temperature and chemical potentials in Eq. (9)
and, therefore, they are slightly different to those reported
in [152]. Let us stress again that Eq. (9) will be only used
for numerical estimates, while our final results and con-
straints on the models will be obtained using the full radial
profiles of all relevant thermodynamical quantities.

III. PRODUCTION AND ABSORPTION RATES

There are two main production mechanisms of χχ̄ pairs
from muons and neutrinos in SN (see top and bottom panel
of Fig. 1): (i) Annihilation μ−μþ → χχ̄ and νlν̄l → χχ̄; (ii)
photoproduction γμ− → μ−χχ̄. We do not consider brems-
strahlung processes, μ−p → μ−pχχ̄, because they are sup-
pressed with respect to photoproduction (or semi-Compton
production) of (pseudo)scalars and Z0 [35,59,61].
Note also that this is not generally true for production

from electrons because they are ultrarelativistic and form
a highly degenerate system that suppresses photoproduc-
tion compared to bremsstrahlung and annihilation [30].
Moreover, there are important plasma effects which, for
example, dress the electron with an effective mass m�

e ∼
10 MeV and give rise to pseudoparticle excitations that
need to be taken into account in a realistic analysis (see
e.g., Ref. [133] for the emission of massive axions from
electrons in SN). Nonetheless, the calculations we present
in this work can be easily extended to electrons and
compared with previous literature where all these effects
have been neglected [127,128]. We will estimate some of
them below in Sec. III C.
In case of absorption, there are the inverse processes

μ−χχ̄ → γμ− and χχ̄ → μ−μþ, whose rates are related by
detailed balance to those of the photoproduction and
annihilation production, respectively, provided that the χ
and χ̄ particles reach thermal equilibrium. In addition, other
scattering processes may contribute to the diffusion and

energy transport in the trapping regime, such as χμ− → χμ−

and χνl → χνl (see middle panel of Fig. 1), or processes in
the dark sector such as χχ̄ → χχ̄.
In Appendices B and C we provide the cross sections for

all relevant 2 → 2 and 2 → 3 processes needed to calculate
the energy-loss and absorption rates. In the following, we
discuss in detail the contributions of the annihilation and
photoproduction topologies.

A. Annihilation

The energy-loss rate per unit volume in Eq. (2) for
μ−μþ → χχ̄ annihilation can be simplified to

Q¼ g2μ
16π4

Z
∞

mμ

dEþ

Z
∞

mμ

dE−ðEþþE−Þp̄þp̄−fþf−Is: ð10Þ

In this equation, gμ are the muon’s spin degrees of freedom,
E−ðþÞ denote the muon (antimuon) energy in the PNS rest
frame, p̄� are the absolute values of their 3-momenta,

p̄� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� −m2

μ

q
, and f� ≡ f�ðE�Þ ¼ 1=ðeðE��μÞ=T þ 1Þ

are their Fermi-Dirac distributions in the medium. The
function Is is a (dimensionless) angular integral over the
annihilation cross section σðsÞ ¼ σðμþμ− → χχ̄Þ

Is ¼
Z

d cos θs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

μ=s
q

σðsÞ; ð11Þ

FIG. 1. Most relevant l − χ processes for supernova cooling
where l is a charged lepton. Top-to-bottom panels represent
annihilation, scattering and photoproduction processes, respec-
tively. Annihilation and scattering diagrams will also contribute
when l is replaced by a neutrino.
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which depends on the colliding angle θ between the muon
and antimuon through the Mandelstam variable s in the PNS
frame, s ¼ 2ðm2

μ þ EþE− − p̄þp̄− cos θÞ. The cross section
is physical only above the 2-particle threshold which
imposes the kinematic constraint s ≥ 4 maxðm2

χ ; m2
μÞ in

the angular integral.
The annihilation cross section in Eq. (11) for the Z0

model in Eq. (1) is

σðsÞ ¼ g2μg2χ
3g2μπ

s
ðs −m2

Z0 Þ2 þm2
Z0Γ2

Z0

βχðsÞ
βμðsÞ

κμðsÞκχðsÞ; ð12Þ

where we have introduced βiðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

i =s
p

, κiðsÞ ¼
1þ 2m2

i =s and the total Z0 width

ΓZ0 ¼ mZ0

12π

X
i

g2i κiðm2
Z0 Þβiðm2

Z0 ÞθðmZ0 − 2miÞ; ð13Þ

and where θðxÞ is the Heavyside step function.
Note that the average energy carried away by the dark

fermions in the annihilation process is equal to the
thermally averaged center-of-mass (c.m.) energy of the
leptons,

El ≡
ffiffiffiffiffiffiffiffiffi
hsill̄

p
: ð14Þ

For typical conditions in the PNS, Eq. (9), Eμ ∼ 280 MeV,
which sets the scale for 2mχ above which the production of
χ’s in the plasma will become exponentially (“Boltzmann”)
suppressed by the distribution functions f�. In addition, this
energy scale allows one to define three regimes of mZ0 in
Eq. (12) depending on which term dominates the denom-
inator: (i) A “heavy regime” in which mZ0 ≳ 1 GeV ≫ Eμ,
so that the Z0 is too heavy to be produced on shell; (ii) the
“resonant regime” where the Z0 can be produced on shell,
2mμ ≤ mZ0 ≲ Eμ; and (iii) the “light regime” with Z0 masses
below the two-muon threshold,mZ0 < 2mμ, so that the Z0 is
too light to be produced on shell.
Analogous expressions can be defined for electrons and

neutrinos by replacing the couplings and masses accord-
ingly (notice that for neutrinos gνl ¼ 1). Moreover, the
average c.m. energies in these cases are Ee ∼ 160 MeV and
Eν ∼ 130 MeV, and analogous regimes to those for the
muons can be formulated for neutrino-antineutrino and
electron-positron annihilation. The light regime in these
cases is restricted to extremely small Z0 masses, making it
irrelevant for the range of vector boson masses we are
considering here.
The demarcation of these regimes is useful because one

can use approximations to derive analytic results and
isolate the main physical factors in control. In the follow-
ing, we discuss these approximations and describe their
contributions to the absorption rate Γχ .

1. Heavy regime

In this case, the denominator in the propagator [see
Eq. (12)] is dominated by the Z0 mass. Expanding in
powers of s=m2

Z0 up to leading order, the cross section
can be easily integrated analytically, giving a function
IsðEþ; E−; mχ ; mμÞ proportional to the effective coupling
g2χg2μ=m4

Z0 . We can further approximate this expression
by taking the high-energy limit mχ → 0 and mμ → 0,
obtaining5

Iheavys ðEþ; E−; 0; 0Þ ¼
8g2χg2μ
9π

E2þE2
−

m4
Z0

: ð15Þ

Also setting mμ → 0 in the integrals in Eq. (10), the
integrations can be carried out analytically, giving

Qheavy ¼ 2g2χg2μ
9π5

T9

m4
Z0
½H4ðyÞH3ð−yÞ þ ðy → −yÞ�: ð16Þ

Here we have rescaled the chemical potential y ¼ μ=T and
introduced the functions

HnðyÞ ¼
Z

∞

0

dx
xn

ex−y þ 1
¼ −n!Linþ1ð−eyÞ; ð17Þ

where Linþ1ðzÞ is the polylogarithm of order nþ 1. If we
also take vanishing chemical potentials, we recover the
results in Ref. [127]

Qheavy
0 ¼ 4g2χg2μ

9π5
T9

m4
Z0
F4F3; ð18Þ

in terms of the Riemann ζ-function

Fn ¼ Hnð0Þ ¼ n!ð1 − 2−nÞζðnþ 1Þ; ð19Þ

with F4F3 ≈ 133. We have also included a subindex in Q
to indicate that this is a zeroth-order approximation
neglecting masses and chemical potentials of the leptons.
In order to assess the accuracy of the above approx-

imations, we compare Q in Eq. (10) for massless dark
fermions and the cross section in the heavy Z0 limit with
Eq. (18) for different SM particles at the typical conditions
of PNS in Eq. (9). For muons one finds Qμ=Q0 ≈ 0.33
while for neutrinos and electrons one finds Qν=Q0 ≈ 0.99
and Qe=Q0 ≈ 0.54 (using the physical electron mass in
vacuum), respectively.
The thermal suppression of the muon population is mild

for these conditions in the PNS, Ye ≃ 4Yμ. The positron
abundance is also suppressed by the large electronic

5In the following discussion we fix gμ ¼ 2 with the under-
standing that some intermediate formulas change by factors of 2
for the neutrino case.
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chemical potential and, hence, for the same couplings to
electrons and muons one obtains similar rates.
With these approximations one can estimate the para-

metric dependence of the energy loss rate per unit mass
(i.e., the emissivity) produced by lepton annihilation in the
heavy regime as

ϵheavyann ¼ ϵmax

�
T

30 MeV

�
9
� ffiffiffiffiffiffiffiffi

gχgl
p 4.1 TeV

mZ0

�
4

; ð20Þ

where we have divided Eq. (18) by the density in Eq. (9),
and ϵmax ¼ 2.1 × 1019 erg s−1 g−1 has been estimated
dividing Lχ in (8) by the total mass of the PNS in this
simulation MPNS ¼ 1.351M⊙.

