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Abstract. Urban areas are responsible for more than 40 % of global energy-related carbon dioxide (CO2) emis-
sions. The Tokyo metropolitan area (TMA), Japan, one of the most populated regions in the world, includes
various emission sources, such as thermal power plants, automobile traffic, and residential facilities. In order to
infer a top–down emission estimate, we conducted an intensive field campaign in the TMA from February to
April 2016 to measure column-averaged dry-air mole fractions of CO2 (XCO2) with three ground-based Fourier
transform spectrometers (one IFS 125HR and two EM27/SUN spectrometers). At two urban sites (Saitama and
Sodegaura), measured XCO2 values were generally larger than those at a rural site (Tsukuba) by up to 9.5 ppm,
and average diurnal variations increased toward evening. To simulate the XCO2 enhancement (1XCO2) re-
sulting from emissions at each observation site, we used the Stochastic Time-Inverted Lagrangian Transport
(STILT) model driven by meteorological fields at a horizontal resolution of ∼ 1 km from the Weather Research
and Forecasting (WRF) model, which was coupled with anthropogenic (large point source and area source)
CO2 emissions and biogenic fluxes. Although some of the diurnal variation of 1XCO2 was not reproduced and
plumes from nearby large point sources were not captured, primarily because of a transport modeling error,
the WRF–STILT simulations using prior fluxes were generally in good agreement with the observations (mean
bias, 0.30 ppm; standard deviation, 1.31 ppm). By combining observations with high-resolution modeling, we
developed an urban-scale inversion system in which spatially resolved CO2 emission fluxes at > 3 km resolu-
tion and a scaling factor of large point source emissions were estimated on a monthly basis by using Bayesian
inference. The XCO2 simulation results from the posterior CO2 fluxes were improved (mean bias, −0.03 ppm;
standard deviation, 1.21 ppm). The prior and posterior total CO2 emissions in the TMA are 1.026± 0.116 and
1.037± 0.054 Mt-CO2 d−1 at the 95 % confidence level, respectively. The posterior total CO2 emissions agreed
with emission inventories within the posterior uncertainty, demonstrating that the EM27/SUN spectrometer data
can constrain urban-scale monthly CO2 emissions.
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1 Introduction

The steady increase of atmospheric greenhouse gas (GHG)
concentrations has accelerated recent climate change. Al-
though urban areas account for only 2 %–3 % of the global
land surface, approximately 44 % of energy-related carbon
dioxide (CO2) emissions come directly from urban areas
(Seto et al., 2014). Urban areas are thus a main target for
emission reductions, and many cities around the world have
committed to reducing their GHG emissions through both the
C40 Cities Climate Leadership Group (https://www.c40.org/,
last access: 25 July 2023) and city-specific programs. To sup-
port urban emission reduction strategies, a variety of efforts
are currently underway to build emission inventories with
high spatial and temporal resolution. These inventories es-
timate GHG emissions by using a bottom–up approach, in
which the total emissions from each source category are cal-
culated by multiplying activity data (e.g., fuel consumption,
traffic counts, housing statistics) by emission factors indicat-
ing GHG emissions per unit of activity. Because such de-
tailed inventories have been developed only for certain cities,
another type of global emissions database has been devel-
oped that relies on spatial proxies (e.g., night lights, popula-
tion) to downscale total emissions at national or sub-national
scales. Gurney et al. (2019), however, have reported large
discrepancies between downscaled and bottom–up fossil fuel
CO2 emissions at the urban scale, mainly due to large point
sources and road traffic.

Independent verification of these emissions datasets is
highly desirable, and atmospheric observations are increas-
ingly being used for this purpose. Emissions can be esti-
mated at fine scale from atmospheric observations of GHG
concentrations by using high-resolution atmospheric trans-
port models in a top–down inversion approach. Networks
of in situ GHG observation stations providing both oper-
ational observations and emission estimates have been es-
tablished in several megacities (e.g., McKain et al., 2012;
Lian et al., 2022; Lauvaux et al., 2016; Sargent et al.,
2018). In addition, emission estimates have been obtained
by conducting aircraft-based measurement campaigns over
megacities (Ahn et al., 2020; Pitt et al., 2022) and by us-
ing laser absorption spectroscopy for 2-D tomographic mea-
surements (Lian et al., 2019). For the Tokyo metropolitan
area (TMA), Japan, the most populous metropolitan area in
the world, Pisso et al. (2019) estimated anthropogenic CO2
fluxes during the winters of 2005–2009 at a spatial resolu-
tion of 20 km× 20 km from in situ measurements obtained
by tower- or ground-based instruments (Tsukuba, Kisai, and
Dodaira) and commercial aircraft-based instruments (over
Narita) by an inverse analysis with a Lagrangian transport
model. Recently, the number of tower- and ground-based ob-
servation sites in the TMA have been expanded, and addi-

tional atmospheric components and isotopes are being mea-
sured (Sugawara et al., 2021).

Compared with surface point measurements, total column
measurements are less sensitive to changes in the height of
the planetary boundary layer (PBL) (Olsen and Randerson,
2004; McKain et al., 2012). Therefore, column measure-
ments help to both mitigate PBL height errors in an atmo-
spheric inversion system (Gerbig et al., 2008) and disentan-
gle the effects of atmospheric mixing from the exchange of
carbon between the surface and the atmosphere (Wunch et
al., 2011). In addition, column data obtained in urban ar-
eas include information about emissions over a broader spa-
tial domain than surface point data. Babenhauserheide et
al. (2020) have estimated CO2 emissions from Tokyo by con-
ducting a statistical analysis of long-term measurements of
column-averaged dry-air CO2 mole fractions (XCO2) ob-
tained with a ground-based high-resolution Fourier trans-
form spectrometer (FTS, IFS 125HR, Bruker Optics) lo-
cated at Tsukuba, about 50 km from Tokyo, together with
wind data obtained from operational radiosonde observa-
tions. GHG emissions from several megacities have been
characterized by field campaigns conducted with multiple
portable FTSs (EM27/SUN, Bruker Optics) (e.g., Hase et
al., 2015; Makarova et al., 2021). Comparison of observed
XCO2 and column-averaged dry-air methane mole fraction
(XCH4) values with simulation results obtained by high-
resolution transport modeling demonstrated that the simu-
lations could capture XCO2 and XCH4 gradients between
upwind and downwind sites (Vogel et al., 2019; Zhao et
al., 2019, 2023). Furthermore, emissions from megacities
have been estimated from XCO2 and XCH4 data with La-
grangian transport models (Ionov et al., 2021; Jones et al.,
2021; Hedelius et al., 2018). Cusworth et al. (2020) have es-
timated spatially resolved CH4 emissions in the Los Angeles
Basin at a resolution of 3 km× 3 km from operational sur-
face and column data. Meanwhile, permanent city observa-
tories with the EM27/SUN spectrometers are emerging (e.g.,
Dietrich et al., 2021).

In the present study, we performed an observation cam-
paign using two EM27/SUN FTSs and the Tsukuba IFS
125HR FTS to constrain CO2 emissions around Tokyo dur-
ing late winter and early spring, when the proportion of clear
days is high and the contribution of the biogenic flux to CO2
fluctuations is minor. We constructed CO2 emission invento-
ries with more accurate information on both the locations and
emissions of large point sources. Anthropogenic CO2 emis-
sions from area sources and large point sources were esti-
mated separately using this inventory as the prior. In addi-
tion, the area source emission estimates with higher spatial
resolution enable verification of the emissions reported by
each administrative division. To simulate atmospheric trans-
port at high spatiotemporal resolution, we used a Lagrangian
transport model, the Stochastic Time-Inverted Linear Trans-
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port (STILT) model, driven by the Weather Research and
Forecasting (WRF) model (Lin et al., 2003; Nehrkorn et al.,
2010). We estimated spatially resolved anthropogenic CO2
emissions by an inverse analysis and then evaluated the esti-
mated monthly CO2 emissions against inventory-based fossil
fuel CO2 emissions in the TMA. In Sect. 2, we describe the
XCO2 measurements by ground-based FTSs at three obser-
vation sites in the TMA. Section 3 presents a methodology
for modeling XCO2 enhancements at the observation sites
using the atmospheric transport model and prior emission
data, and a framework for estimating anthropogenic CO2
emissions through Bayesian inference. In Sect. 4, we show
the results of the XCO2 measurements and simulations and
discuss the posterior emission estimates.

2 Measurements during the observation campaign
in the TMA

An observation campaign with portable FTSs and the
Tsukuba FTS (the 2016 Tokyo campaign) was conducted in
the TMA from February to April 2016. Here, the TMA is
defined as a rectangular region that includes the urban areas
of Kanagawa, Chiba, Saitama, Ibaraki, Tochigi, and Gunma
prefectures as well as the Tokyo metropolis (Fig. 1). The
United Nations reports that “Tokyo”, with approximately
38 million inhabitants, is the world’s most populous area and
accounts for 30.1 % of the total population of Japan (United
Nations, 2019), although the boundaries used to define Tokyo
by the United Nations are not the same as those used here. On
the one hand, the city-center of the TMA, primarily because
of its intense economic activity and high population density,
is a strong source of anthropogenic CO2 emissions (Saito et
al., 2022), and there are a multitude of point sources with
large emissions (large point sources), such as power plants
and steel plants, along the shores of Tokyo Bay. On the other
hand, the TMA is surrounded by evergreen broadleaf and de-
ciduous broadleaf forests, which contribute to temporal vari-
ations in biogenic CO2 fluxes. The 2016 Tokyo campaign
was conducted from late winter to early spring, when biolog-
ical activity within the TMA was dormant; thus, it was most
likely responsible for much smaller changes in CO2 concen-
trations than the anthropogenic activity.

