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ABSTRACT1
The increasing complexity and scale of modern agent-based travel demand models pose significant2
computational challenges in terms of required memory and especially computation time. Improv-3
ing the efficiency and scalability of these simulations is crucial to produce statistically reliable4
forecasts for large-scale studies of transportation systems and the effects of policies and measures.5
Modern approaches from parallel computing have been applied in other agent-based models to6
evaluate agent decisions in parallel and thereby reduce computation time.7

In this paper, we present two approaches to enhance the efficiency of agent-based travel8
demand models through parallelization. We use the dependency of shared household vehicles and9
therefore dependent mode choice as a case study. The first approach involves agent synchronization10
strategies, such as agent grouping by household, and mutual exclusive locks for car allocation in11
households. The second approach adopts model simplification to reduce inter-agent dependencies,12
enabling previously dependent agents to be computed in parallel.13

Performance evaluations were conducted on a simulated population of 1,871,371 individ-14
ual persons in the city of Hamburg, Germany. The results demonstrate significant computation15
time reductions up to a speedup factor of 24.5 when using 32 cores. The model simplification16
approach, removing all inter-agent dependencies, achieved slightly higher speedups than agent17
synchronization strategies. Applying the simplified model is shown to produce similar simula-18
tion results with no significant differences. Additionally, we explore the transferability of these19
approaches to scenarios such as ride sourcing or car sharing, showing promising results for appli-20
cations in this context.21
Keywords: agent-based model, travel demand, model simplification, parallel computing, synchro-22
nization23
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INTRODUCTION1
Travel demand models are well-established tools for forecasting the effects of transportation poli-2
cies and measures on travel demand. A recent focus of research has been on agent-based travel3
demand models (ABTDM) which model travel behavior on the level of individual persons (agents)4
and thus allow for a higher level of detail than traditional aggregated models (1). Since ABTDMs5
typically apply stochastic models to replicate travel behavior, multiple simulation runs are often6
necessary to produce statistically significant results. Especially considering the emergence of new7
mobility services such as bike sharing, car sharing, and ride sourcing, with relatively small user8
groups, their limited sample size requires repeated simulations. This is also true when investi-9
gating inclusive transport solutions for marginalized social groups, like individuals with restricted10
mobility.11

Kwak et al. (2) emphasize the importance of computing multiple runs and advise against12
simulating only a sample of the population, as this significantly increases simulation error. How-13
ever, the requirement for multiple simulation runs poses a challenge in terms of computation time14
or available memory.15

The trivial parallelization approach of computing multiple independent simulation runs16
simultaneously requires a high amount of memory, growing linear in the number of simultaneous17
runs. Therefore, it is desirable to reduce the computation time of a single simulation run through18
parallelization, which requires no additional memory. Consider a simulation model that takes 2519
hours to simulate a single run using a single processing core. Hence, ten simulation runs could20
be computed in 25 hours using ten cores. However, this would require ten times the amount of21
memory, since the runs must be independent. By reducing the computation time of a single run to22
one hour (through parallelization on 32 cores), ten runs can be computed sequentially in ten hours23
using only the amount of memory of a single run.24

In recent years, parallel computing has been applied in various fields of research. The evo-25
lution of processors has seen a stagnation in clock speed (determining the speed of computation),26
hence the focus has shifted to solving problems by using multiple cores or even multiple separate27
processors in parallel. For this approach, problems are divided into sub-tasks which are computed28
simultaneously across multiple parallel cores. In this way, parallel computing holds the potential to29
significantly reduce computation times, paving the way for conducting excessive simulation runs30
and applying more detailed models to achieve more accurate forecasts.31

The practical application of ABTDMs is currently mostly limited to research settings (3).32
Reducing computation times through parallelization can make these models more usable in prac-33
tice. However, the ever-increasing level of detail in ABTDMs introduces more dependencies and34
interactions between agents, like sharing vehicles in a household or booking ride sourcing or car35
sharing services. This complicates the definition of sub-tasks that can be computed independently36
in parallel. In order to achieve parallel computation of independent tasks, model simplification can37
be applied to reduce or remove inter-agent dependencies.38