2. Resonant regime

If the Z0 can be produced on shell, then the denominator
in Eq. (12) is dominated by the Z0 width ΓZ0 , and it can be
replaced by π=ðmZ0ΓZ0 Þδðs −m2

Z0 Þ in the narrow width
approximation. The δ-function can be used to perform the
angular integration in Eq. (11) and for mχ → 0 this gives
(neglecting terms of relative size 2m2

μ=m2
Z0 )

Iress ¼ g2χg2μ
24

m3
Z0

ΓZ0EþE−
: ð21Þ

The energy integrations of Eq. (10) can be well-
approximated by neglecting the chemical potentials, but
keeping a nonzero muon mass in the integrand, giving

Qres
μ¼0 ¼

g2μBRχ

4π3
m2

Z0T2mμe−2mμ=T; ð22Þ

where BRχ ≡ BRðZ0 → χχ̄Þ denotes the invisible Z0

branching ratio, and numerically mμ=Te−2mμ=T ≈ 0.004.
For muon annihilation this indeed yields a good approxi-
mation, with Qμ=Qμ¼0 ≈ 0.95, while for electrons one can
set me → 0 in the integrals, giving a result similar to
Eq. (16), which can be further approximated by6

Qres
m¼0 ¼

g2μBRχ

16π3
m2

Z0Tμ2ee−μe=T; ð23Þ

and numerically μ2e=4T2e−μe=T ≈ 0.06, resulting in
Qe=Qm¼0 ≈ 1.6. Finally, neglecting lepton masses and
chemical potential simplifies to

Qres
0 ¼ g2μBRχ

4π3
m2

Z0T3F1F0; ð24Þ

where numerically F1F0 ≈ 0.57. This is a good approxi-
mation for neutrino annihilation withQν=Q0 ≈ 0.95, while

energy-loss rates for electrons (muons) are smaller by a
factor 10 (100).
Importantly, the contribution to the energy-loss rates in

the resonant regime scales perturbatively with the couplings
as ∼Oðg2Þ instead of ∼Oðg4Þ in the heavy or light regimes.
In fact, for BRχ ¼ 1, one should recover the results obtained
for the coalescence Z0 production mechanisms in Ref. [61].7

Also, the various rates in Eqs. (22)–(24) all scale quadrati-
cally with the Z0 mass.
From these expressions one can readily obtain the

emissivities, which for neutrino annihilation read

ϵresann;ν ¼ ϵmax

�
T

30 MeV

�
3
�

gνl
10−9

mZ0

10 MeV

�
2

BRχ ; ð25Þ

where we have used the same approximations as in
Sec III A 1 which are valid up to mZ0 ∼ 200 MeV. As
discussed above, emissivities for electrons and muons are
expected to be smaller by a factor 10 and 100, respectively.

3. Light regime

In this case the denominator of the propagator is
dominated by s, and the cross section can be integrated
analytically. For massless χ and muons one obtains

Ilights ¼ g2χg2μ
6π

; ð26Þ

which is independent of Eþ; E−. Similarly as in the
resonant regime, the energy integrations of Eq. (10) can
be approximated by neglecting the chemical potentials, but
keeping a nonzero lepton mass in the integrand

Qlight
μ¼0 ¼

g2χg2μ
12π5

T2m3
μe−2mμ=T; ð27Þ

where m3
μ=T3e−2mμ=T ≈ 0.04. For muon annihilation this

indeed yields a good approximation, withQμ=Qμ¼0 ≈ 0.85,
while for electrons one can set me → 0 in the integrals (but
keep nonzero chemical potentials), giving a result similar
to Eq. (23)

Qlight
ml¼0 ¼

g2χg2μ
72π5

T2μ3ee−μe=T; ð28Þ

and numerically μ3e=6T3e−μe=T ≈ 0.2, resulting in
Qe=Qm¼0 ≈ 1.2. Finally neglecting lepton masses and
chemical potential simplifies to

6For y ≫ 1, one has HnðyÞ ≈ ynþ1=ðnþ 1Þ; Hnð−yÞ ≈ e−yn!.

7Indeed, using the approximation fþðEþÞf−ðE−Þ ≈
fZ0 ðEþ þ E−Þ, we reproduce their expression for the Z0 production
rate in the light Z0 and for massless leptons and χ, up to a factor
2=3. See also footnote 3 in Ref. [35] for a discussion of the
possible origin of these discrepancies.
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Qlight
0 ¼ g2χg2μ

12π3
T5F2F1; ð29Þ

where numerically F2F1 ≈ 1.5. This is a good approxima-
tion for neutrino annihilation withQν=Q0 ≈ 0.97, while for
electrons (muons) the energy-loss rates and emissivities are
smaller by a factor 10 (100) than predicted by this formula.
Nevertheless, using Eq. (29) we obtain the emissivity

ϵlightann ¼ ϵmax

�
T

30 MeV

�
5
� ffiffiffiffiffiffiffiffiffigχgμ

p
3 × 10−5

�
4

: ð30Þ

4. Annihilation and scattering contributions to trapping

Given the scattering of a χ with another particle b, the
absorption rate can be approximated by (see Appendix A)

Γb
χ ≈
�Y

i

Fdeg;i

�
gb

Z
d3pb

2π3
fbσðsÞv; ð31Þ

where gb are the number of degrees of freedom of the
particle b (gb ¼ 2 for b ¼ χ̄; μ; e and gb ¼ 1 for b ¼ νl),

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpχ · pbÞ2 −m2

χm2
b

q
=EχEb is the Møller velocity and

σðsÞ is the scattering cross section for χ þ b → X1 þ � � � þ
Xn [153]. Moreover, the index i runs over the final-state
particles and we have approximated the effect of the Pauli
blocking by its thermal average or degeneracy factors [30]

Fdeg;i ¼ h1 − fiii ¼
gi
ni

Z
d3pi

ð2πÞ3 fið1 − fiÞ; ð32Þ

where gi and ni denote their degrees of freedom and
number densities, respectively.
There are two types of processes related by crossing to

the annihilation diagram that are relevant for the trapping
regime: Inverse annihilation, χχ̄ → μ−μþ and scattering,
χμ− → χμ− and χ̄μ− → χ̄μ−. Scattering processes are kin-
ematically more involved as they exchange a Z0 in the
t-channel. For very light Z0’s (mZ0 ≪ T), they have a
differential cross section with a Coulombian enhancement
in the forward direction which involves a small momentum
transfer and, therefore, little contribution to the thermal-
ization rate between the dark and SM sectors.
The interplay between the contributions of inverse

annihilation and scattering to the absorption rate is similar
to the case of heavy-lepton neutrinos in SN [154], as
recently emphasized in Ref. [155]. In the absence of self-
interactions between the dark fermions, these two processes
really define two surfaces that determine different properties
of the dark luminosity in the trapping regime. The freeze-out
of inverse annihilation first fixes the number flux of χ ’s. The
outgoing flow then thermalizes via scattering processes with
the leptons until they decouple at a larger radius. For Z0
masses in the resonant regime, absorption rates will be

dominated by the inverse annihilation and the two surfaces
coalesce into a single dark sphere that determines the
thermal emission of the χ’s. In the heavy regime both
mechanisms can be important and this distinction must be
kept in mind.
This is also reminiscent of models with new neutrino self-

interactions and their effect in the dynamical evolution of
the SN [156–162]. Notably, when considering the model in
Eq. (1) with neutrino interactions, processes such as νlν̄l →
νlν̄l also occur. These effects may lead to a fundamentally
different incarnation of the SN 1987A cooling limit, valid in
the trapping regime, which is however beyond the scope of
the classical SN 1987A cooling bound that we apply in our
analysis.
With all this in mind, our fiducial analysis in the trapping

regime includes both processes, inverse annihilation and
scattering, in the calculation of the MFP to obtain one
single dark sphere that determines Lχ . However, we repeat
the calculations for the case where we do not include the
scattering processes. We take the variation of our results as
an indicator of the potential systematic uncertainties
involved in our treatment of the trapping regime.
In addition, dark elastic scattering, χχ̄ → χχ̄, may

become relevant in the trapping regime, as recently dis-
cussed in Refs. [46,163]. In our case, however, this will not
play an important role for the calculations of Lχ in the
trapping regime. The reason is that dark elastic scattering
does not directly contribute to maintaining the population of
χ’s in thermal equilibrium with the SM plasma after they
freeze out (after inverse annihilation turns off). Moreover,
for lowmZ0, the rate of dark elastic scattering is resonant and
overwhelmingly larger than scattering or inverse photo-
production (discussed below in Sec. III B 3), that do tend to
maintain the thermal equilibrium between the dark and SM
sectors. This situation is particularly relevant for muons,
whose population drops significantly at the outer layers of
the PNS where freeze out of the χ’s occurs. Therefore, they
would effectively decouple immediately after, except for the
contributions to the MFP induced by their interactions with
the leptons, which are already accounted for in our fiducial
analysis.8 Nevertheless, we have studied the contributions of
dark elastic scattering processes for completeness, and
discuss in Sec. IV the consequences for our results if these
are included at face value in the calculation of Γχ and
the MFP.

B. Photoproduction

For muons we use two approximations: (1) Describe the
Pauli blocking of the final muon by ð1 − fiÞ → Fdeg;i in
Eq. (32) and, (2) in the phase space integrals of the initial

8A proper treatment of the thermalization rates of dark matter
with self interactions is, actually, an important issue when
studying the structure predicted by these models at the center
of galactic halos (see e.g., Ref. [164]).
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particles we take the extreme nonrelativistic limit where the
muon is static and recoilless. Thus, the kinematics is
evaluated in the muon’s rest frame, s ¼ m2

μ þ 2mμω, with
ω the photon’s energy, and Eχ þ Eχ̄ ¼ ω. One arrives at the
conventional formula [30]

Qnr
γ ¼ nμFdeg;μ

π2

Z
∞

ω0

dωω3fγσðsÞ; ð33Þ

where ω0 ¼ ðs0 −m2
μÞ=2mμ and s0 is the kinematic thresh-

old of the process.
While Eq. (33) is approximately valid for muons,

electrons are instead ultrarelativistic in the PNS. If we
neglect the electron’s mass in the phase space integrals9 and
assume that Eχ þ Eχ̄ ≈ ðωþ ω0Þ=2, then

Qr
γ ¼

Fdeg;e

8π4

Z
∞

0

dωωfγ

Z
∞

0

dω0ω0ðωþ ω0Þfe

×
Z þ1

−1
dðcos θÞsσðsÞ; ð34Þ

where ω0 is the electron energy and s ¼ 2ωω0ð1 − cos θÞ.
Similarly to the annihilation topologies, one can estimate

the average energy available for the production of dark
particles in the photoproduction process. For this we use
the average c.m. energy at threshold,

Eγ
l ¼

ffiffiffiffiffiffiffiffiffiffi
hsill

q
−ml; ð35Þ

and one can also define different regimes of mZ0 for
photoproduction: (1) the “heavy regime” where mZ0 ≳
1 GeV ≫ Eγ

l; (2) the “resonant regime” with mZ0 ≲ Eγ
l,

where the Z0 can be produced on shell. For the conditions
specified in Eq. (9) we find Eγ

μ ∼ 90 MeV and
Eγ
e ∼ 150 MeV.
In Appendix C we provide the results for the photo-

production cross sections along with some details of the
calculations. In addition, we have checked the validity of the
approximations in Eqs. (33) and (34) by calculating the full
5-body phase space thermal integrals exactly, as described
in the seminal work of Ref. [112], where this was done for
effective (axial)vector operators. For completeness, we
outline this calculation in Appendix D. We find that the
approximate formulas provide a very accurate description,
within ∼20% (muons) and ∼40% (electrons) of the full
photoproduction rates in the resonant regime and neglecting
degeneracy of the final state lepton. In the heavy regime,
Eq. (33) underestimates the full result for muons by a factor
∼8. Nevertheless, as shown below in Sec. III B 1, the
emission rate for heavy mZ0 is dominated by annihilation

by orders of magnitude. On the other hand, for the highly
degenerate electrons in the PNS, we find that approximating
the Pauli blocking effects by Fdeg;e overestimates the full
energy-loss rate by a factor ∼3. In the case of muons, the
degeneracy factor Fdeg;μ instead agree with the exact result
within ∼5% accuracy.
In the following, we discuss in more detail the two

regimes of photoproduction and the contribution of inverse
photoproduction to the interaction rate Γχ .