We used measurement data from the ground-based high-
resolution FTS operated as part of the Total Carbon Col-
umn Observing Network (TCCON, Wunch et al., 2011)
at the National Institute for Environmental Studies (NIES)
(35.0513◦ N, 140.1215◦ E, 31 m a.s.l. (above sea level)) in
Tsukuba (Morino et al., 2018). Additionally, we used data
from two EM27/SUN spectrometers (SN38 and SN44)
throughout the campaign period and a third EM27/SUN
spectrometer (SN63) beginning in the middle of the cam-
paign. Considering the prevailing wind direction in this
winter/early spring (i.e., northwesterly) and proximity to
anthropogenic emission sources, we deployed the SN38

EM27/SUN spectrometer at Saitama University (35.8636◦ N,
139.6081◦ E, 28 m a.s.l.) and the SN44 EM27/SUN spec-
trometer at Sodegaura City Hall (35.4297◦ N, 139.9545◦ E,
14 m a.s.l.) from 16 February 2016 to 6 April 2016 (Fig. 1).
The SN63 EM27/SUN spectrometer began operation at
Tsukuba on 3 March 2016 and has since been continuously
operated as part of the Collaborative Carbon Column Ob-
serving Network (COCCON, Frey et al., 2019). Before and
after the observations at the three sites, we conducted side-
by-side measurements with the EM27/SUN instruments and
the TCCON instrument at NIES for approximately 1 week
each time (3–10 February and 11–20 April).

The EM27/SUN instrument measures direct solar ab-
sorption spectra from 4000 to 11 000 cm−1 in the short-
wavelength infrared (SWIR) region (Gisi et al., 2012). At
the time of the 2016 Tokyo campaign, the participating
EM27/SUN spectrometers were equipped with only one In-
GaAs detector, and column amounts of CO2, CH4, water
vapor, and oxygen were obtained from the SWIR spectra.
The spectral resolution was 0.5 cm−1, which corresponds to
an optical path difference of 1.8 cm. Interferograms were
continuously acquired every 6 s, and every 10 interfero-
grams (five each from the forward and backward scans) were
averaged and recorded (i.e., a sampling interval of about
1 min). If the weather permitted, EM27/SUN measurements
at Saitama were made from sunrise to sunset, whereas the
measurements at Sodegaura were made between approxi-
mately 09:00 Japan standard time (JST) and sunset, reflecting
the office hours of the city hall. For retrieval processing, we
used GGG2014 software, which is also used for processing
the TCCON spectra (Wunch et al., 2015).

The EM27/SUN data were averaged in 15 min bins. Chen
et al. (2016) derive an optimal integration time of 10–20 min,
based on the Allan variance of two sets of EM27/SUN
data from side-by-side measurements. However, they used
a shorter integration time of 5 min to derive the EM27/SUN
differences between upwind and downwind of local emis-
sion sources. In the present study, we found that it is difficult
for the XCO2 simulation to accurately reproduce the times
at which point source plumes are observed (Sect. 4.2), and a
comparison of the simulations and observations at short time
intervals is not beneficial. Thus, we adopted an integration
time of 15 min for the EM27/SUN data.

To ensure consistency among the instruments, we deter-
mined correction factors for XCO2 and XCH4 values based
on the side-by-side measurements performed at NIES before
and after the field campaign. The SN63 EM27/SUN data,
which were bias-corrected against coincident aircraft mea-
surements (Ohyama et al., 2020), were used as reference
data. The instrumental line shape of the SN44 EM27/SUN
deviated greatly from that of an ideal instrument because
of its imperfect alignment (Frey et al., 2019); therefore,
airmass-dependent correction factors (ADCFs) were de-
rived in addition to airmass-independent correction factors
(AICFs). The procedure for determining these correction fac-

https://doi.org/10.5194/acp-23-15097-2023 Atmos. Chem. Phys., 23, 15097–15119, 2023



15100 H. Ohyama et al.: Anthropogenic CO2 emission estimates

Figure 1. Locations of the two EM27/SUN observation sites (Saitama University and Sodegaura City Hall) and Tsukuba TCCON site
(yellow circles). Also shown are the AMeDAS stations (red circles) used for the comparison with wind data from the WRF simulation and
the ERA5 reanalysis data. The calculation of the footprint by WRF–STILT was performed for the entire region displayed in this figure. The
elevation data are from the Global Bathymetry and Topography at 15 arcsec (SRTM15+V2.1) (Tozer et al., 2019). The upper-right figure
shows the location of the study area relative to Japan as a whole.

tors is described in detail by Ohyama et al. (2021). The
resulting correction factors C0 (AICF) and C1 (ADCF) in
Eq. (1) of Ohyama et al. (2021) were 1.0028 and 0.0096,
respectively, for the SN44 EM27/SUN XCO2 data. The C0
value of the SN38 EM27/SUN XCO2 data was 1.0006.
The C0 and C1 values of SN44 EM27/SUN XCH4 data
were 1.0101 and 0.0021, respectively, and the C0 value
of the SN38 EM27/SUN XCH4 data was 1.0017. Com-
parisons of the bias-corrected EM27/SUN data with the
SN63 EM27/SUN data are shown in Fig. S1 in the Sup-
plement. Each of the EM27/SUN data points was aver-
aged per 15 min bin. After the bias correction, the SN38
and SN44 EM27/SUN XCO2 data differed from the SN63
EM27/SUN XCO2 data by (mean± 1σ ) −0.01± 0.17 and
0.06± 0.16 ppm, respectively, and the SN38 and SN44
EM27/SUN XCH4 data differed from the SN63 EM27/SUN
XCH4 data by −0.09± 0.97 and 0.39± 0.88 ppb, respec-
tively. In the present study, the Tsukuba TCCON data were
also scaled to be consistent with the SN63 EM27/SUN data
by using C0 values of 0.9977 for XCO2 and 0.9985 for
XCH4. Figure 2 shows time series of the bias-corrected
XCO2 and XCH4 data observed with the four spectrometers
during the campaign period, including the side-by-side mea-
surements at the Tsukuba site.

3 Methodology for the CO2 emission estimation

3.1 Lagrangian transport model

We used the STILT model (Lin et al., 2003; Fasoli et al.,
2018) coupled with meteorological fields from the WRF
model (hereafter WRF–STILT; i.e., STILT driven by meteo-
rological fields from WRF) to simulate atmospheric transport
as required for inversion of the CO2 emission data. STILT
calculates the trajectory of particles from a “receptor” loca-
tion and generates a footprint that represents the sensitivity
of the CO2 mole fraction to be measured at the receptor loca-
tion to upwind emissions. This footprint (concentration per
unit flux; ppm (mol m−2 s−1)−1)) corresponds to the Jaco-
bian matrix used for inverse analysis of CO2 emissions. We
used WRF meteorological fields generated at a horizontal
resolution of approximately 1 km to drive STILT (described
in detail in Sect. 3.2). We ran the model at 14 receptor levels
(25, 50, 75, 100, 150, 200, 300, 400, 600, 800, 1000, 1500,
2000, and 2800 m a.g.l.) over each observation site (Jones et
al., 2021), and an ensemble of 1000 particles for each alti-
tude was traced backwards in time for 24 h. We varied the
location (latitude and longitude) of the receptor along the
line-of-sight of the EM27/SUN pointing toward the sun to
accord with the receptor level. The hourly footprints for each
grid were computed by considering the PBL height and the
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Figure 2. Time series of XCO2 and XCH4 during the observation campaign, including side-by-side measurements conducted at Tsukuba.
The dashed vertical lines show the dates when the field observations began and ended at the three sites.

residence time of particles traveling within the lower PBL
(Lin et al., 2003). The footprint calculations were performed
every 15 min from 09:00 to 17:00 JST at a spatial resolution
of 30 arcsec (approximately 1 km) within 34.975–36.625◦ N,
138.900–140.875◦ E (Fig. 1).

The hourly footprints calculated over the STILT run time
(24 h) at a given time were weighted by temporal correction
factors of CO2 emissions (described in Sect. 3.3) and aggre-
gated in each grid cell. From the summed footprints at each
altitude, we then calculated the pressure-weighted column-
average footprint, taking account of the column-averaging
kernel of the EM27/SUN spectrometer (Rodgers and Con-
nor, 2003; Jones et al., 2021). The footprints generated by
STILT were then multiplied with spatially resolved emission
inventories for anthropogenic and biogenic fluxes separately
to determine the spatially resolved contributions (in ppm)
of the surrounding emission sources. The change in XCO2
(1XCO2) at each observation site was obtained by summing
the contributions over all grid cells and serves for the for-
ward modeling. We separated the anthropogenic flux into
large point source and area source emissions, as described
in Sect. 3.3. We thus considered three types of fluxes: large
point source emissions, area source emissions, and the bio-
genic flux.

