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A B S T R A C T   

Numerical simulation of two-phase multicomponent flows requires solving continuity, momentum, energy, and 
transport equations. Typically, these conservation equations are solved for computing the main variables of 
pressure, enthalpy, velocity, and composition. Variation of thermophysical properties (e.g., density, viscosity, 
etc.) as functions of the main variables necessitates introducing equations of state (EOS) to the modeling scheme, 
equating the number of unknowns and equations. The problem arises here as almost all the available EOSs in the 
literature receive temperature as an input, which is not a main variable. Guessing temperature, as an unknown 
input, imposes more iterations on the already iterative algorithm of the EOS and increases the computational 
cost. The primary focus of this study is to provide highly-precise, but fast EOS scheme for calculating two-phase 
fluid properties using artificial intelligence algorithms. In the first step, a Fugacity-Activity model is implemented 
to supply a supervised learning algorithm with a large dataset. The provided data are fed into a machine-learning 
(ML) model called gene expression programming (GEP). The outputs of this GEP model are high-preciseness 
explicit formulas for non-iterative computing of temperature and equilibrium constants. Testing the proposed 
GEP equations for 1,000,000 arbitrary sets of inputs revealed high accuracy in predicting desired outputs (e.g., <
0.6% error in calculating temperature). Implementing GEP equations in modeling platforms can result in ~90% 
reduction in EOS-related computational cost. This ML-based EOS is a transparent box for computing thermo-
physical properties of two-phase mixtures containing H2O, CO2, CH4, N2, H2S, NaCl, KCl, CaCl2, and MgCl2.   

1. Introduction 

Control of thermal fluids is essential for producing renewable 
geothermal energy [1,2] or storing/extracting solutes in deep reservoirs 
[3,4]. Depending on the specific application (e.g., leaching, under-
ground CO2 storage, heat extraction), the circulated fluid should be 
engineered to be a proper carrier of energy to maximize the power 
production rate [5], have high mobility factor (inverse kinematic vis-
cosity) to be easily circulated in the system [6], be a good solvent of 
target minerals to enhance absorption rate [7], and not cause any 
environmental hazard. Two-phase conditions may occur under a specific 
P-T situation, like gas injection into geothermal brines [8] or under 
production conditions when non-condensable gases (NCG) are released 
[9]. Injecting CO2 for carbon capture, utilization, and storage (CCUS) 
[10,11] and enhancing oil recovery (EOR) [12,13] are the most-renown 
examples of two-phase flows in reservoirs. It is also noteworthy that the 
high pressure of deep geothermal reservoirs typically prevents water 
from boiling. However, the co-occurring high temperature and low 

pressure in production wellbores may cause the fluid to enter the 
two-phase regime [14]. 

Calculating two-phase geofluids properties is difficult, as they are 
complex functions of pressure, temperature, and the composition of both 
liquid and gas phases. The computational cost of modeling fluid flow 
and heat transfer in large 3D reservoirs escalates due to the need for 
determining these properties. This challenge arises from using highly 
iterative algorithms to calculate the composition of each phase. The 
equilibrium condition, when the chemical potential of each component 
in the aqueous phase (AqP) equals that in the non-AqP (NaqP), can be 
expressed by either Fugacity–Fugacity (F–F) or Fugacity–Activity (F–A) 
models. These two methods use different thermodynamic properties for 
defining the equilibrium state of each component in a two-phase 
mixture. The F–A model introduces equilibrium constants and ion ac-
tivities to represent the chemical potentials in the AqP, while the 
fugacity coefficients of gas components are calculated using an equation 
of state (EOS). However, The F–F model uses the classical cubic EOSs (e. 
g., Soave-Redlich-Kwong and Peng-Robinson) to compute the chemical 
potential in both phases. 
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Various numerical software packages apply EOS algorithms to 
calculate two-phase fluid properties. The TOUGH software family is 
widely used for modeling non-isothermal multiphase multicomponent 
flows [15]. These codes contain several equations of state modules that 
calculate the thermodynamic properties of various fluid systems using 
F-A and F-F algorithms. The ECO2N [16] and ECO2N V2.0 [17] modules 
were specifically developed to simulate the flow of CO2-brine systems at 
temperatures of up to 110◦C and 250◦C, respectively. Neither of these 
two modules has the capability to calculate gas-mixture properties. In 
order to incorporate additional gas components, such as N2 and CH4, in 
the two-phase mixture, Oldenburg et al. [18] developed another module 
called EOS7C. Using a highly-iterative thermodynamic model to solve 
the mutual solubility of gases in brine makes EOS7C computationally 
expensive. Pruess and Battistelli [19] proposed TMVOC as a TOUGH2 
module to model three-phase systems comprising gas, aqueous, and 
non-aqueous phase liquids. However, TMVOC was developed to simu-
late near-surface contamination, characterized by low pressure and 
temperature conditions. TMGAS is another TOUGH2 module that has 
been developed based on the TMVOC module to simulate the injection of 
gas mixtures into deep geological sites [20]. Unlike other modules, 
TMGAS uses the F-F model to calculate phase equilibrium in gas mix-
tures and brine systems. It poses a considerable computational cost 
when included in the numerical modeling of multiphase multicompo-
nent flows, and its accuracy decreases for salinities greater than 2mol/kg 
water. EWASG is a TOUGH module developed for modeling 
non-condensable gas-brine systems with temperatures ranging between 
100 and 350 ◦C [21]. It assumes perfect gas behavior, which simplifies 
the calculation of gas properties. However, it is important to note that 
this assumption may not accurately represent the behavior of real gases 
at extreme pressures or low temperatures. 