1. Heavy regime

The cross section of the process μ−γ → μ−χχ̄, induced by
the exchange of a heavy Z0, is

σðsÞ ¼ αg2μg2χm2
μ

1728π2m4
Z0

1

ŝ2ðŝ − 1Þ3
× ð−55ŝ6 þ 682ŝ5 þ 483ŝ4 − 968ŝ3 − 169ŝ2 þ 30ŝ

− 3þ 12ŝ2ð2ŝ4 − 14ŝ3 − 87ŝ2 − 52ŝþ 1Þ log ŝÞ;
ð36Þ

with ŝ ¼ s=m2
μ, α denotes the fine-structure constant and

we have taken for simplicity the massless limit mχ → 0.
This cross section is equivalent to the expression obtained
by Dicus in [114] for the photoproduction of a neutrino pair
using only vectorial couplings.10 One might attempt to
obtain a more simplified expression of the rate by taking the
nonrelativistic limit in Eq. (36). However, the cross section
in this case,

σðωÞ ¼ 2αg2μg2χ
105π2m2

μ

ω4

m4
Z0
; ð37Þ

grows rapidly with energy and leads to a gross overesti-
mation of the integral in Eq. (33) (see also Ref. [112]). For
instance, for the typical PNS conditions used above, one
obtains a rate that is larger than the one obtained using the
relativistic expression of the cross section by a factor ∼25.
Nevertheless we use the nonrelativistic approximation

together with Eq. (33) to get a rough estimate of the
emissivity produced by the photoproduction process in this
regime, giving

ϵheavyγ ¼ ϵmax

�
Yμ

0.025

��
T

30MeV

�
8
� ffiffiffiffiffiffiffiffiffi

gχgμ
p TeV

mZ0

�
4

: ð38Þ

Comparing with the equivalent contribution from annihi-
lation in Eq. (20), we conclude that photoproduction gives

9Since the photoproduction cross sections have a kinematic
singularity in the limit me → 0, we keep the physical value of the
mass in numerical estimates, neglecting also plasma effects.

10In fact, our results agree with Ref. [114] but disagrees with
Ref. [30] which cites Ref. [114] with the opposite sign in the term
∝ 120ŝ=ðŝ − 1Þ2 in Eq. (3.12). We thank Georg Raffelt for
confirming this typo. See Appendix C for more details.

MANZARI, CAMALICH, SPINNER, and ZIEGLER PHYS. REV. D 108, 103020 (2023)

103020-8



an emissivity rate that is smaller by a factor ∼250 and thus
can be neglected in the heavy regime.

2. Resonant regime

The resonant μ−γ → μ−Z0ð→ χχ̄Þ cross section is

σðsÞ ¼ πααχ
m2

μ

BRχ

ŝ2ðŝ − 1Þ3
�
ðŝðŝðŝþ 7x0 þ 15Þ þ 2x0 − 1Þ

− x0 þ 1ÞRðx0; ŝÞ þ 4ŝ2ðŝ2 − 2ŝðx0 þ 3Þ

þ 2x0ðx0 þ 1Þ − 3Þtanh−1 Rðx0; ŝÞ
ŝ − x0 þ 1

�
; ð39Þ

where we have introduced the notation αχ ¼ g2μ=4π,
and where ŝ ¼ s=m2

μ, x0 ¼ m2
Z0=m2

μ and Rðx; ŝÞ ¼ ðŝ2−
2ŝðxþ 1Þ þ ðx − 1Þ2Þ1=2. For BRχ → 1 we recover the
cross section for semi-Compton production of massive
vector bosons, γμ− → Z0μ−. In the mZ0 → 0 limit, one
obtains

σðsÞ ¼ πααχ
m2

μ

BRχ

ŝ2ðŝ − 1Þ3 ðŝ
4 þ 14ŝ3 − 16ŝ2 þ 2ŝ − 1

þ ð2ŝ4 − 12ŝ3 − 6ŝ2Þ log ŝÞ; ð40Þ

and if we now perform the nonrelativistic expansion,

σðsÞ ≈ 8πααχBRχ

3m2
μ

; ð41Þ

we recover the Thomson cross section for αχ → α and
BRχ → 1. This is the expression commonly used for the
semi-Compton production of vector particles in stellar
plasmas [30,61], but it is less appropriate for the PNS where
leptons are relativistic. In fact, in case of muons for mZ0 ¼ 0
and in the typical conditions we have been using for the
PNS, we find that the Thomson cross section overestimates
the relativistic one by a factor ∼2.
On the other hand, the energy-loss rate of the full

resonant photoproduction cross section is insensitive to
mZ0 up to mZ0 ≳ T, at which point it starts dropping due to
increased Boltzmann suppression and defines the onset of
the heavy regime. Taking as a reference the Thomson cross
section, we can estimate the emissivity of the photo-
production in the resonant regime as

ϵresγ ¼ ϵmax

�
Yμ

0.025

��
T

30 MeV

�
4
�

gμ
5 × 10−10

�
2

; ð42Þ

using our typical PNS conditions in Eq. (9). Comparing this
to the emissivity from μþμ− annihilation, Eq. (30), we
observe that the rate of χχ̄ production from muons for light
Z0 will be dominated by photoproduction for many orders
of magnitude. FormZ0 ≲ 10 MeV this process is even more
important than resonant neutrino-antineutrino annihilation

for the case gνl ¼ gμ, as demonstrated by comparing
to Eq. (25).

3. Contribution of inverse photoproduction to trapping

Assuming thermal equilibrium, which is adequate in the
trapping regime, the contribution of inverse photoproduc-
tion l−χχ̄ → l−γ to Γχ can be related to the production
rates by means of detailed balance (see Appendix A). In
case of muons, the photoproduction rate of χ per unit
volume can be calculated using the same approximations as
in Eq. (33),

Cγprod;μ ¼
nμFdeg;μ

π2

Z
∞

ω0

dωω2fγσðsÞ; ð43Þ

while for electrons we use

Cγprod;e ¼
Fdeg;e

8π4

Z
∞

0

dωωfγ

Z
∞

0

dω0ω0fe

×
Z þ1

−1
dðcos θÞsσðsÞ: ð44Þ

Then, we estimate the contribution of photoproduction to
the MFP by applying detailed balance, using the inverse of
hΓγ

χi (see Appendix A)

hΓγ
χiχ ¼

Cγprod
nχ

: ð45Þ

Note that this approximation differs from the direct
calculation of the contribution of inverse annihilation
and scattering in Eq. (31). In order to combine the two
contributions in our estimate of the MFP we use the
approximate formula

λ¼
*

vχ
Γχ̄
χ þΓl

χ þΓγ
χ

+
≈

1

hvχ=ðΓχ̄
χ þΓl

χÞi−1þhΓγ
χi=hvχi

; ð46Þ

where all the thermal averages are understood to be taken
with respect to the χ kinematics (see Appendix A).

C. Other processes and neglected plasma effects

In our analysis, we have selected the processes that are
dominant for the production and absorption of χ ’s in muons
and have neglected plasma effects which are expected to be
small in this case. Electrons in the PNS, on the other hand,
are highly degenerate. Moreover, in the plasma the electron
and photon dispersion relations are significantly modified.
The electron mass effectively increases while the photon
acquires a longitudinal mode and an effective mass that
could enable the decay γ̃ → χχ̄, where the “plasmon” γ̃
includes these collective plasma modes [30,111,119,121].
Nonetheless, the production of χ ’s in the heavy regime

and neglecting the χ mass would be analogous to the SM
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pair production of heavy-lepton neutrinos from the elec-
trons in the stellar plasma. Plasmon decay is indeed an
important process in the conditions of high densities
predicted in the PNS. However, at the high temperatures
reached in the SN explosions considered in this work,
eþe− annihilation becomes the dominant process [121].
Adding mass to the χ’s will not affect this conclusion and
may, in fact, kinematically close the plasmon decay if
mχ ≳ 10 MeV, which is the scale of the plasma frequen-
cies expected in the PNS. Finally, accounting for the
increase of the electron mass in the plasma by a similar
amount does not affect significantly the annihilation rates
as discussed in Sec. III A 1.
On the other hand, for the light Z0 some of the neglected

effects can become important. For instance, resonant
bremsstrahlung production e−p → e−pðZ0 → χχ̄Þ could
become the dominant process for mZ0 ∼ 10 MeV, as it is
the case for on-shell production of axionlike particles [51].
In addition, for these masses one needs to consider
medium-induced γ̃ − Z0 mixing which may also have an
impact [165]. For all of these reasons, our results for the
emission from electrons in the light regime, mZ0 ≲
50 MeV, should be considered as an intermediate step
towards a more refined and robust calculation, and the
results that we report for this case regarded as a rough
approximation.