3.2 Meteorological fields from WRF model

To drive the STILT model, we used meteorological fields
simulated using the Advanced Research WRF model (WRF–
ARW version 3.9.1.1; Skamarock et al., 2008). As meteoro-
logical initial and lateral boundary conditions for the WRF
simulation, we used grid point value (GPV) data produced
by the mesoscale forecast model (MSM) of the Japan Me-
teorological Agency (JMA) (MSM–GPV; JMA, 2019). The
MSM–GPV data have 17 vertical layers, including the sur-
face layer with a spatial resolution of 0.0625◦× 0.0500◦

and 16 pressure levels (from 1000 to 100 hPa) with a spa-
tial resolution of 0.125◦× 0.100◦. Although the MSM–GPV
data provide 3-hourly forecast values, only the initial values
of each forecasting cycle were used in this study. The ini-
tial and lateral boundary conditions of soil temperature and
moisture were obtained from final operational global analy-
sis and forecast data (GDAS/FNL) of the National Centers
for Environmental Prediction (NCEP) with a spatial resolu-
tion of 0.25◦× 0.25◦ (NCEP, 2015). Because the spatial res-
olution of the MSM–GPV data at the 16 pressure levels was
∼ 10 km, the WRF model was configured with two model-
ing domains (d01 and d02 in Fig. S2) with horizontal res-
olutions of 3 km (d01) and 1 km (d02), with one-way grid
nesting. Domain 01 included not only the Kanto Plain but
also the surrounding mountainous and marine areas, and do-
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main 02 fully covered the TMA and was slightly larger than
the domain used for the STILT simulations. We set 51 ver-
tical levels extending from the surface up to 100 hPa. Land
use information was taken from a dataset (veg_jstream) con-
structed by Japan’s Study for Reference Air Quality Mod-
eling (Chatani et al., 2018). To reduce computational effort,
the WRF simulations were not run for the entire campaign
period but for separate intervals of 2.5–5.5 consecutive days,
which were determined so that they covered the EM27/SUN
measurement days. Each simulation segment started at 12:00
UTC, and the first 12 h was considered spin-up time. Grid
nudging toward the MSM–GPV data was applied to the wind
field (u,v), temperature (t), and the water vapor mixing ratio
(q) at all levels in domain 01 with a nudging coefficient of
3.0× 10−4 s−1 for each element. In domain 02, grid nudg-
ing of the wind field was applied at all levels with a nudging
coefficient of 1.0× 10−4 s−1, whereas nudging was applied
to the temperature and water vapor mixing ratio only at the
levels above the simulated PBL with a nudging coefficient
of 3.0× 10−5 s−1. The simulations for domains 01 and 02
were carried out with integration time steps of 15 and 5 s,
with model outputs saved every 1 h and every 15 min, respec-
tively. For use with the STILT model, the wind data for do-
main 02 were time-averaged over the output interval of the
WRF model (Nehrkorn et al., 2010). Table 1 summarizes the
model settings and physics options used for the reference in-
verse analysis.

In previous studies using the WRF model, the physics
options of the model were set according to the studied re-
gion and period as well as the WRF version. In this study,
we sought to select optimal physics options especially for
the PBL scheme, the cumulus parameterization scheme, and
the land surface model, all of which significantly impact
the WRF calculation (Díaz-Isaac et al., 2018), by comparing
WRF (and STILT) simulation results obtained with different
physics options against measurement data (see Sect. 4.2 for
the STILT simulation). The Kain–Fritsch cumulus parame-
terization scheme (Kain, 2004) was applied only in domain
01 (Table 1). Because cumulus parameterization is valid only
for coarse grid resolutions (typically> 10 km), we also ran
simulations without any cumulus parameterization scheme
and found little difference in the simulation results obtained
with and without a cumulus parameterization scheme. For
the land surface model, we adopted the Rapid Update Cycle
(RUC) model (Smirnova et al., 2016) because XCO2 sim-
ulations using the RUC model reproduced the observations
better than the other land surface models examined by Díaz-
Isaac et al. (2018). We evaluated in detail the effect of dif-
ferent PBL schemes on the WRF simulation results because
which PBL scheme is optimal depends on the location and
season (e.g., Jeong et al., 2013). We compared the modeled
wind fields with observational data from Automated Mete-
orological Data Acquisition System (AMeDAS) stations op-
erated by the JMA (https://www.jma.go.jp/jma/en/Activities/
amedas/amedas.html, last access: 25 July 2023). Because

wind fields directly influence atmospheric transport patterns,
it is of particular importance to assess the model perfor-
mance of the wind fields. Here, we compared wind speed
and wind direction in WRF simulations among three differ-
ent PBL schemes, the Mellor–Yamada–Janjić (MYJ) scheme
(Janjić, 1994), the Mellor–Yamada Nakanishi Niino Level
2.5 (MYNN25) scheme (Nakanishi and Niino et al., 2009),
and the Yonsei University scheme (Hong et al., 2006) with
topographic correction for surface winds (Jimenez and Dud-
hia, 2012) (YSU+ topo), and we also compared the fifth-
generation atmospheric reanalysis (ERA5) data at 0.25◦ spa-
tial resolution (Hersbach et al., 2023) with data from the
five AMeDAS stations within the TMA (Fig. 1): Saitama
(35.8761◦ N, 139.5868◦ E, 18 m a.s.l.), Tokyo (35.6916◦ N,
139.7532◦ E, 56 m a.s.l.), Haneda (35.5636◦ N, 139.7896◦ E,
16 m a.s.l.), Chiba (35.6028◦ N, 140.1040◦ E, 51 m a.s.l.),
and Kisarazu (35.3623◦ N, 139.9402◦ E, 68 m a.s.l.). Com-
parison of wind speed and wind direction between the mod-
els and observations (see Fig. S3 for the Tokyo site) showed
that the model data could generally reproduce the observed
temporal variations in the wind fields and demonstrated the
capability of the model to simulate reasonable meteorolog-
ical fields for driving the transport of trace gases. Tables 2
and 3 summarize the mean differences (biases) between the
models and observations and their standard deviations for
wind speed and wind direction, respectively. The WRF MYJ
scheme had the lowest bias in wind speed and the small-
est standard deviation in wind direction, whereas the ERA5
results were the best for the standard deviation in wind
speed and the bias in wind direction. Among the tested PBL
schemes of the WRF model, the wind fields obtained with the
MYJ scheme were optimal. XCO2 simulations using these
meteorological fields are assessed in Sect. 4.2.

3.3 Anthropogenic and biogenic CO2 fluxes

For the prior estimate of anthropogenic CO2 emissions, we
used the 2020b version of the Open-source Data Inven-
tory for Anthropogenic CO2 (ODIAC 2020b), which is a
global high-resolution (30 arcsec) monthly fossil fuel CO2
emissions database (Oda and Maksyutov, 2015; Oda et al.,
2018). The high-resolution ODIAC emission map was cre-
ated by spatially disaggregating the national CO2 emissions
using the large point source database and proxy data associ-
ated with emissions. The locations and magnitudes of large
point source emissions in ODIAC are taken from the Carbon
Monitoring for Action (CARMA) database (https://www.
cgdev.org/topics/carbon-monitoring-action, last access: 25
July 2023). The rest of the national emissions (referred to
as “area source emissions” because line source emissions are
not explicitly included in ODIAC) are distributed based on
the spatial patterns of night lights data collected by satellites.
We pinpointed large point sources such as power plants and
steel plants on the CO2 emission map of ODIAC 2020b in
March 2016 with the aid of high-resolution satellite imagery
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Table 1. Physics and model options of the WRF data used in the reference inversion.

Model version V3.9.1.1 (WRF Preprocessing System: V3.9.1)

Meteorological input data
(Initial and boundary conditions)

JMA mesoscale model (MSM–GPV) data
Soil: NCEP-FNL data

Land use information veg_jstream (Chatani et al., 2018)
Model grid size d01, 3 km; d02, 1 km; 51 vertical layers
Grid nudging d01: whole layer for uv, t , q (see main text)

d02: whole layer for uv; above PBL for t , q
Planetary boundary layer Mellor–Yamada–Janjić (MYJ) scheme (Janjić, 1994)
Land surface model Rapid Update Cycle (RUC) model (Smirnova et al., 2016)
Surface layer Revised MM5 scheme (Jiménez et al., 2012)
Microphysics Thompson scheme (Thompson et al., 2008)
Cumulus parameterization Kain–Fritsch scheme (only d01) (Kain, 2004)
Shortwave RRTMG scheme (Iacono et al., 2008)
Longwave RRTMG scheme (Iacono et al., 2008)

Table 2. Mean differences and their standard deviations (1σ ) in wind speed (m s−1) between model data (three WRF simulations and ERA5
reanalysis data) and the observational data at five AMeDAS sites (model minus AMeDAS). Boldface indicates the best-case results among
the models.

Site WRF/MYJ WRF/MYNN25 WRF/YSU+ topo ERA5

Saitama 0.16± 1.30 0.20± 1.29 0.43± 1.36 0.17± 1.22
Tokyo 0.22± 1.53 0.70± 1.96 0.39± 1.38 0.40± 1.42
Haneda −0.96± 1.75 −0.78± 1.89 −0.84± 1.80 −0.98± 1.67
Chiba 0.18± 1.64 0.53± 1.89 −0.48± 1.66 −0.20± 1.46
Kisarazu 1.00± 1.38 1.30± 1.69 1.20± 1.47 0.84± 1.41

(Fig. 3a). The locations of large point sources in the ODIAC
are not exact, most likely because of the large uncertainty
of the CO2 emission source information in the CARMA
database (Gurney et al., 2019). We therefore customized the
ODIAC data by a two-step process. First, grid cells with
CO2 emissions larger than a given threshold (> 104 ton of
carbon per month) were replaced with the averaged value
of the neighboring eight grid cells. We regarded these sec-
ondary emissions as area source emissions. Second, annual
emissions from large point sources, which are available upon
request from the Ministry of the Environment of Japan un-
der the GHG Emissions Accounting, Reporting, and Disclo-
sure System (https://ghg-santeikohyo.env.go.jp/, last access:
25 July 2023), were converted to monthly values and added
to the area source emissions. The emission map corrected
for the large point sources (referred to as the “LPS-corrected
ODIAC”; Fig. 3b) was used as the prior estimate. Large
point source and area source emissions comprised 37 % and
63 %, respectively, of the LPS-corrected ODIAC data. In ad-
dition to this correction, weekly and diurnal scaling factors
from the Temporal Improvements for Modeling Emissions
by Scaling (TIMES) model developed by Nassar et al. (2013)
were applied to the ODIAC data to temporally downscale the
monthly ODIAC product.

