KIT | KIT-Bibliothek | Impressum | Datenschutz

Your Input Matters—Comparing Real-Valued PolSAR Data Representations for CNN-Based Segmentation

Hochstuhl, Sylvia ORCID iD icon 1; Pfeffer, Niklas 1; Thiele, Antje 1; Hammer, Horst; Hinz, Stefan 1
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract:

Inspired by the success of Convolutional Neural Network (CNN)-based deep learning methods for optical image segmentation, there is a growing interest in applying these methods to Polarimetric Synthetic Aperture Radar (PolSAR) data. However, effectively utilizing well-established real-valued CNNs for PolSAR image segmentation requires converting complex-valued data into real-valued representations. This paper presents a systematic comparison of 14 different real-valued representations used as CNN input in the literature. These representations encompass various approaches, including the use of coherency matrix elements, hand-crafted feature vectors, polarimetric features based on target decomposition, and combinations of these methods. The goal is to assess the impact of the choice of PolSAR data representation on segmentation performance and identify the most suitable representation. Four test configurations are employed to achieve this, involving different CNN architectures (U-Net with ResNet-18 or EfficientNet backbone) and PolSAR data acquired in different frequency bands (S- and L-band). The results emphasize the importance of selecting an appropriate real-valued representation for CNN-based PolSAR image segmentation. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000167516
Veröffentlicht am 23.01.2024
Originalveröffentlichung
DOI: 10.3390/rs15245738
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2072-4292
KITopen-ID: 1000167516
Erschienen in Remote Sensing
Verlag MDPI
Band 15
Heft 24
Seiten Art.-Nr.: 5738
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 15.12.2023
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page