IV. RESULTS

In this section, we apply the upper limit on the dark
luminosity in Eq. (8) to obtain the SN 1987A constraint on
the parameter space of the different dark sector models we
consider. We start by presenting an analysis in terms of
effective operators, which corresponds to the heavy regime
introduced in Sec. II for the calculation of the relevant
processes. This allows us to generalize our analysis to
generic interactions of dark fermions coupled to leptons via
dimension-6 operators, and extract a SN 1987A limit for
any portal mediator with mass much larger than the
temperatures and chemical potentials in the PNS. It is
interesting to note that this approach was already applied in
the context of neutrino emission from stellar plasmas in the
very early days of the SM [115,126]. We then focus on the
constraints on the parameter space of the simplified Z0

model of Eq. (1), which can be regarded as the continuous
extension of the EFT bounds to low mediator masses for
one particular operator (VV). Finally, we present the SN
1987A constraints for a phenomenologically relevant and
UV-motivated version of the Z0 model, obtained by gauging
the Lμ − Lτ symmetry.

A. Effective field theory

The analysis for the heavy Z0 can be generalized in the
context of an EFTwith four-fermion operators. Focusing on

the couplings of dark-sector fermions χ to leptons l ¼ e, μ,
νl, the most general effective Lagrangian at leading order is

LEFT ¼ 1

Λ2
l

X
X;Y

Cl
XYðl̄ΓXlÞ · ðχ̄ΓYχÞ; ð47Þ

where X, Y run over V; A; S; P; L; R; T; T 0, with ΓV ¼ γμ,
ΓA ¼ γμγ5, ΓS ¼ 1, ΓP ¼ γ5, ΓR;L ¼ γμð1� γ5Þ=2,
ΓT ¼ σμν ¼ i=2½γμ; γν�, and ΓT 0 ¼ σμνγ5, and Lorentz indi-
ces properly contracted.11 Matching the effective operators
to the Z0 model in Eq. (1) coupled to charged leptons yields
Λl ¼ mZ0 and Cl

VV ¼ glgχ . For neutrinos their bilinears in
the EFT Lagrangian are constructed with left-handed fields
and contribute, instead, to Cνl

LV ¼ gνlgχ .
In Table I, we show the limits obtained on Λeff

l ≡
ðΛl=Cl

XYÞ1=2 for these interactions in the limit mχ ¼ 0

for muons, neutrinos and electrons. The upper limits
correspond to the free-streaming regime, the lower limits
to the trapping regime. Notice that the excluded regions of
Λeff
l are in the EFT range of validity as long as Λl ≳ 1 GeV,

which is much larger than all other energy scales relevant in
the PNS. This is the case for essentially all operators.
The SN 1987A bounds on the EFT operators are very

strong, reaching up to 4–7 TeV. This sensitivity to the
mediator mass scale is approximately one order of magni-
tude better than the one achieved by laboratory experiments
for similar leptonic interactions [166–169].12 For instance,
monophoton searches at LEP have been used to set the

TABLE I. SN 1987A exclusion range of the effective scale
Λeff
l ≡ Λl=

ffiffiffiffiffiffiffiffi
Cl
XY

p
for the EFT interactions defined in Eq. (47),

with mχ ¼ 0 and for the simulation SFHo-18.8. The lower limit
of the constraint is set by the trapping regime. The bounds for
XY ¼ SP, PP, AA, VA, and T 0T are equal to those of SS, PS,
VV, AV, and TT, respectively. The bounds for RR, LR, and RL
are identical to those of the LL operators. The constraints on Λeff

νe

essentially coincide with those on Λeff
νμ .

XY Λeff
μ [TeV] Λeff

νμ [TeV] Λeff
e [TeV]

SS 0.0017–4.4 0.062–5.2 0.070–5.4
PS 0.00044–5.1 0.062–5.2 0.070–5.4
VV 0.0017–5.7 0.072–5.6 0.11–5.9
AV 0.0022–4.7 0.072–5.6 0.11–5.8
LL 0.0015–3.7 0.051–4.0 0.074–4.1
LV 0.0018–4.4 0.061–4.7 0.088–4.9
TT 0.0033–6.8 0.10–6.7 0.17–7.0

11Only two tensor operators are independent and we will take
those corresponding to Cl

TT and Cl
T 0T .

12See also [170] for an estimate of the SN 1987A bounds
obtained by recasting the results derived in [155] for an operator
coupled like the electromagnetic current.
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following lower bounds on Λeff
e [166]:

VV; AA∶ 0.48 TeV;

SS∶ 0.44 TeV: ð48Þ
In Fig. 2, we show the SN 1987A limits on these EFT

operators compared with those obtained at LEP [166], and
with the projections of the sensitivity that could be achieved
at Belle II [167] or at a future eþe− linear collider [171].
Remarkably, the SN 1987A bounds are stronger than LEP
by roughly one order of magnitude, and will even dominate
over future collider limits. Note however that SN 1987A
constraints apply only to sufficiently light dark fermions,
while collider bounds typically extend to larger χ masses,
such as LEP, which provides constraints formχ ≲ 100 GeV.
As discussed in Sec. II, the dominant effect in the heavy

regime of the Z0 model is annihilation (for typical SN
conditions), and photoproduction can be neglected. We
have checked that this is indeed true for any EFT operator
by calculating their contributions to photoproduction
explicitly (see Appendix C). In fact, we note that, for
the EFT limit of the Z0 model, the approximate expression
in the high-energy limit (ml → 0) in Eq. (18) leads to a
bound on the effective scale that is off only by ∼30% with
respect to the full calculation. Therefore, since the high-
energy limit gives quite accurate results, the numerical
bounds for different Lorentz structures and different leptons
are of the same order, as in this limit the corresponding
cross sections differ at most by Oð1Þ numbers.
In Fig. 3 we show the dependence of the limits on the

heavy scale as a function of the dark fermion mass mχ for

the effective VV interaction and LV for neutrinos. As
expected, the excluded regions shrink with increasing mχ

and they are limited to masses mχ ≲ 300 MeV. We also
analyze the variations of the constrained region produced
by using the simulation SFHo-20.0 or different prescrip-
tions for the processes included in the trapping regime. The
upper limits of Λeff

l obtained from this hotter simulation are
a factor ∼2 stronger in the free-streaming regime, because
in this case emission is dominated by the hottest region

FIG. 2. Comparison between SN 1987A and collider limits on
the effective scale Λeff

e ≡ Λe=
ffiffiffiffiffiffiffiffi
Ce
XY

p
for the EFT interactions of

electrons defined in Eq. (47), withmχ ¼ 0. The orange bars show
the exclusion range obtained from SN 1987A, using the simu-
lation SFHo-18.8. The upper limit is obtained by the free-
streaming regime and the lower limit is set by the trapping
regime. The red bars show the lower limits obtained at LEP [166],
while the purple and green hatched bars show the projections for
Belle-II with 50 ab−1 of integrated luminosity [167] and ILC withffiffiffi
s

p ¼ 1 TeV and Lint ¼ 1000 fb−1 [171].

FIG. 3. SN 1987A constraints on the heavy scale Λeff
l as a

function of the dark fermion mass mχ for the VV operator and
different leptons. The solid orange region is excluded using
numerical input from the simulation SFHo-18.8, while the dotted
line encloses the region excluded using SFHo-20.0. The hatched
region gives an estimate of the uncertainty of the trapping
regime, obtained by omitting the contribution to the MFP from
scattering processes, as discussed in Sec. III A 4. The constraints
on νe and νμ are essentially similar, so we show those on νμ and
label them as ν.
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inside the supernova. On the other hand, the uncertainties
of the boundary with the trapping regime for electrons
and neutrinos are relatively small and our fiducial calcu-
lation is, again, on the conservative side. The reason for this
behavior is that the dark sphere is not located in the region
of highest temperature. This makes trapping sensitive to the
shape of the temperature profile, which is similar for both
simulations.
Moreover, the scale marking the onset of the trapping

regime in these cases is Λeff
l ≈ 100 GeV, which is of the

order of the electroweak scale. This is consistent with
the fact that the boundary of the trapping regime is set by
the luminosity of the trapped neutrinos via Eq. (8), which
interact with SM leptons precisely through dimension-6
operators suppressed by the Fermi scale.
For muons, however, the bound extends to scales that

are a few orders of magnitude lower than for electrons and
neutrinos. In addition, there is a large variation in the
location of the boundary depending on the selection of
processes contributing to trapping. The reason is that
muons are relatively heavy and there is a maximal radius
where they can be produced by thermal fluctuations in the
plasma. Putting it differently, there are no muons to scatter
with in case of inverse photoproduction and inverse
annihilation becomes ineffective because of the strong
phase-space suppression. In case that only μ − χ inter-
actions are included in the calculation of the MFP, the
radius of the dark sphere is typically smaller than the one
of the neutrino sphere and the bounds on Λeff

μ extend down
to ∼1 GeV. However, if one were to also include χχ̄ elastic
scattering in the calculation of the MFP, and the χ is light,
mχ ≲ T, then they would produce contributions analogous
in size to those given by the neutrino and electron
interactions and the boundary of the trapping regime
would be increased again to ∼100 GeV, cf. the discussion
in Sec. III A 4.