A bottom–up fossil fuel emission inventory in Japan with
a spatial resolution of approximately 1 km× 1 km, the Mul-
tiscale Overlap Scheme for Analyzing national Inventory of
anthropogenic CO2 (MOSAIC), was used in a complemen-
tary manner (described in Sect. 4.3) (Saito et al., 2022). This
emission inventory provides monthly data obtained by us-
ing Japanese government statistics for all socioeconomic ac-
tivities of Japanese society. The inventory comprises fossil
fuel CO2 emissions from eight sectors: electricity genera-
tion, waste incineration, civil aviation, waterborne naviga-
tion, road transportation, industrial and commercial sources,
residential sources, and agricultural machine use. The lo-
cations and emission magnitudes of the large point sources
in the electricity generation sector were corrected using the
same method applied to the ODIAC data. Note that this study
used MOSAIC emission data for 2015, which were the only
MOSAIC data available when the study was carried out.

To account for the influence of biogenic CO2 on the ob-
served 1XCO2 values, we used biogenic CO2 fluxes calcu-
lated by a terrestrial biosphere model. Specifically, hourly net
ecosystem exchange (NEE) data from the Vegetation Inte-
grative SImulator for Trace gases (VISIT) model, referred to
as “VISITc”, were adopted as the biogenic CO2 flux data.
The NEE data were combined with green vegetation fraction
(GVF) data to downscale them. The NEE data reflect the CO2
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Table 3. Mean differences and their standard deviations (1σ ) in wind direction (degrees) between model data (three WRF simulations and
ERA5 reanalysis data) and the observational data at five AMeDAS sites (model minus AMeDAS). Boldface indicates the best-case results
among the models.

Site WRF/MYJ WRF/MYNN25 WRF/YSU+ topo ERA5

Saitama −9.5± 64.9 −14.0± 63.1 −12.9± 65.2 2.3± 60.4
Tokyo −0.6± 52.8 −2.5± 55.1 1.5± 50.6 10.0± 52.4
Haneda −0.7± 52.0 −4.1± 55.0 0.6± 56.1 14.7± 56.9
Chiba −6.3± 48.6 −5.1± 49.9 −3.7± 49.9 −1.9± 52.0
Kisarazu −13.1± 47.1 −10.4± 49.1 −12.7± 49.4 −9.7± 55.7

Figure 3. Anthropogenic CO2 emissions from the TMA in March 2016 in (a) the original ODIAC 2020b data and (b) the same data except
that the locations and emission magnitudes of large point sources, such as power plants and manufacturing plants, were corrected based on
the national emission inventory. Open diamonds denote the locations of large point sources, and the crosses in (b) denote the observation
sites.

flux between the terrestrial biosphere and the atmosphere and
are obtained as the difference between ecosystem respiration
(RE) and gross primary productivity (GPP) in the VISITc
data (RE–GPP). Whereas the initial VISIT products provided
monthly fluxes with a 0.5◦ spatial resolution (Ito and Inatomi,
2012), the VISITc products provide hourly resolved fluxes
composited with meteorological input data from the Climate
Forecast System Reanalysis (CFSR) versions 1 and 2 (Saha
et al., 2010) and ERA-Interim (Dee et al., 2011). The VISITc
model operates on the same grid as the CFSR data (i.e., ap-
proximately 0.31◦× 0.31◦). The original VISIT model simu-
lates the terrestrial biogeochemical cycle with a monthly res-
olution considering minor carbon flows, such as the effect
of land-use change and fire disturbance, that directly affect
variability in GPP and RE (Ito, 2019). These effects, how-
ever, were not adopted in VISITc, and therefore this study
scaled the GPP and RE data derived from VISITc to those of
original VISIT in every month and every grid. Furthermore,
to better characterize the spatial distribution of biogenic CO2
fluxes, we spatially downscaled the hourly VISITc NEE data

using GVF data from the Visible Infrared Imaging Radiome-
ter Suite (VIIRS) sensor onboard the Suomi National Polar-
orbiting Partnership satellite (VIIRS Global Green Vegeta-
tion Fraction). The GVF data are produced with a spatial res-
olution of approximately 4 km on a daily basis from the past
7 d of VIIRS observations (Ding and Zhu, 2018). The GVF
parameter, which represents how much downward solar in-
solation is intercepted by the canopy, is used as a scaling pa-
rameter for the biogenic flux. Following the method of Ye et
al. (2020), the original GVF data (Fig. 4a) were first averaged
into the VISITc grid. Then, the VISITc NEE data (Fig. 4b)
and the re-gridded GVF data were interpolated bilinearly into
the 1 km× 1 km grid. The ratio of the original GVF to the in-
terpolated GVF was multiplied by the interpolated NEE data
to produce the downscaled NEE data (Fig. 4c). Finally, the
downscaling process was conducted in a manner that ensured
all original sums of the NEE data from the TMA were pre-
served following the downscaling. We note that the effective
spatial resolution of the downscaled biogenic fluxes is about
4 km, although they were generated on a 1 km× 1 km grid.
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Figure 4. (a) NEE data at 03:00 UTC on 23 March 2016 from the VISITc model and (b) GVF data during 20–26 March 2016. (c) NEE data
downscaled using the GVF data.

3.4 Forward model

XCO2 measurements at a given location are quantitatively
related to the presumed surface CO2 fluxes via the forward
model H ,

y =H (x,b)+ ε, (1)

where y denotes the measurement vector (n× 1), x is the
state vector to be retrieved (m× 1), b is the vector consist-
ing of fixed physical quantities, and ε is the measurement
error vector. In the present study, the state vector x includes
spatially resolved fluxes for the area source emissions and
a scaling factor for the large point source emissions. Be-
cause the geolocations of large point sources are precisely
prescribed (at the grid cell scale of ∼ 1 km), the emissions
from the large point sources are treated separately from the
area source emissions, which have large uncertainty in their
spatial distribution. To simplify the inversion, the biogenic

flux was allocated to the fixed vector b. Note that the contri-
bution of biogenic flux to the simulated 1XCO2 was small
compared to that of anthropogenic flux, and the differences
among 1XCO2 calculated from four different biogenic flux
products are also small (Sect. 4.2). The forward model simu-
lates XCO2 values at the urban sites (Saitama or Sodegaura)
as follows:

H (x,b)=1XCOurban
2 STILT (x ,b)+XCOBG

2 (x ,b) , (2)

where 1XCOurban
2 STILT is the XCO2 enhancement at the urban

sites simulated by the pressure-weighted footprint and the
surface fluxes, and XCOBG

2 is the background value. We cal-
culated the 1XCO2 values as follows:

1XCOurban
2 STILT (x ,b)= F urban

aggr xarea+F urban
fine bpoint xpoint

+F urban
fine bbio, (3)

where F fine and F aggr are the original and the spatially aggre-
gated footprints, respectively. xarea and xpoint are the emis-
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sion flux vector for area sources and the (scalar) scaling fac-
tor for large point sources, respectively. bpoint and bbio are
the emission flux vectors for large point sources and biogenic
sources, respectively. The 1XCO2 values resulting from the
large point source emissions and biogenic fluxes were calcu-
lated from the original footprints with a spatial resolution of
approximately 1 km× 1 km (0.0083◦× 0.0083◦ ). For area
source emissions, however, we re-gridded the original foot-
prints to a spatial resolution of 0.025◦× 0.025◦ to degrade
the spatial resolution for the inverse analysis. First, the area
source emissions were summed for each 0.025◦× 0.025◦

grid cell. Then, individual footprints for the 0.025◦× 0.025◦

grid were derived by dividing the sum of the nine XCO2 con-
tributions for the 0.0083◦× 0.0083◦ grid by the emissions for
the 0.025◦× 0.025◦ grid.

We assumed that the XCO2 values at Tsukuba approx-
imately represent background air, as there are lower CO2
emissions around Tsukuba (Fig. 3) and the XCO2 values ob-
served at Tsukuba were systematically lower than those at
the other urban sites, which can be seen from the XCO2 val-
ues in Fig. 2a. However, the observations at Tsukuba are not
strictly background; they are affected by emissions from the
TMA (Babenhauserheide et al., 2020). We therefore obtained
the background XCO2 values by subtracting the simulated
1XCO2 values at the Tsukuba site (1XCOTsukuba

2 STILT ) from the
Tsukuba TCCON XCO2 values (XCOTsukuba

2 TCCON):

XCOBG
2 (x ,b)= XCOTsukuba

2 TCCON−1XCOTsukuba
2 STILT (x ,b)

= XCOTsukuba
2 TCCON−

(
F Tsukuba

aggr xarea+F Tsukuba
fine

bpoint xpoint+F Tsukuba
fine bbio

)
. (4)

The background values were presumed to be common to
the three sites, given the proximity of the sites. When there
were no data available from the Tsukuba site, CarbonTracker
CT2019B XCO2 data (CT2019B.xCO2) (Jacobson et al.,
2020) were used for background values independent of lo-
cal time. The average CarbonTracker data of two grids cen-
tered over the ocean east of the TMA (35.0◦ N, 142.5◦ E
and 37.0◦ N, 142.5◦ E) were used. We note that from Febru-
ary to April 2016, the mean difference between the Carbon-
Tracker data (13:30 LT) and the Tsukuba TCCON data (aver-
age of 12:00–15:00 LT) (CarbonTracker minus TCCON) was
−0.18 ppm with a standard deviation of 0.72 ppm. In the fol-
lowing simulations and inverse analyses, only the TCCON
data were used as the measurement data at Tsukuba, since
the SN63 EM27/SUN measurements started in the middle of
the campaign (as described in Sect. 2).