Further studies have been conducted applying EOS algorithms to 
determine the phase composition. Numerous non-iterative F-A models 
predict the phase equilibrium of binary systems, such as CO2-brine 
[22–30], H2S-brine [31], and CH4-brine [32]. However, calculating the 

solubility in two-phase mixtures with several gas components is iterative 
and requires solving the complex Rachford-Rice equation. 
Ziabakhsh-Ganji and Kooi [33] used this iterative F-A approach to model 
the thermodynamic equilibrium in brine-gas mixtures containing CO2, 
CH4, N2, H2S, and SO2. In their proposed model, fugacity coefficients of 
gas components are calculated by Peng-Robinson (PR) EOS, while Pitzer 
formalism and Henry’s law are implemented to compute the activity 
coefficients in the AqP. Appelo et al. [34] introduced a more general 
model for calculating the apparent molar volumes of single ions. While 
their modifications are now embedded in the F-A algorithm of 
PHREEQC, the validity of H2S solubility is still unclear. Francke et al. 
[35] tried to unify Duan’s single-gas solubility functions [22,32,36] to 
model the gas dissolution in CO2–N2–CH4-brine mixtures. However, 
assuming ideal gas behavior (fugacity coefficients equal to unity) makes 
this model inappropriate for geothermal applications with a high range 
of pressures and temperatures. Zirrahi et al. [37] tried to develop a 
non-iterative F-A model to describe the phase equilibrium behavior of 
brine-gas mixtures, including CO2, H2S, and CH4. However, their pro-
posed method cannot accurately predict CO2 and H2S solubility in the 
AqP [38]. In 2015, Li et al. [39] formulated an iterative F-F model to 
calculate the mutual solubility of gas mixtures (CO2 - SO2 - H2S - CH4 - 
N2) in brine. Their suggested model is suitable for a wide range of 
pressures, temperatures, and salinity. However, the significant compu-
tational costs involved in iteratively solving the Rachford-Rice equation 
render it unsuitable for use in reactive transport simulations. Li et al. 
[40] compared the calculation speed of the F-F and F-A models in pre-
dicting the mutual solubility of CO2 - H2S - CH4 mixtures in brine and 
confirmed that the F-A models are much faster than the F-F models. 

All the EOS algorithms discussed above use pressure, temperature, 
and two-phase composition as inputs. However, most of the conducted 
studies on numerical modeling of multiphase multicomponent flows 
solve continuity, momentum, energy, and transport equations to 
calculate the main variables of pressure, enthalpy, velocity, and two- 
phase composition. Using these EOSs in the simulation process of 

Nomenclature 

Latin Symbols 
R gas universal constant 
T temperature 
P pressure 
y mole fraction in the gas phase 
x mole fraction in the liquid phase 
KH Henry’s constant 
Nw number of moles per kilogram of water 
VH2O average partial molar volume of the water 
K equilibrium constant 
Z compressibility factor 
mC cation molality 
mA anion molality 
nv mole fraction of non-AqP 
H enthalpy 
V specific volume 
w mass fraction 
M molar mass 
b molality 
cm gas-dependent volume shift factor 
Mw molecular weight 
kB Boltzmann’s constant 
NA Avogadro’s number 

Greek symbols 
μ chemical potential 

∅ fugacity coefficient 
γ activity coefficient 
θ temperature in ◦C 
ω acentric factor 
ρ density 
λ second-order interaction parameter 
ζ third-order interaction parameter 
ε thermal expansion coefficient 
ν molar volume 
η viscosity 
λ thermal conductivity 
σ Lennard-Jones size parameter 
Ω collision integral 

Subscripts and superscripts 
0 reference condition 
AqP aqueous phase 
NaqP non-aqueous phase 
i component 
c critical condition 
solution brine mixture without dissolved gases 
′ brine mixture with dissolved gases 
sv saturated water vapor 
sl saturated liquid water 
ps pseudocritical  
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multiphase reactive transports considerably increases the computational 
cost since temperature, as an unknown, needs to be guessed at the 
beginning of the algorithm. In other words, considering enthalpy instead 
of temperature as an input multiplies the iterations required for calcu-
lations of gas solubility in the AqP. 

