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Abstract: Quasicrystals endowed with piezoelectric properties belong nowadays to novel piezoelec-
tric materials. In this work, the basic framework of generalized piezoelectricity theory of quasicrystals
is investigated by providing an improvement of the existing constitutive modelling. It is shown, for
the first time, that the tensor of phason piezoelectric moduli is fully asymmetric without any major
or minor symmetry, which has important consequences on the constitutive relations as well as on
its classification with respect to the crystal systems and Laue classes. The exploration of the tensor
of phason piezoelectric moduli has a significant impact on the understanding of the piezoelectric
properties of quasicrystals. Using the group representation theory, the classification of the tensor
of phason piezoelectric moduli with respect to the crystal systems and Laue classes is given for
one-dimensional quasicrystals. The number of independent components of the phason piezoelectric
moduli is determined for all 31 point groups of one-dimensional quasicrystals. It is proven that
the 10 centrosymmetric crystallographic point groups have no piezoelectric effects and that the
remaining 21 non-centrosymmetric crystallographic point groups exhibit piezoelectric effects due to
both phonon and phason fields. Moreover, the constitutive relations for one-dimensional hexagonal
piezoelectric quasicrystals of Laue class 9 with point group 6 and Laue class 10 with point group 6mm
are explicitly derived, showing that the constitutive relations for piezoelectric quasicrystals depend
on the considered Laue class as well as on the point group. Comparisons with existing results in the
literature and discussion are also given.

Keywords: quasicrystals; piezoelectricity; novel piezoelectric materials; phason; symmetries;
constitutive tensors; constitutive relations; classification

1. Introduction

It is well-known that an important class of materials with numerous applications in
technology are the piezoelectric crystals (e.g., [1–3]). For a piezoelectric material, the elastic
and electric response is coupled and anisotropic. Piezoelectricity exists only in crystals
with non-centrosymmetric point groups [2]. Nowadays, industrial, manufacturing, and the
automotive industry are the largest application market for piezoelectric devices.

Nowadays, an interesting class of novel materials are the quasicrystals. Quasicrystals
were discovered by Shechtman in 1982 and later reported by Shechtman et al. [4] in 1984.
In 2011, Shechtman received the Nobel Prize in Chemistry for the discovery of quasicrys-
tals. Quasicrystals belong to aperiodic crystals and possess long-range orientational order
but no translational symmetry in the aperiodic directions. The basis of the continuum
theory of solid quasicrystals is set up by two elementary excitations: the phonons and
the phasons [5,6]. Quasicrystals can have crystallographic and non-crystallographic point
groups. There exist one-, two- and three-dimensional quasicrystals. In particular, for
one-dimensional quasicrystals, there exist 31 point groups, which are crystallographic
point groups consisting of triclinic, monoclinic, orthorhombic, tetragonal, trigonal and
hexagonal systems and 10 Laue classes [7]. The two-dimensional quasicrystals have
57 point groups, consisting of 31 crystallographic point groups and 26 non-crystallographic
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point groups (pentagonal, decagonal, octagonal, dodecagonal systems) [8]. The three-
dimensional quasicrystals have 60 point groups, consisting of 32 crystallographic point
groups (i.e., cubic system) and 28 non-crystallographic point groups (i.e., icosahedral
system) [9]. To study the elastic properties of quasicrystals, the framework of linear
elasticity theory of quasicrystals has been investigated. The elastic energy density was de-
rived for two-dimensional pentagonal and three-dimensional icosahedral quasicrystals by
Levine et al. [6] and for octagonal and dodecagonal quasicrystals by Socolar [10]. The gen-
eralized linear elasticity theory of quasicrystals was first proposed by Ding et al. [11].
Yang et al. [12] investigated the linear elasticity theory of cubic quasicrystals. The general-
ized linear elasticity theory of one-dimensional quasicrystals was developed by
Wang et al. [7].

The desirable properties of the quasicrystalline materials belong to their piezoelectric
properties, as pointed out by Yang et al. [13,14], Hu et al. [15,16], and Gong et al. [17].
In the theory of piezoelectricity of quasicrystals, the phonon fields as well as the phason
fields are coupled with the electric field. Due to the piezoelectric effects, quasicrystals
may have applications in electronic systems such as sensor and actuator devices, by which
an electric voltage can induce an elastic deformation and vice versa. Wang and Pan [18]
derived analytical solutions for the fields involved in the problem of uniformly moving
screw dislocations in a one-dimensional hexagonal piezoelectric quasicrystal. By using the
generalized Stroh formalism, analytical solutions of the electric and elastic fields induced
by a straight dislocation in a one-dimensional piezoelectric quasicrystal have been derived
by Yang et al. [19]. Quasicrystals with piezoelectric properties represent novel piezoelectric
materials. The search for a clean, reusable source of energy is driving the interest in the
exploration of piezoelectricity of quasicrystals. Quasicrystals may be used to develop new
piezoelectric materials with promising applications in technology that could include energy
harvesting practices in the future [20].

Using group representation theory, Hu et al. [15] explored the piezoelectric effects
in quasicrystals, including the contribution from both phonon and phason fields, and
investigated piezoelectric effects in all two-dimensional quasicrystals with crystallographic
and non-crystallographic symmetries and three-dimensional icosahedral and cubic qua-
sicrystals. Hu et al. [15] found that the piezoelectric behavior of quasicrystals is more
complicated than that of ordinary crystals due to the presence of the phason field and
gave the non-vanishing phonon and phason piezoelectric constants for two-dimensional
quasicrystals and three-dimensional icosahedral and cubic quasicrystals. In particular,
Hu et al. [15] showed that two-dimensional quasicrystals with non-centrosymmetric crys-
tallographic point groups have piezoelectric effects induced by both phonon and phason
fields. Two-dimensional quasicrystals with non-crystallographic point groups can be di-
vided into four classes. The first class consists of quasicrystals with central symmetry
(5, 5m, N/m, N/mmm for N = 10, 8, 12) having no piezoelectric effects. The second class
consists of quasicrystals with five-fold symmetry (5, 52, 5m) having piezoelectric effects
induced by both phonon and phason fields. The third class consists of quasicrystals with
even-fold rotoinversion symmetry (N, Nm2 for N = 10, 8, 12) having a piezoelectric effect
induced only by the phason field. The fourth class consists of quasicrystals with even-fold
proper rotation symmetry (N, N22, Nmm for N = 10, 8, 12) having a piezoelectric effect
induced only by the phonon field. On the other hand, three-dimensional quasicrystals can
be divided into three classes. The first class (m3, m3m, 235, m35) has no piezoelectric effects.
The second class (23, 43m) has piezoelectric effects induced by both phonon and phason
fields. The third class (432) has a piezoelectric effect induced only by the phason field.

Concerning one-dimensional quasicrystals, Wang et al. [7] derived the independent
components of the elastic constitutive tensors for the 31 point groups of one-dimensional
quasicrystals based on the fact that “all the point groups belonging to the same Laue class
possess the same elastic properties” given by Yang et al. [21]. However, this does not hold
for the piezoelectric quasicrystals, since the piezoelectric properties are not the same for
point groups belonging to the same Laue class. This happens because the tensor of phonon



Crystals 2023, 13, 1652 3 of 23

piezoelectric moduli (the corresponding “usual” tensor of piezoelectric moduli for crystals)
depends on the point group (see Nye [2]). An important aspect that is highlighted in this
work is that, for the derivation of the explicit form of the constitutive relations for piezo-
electric quasicrystals, Laue classes as well as the corresponding point groups have to be
taken into account. For the classification of the elastic constitutive tensors Cijkl , Eαjγl , Dijγl ,
the Laue class is enough. On the other hand, in general, for the classification of the phonon
and phason piezoelectric constitutive tensors ejkl and f jγl , the Laue class is not enough and
the classification has to be given with respect to the point groups. Only for one-dimensional
quasicrystals, the classification of the tensor of phason piezoelectric moduli f j3l is enough
with respect to the Laue class as we will show in this work. The above aspects are often ig-
nored in the literature of elasticity (see, e.g., [9,22,23]) and piezoelectricity (see, e.g., [24–27])
of one-dimensional hexagonal quasicrystals. The significance of the classification of the
constitutive tensors and its influence on the constitutive relations is revealed in Section 3.