In the practice of parallel computing, various techniques such as message passing or shared39
memory with mutual exclusion have been developed and are now well established (4). These tech-40
niques can be applied to coordinate parallel task execution in the presence of agent dependencies.41

In this paper, we aim to speed up an agent-based travel demand model through paralleliza-42
tion. In doing so, we compare two approaches: model simplification and agent synchronization.43
Here we focus on inter-agent dependencies when it comes to mode choice i.e. shared household44
vehicles.45
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Car availability can be modeled on both the household level (5–7) and individual level (8–1
12). Both approaches produce good results, hence we explore the effects of simplifying our model2
by breaking down car availability on the household level down to the individual level. Using this3
simplified model, agent decisions can be computed in parallel.4

We further explore synchronization through agent grouping and mutual exclusion as used5
in other fields of research and propose different synchronization strategies for shared household6
vehicles. Moreover, we investigate how the developed agent synchronization techniques can be7
applied to scenarios with more inter-agent dependencies (e.g., when modeling ride sourcing or car8
sharing), where agent-grouping might become infeasible.9

LITERATURE REVIEW10
To reduce high computation times in agent-based models, several strategies are discussed in the11
literature. According to Kwak et al. (2), a common approach is to simulate only a fraction of12
the synthetically generated population. However, considering error rates, even fully simulated13
populations lead to high error rates calling for multiple simulation runs. Therefore, they do not14
recommend a sample size smaller than 100%. Another approach to speed up the simulation is to15
reduce the number of activity locations, resulting in a smaller size of choice sets for destination16
choice. Saleem et al. (13) find that computation time grows quadratically with sampled locations,17
while the bias of simulation results for mode share and travel time is below 2%.18

However, both concepts focus exclusively on model simplification and neglect approaches19
from computer science such as model parallelization, as done by Zhou et al. (14). They evaluate20
the potential of parallel computation of the main activity purpose of household members by using21
a graphic processing unit (GPU). To account for intra-household interaction, agents from the same22
household are prioritized to allow for parallel computation of all agents and alternatives. This23
application of GPU-based parallelization provides a large speedup but is highly dependent on the24
set of households as well as the alternatives included. However, the agent prioritization technique25
seems hardly applicable to mode choice especially when including new mobility services such as26
ride sourcing. Shook et al. (15) and Gong et al. (16) investigate parallelization of agent-based27
models for geographical systems. Both apply spatial domain decomposition and synchronization28
of agents along partitioning borders. Tang et al. (17) simulate land use opinion diffusion for spa-29
tially related agents. Besides domain decomposition and message passing, they also apply time30
synchronization between iterations, so agents move through time synchronously.31

Dobler (18) develops a parallel queue simulation for traffic assignment in MATSim by32
simulating vehicle queues on nodes or links in parallel. They also synchronize between time steps33
and between node and link updates to move vehicles to their new queues. Furthermore, a concept34
for partitioning the road network is proposed which can be used to compute (nearly) independent35
network sectors in parallel. However, the difficulty of such an implementation is highlighted as it36
would require dynamically adjusting the partitioning to achieve a balanced workload on all cores.37
Table 1 shows the related work on parallel agent-based models and their investigated methods.38

In the domain of travel demand modeling, agent-based models have been the focus of39
research in recent years. They can model the travel behavior of individual agents and the effect40
of policies and measures on that behavior and thereby the resulting travel demand. By modeling41
a population as individual agents, these models offer the opportunity to model individual agent42
interactions and dependencies.43

One such dependency between agents that complicates model parallelization is the shared44
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TABLE 1 Overview of Related Work on Parallel ABM and their Investigated Methods.