The simulations were performed when EM27/SUN mea-
surements at Saitama or Sodegaura were available for more
than 2 h per day and when two or more of the 15 min av-
eraged data showed XCO2 differences of at least 1 ppm be-
tween the urban (i.e., Saitama or Sodegaura) and Tsukuba
TCCON site. At Saitama and Sodegaura, these conditions
were satisfied at 15 and 11 d, respectively, between 16 Febru-

ary and 23 March 2016. In addition, the simulations were
limited to the time period from 09:00 to 17:00 JST, when
synchronous measurements at the three sites were made and
the airmass-dependent variation in XCO2 was moderate. Be-
cause the time period when the forward simulations and the
subsequent inverse analysis were performed was approxi-
mately 1 month during February and March 2016, for the
prior of the anthropogenic emissions we used the average of
the ODIAC data in February and March 2016.

3.5 Inversion methodology

The anthropogenic CO2 emission fluxes can be estimated
from the observed XCO2 values, together with their asso-
ciated uncertainties, through an optimization procedure. For
the area source emissions, we decided to optimize the log-
arithm of the emission flux, with the prior errors following
a Gaussian distribution, because the area source emissions
from each grid cell differ by a couple of orders of magnitude,
and the optimization of area source emissions at linear scale
might lead to unphysical negative posterior emissions. On the
other hand, the scaling factor for the large point sources was
optimized at linear scale. These anthropogenic CO2 emis-
sions (i.e., x) were estimated based on a Bayesian framework
by minimizing the cost function, which consists of two terms
related to the measurements and prior emissions:

J (x)= (y−H (x))T S−1
ε (y−H (x))

+ (x− xa)T S−1
a (x− xa), (5)

where xa is the prior vector of x; Sε is the model–observation
mismatch covariance (or the measurement error) matrix
(n× n); and Sa is the priori error covariance matrix (m×m).
Because the state vector x includes the logarithm of area
source emissions, the inverse problem is nonlinear, and an
iterative approach was used to estimate the CO2 emissions
(Rodgers, 2000):

xl+1 = xl +
[
KT S−1

ε K+ (1+ γ ) S−1
a

]−1

[
KT S−1

ε (y−H (xl))−S−1
a (xl − xa)

]
, (6)

where K(= ∂y/∂x) represents the Jacobian matrix (n×
m), which corresponds to a footprint obtained from the
WRF–STILT model, l is the iteration number, and γ is
the Levenberg–Marquart parameter fixed at 10 (Chen et al.,
2022). The posterior error covariance matrix was calculated
with the following equation:

Ŝ= (KT S−1
ε K+S−1

a )−1. (7)

The averaging kernel matrix represents the sensitivity of the
posterior solution x̂ to the true emission state:

A=
∂x̂

∂x
= I− ŜS−1

a , (8)
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where I is the identity matrix. The degree of freedom for
signal (DOFS), which is the trace of the averaging kernel,
indicates the number of independent pieces of information
retrieved from the observing system. As a measure of the un-
certainty reduction after the inverse analysis, the difference
between the prior flux uncertainty and the posterior flux un-
certainty relative to the prior flux uncertainty, r , can be used:

r =

1−

√
diag

[
Ŝ
]

√
diag[Sa]

× 100. (9)

Because we applied weekly and diurnal correction factors
from the TIMES model to the hourly footprints in sum-
ming them over the STILT run time, we optimized one static
emission distribution during the campaign period, assum-
ing that the temporal variation of the emissions followed the
TIMES model. Similarly, a single average scaling factor for
the large point sources was optimized from the data over the
entire campaign period. Considering the numbers of the ob-
servation sites and the 1XCO2 data available for the inver-
sion (n= 654), we aggregated the area source emissions and
footprints in the original 1 km× 1 km (0.0083◦× 0.0083◦)
grids to 0.025◦× 0.025◦ grids (m= 1921). In the sensitivity
test, the resolutions of area source emissions and footprints
were further lowered to 0.05◦× 0.05◦ grids (m= 481) and
0.1◦× 0.1◦ grids (m= 121) (Sect. 4.3).

To construct the prior error covariance matrix Sa, we
compared the ODIAC emission data used as the prior es-
timate (Fig. 5a) with the MOSAIC emission data (Saito
et al., 2022). Although the two databases have similar
spatial resolution, it is not the same, and therefore we
re-gridded the MOSAIC emission data into the ODIAC
grid (Fig. 5b). Then, we aggregated both datasets into the
0.025◦× 0.025◦ grid used for the inverse analysis. Figure 5c
shows the difference between the aggregated datasets, calcu-
lated as (ODIAC−MOSAIC)/(0.5× (ODIAC+MOSAIC))
×100. The difference between the spatial distributions of
the ODIAC and MOSAIC data is based solely on area
sources because the large point sources are common to
the two datasets. Similar large spatial differences also ex-
ist among other emission inventories (Gately and Hutyra,
2017) because this kind of emissions database uses geospa-
tial information or physical proxies to allocate the spatial
distributions of emissions. Considering the standard devi-
ation of the difference between the two datasets, we set
the diagonal elements of Sa to 85 % of the prior emis-
sion values. For the scaling factor of the large point source
emissions, we set the uncertainty to 15 % based on the
temporal variability of monthly liquid natural gas con-
sumed by natural gas-fired power plants of the Tokyo
Electric Power Company Holdings, which were available
up to March 2016 (https://www.enecho.meti.go.jp/statistics/
electric_power/ep002/results_archive.html, last access: 25
July 2023).

The off-diagonal elements of the prior error covariance
matrix, which represent the spatial coherence between the
prior flux uncertainties in different grid cells, were calculated
according to a model of exponential decay with distance be-
tween grid cells (e.g., Lauvaux et al., 2016; Lopez-Coto et
al., 2020). Thus, the element [i, j ] of the prior error covari-
ance matrix was given as

Sa[i,j ] = σiσj exp
(
−di,j/lS

)
, (10)

where σi (σj ) represents the uncertainty of the emissions in
grid cell i (j ), di,j is the distance between grid cells i and
j , and lS is the spatial correlation length of the prior flux un-
certainties. To determine the spatial correlation length of the
prior flux uncertainties, we computed semi-variograms of the
differences in area source elements between the two emis-
sions datasets in the inversion domain, and then we fitted an
exponential model to the semi-variograms with the distance
between grid cell pairs limited to 30 km (Mallia et al., 2020).
This analysis yielded a correlation length of approximately
10 km (Fig. S4), which is equivalent to that in New York (Pitt
et al., 2022) and Salt Lake City (Mallia et al., 2020).

To estimate the measurement error (or model–observation
mismatch) covariance matrix Sε, we used the residual error
method of Heald et al. (2004). In this method, the residual er-
rors between the XCO2 values measured by the EM27/SUN
spectrometer and those simulated by WRF–STILT using the
prior data were computed, and the variance of the residual
over the campaign period was used to represent the diagonal
elements of Sε.

4 Results and discussion

4.1 XCO2 measurements

During the 2016 Tokyo campaign, the daily minimum XCO2
values observed by the four spectrometers increased gradu-
ally from 403 to 405 ppm as a result of seasonal variation,
whereas the daily maximum values showed large day-to-day
variation with peaks of up to 415 ppm (Fig. 2a). The XCO2
values observed at Saitama and Sodegaura from 16 Febru-
ary to 6 April were generally higher than those observed
at Tsukuba. To characterize the diurnal variation in XCO2
at each observation site, we examined the diurnal variation
in XCO2 enhancements (XCOEnh

2 ) above the daily XCO2
baseline. The daily XCO2 baselines were assumed to be the
5th percentile values of the Tsukuba TCCON measurements
throughout each day and to be common to the three sites. We
note that the XCOEnh

2 values were calculated using only the
observed XCO2 values, whereas the 1XCO2 values repre-
sent the simulations of local XCO2 enhancement. For days
when measurements at Tsukuba were not available (16, 17,
27, and 28 February and 23 March), we used CarbonTracker
CT2019B XCO2 data (see Sect. 3.4). The maximum XCOEnh

2
value was 9.5 ppm at Saitama and 9.3 ppm at Sodegaura. The
average diurnal XCOEnh

2 value per 15 min bin was calculated
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Figure 5. Average CO2 emission fluxes from (a) ODIAC2020b data in February and March 2016 and (b) MOSAIC data in Febru-
ary and March 2015. (c) The difference between the two datasets aggregated to 0.025◦× 0.025◦ spatial resolution, calculated as
(ODIAC−MOSAIC)/(0.5× (ODIAC+MOSAIC))× 100. Note that large point sources have been excluded.

for each site using the entire field campaign dataset (Fig. 6).
The XCOEnh

2 values at Tsukuba gradually decreased over
time with small standard deviations. This finding reflects the
absence of other large emission sources around Tsukuba and
the moderate effect of photosynthesis. The measurements at
Saitama and Sodegaura showed larger XCOEnh

2 values than
those at Tsukuba, and XCOEnh

2 values increased over time
from approximately 08:00 JST. We note that the high early
morning values at Saitama may reflect an airmass-dependent
bias. The airmass-dependent variation in XCO2 is caused by
the effects of inaccurate spectroscopic parameters on the re-
trievals, which vary with the depth of the absorption lines
(i.e., airmass) (Wunch et al., 2015). Although this effect is
corrected in the GGG2014 software, the error may remain
for a large airmass. Although the XCOEnh

2 variability at Sode-
gaura was smaller than that at Saitama, some data bins with
large standard deviations most likely represent occasional in-
fluences of emissions from nearby large point sources.