As far as one-dimensional piezoelectric quasicrystals are concerned, the independent
components of the piezoelectric constitutive tensors have been given by Li and Liu [28] in
matrix form for all 31 point groups of one-dimensional quasicrystals. However, the tensor
of phason piezoelectric moduli has been erroneously given in [28] as a 3× 6 matrix instead
of a 3× 3 matrix, as it will be shown in this work, leading to an incorrect classification of
the tensor of phason piezoelectric moduli and consequently to an incorrect interpretation
of the piezoelectric properties of one-dimensional quasicrystals.

On the other hand, concerning the state of the art of constitutive modelling in the
literature of piezoelectric quasicrystals, Altay and Dökmeci [29] developed the three-
dimensional basic equations in differential and variational invariant forms for piezoelectric
quasicrystals. However, they provided the constitutive relations for general quasicrystals
with the constitutive tensor of phason piezoelectric moduli possessing an invalid minor
symmetry with respect to the last two indices, and all these basic equations have been
adopted by many researchers in the field of piezoelectric quasicrystals.

In this work, developing the constitutive modelling of piezoelectric quasicrystals,
it is shown first of all that the tensor of phason piezoelectric moduli is an asymmetric,
two-point tensor of rank 3 without possessing any minor symmetry in contrast to the
statement given by Altay and Dökmeci [29]. The fully asymmetric character of the ten-
sor of phason piezoelectric moduli has a significant impact on its classification and this
in turn has physical consequences for the piezoelectric properties of quasicrystals and
mathematical consequences for the number of independent components of the phason
piezoelectric moduli and consequently for the explicit expressions of the corresponding
constitutive relations.

This paper is organized as follows. In Section 2, the basic framework of generalized
piezoelectricity theory of quasicrystals is given by improving the constitutive modelling
concerning the symmetries of the tensor of phason piezoelectric moduli. In Section 3,
the piezoelectric behavior of one-dimensional quasicrystals is investigated. By using group
representation theory, the piezoelectric constitutive tensors as well as the tensors with
“phasonic character” are studied with a focus on the classification of the tensor of phason
piezoelectric moduli for one-dimensional piezoelectric quasicrystals, giving rise to the
examination of the piezoelectric behavior of one-dimensional quasicrystals. Based on this
classification, the constitutive relations for one-dimensional hexagonal piezoelectric qua-
sicrystals are explicitly derived for Laue class 9 with point group 6 and Laue class 10 with
point group 6mm. Conclusions are given in Section 4. The classification of the constitutive
tensors with “phasonic character” for one-dimensional piezoelectric quasicrystals is given
in the Appendices A–C.

2. Generalized Piezoelectricity Theory of Quasicrystals

In this section, we give the basic framework of generalized linear piezoelectricity
theory of quasicrystals, which is the generalization of linear (compatible) elasticity of
quasicrystals toward the piezoelectricity of quasicrystals. The focus of this section lies on
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the constitutive modelling and its improvement and the matrix representation form of the
phason piezoelectric moduli tensor.

2.1. Basic Framework

An (n − 3)-dimensional quasicrystal can be generated by the projection of an n-
dimensional periodic structure to the three-dimensional physical space (n = 4, 5, 6). The
n-dimensional hyperspace En can be decomposed into the direct sum of two orthogonal
subspaces,

En = E3
‖ ⊕ E(n−3)

⊥ , (1)

where E3
‖ is the three-dimensional physical or parallel space of the phonon fields and E(n−3)

⊥
is the (n− 3)-dimensional perpendicular space of the phason fields. For n = 4, 5, 6, we
speak of one-dimensional, two-dimensional, and three-dimensional quasicrystals and the
dimension of the hyperspace is 4D, 5D, and 6D, respectively. It is considerably helpful to use
two different coordinate systems with different indices [30,31]. Indices in the parallel space
are denoted by small Latin letters i, j, k with i, j, k = 1, 2, 3. Indices in the perpendicular
space are denoted by small Greek letters α, γ with α, γ = 3 for one-dimensional quasicrys-
tals (with quasiperiodicity in z-direction), α, γ = 1, 2 for two-dimensional quasicrystals,
and α, γ = 1, 2, 3 for three-dimensional quasicrystals. The reason for this distinction is
based on the fact that the phonon and phason fields transform, in general, under different
representations, as it has been shown by Yang et al. [14,30] using group representation
theory. In particular, the phonon fields having indices i, j, k transform under ΓA, where ΓA
is a three-dimensional representation of the symmetry group in the parallel space, and the
phason fields having indices α, γ transform under ΓB, where ΓB is a representation in the
perpendicular space (three-dimensional representation for three-dimensional quasicrys-
tals, two-dimensional representation for two-dimensional quasicrystals, one-dimensional
representation for one-dimensional quasicrystals). Irreducible representations of phonon
tensor fields and of phason tensor fields “live” in the parallel tensor space and in the
perpendicular tensor space, respectively. It is important to highlight here that indices with
small Latin letters cannot be interchanged with indices with small Greek letters, since they
transform under different representations and “live” in different spaces. Throughout the
article, phonon fields will be denoted by (·)‖ and phason fields by (·)⊥. All field quantities
(phonon and phason fields) depend on the so-called material space coordinates (or spatial
coordinates) x ∈ R3. Notice that, in the linear theory of quasicrystals, the material space
coincides with the parallel space.

The (elastic) phonon and phason distortion tensors, β
‖
kl and β⊥γl , are defined as the gradient

of the phonon displacement vector u‖k and of the phason displacement vector u⊥γ , respectively,

β
‖
kl := u‖k,l , β⊥γl := u⊥γ,l , (2)

and they fulfill the following compatibility conditions:

εijl β
‖
kl,j = 0 , εijl β

⊥
γl,j = 0 , (3)

where εijl denotes the three-dimensional Levi-Civita tensor. The subscript comma denotes
the partial differentiation ∂j = ∂/∂xj with respect to the spatial coordinates xj. In the

geometrically linearized theory of elasticity, the symmetric part of β
‖
kl = u‖k,l is the phonon

strain tensor

e‖kl =
1
2
(u‖k,l + u‖l,k) . (4)
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With the use of the two different coordinate systems and indices, it becomes evident that
the phason distortion tensor β⊥γl is an asymmetric two-point tensor, that is,

β⊥γl 6= β⊥lγ (5)

and consequently a phason strain tensor, a quantity that is often misleadingly used in the
literature, cannot be defined. A simple example is the case of one-dimensional quasicrystals,
where γ = 3 and l = 1, 2, 3 and an interchange of the indices is not possible (e.g., β⊥31 exists
but β⊥13 does not exist). The lack of distinction between phonon and phason indices has
caused a great confusion in the literature of quasicrystals.

The electric field strength vector El is defined as the negative gradient of the electrostatic
potential ϕ as follows:

El := −ϕ,l (6)

and satisfies the Bianchi identity

εijlEl,j = 0 , (7)

which is the compatibility condition for the electric field. Physically, Equation (7) is the
electrostatic version of the Faraday law [32].

2.2. Constitutive Modelling

We consider a variational problem with the Lagrangian density L depending on the
variables u‖, u⊥ and ϕ for given body forces and body charges

L = L(u‖i , u‖i,j, u⊥α , u⊥α,j, ϕ, ϕ,j) = −
[
Ψ(e‖ij, β⊥αj, Ej) + V(u‖i , u⊥α , ϕ)

]
, (8)

where Ψ is the so-called electric enthalpy density for piezoelectric quasicrystals and V is the
electro-elastic potential of (phonon and phason) body forces and body charges. For vanishing
phason fields, the above electric enthalpy density and the electro-elastic potential reduce to
the corresponding forms of classical piezoelectricity [33–35].