Related Model Agent Agent Time Dependent
Work Type Grouping Sync. Snyc. Tasks
Zhou et al. (14) daily main activity by household - no time ×

(using GPU) dimension
Shook et al. (15) spatially explicit spatial domain message ✓ ✓

ABM with CyberGis decomposition passing
Gong et al. (16) spatial opinion spatial domain mutual ✓ ✓

diffusion decomposition exclusion
Tang et al. (17) spatial opinion spatial domain message ✓ ✓

diffusion decomposition passing
Dobler (18) traffic assignment by link - ✓ ×

MATSim or node

usage of cars in a household. Since car ownership and car availability are modeled differently1
across models and some work neglects to adequately differentiate the two concepts, an overview2
of different approaches is provided. We refer to a person’s or household’s car ownership as pos-3
session of a vehicle derived from surveys and mostly modeled as a discrete choice. However, car4
ownership alone does not indicate whether the car can be used by an agent, which we refer to as5
car availability.6

A review of different car ownership models is provided, for instance, by Barthelmes et al.7
(19), as well as de Jong et al. (20) or Anowar et al. (21). In general, with increasing computational8
power and data availability, models have evolved from aggregated to disaggregated and micro-9
scopic (11, 19), resulting in state-of-the-art ownership models derived from discrete choice models10
at either the individual or household level (11, 22, 23).11

Modeling car availability on the other hand allows for a more realistic representation, as12
interactions within a household can be considered as well as different degrees of vehicle sharing13
(7). In the ABTDM mobiTopp, car availability is modeled at the household level and thus considers14
the interaction between the agents of a household (5). A similar approach is also used by Vovsha15
et al. (6). However, not all car availability models do so. In MATSim, households are optional,16
leading to car availability being limited to individual agents (8, 9). Danalet and Mathys (10) model17
car availability on an individual level too and differentiate between a car being always, on demand,18
or never available. Loder and Axhausen (11) as well as Hillel et al. (7) apply a binary distinction19
of always or never available, although the total number of cars available in the household is never-20
theless modeled correctly (7). According to Kowald et al. (12), an agent’s car availability can also21
be defined as the ratio of cars to agents with a driver’s license within a household being greater or22
equal to 0.5.23

To the best of the authors’ knowledge, parallel computing has not yet been applied to24
ABTDMs with dependencies in mode choice. The literature review shows that parallel computing25
has been applied to the field of ABTDM for modeling household main activities (14) and traffic26
assignment (18). In both cases, agents can be grouped in a way that the resulting parallel tasks are27
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independent. Therefore, in this paper, we explore strategies for agent synchronization, when it is1
not possible to define independent tasks.2

APPROACH3
For this paper, we apply a simplified version of the agent-based travel demand modeling frame-4
work mobiTopp (5, 24, 25) focusing on a few core aspects relevant to evaluating the effects of5
parallelization. The mobiTopp framework consists of two modules: a long-term module which6
generates a synthetic population and models long-term decisions, and a short-term module which7
simulates the travel demand of that population for a whole week. The population is synthesized8
from a representative sample provided by a national household travel survey (26) and regional9
socio-demographic statistics using an iterative proportional updating algorithm (27). Additionally,10
the long-term module assigns mobility tools including personal bicycles, driver’s licenses, transit11
passes, and shared household cars. Finally, each agent is assigned a fixed workplace or educa-12
tional institution and a week activity schedule (28). In the short-term module, the activities and13
the intermediate trips of all agents are simulated including the choice of destination and mode of14
travel.15

Destination and mode choice are determined by applying discrete choice models: for this16
paper multinomial logit models are employed as described in the Model Simplification Section.17
The simulation is based on traffic assignment zones, which act as home zones for households and18
as destinations for trips. Travel demand is determined as origin-destination trip counts per mode,19
hence no route assignment is computed. For this paper, the choice set of supported modes is20
pedestrian, bike, public transport, car and car as passenger.21

In every choice situation, this full choice set is filtered in the following way so it only22
contains the available modes: Agents without a driver’s license or personal bike can never use23
car or bike respectively. Further, when departing from home, car is only available if at least one24
household car is currently at home. Finally, when not at home, persons departing with a fixed25
mode (car and bike) must use it until they return home. On the other hand, agents using flexible26
modes (pedestrian, public transport and car as passenger) may only use flexible modes until they27
return home. After determining their availability, the utility of each remaining mode is computed28
and the choice is determined by evaluating a multinomial logit model. Finally, if the mode car was29
chosen, the agent takes a household car. This general procedure is shown on the top in Figure 1.30