The main focus of the current study is to propose a novel EOS, 
applicable to the fast simulation of multiphase/multicomponent flows. 
This work is distinguished from the existing body of knowledge with the 
following novelties:  

(1). For the first time, an artificial intelligence (AI) technique, called 
gene expression programming (GEP), is implemented to propose 
a new formulation for the non-iterative calculation of thermo-
dynamic properties. 

Unlike other thermodynamic algorithms, GenEOS takes 
enthalpy as an input, making it suitable for fast numerical 
modeling of multiphase and multicomponent transport. 

(2). Focusing mainly on geothermal applications, GenEOS is devel-
oped for two-phase mixtures of water, CO2, CH4, N2, H2S, NaCl, 
KCl, CaCl2, and MgCl2.  

(3). In contrast to some other EOSs (e.g., TMGAS), GenEOS presents a 
transparent box for the fast computation of fluid properties. 

Accuracy, computation speed, applicability, and transparency are the 
key characteristics that make an EOS suitable for implementation in 
reactive transport modeling. Since it is challenging to achieve all of these 
targets simultaneously, most studies tend to prioritize some of these 
targets at the expense of others. However, the four aforementioned 
points strongly indicate that we have achieved our primary goal of 
developing a suitable EOS without compromising any of its desired 
characteristics. The development of this novel calculation scheme is 
organized in two steps: 1) using the F-A model to provide large datasets 
for training the GEP model, 2) assessing the accuracy of GEP equations 
in predicting target outputs, and 3) discussing the methods/equations 
for computing other thermophysical properties. 

2. Methodology 

While the F-A algorithm is less time-expensive than the F-F model in 
calculating gas solubility, it still imposes a considerable computational 
cost when implemented in the numerical modeling of two-phase 
multicomponent flows. The primary suggestion of this study for accel-
erating the computation process is to use an artificial intelligence 
technique called gene expression programming, GEP. In contrast to 
widely-used machine learning methods like Neural Networks (NN), GEP 
has a unique ability to produce precise, explicit formulas for calculating 
desired outputs. These generated equations can be effortlessly incorpo-
rated into computer programs, bypassing the need for complex iterative 
algorithms, such as those used in thermodynamic modeling. GEP models 
are known for their transparency and interpretability, making it easier to 
understand the underlying logic behind the predictions. Furthermore, 
GEP typically involves fewer hyperparameters to adjust compared to 
neural networks, which often demand intricate fine-tuning of various 
aspects like layers, units, and learning rates. This streamlined approach 
simplifies the model development process. 

The following sections provide detailed explanations of both, the 
conventional thermodynamic and the novel GEP algorithms. Primarily, 
we provide a comprehensive outline of the calculation procedure for the 
major components of the F-A model, explaining the necessity of 
employing an iterative approach. Despite the absence of sufficient 
experimental data, this time-consuming conventional method can pro-
vide substantial and reliable inputs for machine learning. In the subse-
quent section, the GEP model is fed by the outputs of the F-A model. 

2.1. Thermodynamic algorithm based on the iterative F-A model  

• Chemical potential 

The F-A model used in this study [33] is capable of describing 
thermodynamic equilibrium between a NaqP in gas/supercriti-
cal/condensed conditions and an AqP including water and dissolved 
gases/solids. In this model, the chemical potentials of each component 
in the AqP and NaqP are assumed to be equal to each other and calcu-
lated by the following equations: 

μNaqP(T,P) = μNaqP
0 (T,P) + RT ln(f ) (1)  

μAqP(T,P) = μAqP
0 (T,P) + RT ln(a) (2)  

Where μ0, R, T, and P represent the chemical potential at the reference 
temperature, the gas constant, temperature, and pressure, respectively. 
f , the fugacity of gas components, is calculated by: 

f = P∅y (3) 

In which y is the mole fraction of each component in the NaqP and ∅ 
denotes the fugacity coefficient. Equating the two chemical potentials 
Eqs. (1) and ((2)) results in: 

μAqP
0 (T,P) − μNaqP

0 (T,P)
RT

= ln
(

a
P∅y

)

= ln
(
K0) (4) 

Given that the equilibrium constant (K0 = Nw/KH) can be defined 
by Henry’s constant (KH) and the number of moles per kilogram of water 
(Nw = 55.508), it is possible to re-express Eq. (4) as: 

Nw
KH

=
a

P∅y
(5) 

Assuming that the solubility of gas species in the AqP is small, a in 
Eq. (5) can be defined by a = Nwγx, where γ and x indicate the activity 
coefficient and mole fraction of components in the AqP [27]. Hence, the 
new form of Eq. (5) for each gas is [41,42]: 

(P∅iyi)NaqP = (KHiγixi)AqP (6) 

Similar to Battistelli and Marcolini [20], the binary interaction be-
tween different dissolved gases in the AqP is disregarded, which allows 
for the non-iterative calculation of activity coefficients. The procedure 
of calculating Ki =

yi
xi
, ∅i, KHi, and γi in Eq. (6) are explained in the 

following.  