For a linear piezoelectric quasicrystal, the electric enthalpy density Ψ is given by the
following quadratic form:

Ψ =
1
2

Cijkle
‖
ije
‖
kl + Dijγle

‖
ijβ
⊥
γl +

1
2

Eαjγl β
⊥
αjβ
⊥
γl − ejklEje

‖
kl − f jγlEjβ

⊥
γl −

1
2

ε jlEjEl , (9)

where the constitutive tensors, which are the physical property tensors, are defined by

Cijkl =
∂2Ψ

∂e‖ij∂e‖kl

, Eαjγl =
∂2Ψ

∂β⊥αj∂β⊥γl
, Dijγl =

∂2Ψ

∂e‖ij∂β⊥γl

, (10)

ejkl = −
∂2Ψ

∂Ej∂e‖kl

, f jγl = −
∂2Ψ

∂Ej∂β⊥γl
, ε jl = −

∂2Ψ
∂Ej∂El

. (11)

Cijkl is the tensor of the elastic moduli of phonons, Eαjγl is the tensor of the elastic moduli of
phasons, Dijγl is the tensor of the elastic moduli of the phonon–phason coupling, ejkl is the tensor
of the phonon piezoelectric moduli, f jγl is the tensor of the phason piezoelectric moduli, and ε jl is
the tensor of the dielectric moduli. For these constitutive tensors, it holds:

• The tensor of the elastic moduli of phonons possesses the major symmetry and the
minor symmetries (see, e.g., [36])

Cijkl = Cklij , Cijkl = Cijlk = Cjikl , (12)
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since the electric enthalpy density Ψ is quadratic in terms of the phonon strain tensor e‖ij
and the tensor e‖ij is symmetric, respectively. The tensor Cijkl has 21 independent com-
ponents.

• The tensor of the elastic moduli of phasons possesses only a major symmetry (see
also [11])

Eαjγl = Eγlαj , (13)

since the electric enthalpy density is quadratic in terms of the phason distortion tensor
β⊥αj, but β⊥αj is an asymmetric tensor.

• The tensor of the elastic moduli of the phonon–phason coupling possesses only a
minor symmetry with respect to the first two indices (see also [11])

Dijγl = Djiγl , (14)

due to the symmetric character of e‖ij.
• The tensor of the phonon piezoelectric moduli possesses a minor symmetry with respect

to the last two indices (see, e.g., [2])

ekij = ekji , (15)

since e‖ij is a symmetric tensor. The tensor ekji has 3× 6 = 18 independent components.

• The tensor of the phason piezoelectric moduli f jγl is an asymmetric tensor without a
minor symmetry with respect to the last two indices

f jγl 6= f jlγ , (16)

since the phason distortion tensor β⊥γl is an asymmetric two-point tensor (see Equation (5)
and also Remark 2).

• The tensor of the dielectric moduli exhibits the major symmetry (see, e.g., [2])

εij = ε ji , (17)

since the electric enthalpy density is quadratic with respect to the electric field strength
Ej and it has six independent components.

Evidently, the tensors Dijγl , ekij, f jγl do not possess a major symmetry, since they are
coupling tensors (see also Remark 3).

To sum up, it holds for the symmetries of the constitutive or physical property tensors of
piezoelectric quasicrystals:

Cijkl = Cklij = Cijlk = Cjikl , Eαjγl = Eγlαj , Dijγl = Djiγl , (18)

ekij = ekji , f jγl 6= f jlγ , εij = ε ji . (19)

Remark 1. The number of components of the constitutive tensors with phasonic character depends,
on the first step, on the dimension of the considered quasicrystal, that is if it is one-dimensional, two-
dimensional, or three-dimensional. Accordingly, on the second step, the number of the independent
components depends on the considered symmetry and Laue class (see, e.g., the classification of the
constitutive tensors Dij3l and f j3l for one-dimensional piezoelectric quasicrystals in Appendix B
and Appendix C, respectively).

Remark 2. As it has been shown above, the tensor of phason piezoelectric moduli f jγl is not
symmetric with respect to the last two indices, as erroneously postulated (see Equation (2.30)) by
Altay and Dökmeci [29] and adopted by other researchers (see, e.g., [25,37]), leading to erroneous
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constitutive relations. The impact of the asymmetric character of phason piezoelectric moduli will
become clear in Section 3.

The three response quantities are defined through the following linear constitutive
relations:

σ
‖
ij =

∂Ψ

∂e‖ij
= Cijkle

‖
kl + Dijγl β

⊥
γl − elijEl , (20)

σ⊥αj =
∂Ψ

∂β⊥αj
= Dklαje

‖
kl + Eαjγl β

⊥
γl − flαjEl , (21)

Dj = −
∂Ψ
∂Ej

= ejkle
‖
kl + f jγl β

⊥
γl + ε jlEl , (22)

where σ
‖
ij and σ⊥αj are the phonon and phason stress tensors, respectively, and Dj is the electric

displacement vector or electric excitation. From Equations (20) and (21), it is obvious that
the phonon stress tensor is symmetric, σ

‖
ij = σ

‖
ji, whereas the phason stress tensor σ⊥αj is

an asymmetric two-point tensor, σ⊥αj 6= σ⊥jα (see also [31,38]). Moreover, one can see in
Equations (20)–(22) that the electric field strength gives a contribution to the phonon and
phason stress fields and the elastic phonon strain tensor and phason distortion tensor
contribute to the electric displacement vector, as it should be for a piezoelectric quasicrystal
by its definition.

Using the constitutive relations (20)–(22), the electric enthalpy density (9) can be
rewritten in the following “compact” form:

Ψ(e‖ij, β⊥αj, Ej) =
1
2

σ
‖
ije
‖
ij +

1
2

σ⊥αj β
⊥
αj −

1
2

DjEj . (23)

The electro-elastic potential V is defined by

V(u‖i , u⊥α , ϕ) = − f ‖i u‖i − f⊥α u⊥α + qϕ , (24)

where f ‖i is the conventional phonon body force density, f⊥α is the phason body force density
(e.g., [38,39]), and q denotes the body charge density. The phonon and phason body force
densities and the body charge density are given as the excitations due to the phonon
displacement, phason displacement, and electrostatic potential, respectively, as follows:

f ‖i = − ∂V

∂u‖i
, f⊥α = − ∂V

∂u⊥α
, q =

∂V
∂ϕ

. (25)

The associated Euler–Lagrange equations are as follows:

Eu‖
i (L) = ∂L

∂u‖i
− ∂j

 ∂L
∂u‖i,j

 = 0 , (26)

Eu⊥
α (L) = ∂L

∂u⊥α
− ∂j

(
∂L

∂u⊥α,j

)
= 0 , (27)

Eϕ(L) = ∂L
∂ϕ
− ∂j

(
∂L
∂ϕ,j

)
= 0 . (28)
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Using Equations (8), (9), (20)–(22), (24), and (25) as well as the relations (2), (4), and (6),
Equations (26)–(28) give the (force) equilibrium conditions

σ
‖
ij,j + f ‖i = 0 , (29)

σ⊥αj,j + f⊥α = 0 , (30)

and the Gauss law of electrostatics (e.g., [32])

Dj,j = q . (31)

Substituting Equations (20)–(22) into Equations (29)–(31) and using Equations (2), (4), and
(6), we obtain the coupled equations of equilibrium for the phonon and phason displacement fields
and the electrostatic potential:

Cijklu
‖
k,l j + Dijγlu⊥γ,l j + elij ϕ,l j = − f ‖i , (32)

Dklαju
‖
k,l j + Eαjγlu⊥γ,l j + flαj ϕ,l j = − f⊥α , (33)

ejklu
‖
k,l j + f jγlu⊥γ,l j − ε jl ϕ,l j = q , (34)

which are non-homogeneous partial differential equations with sources being the body
forces and body charges.