In the following Figures 1 to 6, the mode choices of the shown agents are assumed to31
evaluate to car; also their (initial) car availability check is assumed to be positive. In these figures,32
T denotes the set of simulation steps which are iterated in chronological order and P denotes the33
set of all person agents. ti ∈ T is a single time step containing a set of agents (either persons p or34

households h). An exemplary person i of household j is denoted by ph j
i .35

In this paper, we focus on parallelization strategies for the short-term module. Efficient36
algorithms for the long-term module will be part of future research and therefore omitted in this37
paper. We focus on the dependency of shared household cars and their effect on mode choice. The38
choice of activity is a long-term decision and not part of the short-term simulation we aim to opti-39
mize through parallelization. Also, destination choice is assumed to be independent in this paper.40
We investigate two approaches to achieve a parallel demand simulation: first, we develop multiple41
strategies for agent synchronization to handle dependencies between agents during parallel com-42
puting. Second, we employ model simplification to remove these dependencies by modeling car43
availability on a personal level instead of a household level.44
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Agent Synchronization1
In general, the strategy behind parallel computing is dividing a large problem into smaller sub-2
problems (or tasks). These are then dispatched onto multiple cores (either in the form of processes3
or threads) and computed in parallel. Once all sub-problems have been computed, the results are4
combined to form the solution of the original, larger problem (29).5

In the context of this paper, the paramount objective is to determine the travel demand of6
a population within a survey area. This can be broken down into tasks on the agent level: i.e.7
determining the travel demand of a single person over one week. This can be further broken down8
into computing individual choices made by agents including the choice of destination and travel9
mode. In this section, we present synchronization strategies for mode choice and explore the10
transferability of these methods in the Evaluation Section.11

Despite breaking down the travel demand simulation into the task of computing individual12
choices, these tasks are still interdependent since members of the same household share household13
vehicles and could allocate the same car when computed in parallel. This critical code section of14
the choice process is highlighted in Figure 1.15

FIGURE 1 A sequential execution of person mode choices. The critical code section (marked
red) may cause race conditions if executed in parallel without proper synchronization.

Moreover, two choices of two agents ph1
1 and ph1

2 in the same household can be interde-16

pendent even if they take place at different times. If agent ph1
1 departs from home on Monday17

morning, taking the car, then agent ph1
2 departing on Monday afternoon won’t have access to that18

car. Simulating the mode choice of agent ph1
2 before the choice of agent ph1

1 would result in an in-19
consistent state. Therefore, all agents must be simulated synchronously through time. This means20
that all choices happening at the same point in time must be computed before all later events. In21
our simulation, a discrete time step of one minute is used. Within each time step, all choices may22
be computed in parallel. However, the next time step can only be started once all choices of the23
current time step have been made. A synchronization barrier is used, waiting for all cores to com-24
plete their tasks, before the tasks of the next time step are dispatched. In the following, we will25
look at the parallelization of tasks (i.e. mode choices) within a single time step.26

A first intuitive approach, called agent-grouping (30), is to identify interdependent agents27
and group them such that no two groups contain mutually dependent agents. For the shared house-28
hold car dependency, agent-grouping is trivial, since each agent is part of exactly one household.29
Thus, it is possible to dispatch households to cores. Within each household, the choices of agents30
are computed sequentially, while independent households are processed in parallel as shown in31
Figure 2. In this way, no car can be allocated by two agents simultaneously and therefore no32
synchronization is required.33
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FIGURE 2 Household grouping: households are processed in parallel while its members are
processed sequentially on the same core.