B. Simplified Z0 models

We now present the SN 1987A constraints in the
parameter space of the simplified Z0 model in Eq. (1).
In the derivation of our results for the annihilation
contributions to Q we numerically solve the integral in
Eq. (10) (and the equivalent ones for neutrinos and
electrons), as described in Appendix E. This procedure
allows us to track the contribution of the annihilation rates
across the whole mZ0 range, including the transition
regions between the three regimes defined in Sec. III A.
Instead, for photoproduction we only use the expressions
in the resonant regime, because photoproduction is only
relevant for the low-mZ0 regime of the charged leptons,
see Eq. (38).
In Fig. 4 we show the SN 1987A limits for the model in

Eq. (1), for the case when only one of the leptonic couplings
is present and with gχ ¼ gl. In the lower (upper) part of the
plots we identify the dominant process for production

(absorption) in the indicated mass range. We also show
the variation of the constrained region obtained by using the
SFHo-20.0 simulation (dotted curve) and, independently, by
omitting the scattering contribution to the MFP in the
trapping regime (hatched region). In all cases we observe
the onset at high masses of the power-law behavior of the
constraints ∝ 1=m4

Z0 , characteristic of the EFT. Interestingly,
this occurs for mZ0 ≳ 1 GeV in the free-streaming domain
but already formZ0 ≳ 100 MeV in the trapping regime. This
is because in the former case emission is governed by
the conditions in the hottest region of the PNS, while in the

FIG. 4. Excluded parameter space of the Z0 model in Eq. (1)
using constraints from SN 1987A with the simulation labeled as
SFHo-18.8 in Ref. [59]. The dotted line encloses the region
excluded using SFHo-20.0. The hatched region gives an estimate
of the uncertainty of the trapping regime, obtained by omitting
the contribution to the MFP from elastic scattering processes, as
discussed in Sec. III A 4.
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latter it corresponds to the cooler outmost layer of the dark
sphere, where all relevant energy scales are smaller. The
boundary of the trapping regime changes very little with
respect to adding or not scattering contributions in the
absorption rate. Adding dark elastic scattering (χχ̄ → χχ̄) in
the muonic case (for mχ ≲ T) would instead make the
trapping region similar to the neutrino case.
The shape of the constrained region below mZ0 ≈ 1 GeV

depends on the lepton considered. For muons the low mZ0

region is dominated by (resonant) photoproduction, which
gives a flat bound up to mZ0 ≳ T, where the on shell
production of the Z0 starts decreasing due to Boltzmann
suppression. Nevertheless, it remains more important than
μþμ−-annihilation (in the light regime), until it becomes
resonant at the μþμ− threshold, mZ0 ≥ 2mμ. However, this
occurs already at large energies and the production quickly
suffers from the Boltzmannian suppression, converging to
the EFT scaling at higher mZ0.
For electrons, photoproduction dominates again for low

mZ0 , even though the eþe− threshold is much lower than for
muons. Resonant annihilation of electrons quickly replaces
photoproduction as the dominant process abovemZ0 ≳ T in
the free-streaming domain, until the resonance starts suffer-
ing from Boltzmann suppression and the EFT takes over.
For the trapping regime, there is no range of mZ0 where
resonant annihilation dominates and the EFT directly
replaces inverse-photoproduction at mZ0 ≳ 100 MeV.
For neutrinos there is no photoproduction and the

production and absorption rates are given by annihilation
in the resonant and heavy regimes. In the free-streaming
regime we observe a strengthening of the bound up to
T ≲ 100 MeV. This is due to the m2

Z0 scaling of the
emission rate in the resonant regime, see Eq. (24), which
is quickly overcome by Boltzmann suppression until the
heavy regime takes over.

C. Gauged Lμ −Lτ models

Finally, we study SN 1987A constraints on a UV-
motivated realization of the simplified Z0 model in
Eq. (1). This is the gauged Lμ − Lτ model coupled to
DM fermions, described by the interaction Lagrangian

Lint ¼ Z0
μðgμ−τjμSM þ gχ χ̄γμχÞ; ð49Þ

where χ is the dark fermion and jμSM is the SM part of the
Lμ − Lτ current. These interactions induce an irreducible
contribution to the kinetic mixing of the Z0 with the photon,
through μ and τ loops, giving a mixing parameter of the
order ϵ ∼ gμ−τ=70 [172]. This would presumably give only
small corrections to our analysis (see e.g., [61]) and thus
will be neglected.
It is well-known that such models can accommodate the

present ðg − 2Þμ anomaly with couplings of order gμ−τ ∼
10−4 for a light Z0 gauge boson,mZ0 ≪ mμ [173–175]. They

also allow to reproduce the DM relic abundance through
resonant s-channel annihilation, when muon and DM
fermion have similar couplings to the Z0 gauge boson
and the latter is heavier than the DM fermion by a factor
2–3 [77,78]. For such light masses, Z0 decays and DM
annihilation can heat the SM bath after neutrino decoupling,
thereby increasing the effective number of relativistic
degrees of freedom, usually expressed as an effective
number of neutrino species Neff . Such a contribution could
help to reduce the long-standing tension between local and
cosmological determinations of the Hubble constant [95,97],
if the new contributions is of order ΔNeff ∼ 0.1–0.4 [1].
At present, the most relevant laboratory constraints (see

Ref. [70] for an overview) stem from BABAR searches for
Z0-bosons above 212 MeV decaying to muons [176],
neutrino trident production [177] at CCFR [178], bounds
on coherent elastic neutrino nucleus scattering from the
COHERENT Collaboration [179] and constraints on neu-
trino-electron scattering [180,181] at BOREXINO [182].
Avariety of accelerator-based searches have been proposed
to explore the unconstrained parameter space, such as
NA62 [98], which looks for final state radiation of Z0

bosons in Kþ → μþνμ, and dedicated searches using muon
beam facilities such as the NA64μ experiment [183] at
CERN and M3 [99] at Fermilab.
Astrophysical limits from white dwarfs have been

studied already in Refs. [70,184]. Here we show that also
constraints from SN 1987A disfavor a large region of
parameter space with significant overlap with the expected
reach of planned experiments and with the region that could
address the H0 tension. In Fig. 5, we show the SN 1987A
limits on the muon coupling as a function of the Z0 mass, in
the scenario where muons and dark matter couple equally
to the Z0, gμ−τ ¼ gχ , and mZ0 ¼ 3mχ . This is compared to
the current bounds discussed above, shown in gray, and the
regions preferred at 95% C.L. by ðg − 2Þμ and H0.
In the free-streaming regime we use the same method as

for the simplified model described in Appendix E, includ-
ing the contributions from μþμ−, νμν̄μ and ντν̄τ annihila-
tions. We also add the resonant photoproduction off muons
which dominates the rate up to mZ0 ≲ 10 MeV, where
neutrino annihilation starts to give the largest contribution
to the rate, producing the characteristic strengthening of the
bound with mZ0 . At mZ0 ¼ 2mμ a small feature signalizes
the onset of resonant μþμ− annihilation. Instead, the
boundary of the constrained region in the deep trapping
regime is dominated by inverse resonant annihilation into
neutrinos. Note that the χ mass scales with the Z0 mass,
which has the effect of slightly suppressing the rate as
compared to the massless-χ case, cf. Fig. 4. A rough
estimate of the uncertainty of the excluded region is
indicated with a dashed orange line, which shows the
limits obtained from employing the hottest SN simulation
SFHo-20.0, as described in Sec. II.
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V. SUMMARY AND CONCLUSIONS

In this paper, we have studied the SN 1987A cooling
constraints on dark-sector models induced by the emission
of new light dark fermions χ coupled to leptons. To provide
a concrete framework, we consider general vector portal
interactions arising from the exchange of a massive Z0

vector mediator. We focus primarily on the couplings to
muons, which are predicted to have sizable number
densities within the hot and dense environments of the
proto-neutron star formed during core-collapse supernovae.
However, we also extend our analysis to couplings to
neutrinos and electrons.
We have considered various mechanisms for the produc-

tion and absorption of the χ’s and different regimes that
depend on the ranges of the parameters of the model. Firstly,
the constraints depend on the mass of χ, as their pair
production becomes Boltzmann suppressed for mχ ≫ T.
Secondly, different regions ofmZ0 can be identified based on
whether the dark fermions are resonantly produced or
generated from the tail of the Z0 resonance. This distinction
arises, for instance, when the Z0 is heavy and cannot be
produced on shell by the thermal fluctuations in the
medium. Finally, there exist two distinct regimes of cou-
pling values, depending on whether the dark fermions free-
stream or become trapped within the PNS. Consequently, by
analyzing the χχ̄ production within these two regimes, for
given masses of the Z0 and the χ, we can determine the range
of couplings that is excluded by the observations from
SN 1987A.
For Z0 particles with masses mZ0 ≲ T ∼ 10 MeV and

massless χ, the observations from SN 1987A place con-
straints on the couplings between ∼10−1 and ∼10−9, for

equal couplings of the vector mediator to leptons and dark
fermions, cf. Fig. 4. However, the range of these bounds
strongly depends on the Z0 mass and the specific lepton to
which the Z0 couples.
These calculations can be readily extended to explicit

Z0-models, for example motivated by a gauged lepton
flavor symmetry with a dark sector charged under it. We
specifically investigate the case of Lμ − Lτ, which has been
proposed in the literature as a combined solution to the
ðg − 2Þμ anomaly, the Hubble tension and the dark matter
puzzle. The SN 1987A limit covers a large region of
parameter space that overlaps with the forecasts of future
experiments and with part of the region that could address
some of the tensions, see Fig. 5.
On the other hand, when the Z0 mass is larger than the

temperature and chemical potentials in the PNS, the
interactions mediated by the Z0 can be accurately described
by effective operators. This allows us to generalize the
analysis to completely generic heavy portal interactions
between dark fermions and SM leptons, summarized in
Fig. 3. We find that SN 1987A cooling can probe new-
physics scales up to 4–7 TeV (cf. Table I), which surpasses
current bounds from laboratory experiments by an order of
magnitude (see Fig. 2).
We emphasize that our analysis is not complete when a

light Z0 is coupled to electrons. In this case, bremsstrahlung
processes are expected to provide the dominant contribu-
tions to the emission of dark fermions, and plasma effects
can have a significant impact on the analysis. Nevertheless,
we consider our results as an important step into this
direction, which significantly extends previous studies in
the literature.

FIG. 5. SN 1987A cooling constraint (orange region) in the mass-coupling plane of the Lμ − Lτ model, assuming mZ0 ¼ 3mχ and
gχ ¼ gμ−τ. The dotted orange line indicates the bound obtained from using the SN simulation SFHo-20.0, instead of SFHo-18.8 which
gives the weakest constraints. Also shown are the preferred regions to explain the ðg − 2Þμ anomaly (green band) and the H0 tension
(yellow band), along with current constraints (gray region) and the forecasts for future experiments. See main text for details.
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Finally, other aspects of SN physics could lead to
constraints complementary to the ones obtained in this
work (see e.g., Refs. [185,186]). In particular, there have
been recent efforts towards a better understanding of the
effect of neutrino self-interactions [159,161,162] in the
trapping regime. Moreover, it would be interesting to check
whether bounds obtained from energy transport by dark
particles exceed the bounds derived from energy loss alone,
following the analysis in Ref. [185].

