KIT | KIT-Bibliothek | Impressum | Datenschutz

Analog Printed Spiking Neuromorphic Circuit

Pal, Priyanjana ORCID iD icon 1; Zhao, Haibin ORCID iD icon 2; Shatta, Maha 1; Hefenbrock, Michael; Mamaghani, Sina B. 1; Nassif, Sani; Beigl, Michael ORCID iD icon 2; B. Tahoori, Mehdi 1
1 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)
2 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)

Abstract:

Biologically-inspired Spiking Neural Networks have emerged as a promising avenue for energy-efficient, high-performance neuromorphic computing. With the demand for highly-customized and cost-effective solutions in emerging application domains like soft robotics, wearables, or IoT-devices, Printed Electronics has emerged as an alternative to traditional silicon technologies leveraging soft materials and flexible substrates. In this paper, we propose an energy-efficient analog printed spiking neuromorphic circuit and a corresponding learning algorithm. Simulations on 13 benchmark datasets show an average of 3.86× power improvement with similar classification accuracy compared to previous works.

Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 27.03.2024
Sprache Englisch
Identifikator KITopen-ID: 1000167509
Erschienen in 2024 Design, Automation and Test in Europe Conference (DATE)
Veranstaltung 27th Design, Automation and Test in Europe Conference (DATE 2024), Valencia, Spanien, 25.03.2024 – 27.03.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Seiten 6 S.

Preprint §
DOI: 10.5445/IR/1000167509
Veröffentlicht am 22.01.2024
Seitenaufrufe: 397
seit 22.01.2024
Downloads: 375
seit 22.01.2024
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page