Grouping by household produces relatively small groups: according to UnitedNations (31)1
households with 6 or more members only account for a small share in most countries. E.g., in 20102
over 90% of the households in the U.S. had five or fewer members (31).3

However, this technique is hardly transferable to shared vehicles or agent dependencies in4
general. For instance, when examining car sharing, all agents departing from the same zone are5
dependent in that they all might request the same car sharing vehicle. Grouping agents by departure6
zone can create arbitrarily large groups especially if there are multiple car sharing providers and7
agents with more than one membership. This however diminishes the potential of parallelization,8
since large sets of dependent agents need to be processed sequentially.9

When dependency structures between agents grow too complex to compute independent10
groups, or when dependent groups grow too large, causing the parallelization effect to vanish,11
applying agent grouping becomes unsuitable. As an alternative, we can explore parallelization12
strategies with interdependent tasks that require agent synchronization. In the following, we will13
explore synchronization strategies for interdependent tasks. We will describe and explain them ex-14
emplary for the dependency of shared household vehicles, however, these techniques are designed15
to be applicable to other inter-agent dependencies such as ride sourcing and car sharing services16
(which we will investigate in the Evaluation Section). When working with interdependent tasks17
on multiple cores, two major strategies are prominent in practice: message passing and shared18
memory. For this paper, we apply synchronization through shared memory as it does not require19
an additional program communication structure to maintain simulation consistency.20

In the context of this paper, the shared memory that is accessed by interdependent parallel21
tasks is a list of available shared household vehicles. Once an agent (departing from home) starts to22
decide which mode to use, the availability of a household car is checked. If available, the utility for23
using the car is computed alongside the utility of all other available modes. Using a logit model,24
one of the available modes is selected. If the selected mode is car, one of the household cars is25
allocated by the agent.26

If not handled carefully, computing this vehicle allocation process in parallel can lead to27
so-called race conditions. Assume the following situation: two agents of the same household are28
processed simultaneously on two parallel cores. Both check the availability of household vehicles29
and both perceive one available car. After both have checked the availability, they evaluate the30
utilities and logit function, and both decisions result in using the mode car. Since both agents now31
try to allocate a car, one of them will end up with an empty set of available cars resulting in an32
inconsistent state, and the program is terminated. This critical code section is marked yellow in33
Figure 3.34
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To avoid these kinds of race conditions, so-called "mutual exclusive locks" (mutex lock)1
can be applied to guard the critical shared memory from parallel access. Mutex locks are a common2
technique for synchronization in parallel programming practice. They are used to control access3
to shared resources or critical code sections. Before accessing such a shared resource, respectively4
before entering a critical code section, cores must acquire the lock, which can only be held by a5
single task at a time. When a task tries to acquire a free mutex lock, it becomes the exclusive6
owner of the lock. Other tasks can no longer acquire the lock until it is released. If a mutex lock is7
already owned by another task, the requesting task has to wait until the lock is released.8

As explained in the race-condition example above, it must not be allowed to change the set9
of available cars between checking their availability and the final mode choice decision and car10
allocation of an agent. This is a critical code section and may not be executed by more than one11
(dependent) agent simultaneously.12

As a first attempt, we can apply a mutex lock to this critical code section. Since not all13
agents are dependent, we can apply individual locks for each household. In this way, only one14
agent per household may enter this synchronized, critical code section and perform its mode choice15
as shown in Figure 3. This extensive synchronization, however, now replicates the behavior of the16
agent-grouping strategy: effectively all mutually dependent agents are computed sequentially, as17
they mutually block each other through their mutex lock.18

FIGURE 3 Parallel persons: all agents are processed in parallel, only one member per house-
hold may enter the locked critical code section.

To achieve higher parallelization, the expensive computation of mode utilities and evalua-19
tion of the mode choice logit function should be moved outside the synchronized code section so20
it can be computed in parallel. Only the actual car allocation is critical as it changes the shared21
memory. However, the mode choice model requires to evaluate the availability of shared house-22
hold cars. By moving the choice computation and the availability check out of the synchronized23
code section, we can no longer assume the previously determined car availability to be correct.24
Hence, the availability has to be checked again inside the synchronized code section before the25
car is actually allocated. If the car is no longer available because it was taken in the meantime,26
mode choice has to be evaluated again without the alternative car. This way, the first availability27
check without locking can be used as an availability estimation. Assuming that such conflicts only28
happen rarely, the cost of recomputing some mode choices should be outweighed by the benefit of29
computing all other choices in parallel. This approach is visualized in Figure 4.30