Code and data availability. We provide a minimal code
example to test different parameter points of the Lμ − Lτ

model at https://github.com/spinjo/SNforMuTau.git.
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APPENDIX A: GENERALITIES
OF ABSORPTION RATES

In the case of generic 2 → n processes, where a dark
particle χ interacts with a particle b in the initial state, the
resulting contributions Γb

χ to the absorption rate of χ can be
approximated by

Γb
χ ≈

1

2gχEχ

Y
finali

Fdeg;i

Z
d3pb

ð2πÞ32Eb
fb

d3pi

ð2πÞ32Ei

× ð2πÞ4δ4
�X

i

pi

�X
spins

jMj2

¼
Y
finali

Fdeg;i × nbhσvib; ðA1Þ

where h·ib denotes the thermal average taken over the
particle b, defined by

hXib ¼
gb
nb

Z
d3pb

ð2πÞ3 fbX: ðA2Þ

Furthermore, σ denotes the cross section of the process,

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpb · pχÞ2 −m2

χm2
b

q
=EbEχ is the Møller velocity and

we have approximated the Pauli-blocking effects by intro-
ducing the degeneracy factors defined in Eq. (32).
By performing the d3pχ integral in Eq. (6), one arrives at

Cbabs ¼ nχhΓb
χiχ ¼ nχnbhσviχb; ðA3Þ

where hσviχb denotes the thermal average over the com-
plete initial state kinematics, i.e.,

hσviχb ≡ gχgb
nχnb

Z
d3pχ

ð2πÞ3 fχ
d3pb

ð2πÞ3 fbσðpχ ; pbÞv: ðA4Þ

The inverse process defines an analogous collision operator
for production of χ ’s, Cbprod, which in conditions of thermal
and chemical equilibrium reads

Cbprod ¼ Cbabs: ðA5Þ

This detailed balance relation can then be used to estimate
the MFP in the PNS

hλðpχÞiχ ¼
�
vχ
Γb
χ

�
χ

≈
hvχiχ
hΓb

χiχ
¼ nχ

Cbprod
hvχiχ : ðA6Þ

APPENDIX B: CROSS SECTIONS
FOR ANNIHILATION (2 → 2)

In this appendix, we list cross sections for the 2 → 2
processes ll → χχ; χχ → ll (s-channel) and lχ → lχ
(t-channel), where l generically refer to any lepton, includ-
ing neutrinos. For the effective interactions in Eq. (47), a
linear independent basis is given by the operatorsOSS,OPP,
OSP, OPS, OVV , OAA, OAV , OVA, OTT , OT 0T . and we find13

13We disagree with Ref. [128] on the t-channel recovering their
results only in the limit ml; mχ → 0.
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σll→χχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

χ

q
48πsΛ4

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

l

q h
3C2

SSðs − 4m2
lÞðs − 4m2

χÞ þ 3C2
PPs

2 þ 3C2
PSsðs − 4m2

χÞ þ 3C2
SPsðs − 4m2

lÞ

þ 4C2
VVðsþ 2m2

lÞðsþ 2m2
χÞ þ 4C2

AAðs2 − 4sðm2
l þm2

χÞ þ 28m2
lm

2
χÞ þ 4C2

VAðsþ 2m2
lÞðs − 4m2

χÞ
þ 4C2

VAðs − 4m2
lÞðsþ 2m2

χÞ þ 8C2
TTðs2 þ 2sðm2

l þm2
χÞ þ 40m2

lm
2
χÞ þ 8C2

T 0Tðs2 þ 2sðm2
l þm2

χÞ − 32m2
lm

2
χÞ

− 24CAACPPsmlmχ þ 144CVVCTTsmlmχ

i
; ðB1Þ

σχl→χl ¼ 1

48πΛ4
l s

3

h
C2
SSðs4 þ 2s3ðm2

l þm2
χÞ − 2s2ð3m4

l − 14m2
lm

2
χ þ 3m4

χÞ þ 2sðm2
l þm2

χÞðm2
l −m2

χÞ2 þ ðm2
l −m2

χÞ4Þ

þ C2
SPðm4

l − 2m2
lðm2

χ − 2sÞ þ ðs −m2
χÞ2Þðm4

l − 2m2
lðm2

χ þ sÞ þ ðs −m2
χÞ2Þ

þ C2
PSðm4

l − 2m2
lðsþm2

χÞ þ ðs −m2
χÞ2Þðm4

l þm4
χ − 2m2

lðm2
χ þ sÞ þ sðsþ 4m2

χÞÞ
þ C2

PPðm2
l − 2m2

lðsþm2
χÞ þ ðs −m2

χÞ2Þ2 þ 2C2
VVð4s4 − 10s3ðm2

l þm2
χÞ þ s2ð9m2

l þ 22m2
lm

2
χ þ 9m4

χÞ
− 4sðm2

l þm2
χÞðm2

l −m2
χÞ2 þ ðm2

l −m2
χÞ4Þ þ 2C2

VAðs − ðml þmχÞ2Þðs − ðml −mχÞ2Þ
× ðm4

l − 2m2
lðm2

χ þ sÞ þ ð2sþm2
χÞ2Þ þ 2C2

AVðs − ðml þmχÞ2Þðs − ðml −mχÞ2Þ
× ð4s2 þ 2sð2m2

l −m2
χÞ þ ðm2

l −m2
χÞ2Þ þ 2C2

AAð4s4 − 4s3ðm2
l þm2

χÞ − s2ð3m4
l − 46m2

lm
2
χ þ 3m4

χÞ
þ 2sðm2

l þm2
χÞðm2

l −m2
χÞ2 þ ðm2

l −m2
χÞ4Þ þ 8C2

TTð7s4 − 13s3ðm2
l þm2

χÞ
þ 2s2ð3m4

l þ 26m2
lm

2
χ þ 3m4

χÞ − sðm2
l þm2

χÞðm2
l −m2

χÞ2 þ ðm2
l −m2

χÞ4Þ
þ 8C2

T 0Tðs − ðml þmχÞ2Þðs − ðml −mχÞ2Þð7s2 þ sðm2
l þm2

χÞ þ ðm2
l −m2

χÞ2Þ
þ 4CSSðCTTðm8

l −m6
lð4m2

χ þ sÞ þm4
lm

2
χð6m2

χ þ sÞ þm2
lð−4m6

χ þm4
χs − 8m2

χs2 þ 5s3Þ
þm8

χ −m6
χsþ 5m2

χs3 − 2s4Þ − 3CVVmlmχsðm4
l − 2m2

lðm2
χ − sÞ þm4

χ þ 2m2
χs − 3s2ÞÞ

þ 4CPPð3CAAmχsðm4
l − 2m2

lðm2
χ þ sÞ þ ðm2

χ − sÞ2Þ þ CTTðm8
l −m6

lð4m2
χ þ sÞ þm4

lm
2
χð6m2

χ þ sÞ
þm2

lð−4m6
χ þm4

χs − 8m2
χs2 þ 5s3Þ þm8

χ −m6
χsþ 5m2

χs3 − 2s4ÞÞ
þ 4ðCSP þ CPSÞðCT 0Tðm8

l −m6
lð4m2

χ þ sÞ þm4
lm

2
χð6m2

χ þ sÞ þm2
lð−4m6

χ þm4
χs − 8m2

χs2 þ 5s3Þ þm8
χ

−m6
χsþ 5m2

χs3 − 2s4Þ þ 6CVAmlmχs2ðm2
χ −m2

lÞÞ − 4CVVðCAAðm8
l −m6

lð4m2
χ þ sÞ

þm4
lm

2
χð6m2

χ þ sÞ þm2
lð−4m6

χ þm4
χs − 8m2

χs2 þ 5s3Þ þm8
χ

−m6
χsþ 5m2

χs3 − 2s4Þ þ 18CTTmlmχsðm4
l − 2m2

lðm2
χ þ sÞ þ ðm2

χ − sÞ2ÞÞ
þ 72CAACTTmlmχsðm4

l − 2m2
lðm2

χ − sÞ þm4
χ þ 2m2

χs − 3s2Þ
þ CVAð144CT 0Tmlmχs2ðm2

l −m2
χÞ − 4CAVðm8

l −m6
lð4m2

χ þ sÞ þm4
lm

2
χð6m2

χ þ sÞ
þm2

lð−4m6
χ þm4

χs − 8m2
χs2 þ 5s3Þ þm8

χ −m6
χsþ 5m2

χs3 − 2s4ÞÞ
þ 144CAVCT 0Ts2mlmχðm2

l −m2
χÞ
i
: ðB2Þ

We can also generalize the cross sections for the Z0 model in Eq. (1) by including generic vector (Vi) and axial (Ai)
couplings to the leptons [such that Vl ¼ 1, Al ¼ 0 gives back the model in Eq. (1)],

σVll→χχ ¼
g2lg

2
χ

12πs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

χ

s − 4m2
l

s
sþ 2m2

χ

ðs −m2
Z0 Þ2 þm2

Z0Γ2
Z0

h
V2
lðsþ 2m2

lÞ þ A2
lðs − 4m2

lÞ
i
:

The t-channel for small Z0 masses is more involved because the propagator depends on the Mandelstam variable t, over
which one integrates to obtain the total cross section. Neglecting the Z0 decay width, the resulting expression reads
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σVχl→χl ¼ g2lg
2
χ

8π

�
ðV2

l þ A2
lÞ
2sþm2

Z0

sm2
Z0

þ 1

m2
Z0

V2
lðm4

Z0 þ 8m2
lm

2
χÞ þ A2

lm
2
Z0 ðm2

Z0 − 4m2
lÞ

m4
l − 2m2

lðsþm2
χÞ þ ðs −m2

χÞ2 þ sm2
Z0

− 2
V2
lðsþm2

Z0 Þ þ A2
lðsþm2

Z0 − 2m2
lÞ

m4
l − 2m2

lðsþm2
χÞ þ ðs −m2

χÞ2

× log
m4

l − 2m2
lðsþm2

χÞ þ ðs −m2
χÞ2 þ sm2

Z0

sm2
Z0

�
:

ðB3Þ

The cross sections for the inverse process χχ → ll can
be obtained using

σχχ→ll ¼ s − 4m2
l

s − 4m2
χ
σll→χχ : ðB4Þ

APPENDIX C: CROSS SECTIONS
FOR PHOTOPRODUCTION (2 → 3)

IN THE EFT LIMIT

In this appendix, we derive the cross sections for the
photoproduction processes l−γ → l−χ̄χ with the effective
operators given in Eq. (47). For simplicity, we rewrite
Eq. (47) factorizing the Wilson coefficients in terms of a
leptonic and dark current, Cl

XY ¼ XlYχ . We start with the
most simple case of scalar interactions. The amplitude reads

iM ¼ e
Λ2
l
ϵμðpbÞūχðp1ÞðSχ þ iPχγ5Þvχðp2Þ

× ūlðp3Þ
�
ðSl þ iPlγ5Þ

=pa þ =pb þml

ðpa þ pbÞ2 −m2
l
γμ

þ γμ
=p3 − =pb þml

ðp3 − pbÞ2 −m2
l
ðSl þ iPlγ5Þ

�
ulðpaÞ: ðC1Þ

The squared and spin-averaged amplitude factorizes in two
contributions

jMj2 ¼ Xðp1; p2ÞLðpa; pb; p3Þ; ðC2Þ

where the X and L denote the traces over dark and SM
particles, respectively. The phase space can be factorized

dΦ3ðpa þ pb;p1; p2; p3Þ

¼ dm2
12

2π
dΦ2ðpa þ pb;p12; p3ÞdΦ2ðp12;p1; p2Þ; ðC3Þ

where we introduced s ¼ ðpa þ pbÞ2 and the momentum
of the effective two-body system of dark particles p12 ¼
p1 þ p2 with invariant mass m2

12 ¼ p2
12.

We start with the dark system, i.e., dΦ2ðp12;p1; p2Þ. The
function Xðp1; p2Þ is a scalar and can therefore only

depend on the scalar product p1p2, which can be rewritten
in terms of m2

12 using p1p2 ¼ ðm2
12 − 2m2

χÞ=2, leading to
Xðp1; p2Þ ¼ X̃ðm12Þ. Thus, we obtain

Z
dΦ2ðp12;p1; p2ÞXðp1; p2Þ ¼

X̃ðm12Þ
8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4

m2
χ

m2
12

s
:

The second phase-space integral can be simplified as

Z
dΦ2ðpa þ pb;p12; p3Þ ¼

1

ð4πÞ2 ffiffiffi
s

p

×
Z

p̄3dp̄3δ

 
p̄3 −

ffiffiffi
s

p
2

β

!

× d cos θdϕ; ðC4Þ

with

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

m2
12 þm2

l

s
þ ðm2

12 −m2
lÞ2

s2

s
; ðC5Þ

where p̄3 is the spatial component of the 4-vector p3,
i.e. p2

3 ¼ E2
3 − p̄2

3 ¼ m2
l.

The p3-dependence in the function Lðpa; pb; p3Þ can be
rewritten in terms of s; p̄3, and cos θ in the center-of-mass
frame using

pap3 ¼
ffiffiffi
s

p
2

�
E3

�
1þm2

l

s

�
− p̄3 cos θ

�
1 −

m2
l

s

��
;

pbp3 ¼
ffiffiffi
s

p
2

�
1 −

m2
l

s

�
ðE3 þ p̄3 cos θÞ: ðC6Þ

One can now evaluate the dΦ2ðpa þ pb;p12; p3Þ integral.
After the trivial integrals in dϕ and dp̄3 one can perform the
d cos θ integration analytically. At this point, we are only
left with the m2

12 integration, which can not be done
analytically in the general case. Introducing the dimension-
less variable

βχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

χ=m2
12

q
; ðC7Þ

and x ¼ m2
12=m

2
l; xχ ¼ m2

χ=m2
l; ŝ ¼ s=m2

l, we arrive at
the result

σ ¼ αm2
l

64π2Λ4
l

1

ðŝ − 1Þ3ŝ2
Z ð ffiffîsp

−1Þ2

4xχ

dxxβχ

×
	
β2χS2χ þ P2

χ


h
S2lfSðx; ŝÞ þ P2

lfPðx; ŝÞ
i
; ðC8Þ

where the functions fS, fP are defined by
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fS¼ 4ŝ2ðŝ2−2ŝðx−3Þþ2x2−10xþ9ÞTðx; ŝÞ;
− ð3ŝ3þ ŝ2ð25−7xÞþ ŝð5−2xÞþx−1ÞRðx; ŝÞ;

fP¼ 4ŝ2ðŝ2−2ŝðxþ1Þþ2x2−2xþ1ÞTðx; ŝÞ;
− ð3ŝ3−7ŝ2ðxþ1Þþ ŝð5−2xÞþx−1ÞRðx; ŝÞ; ðC9Þ

with,

Rðx; ŝÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2 − 2ŝðxþ 1Þ þ ðx − 1Þ2

q
;

Tðx; ŝÞ ¼ tanh−1
Rðx; ŝÞ
ŝ − xþ 1

: ðC10Þ

In the limit mχ → 0, the final integral can be evaluated
analytically,

σ ¼ αm2
l

2304π2Λ4
l

1

ðŝ − 1Þ3ŝ2
× ðS2χ þ P2

χÞðS2lgSðŝÞ þ P2
lgPðŝÞÞ; ðC11Þ

where

gS ¼ −79ŝ6 − 14ŝ5 − 189ŝ4 − 296ŝ3 þ 527ŝ2 þ 54ŝ − 3

þ 12ŝ2ð2ŝ4 þ 10ŝ3 þ 9ŝ2 þ 44ŝþ 25Þ log ŝ;
gP ¼ −79ŝ6 þ 338ŝ5 þ 675ŝ4 − 1160ŝ3 þ 175ŝ2 þ 54ŝ

− 3þ 12ŝ2ð2ŝ4 þ 2ŝ3 − 63ŝ2 − 28ŝþ 17Þ log ŝ:
ðC12Þ

The matrix element for vectorlike interactions reads

iM¼ e
Λ2
l
ϵμðpbÞūχðp1ÞγνðVχ þ iAχγ5Þvχðp2Þ

× ūlðp3Þ
�
γνðVlþ iAlγ5Þ

=paþ=pbþml

ðpaþpbÞ2−m2
l
γμ

þ γμ
=p3−=pbþml

ðp3−pbÞ2−m2
l
γνðVlþ iAlγ5Þ

�
ulðpaÞ: ðC13Þ

After squaring and spin-averaging, one again obtains two
traces for the SM and dark part of the amplitude, respec-
tively. Due to the vectorlike nature of the interaction, these
traces are contracted with two Lorentz indices, one arising
from M and one from M†,

jMj2 ¼ Xμνðp1; p2ÞLμνðpa; pb; p3Þ: ðC14Þ

Due to the fact that Xμν can not only depend on m2
12, but

also on pμ
1; p

μ
2, we can not simply factor Xμν out of the

dΦðp12;p1; p2Þ integral as in the scalar case. However,
Lorentz covariance implies that the integral can only
depend on the vector pμ

12 ¼ pμ
1 þ pμ

2

Z
dΦ2ðp12;p1;p2ÞXμνðp1;p2Þ ¼ A1m2

12g
μν þA2p

μ
12p

ν
12;

ðC15Þ

where A1, A2 are functions of m2
12

A1 ¼ −
�
ðV2

χ þ A2
χÞ þ 2

m2
χ

m2
12

ðV2
χ − 2A2

χÞ
�
;

A2 ¼
�
1þ 2m2

χ

m2
12

�
ðV2

χ þ A2
χÞ: ðC16Þ

From this point on, the calculation is equivalent to the
scalar case. We arrive at the result

σ ¼ αm2
l

48π2Λ4
l

1

ðŝ − 1Þ3ŝ2
Z ð ffiffîsp

−1Þ2

4xχ

dxβχðV2
lfVðx; xχ ; ŝÞ

þ A2
lfAðx; xχ ; ŝÞÞ; ðC17Þ

with

fV ¼ −4A1ŝ2xðŝ2 − 2ŝðxþ 3Þ þ 2x2 þ 2x− 3ÞTðx; ŝÞ
− A1xðŝ3 þ ŝ2ð7xþ 15Þ þ ŝð2x− 1Þ − xþ 1ÞRðx; ŝÞ;

fA ¼ −4A1ŝ2xðŝ2 − 2ŝðx− 5Þ þ 2x2 − 14xþ 13ÞTðx; ŝÞ
− A1xðŝ3 þ 7ŝ2ðx− 7Þ þ ŝð2x− 1Þ− xþ 1ÞRðx; ŝÞ
þ 8A2ŝ2ðŝ2 − 2ŝðxþ 1Þ þ 2x2 − 2xþ 1ÞTðx; ŝÞ
− 2A2ð3ŝ3 − 7ŝ2ð1þ xÞ þ ŝð5− 2xÞ þ x− 1ÞRðx; ŝÞ:

ðC18Þ

In the limit mχ → 0, one can again perform the dx
integration analytically and arrive at

σ ¼ αm2
l

1728π2Λ4
l

1

ŝ2ðŝ − 1Þ3
× ðV2

χ þ A2
χÞðV2

lgVðŝÞ þ A2
lgAðŝÞÞ; ðC19Þ

with

gV ¼ −55ŝ6 þ 682ŝ5 þ 483ŝ4 − 968ŝ3 − 169ŝ2 þ 30ŝ

− 3þ 12ŝ2ð2ŝ4 − 14ŝ3 − 87ŝ2 − 52ŝþ 1Þ log ŝ;
gA ¼ −55ŝ6 − 254ŝ5 þ 219ŝ4 − 296ŝ3 þ 119ŝ2 þ 294ŝ

− 27þ 12ŝ2ð2ŝ4 þ 10ŝ3 þ 33ŝ2 − 4ŝþ 49Þ log ŝ:

Finally, the matrix element for tensorlike interactions
reads

iM ¼ e
Λ2
l
ϵμðpbÞūχðp1ÞσνρðTχ þ T 0

χγ5Þvχðp2Þ ðC20Þ

×ūlðp3Þ
�
σνρ

=pa þ =pb þml

ðpa þ pbÞ2 −m2
l
γμ ðC21Þ
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þγμ
=p3 − =pb þml

ðp3 − pbÞ2 −m2
l
σνρ
�
ulðpaÞ: ðC22Þ

The squared and spin-averaged matrix element can be
factorized as

jMj2 ¼ Xμνρσðp1; p2ÞLμνρσðpa; pb; p3Þ: ðC23Þ

We define the index ordering in Xμνρσ such that the first and
second pair of indices each corresponds to one σμν in the
trace that constitutes Xμνρσ, i.e. Xμνρσ is antisymmetric
under μ ↔ ν and ρ ↔ σ. After proper antisymmetrization,
there are only two Lorentz structures that satisfy this
condition, leading toZ

dΦ2ðp12;p1;p2ÞXμνρσðp1;p2Þ

¼m2
12B1ðgμρgνσ − gνρgμσÞþB2ðpμ

12ðpρ
12g

νσ −pσ
12g

νρÞ
−pν

12ðpρ
12g

μσ −pσ
12g

μρÞÞ;

where B1, B2 are functions of m2
12

B1 ¼
1

12π
βχ

�
ðT2

χ þ T 02
χÞ þ 4

m2
χ

m2
12

ð2T 02
χ − T2

χÞ
�
;

B2 ¼ −
1

6π
βχ

m2
12 þ 2m2

χ

m2
12

ðT2
χ þ T 02

χÞ:

After following the standard procedure as outlined for the
scalar case, one arrives at the result

σ ¼ αm2
l

4πΛ4
l

1

ðŝ − 1Þ3ŝ2
Z ð ffiffîsp

−1Þ2

4xχ

dxðB1f1ðx; xχ ; ŝÞ

þ B2f2ðx; xχ ; ŝÞÞ; ðC24Þ

where

f1 ¼ 96ŝ2ððŝ − xþ 1ÞTðx; ŝÞ − Rðx; ŝÞÞ;
f2 ¼ −ð4ŝ4 þ ŝ3ðx − 16Þ þ ŝ2ð7x2 þ 59xþ 24Þ

þ ŝð2x2 þ 7x − 16Þ − x2 − 3xþ 4ÞRðx; ŝÞ
− 4ŝ2xðŝ2 − 2ŝðxþ 9Þ þ 2x2 þ 14x − 15ÞTðx; ŝÞ:

ðC25Þ

In the limit mχ → 0, the final dx integration can be done
analytically and we arrive at

σ ¼ αm2
l

864π2Λ4
l

1

ðŝ− 1Þ3ŝ2 ðT
2
χ þ T 02

χÞ½17ŝ6 þ 370ŝ5 þ 675ŝ4

− 344ŝ3 − 1153ŝ2 þ 486ŝ− 51

þ 12ŝ2ð2ŝ4 − 26ŝ3 − 27ŝ2 − 136ŝþ 37Þ log ŝ�: ðC26Þ

APPENDIX D: FULL CALCULATION
OF PHOTOPRODUCTION

The energy-loss rate per unit volume for photoproduc-
tion l−ðpaÞγðpbÞ → χðp1Þχ̄ðp2Þl−ðp3Þ can be written as

Q ¼ 1

32π4

Z
∞

ml

dEap̄afa

Z
∞

0

dEbEbfb

×
Z

1

−1
dcθJsðs; Ea; EbÞ; ðD1Þ

Js ¼
Z

dΦ3ðpa þ pb;p1; p2; p3ÞjMj2

× ðEa þ Eb − E3Þð1 − f3Þ; ðD2Þ

where dΦ3 is the Lorentz-invariant 3-body phase space

volume, p̄a ≡ jp⃗aj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
a −m2

l

q
, f−1a ¼ eðEa−μlÞ=T þ 1,

f−1b ¼ eEb=T − 1, f−13 ¼ eðE3−μlÞ=T þ 1, s ¼ m2
l þ 2Eb×

ðEa − p̄acθÞ, cθ ≡ cos θ and all energies refer to the
PNS frame.
Using the decomposition of the 3-body phase space in

Eq. (C3), the 2-body phase space integral over the dark
fermion momenta p1 and p2 can be easily performed, as the
spin-summed, squared matrix element jMj2 factorizes into
two contributions, cf. Eq. (C14),

Mðpa; pb; p3; m12Þ≡
Z

dΦ2ðp12;p1; p2ÞjMj2: ðD3Þ

The remaining phase space integral dΦ2ðpa þ pb;p12; p3Þ
is suitably evaluated in the c.m. frame, giving

Z
dΦ2 ¼

2πffiffiffi
s

p
Z

p̄0
3dp̄

0
3dcδdϕ

4ð2πÞ3 δðp̄0
3 − β

ffiffiffi
s

p
=2Þ; ðD4Þ

where cδ ≡ cos δ, p̄0
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0

3Þ2 −m2
l

q
with E0

3 the final

lepton energy in the c.m. frame, ϕ and δ denote the polar
and azimuthal angle of p⃗0

3 and βðs;m12Þ is given
in Eq. (C5).
To evaluate the Lorentz-invariant quantity Mðpa; pb;

p3; m2
12Þ in this frame, we express the relevant Lorentz

scalars in the c.m. frame, where p0
a ¼ ðE0

a; 0; 0; E0
bÞ,

p0
b ¼ ðE0

b; 0; 0;−E0
bÞ

papb ¼
s −m2

l

2
;

pap3 ¼ E0
aE0

3 þ E0
bp̄

0
3cδ;

pbp3 ¼ E0
bE

0
3 − E0

bp̄
0
3cδ; ðD5Þ

where the energies in the c.m. frame can be written in terms
of s only using
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E0
a ¼

sþm2
l

2
ffiffiffi
s

p ; E0
b ¼

s −m2
l

2
ffiffiffi
s

p : ðD6Þ

These expressions allow to write Mðpa; pb; p3; m12Þ as a
function of s; cos δ; E0

3, and m12, and it remains to evaluate
ðEa þ Eb − E3Þð1 − f3Þ in the c.m. frame. E3 is related to
E0
3 by a Lorentz boost with velocity ðp⃗a þ p⃗bÞ=ðEa þ

EbÞ≡ p⃗ab=Eab ¼ p̄ab=Eabð0; sη; cηÞ with sη ≡ sin η, cη ≡
cos η and boost factor γ ¼ Eab=

ffiffiffi
s

p
(since s ¼ E2

ab − p̄2
ab).

The same boost relates Eb to E0
b, which can be used to

obtain an expression for cos η as a function of s and the
initial energies in the PNS frame

cη ¼
sðEb − EaÞ þm2

lðEb þ EaÞ
ðs −m2

lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEa þ EbÞ2 − s

p : ðD7Þ

This angle determines the desired relation between E3

and E0
3 as

E3 ¼
1ffiffiffi
s

p ðEabE0
3 þ p̄abp̄0

3ðsηsϕsδ þ cηcδÞÞ: ðD8Þ

Having expressed all final state energies in the c.m. frame,
one can finally perform the dp̄0

3 using the δ-function in
Eq. (D4), giving

p̄0
3 ¼ β

ffiffiffi
s

p
2

; E0
3 ¼

ffiffiffi
s

p
2

�
1 −

m2
12 −m2

l

s

�
: ðD9Þ

Putting everything together, we finally obtain for Eq. (D2)

Js ¼
1

64π3

Z ð ffiffisp
−mlÞ2

4m2
χ

dm2
12βðs;m12Þ

Z
1

−1
dcδMðs;m2

12; cδÞ

×
Z

2π

0

dϕðEa þ Eb − E3Þð1 − f3Þ; ðD10Þ

where βðs;m12Þ is given in Eq. (C5), Mðs;m2
12; cδÞ is

obtained from Eqs. (D3), (D5), (D6), (D9), and E3 ¼
E3ðs;m12; Ea; Eb;ϕ; δÞ from Eqs. (D7)–(D9). When 1 − f3

is to good approximation independent of E3, the dϕ
integration can be trivially carried out, giving an overall
factor of 2π and ðsηsϕsδ þ cηcδÞ → cηcδ in Eq (D8).

APPENDIX E: NUMERICAL RESOLUTION
OF THE KINEMATIC INTEGRALS
FOR THE ANNIHILATION RATES

Throughout this work, we use Monte Carlo techniques
[187] to evaluate the thermal phase space integrals numeri-
cally, e.g., Eq. (10) for annihilation and Eq. (31) for trapping.
For processes where the Z0 can be produced resonantly, the
Breit-Wigner propagator yields a peak in the Mandelstam
variable s located at mZ0 with width

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mZ0ΓZ0

p
∼ gmZ0 . We

want to calculate these integrals for very small couplings
g ∼ 10−10, translating into very narrow peaks. When using
only several thousands of points for the Monte Carlo
estimate, it is unlikely that this estimate can resolve the
peak structure. In particular, iterative algorithms like
VEGAS are unable to adapt to the peak if they can not
extract information about the peak from samples in early
iterations.
Fortunately, we have knowledge about the shape of

the peak, allowing us to provide this information to the
Monte Carlo sampler. To achieve this, we include the
Mandelstam variable s, corresponding to the peak loca-
tion, as one of the integration variables. Subsequently, we
divide the integral into three regions. One of these regions
includes only the peak

m2
Z0 − σmZ0ΓZ0 ≤ s ≤ m2

Z0 þ σmZ0ΓZ0 ; ðE1Þ

with σ ∼ 5. The other two regions cover the regions to the
left and to the right of the peak, respectively. This approach
ensures that the sum of the three integrals effectively
captures and resolves the peak.
These integrals scale as ∝ g2 when the contribution from

the resonance dominates the integral, otherwise they scale
as ∝ g4. We can employ this observation to validate our
approach of calculating the integrals, as shown in Fig. 6.

FIG. 6. Free-streaming luminosity at R ¼ 9.2 km for a Z0 coupled to electrons (left panel) and muons (right panel), rescaled by a
factor g4 to highlight the regions where the resonant contribution dominates.
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