In absence of body forces and body charges, the corresponding coupled equations of
equilibrium are given by the following homogeneous partial differential equations:

Cijklu
‖
k,l j + Dijγlu⊥γ,l j + elij ϕ,l j = 0 , (35)

Dklαju
‖
k,l j + Eαjγlu⊥γ,l j + flαj ϕ,l j = 0 , (36)

ejklu
‖
k,l j + f jγlu⊥γ,l j − ε jl ϕ,l j = 0 . (37)

Remark 3. It should be noticed that the electric enthalpy density Ψ given by Equation (9) is in
accordance with the corresponding one given by Altay and Dökmeci [29] (see Equation (2.26) in [29]).
However, attention should be given to the last terms of the constitutive Equations (20) and (21) in
comparison with the corresponding terms in Equations (2.27) and (2.28) in [29], since there is a
difference in the order of indices. In particular, in Equations (2.27) and (2.28) in [29], a major
symmetry has been used for two coupling tensors, the tensors of phonon and phason piezoelectric
moduli. However, these major symmetries do not exist.

2.3. Matrix Representation Form of the Tensor of Phason Piezoelectric Moduli fiαj

Special attention is given here to the tensor of phason piezoelectric moduli fiαj, since
its asymmetric character has important physical consequences. The tensor of phason piezo-
electric moduli fiαj is a physical property tensor with the indices i and j to transform under
ΓA and the index α to transform under ΓB. Hence, fiαj transforms under the representation
ΓA × ΓB × ΓA. Let us write the tensor fiαj in a matrix representation form.

• For three-dimensional triclinic piezoelectric quasicrystals, the tensor of phason piezo-
electric moduli fiαj (i = 1, 2, 3, α = 1, 2, 3, j = 1, 2, 3) has 3× 3× 3 = 27 independent
components. Following [16] for the arrangement of the last two indices in the order

(αj) = 11, 22, 33, 23, 31, 12, 32, 13, 21 ,

the tensor fiαj can be written in a 3× 9 matrix representation as follows:
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fiαj =

 f111 f122 f133 f123 f131 f112 f132 f113 f121
f211 f222 f233 f223 f231 f212 f232 f213 f221
f311 f322 f333 f323 f331 f312 f332 f313 f321


(27)

. (38)

The subscript (·) in the matrices stands for the number of independent components.
The classification of the tensor of phason piezoelectric moduli fiαj has been given
by Hu et al. [15] for three-dimensional icosahedral and cubic piezoelectric quasicrystals.

• For two-dimensional triclinic piezoelectric quasicrystals, the tensor fiαj (i = 1, 2, 3, α =
1, 2, j = 1, 2, 3) has 3× 2× 3 = 18 independent components. Following [16] for the
arrangement of the last two indices in the order

(αj) = 11, 22, 23, 12, 13, 21 ,

the tensor fiαj can be written in a 3× 6 matrix representation as follows:

fiαj =

 f111 f122 f123 f112 f113 f121
f211 f222 f223 f212 f213 f221
f311 f322 f323 f312 f313 f321


(18)

, (39)

which is in full agreement with the corresponding representation (d(2)ijk ) given by
Hu et al. [15]. The classification of the tensor of phason piezoelectric moduli fiαj has
been given by Hu et al. [15] for all two-dimensional piezoelectric quasicrystals with
crystallographic and non-crystallographic symmetries.

• For one-dimensional triclinic piezoelectric quasicrystals, the tensor fiαj (i = 1, 2, 3, α =
3, j = 1, 2, 3) has 3× 1× 3 = 9 independent components. Since α = 3 is a fixed
index, the tensor fi3j is a tensor of rank 2 and can be written as usual in a 3× 3 matrix
representation

fi3j =

 f131 f132 f133
f231 f232 f233
f331 f332 f333


(9)

. (40)

Therefore, it is clear that the phason piezoelectric moduli for one-dimensional piezo-
electric quasicrystals is represented by 3× 3 matrices and not by 3× 6 matrices, as it
has been erroneously given by Li and Liu [28]. The classification of the tensor of pha-
son piezoelectric moduli fi3j for one-dimensional piezoelectric quasicrystals is given in
Section 3, which is devoted exclusively to one-dimensional piezoelectric quasicrystals.

3. Piezoelectricity of One-Dimensional Quasicrystals

Based on the improved constitutive modelling that has been developed in the previous
section, we give here the basic equations governing the one-dimensional piezoelectric
quasicrystals and explore their piezoelectric behavior through the classification of the
tensors with “phasonic character”. This gives rise to show, considering one-dimensional
hexagonal piezoelectric quasicrystals as a representative example, that the constitutive
relations depend on the considered Laue class as well as on the point group.

3.1. Basic Equations

In the class of one-dimensional quasicrystals, the atom arrangement is quasiperiodic
in one direction, for example, in the x3-direction, and periodic in the plane perpendicular
to this direction (x1x2-plane). One-dimensional quasicrystals are quasicrystals with crystal-
lographic symmetries. For one-dimensional quasicrystals, the phason displacement field is
a scalar field, u⊥α ≡ u⊥3 , the phason distortion tensor becomes a vector β⊥3l = u⊥3,l , and the
indices α , γ = 3.
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From the viewpoint of group representation theory, u‖i , i = 1, 2, 3 transforms under a
three-dimensional representation ΓA, whereas u⊥3 transforms under a one-dimensional rep-
resentation ΓB. The latter may be an identity representation or sometimes a one-dimensional
non-identity representation with:

(i) A character 1 for the first-type operations, which are proper rotations n (n = 1, 2, 3, 4, 6)
about the vertical axis and reflections m across vertical mirror planes;

(ii) A character −1 for the second-type operations, which are compound operations being
a product of inversion 1 and one of the first-type operations [7].

For one-dimensional piezoelectric quasicrystals, the set of the equilibrium Equations (29)–(31)
becomes

σ
‖
ij,j + f ‖i = 0 , (41)

σ⊥3j,j + f⊥3 = 0 , (42)

Dj,j = q (43)

and the corresponding constitutive relations (20)–(22) take the form

σ
‖
ij = Cijkle

‖
kl + Dij3l β

⊥
3l − elijEl , (44)

σ⊥3j = Dkl3je
‖
kl + E3j3l β

⊥
3l − fl3jEl , (45)

Dj = ejkle
‖
kl + f j3l β

⊥
3l + ε jlEl . (46)

Accordingly, the field Equations (32)–(34) read

Cijklu
‖
k,l j + Dij3lu⊥3,l j + elij ϕ,l j = − f ‖i , (47)

Dkl3ju
‖
k,l j + E3j3lu⊥3,l j + fl3j ϕ,l j = − f⊥3 , (48)

ejklu
‖
k,l j + f j3lu⊥3,l j − ε jl ϕ,l j = q . (49)

In the constitutive relations (44)–(46), the constitutive tensors Cijkl , Dij3l , E3j3l , elij, fl3j, and
ε jl appear. It is remarkable to observe that all these tensors transform as tensors in the
three-dimensional physical or parallel space, since only the indices in the parallel space are
varying. The classification of the tensors of the elastic moduli Cijkl , Dij3l , and E3j3l for one-
dimensional quasicrystals has been given by Wang et al. [7]. On the other hand, the tensors
of the phonon piezoelectric moduli elij and the dielectric moduli ε jl are actually the tensors
of classical piezoelectricity in the absence of phason fields and follow the classification
of the corresponding tensors of classical piezoelectricity of crystals, as it can be found
in Nye [2]. Therefore, what remains to be given is the classification of the tensor of phason
piezoelectric moduli fl3j, which follows in the next section.

3.2. Piezoelectric Behavior of One-Dimensional Quasicrystals

The tensors of elastic moduli of phonons Cijkl , phonon piezoelectric moduli eijk, and
dielectric moduli εij are actually the tensors of classical piezoelectricity in absence of phason
fields and follow the classification of the corresponding tensors of classical piezoelectricity
of crystals, as it is given by Nye [2]. Our primary interest here for the examination of the
piezoelectric behavior of one-dimensional quasicrystals is the classification of the tensor
of phason piezoelectric moduli. In order to illustrate the method clearly, we give the
classification of all three constitutive tensors with, let us say, "phasonic character", that is,
Dij3l , E3j3l , and fl3j, following Nye [2].