Model Simplification31
As a second approach, we employ model simplification to reduce inter-agent dependencies. By32
removing these dependencies, agent-agent interactions do not have to be resolved subsequently33
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FIGURE 4 Parallel preference: all agents are processed in parallel, only one member per
household may enter locked critical code section. A preferred mode is computed in parallel,
merely the actual car allocation is synchronized. If no car is available during allocation,
mode choice is reevaluated.

but can be avoided entirely. This allows for independent agents and consequently separate tasks to1
be computed independently on different cores in parallel.2

Currently, car availability in mobiTopp is modeled at the household level (5). The underly-3
ing car ownership is modeled in the long-term module: the number of owned cars in a household4
is determined using a logit model which is calibrated with a representative sample provided by a5
large national household survey (26). During the short-term simulation, when agents depart from6
home using a car, it is made unavailable for other household members until the agent returns home.7
In this way, car availability is modeled and updated dynamically with each departing and arriving8
household member. As described in the section above, this is the cause for dependencies between9
tasks on parallel cores.10

As part of the model simplification, we abandon the accurate tracking of available house-11
hold cars. The number of owned household cars is still computed, since it affects other models of12
the long-term module, such as the transit pass ownership or activity schedule generation. How-13
ever, in the simulation, agents no longer perform car allocation. This means agents can still select14
the mode car in mode choice but the household cars are never moved, hence they do not need to15
be synchronized as shown in Figure 5.Instead of modeling detailed car allocation, we introduce16
a person-specific, discrete car availability attribute. Similar to Danalet and Mathys (10), we dis-17
tinguish whether a car is never, partially, or always available for an agent. This is determined as18
follows:19

• If there are no cars in a household, a car cannot be used by any agent of that household20
and is therefore never available.21

• If there are at least as many cars in a household as agents with a driver’s license, the car22
is always available for all these agents.23

• If there are more agents with a driver’s license than cars in a household, the car is de-24
fined as only partially available to all agents in that household. Therefore, we are more25
restrictive than Kowald et al. (12), as described in the Literature Section.26

This adjustment alone would lead to a significant overestimation of car use as driver and passenger27
in the mode choice model. Therefore, we adjusted and recalibrated the multinomial logit mode28
choice model to reproduce the original modal split. Thus, new parameters for the modes car and29
car as passenger were integrated to account for partial availability. Since the impact of the adjusted30
car availability on the other modes is marginal in our model, no further changes had to be made.31
This approach enables the adaption of existing models for parallel computation without having32
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to develop an entirely new mode choice model. Also, this allows for better comparability of the1
results with the base model, since only minor changes were made.2

FIGURE 5 Parallel persons: no dependencies and no mutex locks due to model simplifica-
tion.

The main benefit of the model simplification is to enable a different parallelization strategy.3
With inter-agent dependencies, the simulation has to synchronize at predetermined time steps to4
ensure a consistent state - the agents’ actions are processed in correspondence to their occurrence5
time (STimeSync). With the removal of dependencies, each agent can be simulated completely in-6
dependent of the actions of other agents. The full independent (SIndep) strategy processes over7
the agents rather than the time slices. Figure 6 highlights the operational difference to the other8
time-synchronized algorithms.9

FIGURE 6 Fully independent execution: The entire activity plan of each agent is simulated
in parallel without any synchronization at time steps.

EVALUATION AND RESULTS10
For our evaluation, we apply the developed models to the city of Hamburg in northern Germany.11
The survey area consists of 2715 traffic assignment zones and the simulated city population con-12
sists of 1,041,545 households and 1,871,371 individual persons. The simulation period is set to a13
single day, as it suffices to observe the effects of the parallelization. In the following, we present14
the methodology applied to evaluate the effect of the developed parallelization strategies on both15
the computation time as well as the quality of the simulation results.16

Computation time is evaluated for both the agent synchronization strategies household17
grouping (OHh), synchronized persons (OPerson), synchronized retry (ORetry) as well as the model18
simplification strategies time synchronized (STimeSync) and full independent (SIndep) as described19
above. To measure their scalability, all strategies were simulated with 4, 8, 16, and 32 cores. In the20
following, a combination of strategy and core count is called a configuration. The simulated con-21
figurations and the measured times are listed in the right half of Table 2. All configurations were22
executed on a high-performance workstation with the following specification: AMD EPYC 737423
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processor (16 physical, 32 logical cores) with 3.20 GHz base speed (4.7 GHz effective speed), and1
256 GB RAM at 3,2 GHz.2

TABLE 2 Overview of Evaluated Strategies and Measured Times over #Cores.