Figure 6. Average diurnal variations in XCO2 differences
(XCOEnh

2 ) from daily background values. These background val-
ues were assumed to be common to the three sites and be the 5th
percentile value of the Tsukuba TCCON measurements throughout
each day. The average XCOEnh

2 values (open diamonds) and their
standard deviations (shading) were calculated for 15 min bins using
all data acquired during the campaign period.
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When the 2nd (10th) percentile values of the Tsukuba TC-
CON measurements were used as the daily XCO2 baseline,
the maximum XCOEnh

2 values were 9.6 (9.4) ppm at Saitama
and 9.5 (8.9) ppm at Sodegaura. These changes had little ef-
fect on the standard deviations of the mean XCOEnh

2 values
and the pattern of the diurnal variation.

The daily minimum XCH4 values (Fig. 2b) showed rel-
atively larger temporal fluctuation than those of XCO2 be-
cause of synoptic-scale events (e.g., 22–28 February). Al-
though detailed analysis of XCH4 data is beyond the scope
of this study, in the case study evaluating the WRF–STILT
simulation presented in the next section, the XCH4 values
are used.

4.2 XCO2 simulations

As described in Sect. 3.4, the XCO2 enhancement (1XCO2)
was calculated from the column-averaged footprint and the
surface fluxes from area sources, large point sources, and
biological activity. Figure S5 in the Supplement shows the
1XCO2 values at the three sites separately simulated using
area sources, large point sources, and biogenic fluxes. We
calculated the contributions of the respective fluxes to the
simulated 1XCO2 at each site (Table 4). The contribution
from area source emissions dominated the simulated1XCO2
for the Saitama and Tsukuba sites. Because the Sodegaura
site is located near large point sources, the closest one being
approximately 4 km away, the contribution from large point
sources was greater at Sodegaura than at Saitama. Because
our observations were made from late winter to early spring,
the biogenic flux contribution was relatively small, but not
negligible, especially at the Saitama site.

We compared the XCO2 data for the forward simulations,
which correspond to the XCO2 simulations from the foot-
prints and the surface CO2 fluxes based on Eqs. (2)–(4),
with the EM27/SUN observations at Saitama and Sodegaura
(Figs. 7 and 8). In most cases, the forward simulations cap-
tured well the observed temporal variation of XCO2. How-
ever, in some cases they failed to reproduce the diurnal vari-
ations. As shown in Fig. 8d, we found it difficult to cor-
rectly capture the timing of short-term (< 1 h) XCO2 en-
hancements, which were probably caused by the plume from
large point sources such as the power plants and steel plants
located near the Sodegaura site. Similarly, the WRF–STILT
simulation for Saitama on 3 March 2016 was not able to cap-
ture the XCO2 enhancement in the late afternoon (Fig. S6a).
STILT simulations conducted using ERA5 data and WRF
data with different PBL schemes (not shown) showed sim-
ilar tendencies. Furthermore, even when we changed the
emission data from ODIAC to MOSAIC, the discrepancy
was not reduced. In addition, we investigated the XCH4
data, for which a diurnal variation similar to XCO2 was
observed. A WRF–STILT simulation using the Emissions
Database for Global Atmospheric Research (EDGAR) ver-
sion 6 (Crippa et al., 2019) as the CH4 emission inventory

Table 4. Mean fractions of 1XCO2 simulated using the three CO2
fluxes (1XCOArea

2 for area source emission, 1XCOLPS
2 for large

point source emission, and 1XCOBio
2 for the biogenic flux) to the

sum of1XCONPS
2 ,1XCOLPS

2 , and the absolute value of1XCOBio
2

for each site.

Site 1XCOArea
2 1XCOLPS

2 1XCOBio
2

(%) (%) (%)

Tsukuba 77.8 15.7 6.6
Saitama 83.6 9.2 7.3
Sodegaura 47.7 47.6 4.6

also could not capture the XCH4 enhancements in the late
afternoon (Fig. S6b). However, we cannot rule out the possi-
bility that short-term local sources not included in the prior
fluxes may cause the discrepancy between the prior simula-
tions and the observations. Therefore, we attribute this large
model–observation discrepancy to errors in the WRF-STILT
model, or to the short-term local sources not included in the
prior fluxes, or both. These additional simulations indicate
that further improvement of the WRF simulation (i.e., assim-
ilation of measurement data) is necessary for more accurate
generation of meteorological fields. In our inverse analysis,
this large modeling error was considered when setting the
measurement error covariance matrix, as described below.

Figure 9 is a scatter plot between the measured and simu-
lated XCO2 values over the campaign period; here, the stan-
dard deviation of the residual, σε, is 1.31 ppm. As described
in Sect. 3.5, the variance of the residual was used as the di-
agonal elements of Sε. When the residual between the sim-
ulation and observation was more than 3 times σε, the mea-
surements were screened out by greatly increasing the un-
certainty. An exponential covariance model in time was se-
lected with a temporal correlation length of 1 h based on the
value reported for continuous CO2 observations in urban ar-
eas (Turner et al., 2020).

Although the residual error method provides a realistic
model–observation mismatch, we also estimated individual
uncertainties in our model–observation system, consisting of
uncertainties in the measurement data, transport modeling,
biogenic flux, and background value. We assumed the uncer-
tainty in measurement data to be the standard deviation of the
differences between the EM27/SUN XCO2 data acquired by
side-by-side instruments (Sect. 2). The standard deviation of
the bias-corrected XCO2 differences between the SN38 and
SN44 EM27/SUN spectrometers was 0.16 ppm. To estimate
the uncertainty in XCO2 due to the transport modeling error,
we ran XCO2 simulations using the WRF data with different
PBL schemes (see Sect. 3.2) and the ERA5 data. The mean
biases and the standard deviations of the difference between
the EM27/SUN measurements and the STILT simulations
from the prior fluxes are listed in Table 5 (Prior XCO2 dif-
ference). Whereas there was no large difference in the stan-

https://doi.org/10.5194/acp-23-15097-2023 Atmos. Chem. Phys., 23, 15097–15119, 2023



15110 H. Ohyama et al.: Anthropogenic CO2 emission estimates

Figure 7. Comparison of the XCO2 observations with the WRF–STILT simulation results (open blue diamonds) at (a) Saitama and (b) Sode-
gaura. The observations are presented as individual values (open gray circles) and as the 15 min averaged values used for the inversion (open
black diamonds).

Table 5. Total CO2 emissions from the TMA, scaling factors of large point source (LPS) emissions, degree of freedom for signal (DOFS),
and prior and posterior XCO2 differences between the simulations and observations for the different meteorological data, prior emission
data, prior uncertainty (σa), spatial correlation length of Sa (lS), temporal correlation length of Sε (lt), and spatial resolution of the inversion
domain (rS).

Case Meteorological data σa lS lt rS Prior XCO2 Posterior XCO2 Total CO2 Scaling factor DOFS
+ prior emission data (%) (km) (h) (◦) difference difference emission of LPS

(ppm) (ppm) (Mt-CO2 d−1) emissions

#0 WRF/MYJ+ODIAC 85 10 1 0.025 0.30± 1.31 −0.03± 1.21 1.037 0.856 6.49
#1 WRF/MYJ+ODIAC (LPS fixed) 85 10 1 0.025 0.30± 1.31 0.00± 1.23 1.092 1 (Fixed) 5.85
#2a WRF/MYNN25+ODIAC 85 10 1 0.025 0.26± 1.39 −0.02± 1.29 0.990 0.820 5.47
#2b WRF/YSU+ topo+ODIAC 85 10 1 0.025 0.16± 1.40 −0.10± 1.31 1.014 0.830 5.17
#2c ERA5+ODIAC* 85 10 1 0.025 −0.31± 1.85 −0.25± 1.46 0.846 0.537 5.79
#3a WRF/MYJ+ODIAC 50 10 1 0.025 0.30± 1.31 0.00± 1.23 0.954 0.817 4.01
#3b WRF/MYJ+ODIAC 120 10 1 0.025 0.30± 1.31 −0.04± 1.20 1.118 0.863 8.35
#4a WRF/MYJ+ODIAC 85 5 1 0.025 0.30± 1.31 0.01± 1.21 1.045 0.818 5.54
#4b WRF/MYJ+ODIAC 85 20 1 0.025 0.30± 1.31 −0.06± 1.22 1.013 0.862 6.37
#5a WRF/MYJ+ODIAC 85 10 0.5 0.025 0.30± 1.31 −0.05± 1.22 1.043 0.881 6.73
#5b WRF/MYJ+ODIAC 85 10 2 0.025 0.30± 1.31 0.00± 1.22 1.047 0.893 7.33
#6 WRF/MYJ+EDGAR 95 14 1 0.025 0.06± 1.44 −0.16± 1.27 0.873 − 6.55
#7a WRF/MYJ+ODIAC 75 16 1 0.05 0.30± 1.31 −0.06± 1.22 0.989 0.830 5.84
#7b WRF/MYJ+ODIAC 65 25 1 0.1 0.30± 1.31 −0.06± 1.23 0.959 0.826 5.05

∗ Data from Sodegaura on 23 March 2016 were excluded.