Let Aij be a coordinate transformation matrix in the parallel space, B = 1 for first-
type operations in the perpendicular space and B = −1 for second-type operations in the
perpendicular space of one-dimensional quasicrystals.
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• The tensor Dij3l has 18 independent components and transforms under the repre-
sentation {ΓA × ΓA} × ΓB × ΓA, where the symbol {·} denotes the symmetric part.
Therefore, Dij3l transforms as a tensor of rank 3 in the parallel space times a scalar in
the perpendicular space according to the following law:

D′ij3l = Aik AjmBAlnDkm3n . (50)

• The tensor E3j3l has six independent components and transforms under the represen-
tation {(ΓB × ΓA)× (ΓB × ΓA)}. Accordingly, E3j3l transforms as tensor of rank 2 in
the parallel space times a scalar in the perpendicular space two times according to the
following law:

E′3j3l = BAjmBAlnE3m3n . (51)

• The tensor of phason piezoelectric moduli fi3j has nine independent components and
transforms under the representation ΓA× ΓB× ΓA. Therefore, fi3j transforms as tensor
of rank 2 in the parallel space times a scalar in the perpendicular space according to
the following law:

f ′i3j = AikBAjl fk3l . (52)

Let us now consider a one-dimensional quasicrystal possessing a center of symmetry
(inversion). The corresponding transformation reads

Aik = −δik , B = −1 , Ajl = −δjl , (53)

where δik is the Kronecker delta. We examine the behavior of the tensors Dij3l , E3j3l , and
fi3j under this transformation. Using the transformation (53), the transformed tensors (50)
and (51) read

D′ij3l = Dij3l , (54)

E′3j3l = E3j3l . (55)

It can be seen that both tensors Dij3l and E3j3l remain unchanged under the action of the
symmetry operation “inversion”. Therefore, “elastic properties possess an intrinsic (or
inherent) centrosymmetry, and hence all point groups belonging to the same Laue class
possess the same elastic properties”, as mentioned by Hu et al. [8]. Therefore, Dij3l and
E3j3l are non-zero for one-dimensional quasicrystals with centrosymmetric point groups.
The independent elastic constants and invariants for each Laue class of one-dimensional
quasicrystals have been given by Wang et al. [7]. The corresponding classification of the
tensors Dij3l and E3j3l in matrix form is given in Appendix B and Appendix A, respectively.

Next, we explore how the phonon and phason fields influence the piezoelectric behav-
ior of one-dimensional quasicrystals through the tensors of phonon and phason piezoelec-
tric moduli, elij and fi3j. Using the transformation (53), the transformed tensor of phason
piezoelectric moduli (52) reads

f ′i3j = − fi3j . (56)

Since the considered one-dimensional quasicrystal possesses a center of symmetry, the trans-
formation does not change the components: fi3j must transform to itself, that is,

f ′i3j = fi3j . (57)

Therefore, from Equations (56) and (57), we obtain that
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fi3j = 0 (58)

for one-dimensional quasicrystals with a center of symmetry. This means that one-dimensional
quasicrystals with centrosymmetric point groups cannot exhibit piezoelectric effects in-
duced by the phason fields. The same argument holds for the phonon piezoelectric moduli
which obeys the transformation law

e′lij = Alk Aim Ajnekmn , (59)

which, under the transformation of inversion (53), yields e′lij = −elij. Therefore, elij = 0 for
one-dimensional quasicrystals with a center of symmetry. Hence, under the transformation
of inversion, both piezoelectric moduli become zero and this prevents the appearance of
piezoelectricity in one-dimensional quasicrystals with centrosymmetric crystallographic
point groups. The outcome of the aforementioned analysis is: for one-dimensional quasicrys-
tals with centrosymmetric point groups both phonon and phason piezoelectric moduli are zero and
consequently they do not exhibit piezoelectricity.

One-dimensional quasicrystals have 31 point groups; 21 of them are non-centrosymmetric.
The classification of the tensor of phonon piezoelectric moduli elij is the same as in classical
piezoelectricity and can be found in Nye [2]. Note that the classification of the phonon
piezoelectric moduli depends not only on the Laue class but also on the point group. Using
group representation theory [2,40], we give the classification of the tensor of phason piezo-
electric moduli fi3j with respect to the crystal system and Laue classes of one-dimensional
quasicrystals with non-centrosymmetric crystallographic point groups in Appendix C. The
results of this classification are collected in Table 1.

Table 1. Matrix form of the tensor of phason piezoelectric moduli fi3j for one-dimensional piezoelec-
tric quasicrystals with respect to the crystal system and Laue classes.

System Laue Class Matrix Form of fi3j Orientation of Axes

Triclinic 1

 f131 f132 f133
f231 f232 f233
f331 f332 f333


(9)

arbitrary

Monoclinic 2

 f131 f132 0
f231 f232 0
0 0 f333


(5)

2 ‖ x3

Monoclinic 3

 f131 0 f133
0 f232 0

f331 0 f333


(5)

2h ‖ x2

Orthorhombic 4

 f131 0 0
0 f232 0
0 0 f333


(3)

2 ‖ xi

Tetragonal
Trigonal

Hexagonal

5
7
9

 f131 f132 0
− f132 f131 0

0 0 f333


(3)

4 ‖ x3
3 ‖ x3
6 ‖ x3

Tetragonal
Trigonal

Hexagonal

6
8
10

 f131 0 0
0 f131 0
0 0 f333


(2)

4 ‖ x3
3 ‖ x3
6 ‖ x3

In addition, all 31 point groups of one-dimensional quasicrystals and the correspond-
ing numbers of the independent phonon and phason piezoelectric moduli show exactly
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which point groups exhibit piezoelectric effects and which not, which is detailed in Table 2.
It can be seen in Table 2 that the 21 non-centrosymmetric point groups of one-dimensional qua-
sicrystals produce piezoelectricity due to both phonon and phason fields. Note that for the usual
crystals, only 20 from 21 non-centrosymmetric point groups possess piezoelectricity (see,
e.g., Nye [2]).

Table 2. The 31 point groups of one-dimensional quasicrystals and piezoelectricity. (ne: number
of independent phonon piezoelectric moduli eijk. n f : number of independent phason piezoelectric
moduli fi3j).

System Laue Class Point Group Inversion ne n f

Triclinic 1 1 – 18 9
1 1 0 0

Monoclinic 2 2 (2 ‖ x3) – 8 5
mh – 10 5
2/mh 1 0 0

3 2h (2 ‖ x2) – 8 5
m – 10 5
2h/m 1 0 0

Orthorhombic 4 2h2h2 – 3 3
mm2 (2 ‖ x3) – 5 3
2hmmh (2 ‖ x1) – 5 3
mmmh 1 0 0

Tetragonal 5 4 – 4 3
4 – 4 3
4/mh 1 0 0

6 42h2h – 1 2
4mm – 3 2
42hm (2 ‖ x1) – 2 2
4/mhmm 1 0 0

Trigonal 7 3 – 6 3
3 1 0 0

8 32h (2 ‖ x1) – 2 2
3m – 4 2
3m 1 0 0

Hexagonal 9 6 – 4 3
6 – 2 3
6/mh 1 0 0

10 62h2h – 1 2
6mm – 3 2
6m2h – 1 2
6/mhmm 1 0 0

Remark 4. The latter result is in contradiction with the result of Li and Liu [28], where there exist
two point groups, namely hexagonal Laue class 9 with point group 6̄ and hexagonal Laue class 10
with point group 6̄m2h, possessing piezoelectric effects only due to phonon fields, since the phonon
piezoelectric moduli is non-zero whereas the phason piezoelectric moduli is zero for these two point
groups; a case that cannot be true as it has been shown above.

Remark 5. Comparing Table 2 with the corresponding Table 1 in [28], one can see that there are
differences in the number of the independent components of phason piezoelectric moduli. Notice
that the tensor of phason piezoelectric moduli, as a tensor of rank 2, has the same properties, that
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is, the same number of independent components for point groups belonging to the same Laue class.
However, this is not the case in [28] (see also Remark 6).