Name Choice Parallel Synchronize by 1 4 8 16 32
OSeq original - - 25.8 h - - - -
OHh original household time - 6.8 h 3.4 h 2.1 h 1.4 h
OPerson original person household + time - 6.8 h 3.4 h 2.1 h 1.4 h
ORetry original preferred mode household + time - 6.3 h 3.4 h 2.2 h 1.4 h
SSeq simple - - 25.8 h - - - -
STimeSync simple person time - 5.8 h 3.3 h 2.1 h 1.4 h
SIndep simple person - - 5.5 h 3.1 h 1.6 h 1.1 h

For comparison a sequential baseline simulation (with and without model simplification)3
was computed using a single core (OSeq, SSeq). The observed variance of computation time is4
insignificant. Therefore, only the mean computation time of each configuration will be considered5
in the following.6

FIGURE 7 Computation time reduction relative to sequential execution for agent synchro-
nization (left) and model simplification (right).

Figure 7 shows the results of the performance measurements for both the agent synchro-7
nization (on the left) and model simplification (on the right) configurations compared to the se-8
quential execution. In both, the execution time is normalized by the sequential execution time.9
They show that applying any of the parallelization techniques significantly reduces the simulation10
time down to 4-5% of the original computation time when using 32 cores. The three presented11
agent synchronization strategies OHh, OPerson and ORetry show only little difference. SIndep shows12
a slightly higher reduction in computation time compared to STimeSync.13

Figure 8 compares the performance of the household grouping strategy using the original14
model (OHh) and the full independent execution of the simplified model (SIndep). On the left,15



Kübler et al. 13

FIGURE 8 Comparison of agent synchonization (OHh) and model simplification (SIndep) by
computation time (left), speedup (mid) and efficiency (right).

Figure 8 shows that the full independent execution produces a slightly higher reduction in compu-1
tation time. It is between 19% and 24% faster (except for 8 cores where it is only 9% faster). In2
the middle, Figure 8 shows the resulting speedup (parallel computation time divided by sequen-3
tial computation time). Up to 8 cores SIndep has a slightly higher speedup than OHh but visibly4
outperforms the latter for 16 and 32 cores. For 32 cores, OHh achieves a speedup of 18.4 while5
SIndep reaches a speedup of 24.5. On the right, Figure 8 shows the efficiency (speedup divided by6
the number of cores) of OHh and SIndep. Household grouping OHh has a very high efficiency near7
1.0 up to 8 cores, which then drops down to 0.58 for 32 cores. The full independent execution8
SIndep shows a remarkably high efficiency even surpassing the sequential baseline of 1.0. This9
is possible because the full independent execution abandons the time synchronization of agents10
which was used in the sequential execution. For 32 cores, the efficiency of SIndep drops to 0.73.11

FIGURE 9 Agent synchronization strategies applied to artificially amplified dependencies:
computation time (left), speedup (mid) and efficiency (right).

To estimate the transferability of our approach and to differentiate the developed agent12
synchronization strategies, we introduced additional, artificial dependencies between agents in the13
same home zone (to emulate, e.g., some kind of artificial car sharing or ride sourcing). For this14
artificial highly dependent population we again simulate a sequential baseline simulation (ASeq)15
and the three strategies: zone grouping (AZone), synchronized persons (APerson), synchronized retry16
(ARetry). The relative computation time, speedup, and efficiency of the amplified dependency ex-17
periment are shown in Figure 9 for different core counts. It shows that the synchronized retry18
(ARetry) strategy significantly outperforms the other two approaches with a speedup factor of 6.3319
compared to 3.12 and 2.73. The amplification of dependencies noticeably reduces the maximum20
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speedup that can be achieved compared to only intra-household dependencies.1
In addition to the impact on performance, we evaluate the bias of the simulation results2

caused by the model simplification. To do so, we compare the simulation results of the original3
model (OSeq) with the results of the simplified model (SSeq) with regard to four key measurements:4
modal split, mileage, travel distance distribution, and travel time distribution as shown in Figure 10.5
All four plots show only little differences between the original and the simplified model. Applying6
a statistical t-test with a significance threshold of p = 0.05 suggests that there is no significant7
difference between the simulation results of the original and simplified model regarding all four8
key measurements. Analogously, the parallel executions of the original and simplified model also9
show no significant differences in the simulation results compared to the sequential executions.10