dard deviation among the three simulations using the WRF
data (1.31–1.40 ppm), the standard deviation for the simu-
lation using ERA5 was 2.74 ppm, more than 1 ppm larger
than that of the simulations using WRF. This large value
was because the 1XCO2 values at Sodegaura on 23 March
2016 simulated from the ERA5 data showed a rather large
peak (∼ 20 ppm) caused by incidental contamination from
the nearby large point sources that was not present in the ac-
tual measurement data. When the data for that site and day
were excluded, the standard deviation decreased to 1.85 ppm.
The XCO2 uncertainty resulting from transport modeling, es-
timated as the standard deviation of the differences between
the XCO2 values simulated using the WRF and ERA5 mete-

orological fields, was 1.65 ppm. To estimate the uncertainty
in XCO2 resulting from the biogenic flux error, we calcu-
lated XCO2 values over the campaign period for four types of
biogenic fluxes (VISITc and three others) with differing spa-
tial and temporal resolutions (Table S1 in the Supplement)
but with other input parameters unchanged. The Simple Bio-
sphere Model version 4.2 (SiB4, Haynes et al., 2021) and the
Biosphere model integrating Eco-physiological And Mecha-
nistic approaches using Satellite data (BEAMS, Sasai et al.,
2005) are both terrestrial biosphere models, whereas Carbon-
Tracker version CT2019B (Jacobson et al., 2020) is from a
data assimilation system in which the biogenic and oceanic
fluxes are optimized. The average standard deviation across
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Figure 8. Comparison of the XCO2 observations with the WRF–STILT prior (blue) and posterior (red) simulation results for three repre-
sentative days at (a–c) Saitama and (d–f) Sodegaura. The observations are presented as individual values (open circles) and as the 15 min
averaged values used for the inversion (open diamonds).

the XCO2 values calculated using the four biogenic fluxes,
0.09 ppm, was regarded as the XCO2 uncertainty resulting
from the biogenic flux. When Tsukuba TCCON data were
not available and CarbonTracker data were used instead, the
uncertainty in the background value rose. We assumed that
the XCO2 uncertainty resulting from the background value
was represented by the standard deviation of the XCO2 dif-
ference between the Tsukuba TCCON data and the Carbon-
Tracker data and estimated the uncertainty as 0.72 ppm (see
Sect. 4.1). These evaluations revealed that the uncertainty

in transport modeling was dominant, followed by the uncer-
tainty in background value.

Figure 10 shows the mean1XCO2 contribution from area
source emissions during the field campaign, which was cal-
culated from the absolute value of the 1XCO2 difference
between the urban and Tsukuba sites. We limit the domain
for estimating area source emissions to the urban domain in-
dicated by the magenta rectangle in Fig. 10 (hereinafter re-
ferred to as the “inversion domain”), where the contributions
of each grid cell to the modeled 1XCO2 are relatively large.
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Figure 9. Scatter plot of observed XCO2 values and values simu-
lated from the prior (black) and posterior (red) emission fluxes. The
mean difference between the simulations and observations (simu-
lation minus observation) with the standard deviation (±1σ ) is de-
noted as δ, and r is the correlation coefficient.

4.3 Posterior fluxes

Figure 11a shows the posterior area source CO2 emissions,
estimated using the settings for the reference inversion (i.e.,
case #0 in Table 5 using the ODIAC as the prior data and me-
teorological fields from the WRF model with the MYJ PBL
scheme for footprint calculations). The total DOFS from the
reference inversion was 6.49, of which 5.73 is for spatially
resolved emissions and 0.76 is for the large point source
emissions. The spatial pattern of the optimized emissions
still largely resembled the prior estimate pattern (Fig. 11a).
In large parts of Tokyo and Kanagawa, the emissions were
revised downward, whereas in Saitama, Ibaraki, and north-
ern Chiba, the emissions became larger. Because the mean
bias in XCO2 values simulated from the prior emission flux
was originally small, the emissions from the central TMA
region became smaller than the prior values, and the emis-
sions from the other regions became larger than the prior
values. The spatial distribution of the changes from the prior
flux (Fig. 11b) was partly in agreement with the spatial dif-
ferences between the MOSAIC and ODIAC emission data
(Fig. 5c). Because the locations of large point sources were
corrected in the prior emissions (Sect. 3.3), the difference in
the spatial distribution between the prior and posterior emis-
sions may be due to the non-representativeness of the spa-
tial proxy (i.e., night lights) used in the ODIAC data. As an
indication of the efficiency of the inversion, we evaluated
to what extent the differences between the XCO2 simula-
tions and observations were improved by using the poste-
rior fluxes. The XCO2 values simulated from the posterior
fluxes were in better agreement with the observations than
those simulated from the prior fluxes (Fig. 8). The mean bias
in XCO2 simulations against observations decreased from

Figure 10. Mean contribution of each grid cell to the 1XCO2 val-
ues simulated from prior area source emissions over the campaign
period. The CO2 emissions were optimized for the domain within
the magenta rectangle.

0.30 to −0.03 ppm, but the RMSE decreased only slightly,
from 1.31 to 1.21 ppm (Fig. 9). This slight RMSE reduc-
tion is because the emission distribution was estimated on
a monthly basis, whereas the individual model–observation
discrepancies were governed by the transport modeling er-
ror. Next, we compared the estimated total emissions in the
TMA with the emission inventories. The total emissions cor-
respond to the domain-aggregated emission flux during the
campaign period (i.e., from February to March 2016). Fig-
ure 12 shows the total emissions calculated from the prior
flux and the posterior flux in the reference inversion. The er-
ror bars (uncertainties at the 95 % confidence level) of prior
and posterior total emissions are based on the respective er-
ror covariance matrices and were obtained by summing the
emission uncertainties in each grid cell and the uncertainty
of the large point source emission in quadrature. The poste-
rior large point source emissions were adjusted downward by
14.4 % compared with the prior emissions (i.e., scaling fac-
tor of 0.856), and the posterior area source emissions were
adjusted upward by 10.4 %. Consequently, the difference be-
tween the prior and posterior total emissions was approxi-
mately 1 %. Although the change in the total emissions was
relatively small, the inversion led to a reduction of the uncer-
tainty in the total emissions by a factor of ∼ 2 (i.e., the un-
certainty at the 95 % confidence level decreased from 11.3 %
to 5.2 %).

Here, we present the results of emission estimates obtained
for cases with different inversion settings (Table 5): case #1,
large point source emissions fixed; cases #2a–c, footprints
calculated from different meteorological fields used; cases
#3a and #3b, prior uncertainty halved or doubled; cases #4a
and #4b, spatial correlation length of Sa changed; cases #5a
and #5b, temporal correlation length of Sε changed; case
#6, EDGAR version 6 (0.1◦× 0.1◦ spatial resolution) with-
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Figure 11. (a) Area source CO2 emission fluxes in the TMA in the reference inversion (case #0 in Table 5) combining posterior (within the
magenta rectangle) with prior (outside the rectangle) CO2 emissions and (b) the difference between the posterior and prior emissions. The
dotted lines show the administrative boundaries.

out large point source correction used as the prior estimate
(Fig. S7); and cases #7a and #7b, spatial resolution of the in-
version domain coarsened to 0.05◦ or 0.1◦ (i.e., 2 or 4 times
the reference case). For the case #6 and #7 inversions, the
prior uncertainty and the spatial correlation length were re-
determined as described earlier. The total emissions, scaling
factor of large point source emissions, and 1XCO2 bias be-
tween the simulation and observations and its standard devi-
ation for each case are summarized in Table 5. For case #1,
the inversion in which the large point source emissions were
fixed, both the mean bias and the standard deviation of the
posterior XCO2 simulations against observations were equiv-
alent to those of the reference inversion (case #0). Although
the scaling factor of large point source emissions for the ref-
erence inversion was 0.856, total emissions in case #1 were
5.3 % larger than those in case #0. The posterior XCO2 sim-
ulation results obtained with different meteorological fields
(cases #2a–c) indicated that the biases and standard devia-
tions were improved compared to the prior XCO2 simula-
tions, irrespective of the meteorological field. Among them,
use of the WRF model with the MYJ scheme resulted in the
smallest standard deviations for not only the prior but also
the posterior XCO2 simulations. When the prior uncertainty
(cases #3a and #3b), its correlation length (cases #4a and
#4b), and the temporal correlation length of Sε (cases #5a and
#5b) were changed, the mean biases and the standard devia-
tions of the posterior XCO2 simulations were comparable to
the reference inversion. However, the prior uncertainty had a
larger impact on the total emission estimates than the spatial
correlation length. The inversion using EDGAR as the prior
emission inventory (case #6) resulted in a posterior XCO2
simulation with a low bias of 0.16 ppm and a standard de-
viation of 1.27 ppm; this simulation underestimated the to-
tal emissions by 15.8 % compared with the reference inver-

sion. This result implies that the use of emission data with a
low spatial resolution introduces additional uncertainty into
XCO2 modeling. Similarly, reducing slightly the spatial res-
olution of the ODIAC data (cases #7a and #7b) degraded
both the mean bias and the standard deviation of the pos-
terior XCO2 simulations. In the case of the reference inver-
sion, the number of measurement data points was consider-
ably smaller than the number of grid cells whose emissions
were optimized. Although the number of grid cells with a
spatial resolution of 0.05 and 0.1◦ was equivalent to or lower
than the number of measurement data points, respectively,
the total DOFS slightly decreased (to 5.84 for 0.05◦ and 5.05
for 0.1◦). This was due to the changes in the prior uncer-
tainty and the spatial correlation length. The posterior total
emissions did not differ greatly from those of the reference
inversion. Figure 12 shows the ensemble mean of the total
emissions and its uncertainty at the 95 % confidence level, es-
timated from the scatter of these inversion results. For com-
parison, the total emissions from the original ODIAC data
and the original and LPS-corrected MOSAIC data are also
displayed. The ensemble mean total emissions are in agree-
ment with the original and LPS-corrected MOSAIC emis-
sions within the uncertainty of the ensemble inversions.