To sum up: from the 31 crystallographic point groups of one-dimensional quasicrystals, the 10
centrosymmetric crystallographic point groups have no piezoelectric effects and the remaining 21
non-centrosymmetric crystallographic point groups exhibit piezoelectric effects due to both phonon
and phason fields.

Furthermore, it is worth mentioning that the 21 non-centrosymmetric point groups
which produce piezoelectricity due to phonon and phason fields in one-dimensional qua-
sicrystals (see Table 2) are the same as the 21 non-centrosymmetric point groups which
produce piezoelectricity due to phonon and phason fields in two-dimensional quasicrystals
with crystallographic symmetries, as shown by Hu et al. [15].

Remark 6. Notice that the phason piezoelectric moduli for one-dimensional hexagonal piezoelectric
quasicrystals of Laue class 9 with point group 6̄ and Laue class 10 with point group 6̄m2h are zero
according to Li and Liu [28], producing no piezoelectric effect due to the phasons. However, as it
can be seen in Table 1, there exist three and two independent components of phason piezoelectric
moduli for one-dimensional hexagonal piezoelectric quasicrystals of Laue class 9 (independent of the
point group) and Laue class 10 (independent of the point group), respectively, and therefore there
is a piezoelectric contribution due to phasons. The misleading result of Li and Liu [28] can also be
explained by the fact that point groups belonging to the same Laue class, such as hexagonal Laue
class 9 and Laue class 10, have different number of independent components of phason piezoelectric
moduli. However, the independent components of the tensor of phason piezoelectric moduli, as an
asymmetric tensor of rank 2, are the same for the point groups belonging to the same Laue class in
the case of one-dimensional quasicrystals (see also Table 2).

3.3. One-Dimensional Hexagonal Piezoelectric Quasicrystals

In order to gain more insight into the significance of the piezoelectric constitutive
tensors, we proceed to explicitly give the constitutive relations for one-dimensional hexag-
onal piezoelectric quasicrystals of Laue classes 9 and 10. The forthcoming comparisons
between the two sets of the constitutive relations reveal important differences between the
two Laue classes, which are often ignored in the literature, not only in the framework of
piezoelectricity (e.g., [24–27]), but also in the framework of elasticity (see e.g., [9,22,23]) of
one-dimensional hexagonal quasicrystals.

For one-dimensional piezoelectric quasicrystals, Laue classes are not enough for the
explicit form of the constitutive relations, since the tensor of phonon piezoelectric moduli
elij depends on the considered point group (see [2]). In what follows, we examine two Laue
classes of one-dimensional piezoelectric quasicrystals with a representative point group.

• For Laue class 9 with point group 6, using Equations (A5), (A11), and (A19) and the
expressions for the tensors of the elastic moduli and phonon piezoelectric moduli
given by Nye [2], the constitutive relations (44)–(46) take the following explicit form:

σ
‖
11 = C1111e‖11 + C1122e‖22 + C1133e‖33 + D1133β⊥33 − e311E3 , (60)

σ
‖
22 = C1122e‖11 + C1111e‖22 + C1133e‖33 + D1133β⊥33 − e311E3 , (61)

σ
‖
33 = C3311(e

‖
11 + e‖22) + C3333e‖33 + D3333β⊥33 − e333E3 , (62)

σ
‖
23 = 2C2323e‖23 + D2331β⊥31 + D2332β⊥32 − e123E1 − e113E2 , (63)

σ
‖
13 = 2C2323e‖13 + D2332β⊥31 − D2331β⊥32 − e113E1 + e123E2 , (64)
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σ
‖
12 = 2C1212e‖12 , (65)

σ⊥31 = 2D2331e‖23 + 2D2332e‖13 + E3131β⊥31 − f131E1 + f132E2 , (66)

σ⊥32 = 2D2332e‖23 − 2D2331e‖13 + E3131β⊥32 − f132E1 − f131E2 , (67)

σ⊥33 = D1133
(
e‖11 + e‖22

)
+ D3333e‖33 + E3333β⊥33 − f333E3 , (68)

D1 = 2e123e‖23 + 2e113e‖13 + f131β⊥31 + f132β⊥32 + ε11E1 , (69)

D2 = 2e113e‖23 − 2e123e‖13 − f132β⊥31 + f131β⊥32 + ε11E2 , (70)

D3 = e311
(
e‖11 + e‖22

)
+ e333e‖33 + f333β⊥33 + ε33E3 (71)

with five elastic moduli of phonons, C1111, C1122, C1133, C3333, C2323, C1212
= (C1111 − C1122)/2; two elastic moduli of phasons, E3131 and E3333; four elastic mod-
uli of phonon–phason coupling, D2331, D2332, D1133, D3333; four phonon piezoelectric
moduli, e311, e333, e113, e123; three phason piezoelectric moduli, f131, f132, f333; and two
dielectric moduli, ε11 and ε33.
Thus, a one-dimensional hexagonal piezoelectric quasicrystal of Laue class 9 with point group
6 has 20 material moduli.

• For Laue class 10 with point group 6mm, using Equations (A5), (A12), and (A20) and
the expressions for the tensors of the elastic moduli and phonon piezoelectric moduli
given by Nye [2], the constitutive relations (44)–(46) take the following explicit form:

σ
‖
11 = C1111e‖11 + C1122e‖22 + C1133e‖33 + D1133β⊥33 − e311E3 , (72)

σ
‖
22 = C1122e‖11 + C1111e‖22 + C1133e‖33 + D1133β⊥33 − e311E3 , (73)

σ
‖
33 = C3311(e

‖
11 + e‖22) + C3333e‖33 + D3333β⊥33 − e333E3 , (74)

σ
‖
23 = 2C2323e‖23 + D2332β⊥32 − e113E2 , (75)

σ
‖
13 = 2C2323e‖13 + D2332β⊥31 − e113E1 , (76)

σ
‖
12 = 2C1212e‖12 , (77)

σ⊥31 = 2D2332e‖13 + E3131β⊥31 − f131E1 , (78)

σ⊥32 = 2D2332e‖23 + E3131β⊥32 − f131E2 , (79)

σ⊥33 = D1133
(
e‖11 + e‖22

)
+ D3333e‖33 + E3333β⊥33 − f333E3 , (80)

D1 = 2e113e‖13 + f131β⊥31 + ε11E1 , (81)

D2 = 2e113e‖23 + f131β⊥32 + ε11E2 , (82)

D3 = e311
(
e‖11 + e‖22

)
+ e333e‖33 + f333β⊥33 + ε33E3 (83)

with five elastic moduli of phonons, C1111, C1122, C1133, C3333, C2323, C1212
= (C1111 − C1122)/2; two elastic moduli of phasons, E3131 and E3333; three elastic
moduli of phonon–phason coupling, D2332, D1133, D3333; three phonon piezoelec-
tric moduli, e311, e333, e113; two phason piezoelectric moduli f131 and f333; and two
dielectric moduli, ε11 and ε33.
Thus, a one-dimensional hexagonal piezoelectric quasicrystal of Laue class 10 with point group
6mm has 17 material moduli.

In the framework of piezoelectricity, the constitutive relations for one-dimensional hexago-
nal piezoelectric quasicrystals of Laue class 10 with point group 6mm, Equations (72)–(83), are
in accordance with the corresponding ones given by Wang and Pan [18], where D1133 = R1,
D3333 = R2, D2332 = R3, E3131 = K2, E3333 = K1, e311 = e(1)31 , e333 = e(1)33 , e113 = e(1)15 ,
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f131 = e(2)15 , f333 = e(2)33 . The constitutive relations for one-dimensional hexagonal piezoelec-
tric quasicrystals of Laue class 9 with point group 6, Equations (60)–(71), are given here for
the first time in the literature.