FIGURE 10 Comparison of original and simplified model results: modal split (top left),
mileage (top right), travel distance (bottom left) and travel time (bottom right).

CONCLUSION11
The results demonstrate that applying parallelization to an ABTDM significantly reduces compu-12
tation time. With the most efficient strategy of full independent execution, the computation time of13
a single simulation run could be reduced from 25.8 to 1.1 hours. Hence, 24 parallelized simulation14
runs can be computed within the original simulation time.15
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The retry strategy (ORetry) presented in this paper cannot be trivially ported to nested logit1
models. The mode availability requires additional care to ensure unbiased mode choice since alter-2
natives in nest groups are not independent. An estimated car availability can impact the selection3
probability of related modes. In case the estimation is no longer valid during mode allocation,4
mode choice has to be reevaluated even if a non-conflicting mode was chosen. In the future, this5
synchronization strategy could be expanded to also be compatible with models containing depen-6
dent alternatives.7

When analyzing the dependency of shared household vehicles, our results show that all8
strategies exhibit a similar reduction in computation time. However, applying a simplified model9
that removes all agent dependencies, makes the computation slightly faster than the other strategies.10
Therefore, we suggest applying a full independent execution strategy if and only if all inter-agent11
dependencies can be removed (including dependencies spanning multiple time steps). The simpli-12
fied model shows no benefit over the synchronization strategies when time synchronization is not13
removed. It is worth noting that utilizing parallelization has a detrimental effect on reproducibil-14
ity since the agent execution order can fluctuate. However, between two simulation runs with15
identical input data, no significant differences could be observed. However, this could be worth16
looking into in future research, especially when investigating scenarios with extensive inter-agent17
dependencies.18

Comparing the simulation results of the simplified model to the original model showed19
no significant differences, as confirmed by a statistical t-test. Thus, when trying to reduce the20
complexity of ABTDMs, it can be recommended to model car availability on the individual level21
rather than the household level. Even though the proposed model simplification technique might22
not be transferable to scenarios involving sharing vehicles, the simplified household car availability23
model can still be used in more complex ABTDMs. Suppose the aspect of household vehicles is not24
investigated in detail. In that case, model complexity can be reduced in this aspect, enabling focus25
on other aspects where greater attention and detail are needed (e.g., car sharing models sensitive to26
implemented measures).27

Finally, we estimate the transferability of the presented synchronization strategies by ar-28
tificially amplifying the number of inter-agent dependencies. Here, our results show the highest29
speedup when computing preferred modes in parallel and only synchronizing the actual car al-30
location (potentially reevaluating mode choice). As expected, allocation conflicts and, therefore,31
reevaluation of mode choice occur rarely enough so that the benefit of computing mode prefer-32
ences in parallel outweighs the cost of reevaluation. These promising results indicate that these33
strategies also apply to, e.g., ride sourcing and car sharing dependencies between agents.34

In future research, we want to extend the investigated scenarios and introduce situations35
with sharing and hailing vehicles. In this way, we aim to check the hypothesis presented above36
that the proposed synchronization is also applicable and efficient when additional inter-agent de-37
pendencies are added, even beyond the scope of households. Finding ways to resolve car sharing38
dependencies through model simplification without significantly distorting the simulation results39
is also worth exploring.40

Moreover, other types of dependencies (other than shared vehicles), such as joint trips or41
activities, could be investigated. In those cases, both the process of joint decision-making as well42
as an efficient parallel implementation are of interest. If these joint decision-making dependencies43
can also be computed in parallel, a general concept for inter-agent dependency synchronization44
could be developed.45
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