We compared our results with those of a previous CO2 in-
version study for the TMA (Pisso et al., 2019; Babenhauser-
heide et al., 2020) and with annual emissions in fiscal year
(FY) 2015 (April 2015 to March 2016) reported by each
administrative division in the Tokyo Metropolis. Here, we
calculated the total CO2 emissions in the Tokyo Metropolis
by integrating emissions in the grid cells within its admin-
istrative boundaries. Additionally, because our inversion do-
main included almost the whole area of the Tokyo Metropolis
and of Kanagawa, Chiba, and Saitama prefectures, the to-
tal emissions from these four administrative divisions (re-
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Figure 12. Total CO2 emissions in the TMA calculated from the
posterior emission fluxes (red), ODIAC data (blue), and MOSAIC
data (green). The posterior emission fluxes are shown for the ref-
erence inversion (case #0 in Table 5) and the ensemble mean of all
cases listed in Table 5. The error bars for the prior and posterior
emission fluxes are the respective estimated uncertainties, whereas
the error bar for the ensemble mean is the standard deviation. For
the ODIAC and MOSAIC data, both original and LPS-corrected to-
tal emissions are shown.

ferred to as “southern Kanto”) were also calculated. The
total emissions estimated by our reference inversion were
56.6 Mt-CO2 yr−1 for the Tokyo Metropolis and 277.8 Mt-
CO2 yr−1 for southern Kanto (Fig. S8), and these emissions
are smaller by 29 % and 50 %, respectively, than those es-
timated by Pisso et al. (2019). We note that although Pisso
et al. (2019) estimated mean emissions for 2005–2009, the
difference between the FY2015 emissions and the FY2005–
2009 mean emissions reported by the Tokyo Metropo-
lis is less than 1 % (https://www.kankyo.metro.tokyo.lg.jp/
en/climate/index.files/Tokyo_GHG_2019.pdf, Pisso et al.,
2019) and this study uses comparable Lagrangian transport
models to calculate atmospheric transport; however, there are
several differences, including the type of observational data
(in situ vs. column), the prior emission fluxes (EDGAR vs.
ODIAC), the meteorological fields for driving the transport
model (ERA-Interim vs. WRF based on GPV-MSM), and the
spatial resolution of emission estimates (20 km× 20 km vs.
3 km× 3 km). Our sensitivity analysis shows that changing
the prior fluxes, meteorological field, and emission estima-
tion resolution to roughly match Pisso et al. (2019) did not
produce a result substantially different from the emission es-
timation result of the reference inversion. We thus concluded
that the improved accuracy of emission estimates in our study
may be due to the use of columns as observational data. Col-
umn data are less susceptible to the effect of PBL height
changes that are difficult to simulate in transport models and
have information on a larger area of emissions due to the
difference in wind direction at each altitude. Babenhauser-
heide et al. (2020) estimated CO2 emissions of 256± 77 Mt-
CO2 yr−1 for the urban area around Tokyo. Our emission es-
timate for southern Kanto was in reasonable agreement with
the result of Babenhauserheide et al. (2020), although the
comparison is not exact because of the discrepancy in the
areas where the CO2 emissions were calculated. The total

emissions in FY2015 reported from each administrative di-
vision were 60.3 Mt-CO2 yr−1 for the Tokyo Metropolis and
250.6 Mt-CO2 yr−1 for southern Kanto (Table S2); these val-
ues show remarkable agreement with our posterior estimates
from the reference inversion. Furthermore, our posterior esti-
mate for the Tokyo Metropolis lies between the ODIAC and
MOSAIC inventory data. The relationship between our pos-
terior estimate and the inventory data for southern Kanto is
similar to that for the TMA shown in Fig. 12, because south-
ern Kanto includes most of the TMA as defined in this study.
Thus, these comparisons demonstrate that our top–down ap-
proach was able to properly constrain CO2 emissions in this
urban area.

5 Conclusions

We conducted a field campaign to estimate CO2 emissions in
the TMA from February to April 2016 with two EM27/SUN
spectrometers deployed at sites in Saitama and Sodegaura
and the Tsukuba TCCON spectrometer. The XCO2 values at
Saitama and Sodegaura exhibited large enhancements com-
pared with those at Tsukuba, and the mean diurnal vari-
ation of the enhancements showed a tendency to increase
toward evening. The Lagrangian transport model STILT,
which was driven by WRF meteorological fields generated
at a horizontal resolution of ∼ 1 km, was used for simulat-
ing the XCO2 enhancements resulting from anthropogenic
(area source and large point source) emissions and biogenic
fluxes. As with the prior fluxes, the anthropogenic emissions
from the ODIAC dataset were corrected by replacing the
locations and emission magnitudes of large point sources
with inventory data, whereas the biogenic flux from VIS-
ITc was downscaled using GVF data. We found that, for
the TMA, the WRF model with the MYJ PBL scheme and
the RUC land surface model yielded optimal results with
regard to both wind fields and the XCO2 simulations. The
XCO2 forward simulation results using the prior fluxes high-
light several factors that should be considered when design-
ing an observation campaign or an operational network for
ground-based column measurements for estimating urban
emissions. Although the XCO2 forward simulations gener-
ally showed good agreement with the observations, the com-
parison between the simulations and observations demon-
strated some limitations in the modeling capability. As de-
scribed in Sect. 4.2, in some cases the simulations failed to
reproduce the diurnal variation and to capture the plume from
nearby large point sources, possibly because of the transport
modeling error or the short-term local sources not included
in the prior fluxes (Figs. 8d and S6). Assimilating meteoro-
logical measurement data such as AMeDAS into the WRF
calculation would be one way to reduce the modeling er-
ror. Additional wind lidar observations would be useful to
better constrain wind fields and PBL as a whole (Deng et
al., 2017). However, it is a great challenge to simulate lo-
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cal plumes from large point sources. In a previous study, we
conducted simultaneous measurements of XCO2 and wind
data with the EM27/SUN instruments and a Doppler lidar, re-
spectively, co-located close to a thermal power plant in Japan
(Ohyama et al., 2021). Because not even the simulation us-
ing the measured wind data and a simple dispersion model
could reproduce the timing of the observed XCO2 enhance-
ment, we decided to adjust the wind directions as part of the
optimization of emission fluxes. At the Sodegaura site, where
there are two large point sources within 10 km and two more
within 15 km, the contribution from the large point sources
in the TMA to the simulated 1XCO2 is equivalent to the
contribution from area sources (Table 4 and Fig. S4). These
findings suggest that, for the purpose of estimating emissions
from the entire city, the locations of the EM27/SUN instru-
ments should be selected to avoid proximity to large point
sources or, through consideration of the dominant wind di-
rection, to minimize the influences from large point sources.

Using these observational and modeling approaches along
with their uncertainties, we developed an urban area-scale
inversion system to estimate spatially resolved CO2 emis-
sion at > 3 km resolution and a suitable scaling factor for
large point source emissions. The posterior CO2 flux re-
duced both the mean bias and the standard deviation of
the differences between the XCO2 simulations and obser-
vations. Whereas the posterior total CO2 emissions in the
TMA from the reference inversion were consistent with those
from the prior estimate with ∼ 1 %, the posterior uncertainty
was halved compared with the prior uncertainty. The en-
semble mean of the posterior total CO2 emissions agreed
with the LPS-corrected ODIAC (prior) and MOSAIC data
within the posterior uncertainty at the 95 % confidence level
estimated from the ensemble scatter. We conclude that the
EM27/SUN data could constrain urban-level CO2 emissions
and partially resolve the spatial distribution at monthly scale.
Because few EM27/SUN instruments were available for the
2016 Tokyo campaign, we deployed only two EM27/SUN
instruments with consideration of the prevailing wind direc-
tion. The actual wind direction varied more than expected,
with the result that about 1 month of data showed a wide
range of sensitivity, as shown in Fig. 10. The deployment
of additional instruments would increase our sensitivity to
emissions and thus the DOFS. This would enable more fre-
quent (i.e., bimonthly or weekly) emission estimates. In addi-
tion, more instrument locations would also help to constrain
the background. We plan to construct operational observa-
tion sites with EM27/SUN spectrometers in central Tokyo
and the TMA suburbs. These data not only will facilitate
the operational estimation of CO2 emissions in the TMA,
thereby helping to verify emission reduction efforts, but also
will validate GHG data from future satellite missions with
small footprints and a wide swath width, such as Japan’s
GOSAT-GW (Global Observing SATellite for Greenhouse
gases and Water cycle; https://gosat-gw.nies.go.jp/en/, last
access: 25 July 2023) and ESA’s CO2M (Copernicus An-

thropogenic Carbon Dioxide Monitoring mission; https://
www.esa.int/ESA_Multimedia/Images/2022/03/CO2M, last
access: 25 July 2023).

Data availability. The EM27/SUN data can be provided by
the corresponding authors upon request. The MSM–GPV
data can be obtained from the Research Institute for Sustain-
able Humanosphere of Kyoto University (http://database.rish.
kyoto-u.ac.jp/arch/jmadata/data/jma-radar/wprof/original/, last
access: 25 July 2023). The AMeDAS data can be obtained
from the JMA (https://www.jma.go.jp/bosai/map.html#5/34.
5/137/&elem=temp&contents=amedas&lang=en&interval=60,
last access: 25 July 2023). The ERA5 reanalysis product can
be retrieved from the Copernicus Climate Change Service Cli-
mate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-pressure-levels?tab=overview, last ac-
cess: 25 July 2023), and they can be converted to NOAA’s Air
Resource Laboratory data format using the HYSPLIT utility
era52arl (https://www.ready.noaa.gov/HYSPLIT_data2arl.php,
last access: 25 July 2023). The CarbonTracker CT2019B results
can be obtained from NOAA ESRL, Boulder, Colorado, USA
(https://gml.noaa.gov/aftp/products/carbontracker/co2/CT2019B/,
last access: 25 July 2023). The green vegetation frac-
tion data can be obtained from NOAA CLASS (https:
//www.avl.class.noaa.gov/saa/products/search?sub_id=0&
datatype_family=JPSS_NGRN&submit.x=26&submit.y=3,
last access: 25 July 2023).
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online at: https://doi.org/10.5194/acp-23-15097-2023-supplement.
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