It can be seen that the constitutive relations (60)–(71) for one-dimensional hexagonal
piezoelectric quasicrystals of Laue class 9 with point group 6 are different than the constitu-
tive relations (72)–(83) for the hexagonal piezoelectric quasicrystals of Laue class 10 with
point group 6mm. In particular, comparing the above two sets of the constitutive relations,
we observe that two additional terms appear in each of the Equations (63), (64), (66), (67),
(69), and (70) due to the different matrix representation of three tensors, namely the ten-
sor of elastic moduli of phonon–phason coupling Dij3l (see Equations (A11) and (A12)),
the tensor of phason piezoelectric moduli fi3j (see Equations (A19) and (A20)), and finally
the tensor of phonon piezoelectric moduli elij. This difference in the constitutive relations is
often ignored and neglected in the literature of one-dimensional piezoelectric quasicrystals
(e.g., [24–27]). In general, for one-dimensional hexagonal piezoelectric quasicrystals, there
are five non-centrosymmetric point groups (see Table 2), leading to different constitutive
relations. For the explicit form of the constitutive relations of piezoelectric quasicrystals,
the corresponding point group is relevant and must be taken into account.

Furthermore, as it has been mentioned above, a reason for the difference in the two sets
of the constitutive relations lies on the different matrix representation of the tensor of the
elastic moduli of phonon–phason coupling Dij3l . Therefore, a difference in the constitutive
relations of one-dimensional hexagonal quasicrystals between the two Laue classes 9 and
10 is expected also in the framework of elasticity. This is a fact that is often ignored in the
literature of elasticity theory of one-dimensional hexagonal quasicrystals, since no attention
is given to the distinction of the two Laue classes (see, e.g., [9,22,23]). The constitutive
relations of one-dimensional hexagonal quasicrystals for the two Laue classes 9 and 10
are derived from Equations (60)–(71) and Equations (72)–(83), respectively, for vanishing
electric fields, and they are given explicitly below.

• The constitutive relations for one-dimensional hexagonal quasicrystals of Laue class 9
are as follows:

σ
‖
11 = C1111e‖11 + C1122e‖22 + C1133e‖33 + D1133β⊥33 , (84)

σ
‖
22 = C1122e‖11 + C1111e‖22 + C1133e‖33 + D1133β⊥33 , (85)

σ
‖
33 = C3311(e

‖
11 + e‖22) + C3333e‖33 + D3333β⊥33 , (86)

σ
‖
23 = 2C2323e‖23 + D2331β⊥31 + D2332β⊥32 , (87)

σ
‖
13 = 2C2323e‖13 + D2332β⊥31 − D2331β⊥32 , (88)

σ
‖
12 = 2C1212e‖12 , (89)

σ⊥31 = 2D2331e‖23 + 2D2332e‖13 + E3131β⊥31 , (90)

σ⊥32 = 2D2332e‖23 − 2D2331e‖13 + E3131β⊥32 , (91)

σ⊥33 = D1133
(
e‖11 + e‖22

)
+ D3333e‖33 + E3333β⊥33 (92)

with five elastic moduli of phonons, C1111, C1122, C1133, C3333, C2323, C1212
= (C1111 − C1122)/2; two elastic moduli of phasons, E3131 and E3333; and four elastic
moduli of phonon–phason coupling, D2331, D2332, D1133, D3333.
Thus, a one-dimensional hexagonal quasicrystal of Laue class 9 has 11 material moduli.

• The constitutive relations of one-dimensional hexagonal quasicrystals of Laue class
10 read:
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σ
‖
11 = C1111e‖11 + C1122e‖22 + C1133e‖33 + D1133β⊥33 , (93)

σ
‖
22 = C1122e‖11 + C1111e‖22 + C1133e‖33 + D1133β⊥33 , (94)

σ
‖
33 = C3311(e

‖
11 + e‖22) + C3333e‖33 + D3333β⊥33 , (95)

σ
‖
23 = 2C2323e‖23 + D2332β⊥32 , (96)

σ
‖
13 = 2C2323e‖13 + D2332β⊥31 , (97)

σ
‖
12 = 2C1212e‖12 , (98)

σ⊥31 = 2D2332e‖13 + E3131β⊥31 , (99)

σ⊥32 = 2D2332e‖23 + E3131β⊥32 , (100)

σ⊥33 = D1133
(
e‖11 + e‖22

)
+ D3333e‖33 + E3333β⊥33 (101)

with five elastic moduli of phonons, C1111, C1122, C1133, C3333, C2323, C1212
= (C1111 − C1122)/2; two elastic moduli of phasons, E3131, and E3333; and three elastic
moduli of phonon–phason coupling, D2332, D1133, D3333.
Thus, a one-dimensional hexagonal quasicrystal of Laue class 10 has 10 material moduli.

It has to be mentioned that: (i) the non-zero elastic constants given above for both
Laue classes 9 and 10 are in accordance with the corresponding non-zero elastic constants
given by Wang et al. [7]; (ii) the constitutive relations (93)–(101) are in accordance with the
constitutive relations of one-dimensional hexagonal quasicrystals of Laue class 10 given
by Wang et al. [7].

4. Conclusions

The main favorable conclusions of this work are summarized as follows:

• It is proven that the tensor of phason piezoelectric moduli fiαj is fully asymmetric
without any major or minor symmetry in contrast to the work of Altay and Dökmeci
[29], where it is claimed that the tensor fiαj is symmetric with respect to the last two
indices. Therefore, the tensor of phason piezoelectric moduli fiαj is a two-point tensor
of rank 3 in the case of three-dimensional piezoelectric quasicrystals and is represented
by a 3× 9 matrix with 27 independent components. It is not represented by a 3× 6
matrix with 18 independent components, which would be the case if possessing a
minor symmetry with respect to the last two indices, as claimed in [29], which is
however not the case.

• The classification of the tensor of phason piezoelectric moduli fi3j for one-dimensional
piezoelectric quasicrystals has been derived in a 3 × 3 matrix form for all crystal
systems and Laue classes. Hence, fi3j cannot be represented in a 3× 6 matrix form as
claimed in [28].

• It has been shown that all non-centrosymmetric crystallographic point groups of
one-dimensional quasicrystals exhibit piezoelectric effects induced by both phonon
and phason fields in contrast to the result of Li and Liu [28], where there are two
cases of one-dimensional hexagonal piezoelectric quasicrystals, namely of Laue class
9 with point group 6̄ and Laue class 10 with point group 6̄m2h, in which there is a
piezoelectric effect induced only by the phonon and not by the phason fields.

• It has been shown that one-dimensional quasicrystals with centrosymmetric crystallo-
graphic point groups have no piezoelectric effects.

• The piezoelectric behavior of one-dimensional quasicrystals has been explored here.
It is shown that one-dimensional quasicrystals can be divided into two classes: the
first class, consisting of one-dimensional quasicrystals with centrosymmetry, has no
piezoelectric effects and the second class, consisting of one-dimensional quasicrys-
tals without centrosymmetry, has piezoelectric effects induced by both phonon and
phason fields.
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• For the derivation of the constitutive relations of elasticity of quasicrystals, the Laue
class has to be taken into account. As a representative example, the explicit constitutive
relations for Laue class 9 and Laue class 10 have been derived. A one-dimensional
hexagonal quasicrystal of Laue class 9 has 11 material moduli, whereas that of Laue
class 10 has 10 material moduli.

• For the derivation of the constitutive relations of piezoelectricity of quasicrystals,
the point group has to be taken into account in addition to the Laue class. As a repre-
sentative example, the explicit constitutive relations for Laue class 9 with point group
6 and Laue class 10 with point group 6mm have been derived. A one-dimensional
hexagonal piezoelectric quasicrystal of Laue class 9 with point group 6 has 20 material
moduli, whereas that of Laue class 10 with point group 6mm has 17 material moduli.

Author Contributions: Conceptualization, E.A. and M.L.; methodology, E.A. and M.L.; writing—
original draft preparation, E.A. and M.L.; writing—review and editing, E.A. and M.L.; funding acqui-
sition, E.A. and M.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deutsche Forschungsgemeinschaft, Grant Numbers
AG322/1-2, LA1974/4-2.

Data Availability Statement: Data are contained within the article.

Acknowledgments: Eleni Agiasofitou is grateful to Paul Steinmann for fruitful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Classification of the Tensor E3j3l for One-Dimensional Quasicrystals

In this Appendix, following Wang et al. [7], we give the classification of the symmetric
tensor of rank 2, E3j3l = E3l3j, in a 3× 3 matrix representation for different Laue classes.

Appendix A.1. Triclinic

For one-dimensional triclinic quasicrystals of Laue class 1, there are six independent
components:

E3j3l =

E3131 E3132 E3133
E3132 E3232 E3233
E3133 E3233 E3333


(6)

. (A1)

Appendix A.2. Monoclinic

(i) For one-dimensional monoclinic quasicrystals of Laue class 2, there are four indepen-
dent components:

E3j3l =

E3131 E3132 0
E3132 E3232 0

0 0 E3333


(4)

. (A2)

The unique axis of the point groups 2, mh and 2/mh is the x3-axis.
(ii) For one-dimensional monoclinic quasicrystals of Laue class 3, there are four indepen-

dent components:

E3j3l =

E3131 0 E3133
0 E3232 0

E3133 0 E3333


(4)

. (A3)

The unique axis lies in the horizontal plane, e.g., along the x2-axis.
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Appendix A.3. Orthorhombic

For one-dimensional orthorhombic quasicrystals of Laue class 4, there are three inde-
pendent components:

E3j3l =

E3131 0 0
0 E3232 0
0 0 E3333


(3)

. (A4)

Appendix A.4. Tetragonal, Trigonal, Hexagonal

For one-dimensional tetragonal quasicrystals of Laue classes 5 and 6; for one-dimensional
trigonal quasicrystals of Laue classes 7 and 8; and for one-dimensional hexagonal qua-
sicrystals of Laue classes 9 and 10, there are two independent components:

E3j3l =

E3131 0 0
0 E3131 0
0 0 E3333


(2)

. (A5)

Appendix B. Classification of the Tensor Dij3l for One-Dimensional Quasicrystals

In this Appendix, following Wang et al. [7], we give the classification of the tensor
Dij3l , which is a tensor of rank 3 symmetric with respect to the first two indices Dij3l = Dji3l ,
as a 6× 3 matrix for different Laue classes. To obtain a 6× 3 matrix representation for the
tensor Dij3l , the following arrangement is used for the first two indices

(ij) = 11, 22, 33, 23, 32, 31, 13, 12, 21 . (A6)

Appendix B.1. Triclinic

For one-dimensional triclinic quasicrystals of Laue class 1, there are 18 independent
components:

Dij3l =



D1131 D1132 D1133
D2231 D2232 D2233
D3331 D3332 D3333
D2331 D2332 D2333
D1331 D1332 D1333
D1231 D1232 D1233


(18)

. (A7)

Appendix B.2. Monoclinic

(i) For one-dimensional monoclinic quasicrystals of Laue class 2, the eight independent
tensor components are D1133, D2233, D3333, D1233, D2331, D2332, D1331, D1332.

Dij3l =



0 0 D1133
0 0 D2233
0 0 D3333

D2331 D2332 0
D1331 D1332 0

0 0 D1233


(8)

. (A8)

The unique axis of the point groups 2, mh and 2/mh is the x3-axis.
(ii) For one-dimensional monoclinic quasicrystals of Laue class 3, the 10 independent

tensor components are D1133, D2233, D3333, D1333, D1131, D2231, D3331, D1331, D2332,
D1232.
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Dij3l =



D1131 0 D1133
D2231 0 D2233
D3331 0 D3333

0 D2332 0
D1331 0 D1333

0 D1232 0


(10)

. (A9)

The unique axis lies in the horizontal plane, e.g., along the x2-axis.

Appendix B.3. Orthorhombic

For one-dimensional orthorhombic quasicrystals of Laue class 4, the five independent
tensor components are D1133, D2233, D3333, D2332, D1331.

Dij3l =



0 0 D1133
0 0 D2233
0 0 D3333
0 D2332 0

D1331 0 0
0 0 0


(5)

. (A10)

Appendix B.4. Tetragonal, Hexagonal

(i) For one-dimensional tetragonal quasicrystals of Laue class 5; and for one-dimensional
hexagonal quasicrystals of Laue class 9, the four independent tensor components are
D1133 = D2233, D3333, D2332 = D1331, D2331 = −D1332.

Dij3l =



0 0 D1133
0 0 D1133
0 0 D3333

D2331 D2332 0
D2332 −D2331 0

0 0 0


(4)

. (A11)

(ii) For one-dimensional tetragonal quasicrystals of Laue class 6; and for one-dimensional
hexagonal quasicrystals of Laue class 10, the three independent tensor components
are D1133 = D2233, D3333, D2332 = D1331.

Dij3l =



0 0 D1133
0 0 D1133
0 0 D3333
0 D2332 0

D2332 0 0
0 0 0


(3)

. (A12)

Appendix B.5. Trigonal

(i) For one-dimensional trigonal quasicrystals of Laue class 7, the six independent tensor
components are D1133 = D2233, D3333, D2332 = D1331, D2331 = −D1332, D1131 =
−D2231 = −D1232, D1132 = −D2232 = D1231.

Dij3l =



D1131 D1132 D1133
−D1131 −D1132 D1133

0 0 D3333
D2331 D2332 0
D2332 −D2331 0
D1132 −D1131 0


(6)

. (A13)
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(ii) For one-dimensional trigonal quasicrystals of Laue class 8, the four independent
tensor components are D1133 = D2233, D3333, D2332 = D1331, D1132 = −D2232 = D1231.

Dij3l =



0 D1132 D1133
0 −D1132 D1133
0 0 D3333
0 D2332 0

D2332 0 0
D1132 0 0


(4)

. (A14)

Appendix C. Classification of the Tensor fj3l for One-Dimensional Piezoelectric
Quasicrystals

In this Appendix, we give the classification of the asymmetric tensor of rank 2, f j3l ,
in a 3× 3 matrix representation for different Laue classes.

Appendix C.1. Triclinic

For one-dimensional triclinic piezoelectric quasicrystals of Laue class 1, there are nine
independent components:

f j3l =

 f131 f132 f133
f231 f232 f233
f331 f332 f333


(9)

. (A15)

Appendix C.2. Monoclinic

(i) For one-dimensional monoclinic piezoelectric quasicrystals of Laue class 2, there are
five independent components:

f j3l =

 f131 f132 0
f231 f232 0
0 0 f333


(5)

. (A16)

The unique axis of the point groups 2, mh and 2/mh is the x3-axis.
(ii) For one-dimensional monoclinic piezoelectric quasicrystals of Laue class 3, there are

five independent components:

f j3l =

 f131 0 f133
0 f232 0

f331 0 f333


(5)

. (A17)

The unique axis lies in the horizontal plane, e.g., along the x2-axis.

Appendix C.3. Orthorhombic

For one-dimensional orthorhombic piezoelectric quasicrystals of Laue class 4, there
are three independent components:

f j3l =

 f131 0 0
0 f232 0
0 0 f333


(3)

. (A18)

Appendix C.4. Tetragonal, Trigonal, Hexagonal

(i) For one-dimensional tetragonal piezoelectric quasicrystals of Laue class 5; for one-
dimensional trigonal piezoelectric quasicrystals of Laue class 7; and for one-dimensional
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hexagonal piezoelectric quasicrystals of Laue class 9, there are three independent
components:

f j3l =

 f131 f132 0
− f132 f131 0

0 0 f333


(3)

. (A19)

(ii) For one-dimensional tetragonal piezoelectric quasicrystals of Laue class 6; for one-
dimensional trigonal piezoelectric quasicrystals of Laue class 8; and for one-dimensional
hexagonal piezoelectric quasicrystals of Laue class 10, there are two independent
components:

f j3l =

 f131 0 0
0 f131 0
0 0 f333


(2)

. (A20)
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