• Equilibrium constant (Ki =
yi
xi
) 

While the equilibrium constants of CH4, CO2, N2, and H2S can be 
calculated by Eq. (6), the more straightforward and accurate approach 
of Spycher et al. [28] is chosen for computing the water equilibrium 
constant: 

KH2O =
fH2O(g)

aH2O(I)
= K0

H2O(T,P0)exp
[
(P − P0)VH2O

RT

]

(7)  

Where VH2O represents the average partial molar volume of the water in 
the AqP (18.1). P0 is the reference pressure (1bar). K0

H2O(T, P0), the 
equilibrium constant of water at reference pressure is obtained by: 

log
(

K0
H2O

)
= − 2.209 + 3.097 × 10− 2θ − 1.098 × 10− 4θ2 + 2.048

× 10− 7θ3 (8)  

Where θ is the temperature in ◦C. Combining Eqs. (3) and (7) results in: 

yH2O =
K0

H2O aH2O

∅H2O
exp
[
(P − P0)VH2O

RT

]

(9) 
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Because of the low solubility of gases, water activity can be 
approximated by its mole fraction in the AqP Consequently, the equation 
for the equilibrium state of H2O in the two-phase system can be written 
as: 

K0
H2Oexp

[
(P − P0)VH2O

RT

]

xH2O = ∅H2OPyH2O (10)    

• Fugacity coefficient (∅i) 

Calculating the fugacity coefficient of gas components as a function 
of compressibility necessitates solving the classical cubic EOS of Peng- 
Robinson: 

Z3 − (1 − B)Z2 +
(
A − 2B − 3B2)Z −

(
AB − B2 − B3) = 0 (11) 

Parameters A and B are functions of temperature and pressure: 

A =
a(T)P
(RT)2 (12)  

B =
bP
RT

(13) 

In which 

a(T) = 0.45724
R2T2

c

Pc
α(T) (14)  

b = 0.07780
RTc

Pc
(15)  

α(T) =
[

1 +
(
0.37646 + 1.4522ω − 0.26992ω2)

(

1 −

̅̅̅̅̅
T
Tc

√ )]2

(16) 

In the above equations, ω, Pc, and Tc stand for acentric factor, critical 
pressure, and critical temperature, respectively. For a gas mixture, the 
parameters of a and b can be calculated by the following mixing rules: 

a =
∑

i

∑

j
yiyjaij, aij =

̅̅̅̅̅̅̅̅aiaj
√ (

1 − kij
)
, b =

∑

i
biyi (17) 

It is noteworthy that in these calculations (Eq. (17)), the mole frac-
tion of water in the gas phase is neglected, which allows for the non- 
iterative computation of solubility in binary systems (e.g., brine-CO2, 
brine-CH4). However, to accurately determine the compressibility fac-
tor, the interaction coefficient (kij) between water and other gases are 
modified [33]. The other interaction coefficients are taken from the 
study conducted by Li and Yan [43]. Finally, the fugacity coefficient can 
be determined by: 

ln(∅i) =
Bi

B
(Z − 1) − ln(Z − B) +

A
2.828B

[
Bi

B
−

2
∑

jyjaij

a

]

ln
[

Z + 2.414B
Z − 0.414B

]

(18)    

• Henry’s constant (Kh) 

Henry’s constant and activity coefficient are the remaining un-
knowns on the right-hand side of Eq. (6). The virial-type equation 
established by Akinfiev and Diamond [41] can be used for calculating 
thermodynamic properties of the AqP species at infinite dilution. This 
model gives Henry’s constant by: 

ln(Kh) = (1 − η)ln
(

f 0
H2O

)
+ ηln

(
RT
Mw

ρ0
H2O

)

+ 2ρ0
H2OΔB (19)  

Where 

ΔB = τ + ΓP + β
̅̅̅̅̅̅̅
103

T

√

(20) 

For more information about the calculation procedure of fugacity 
and density of pure water, f0

H2O and ρ0
H2O, as well as adjustable parameters 

of η, τ, Γ, and β refer to Fine and Millero [44] and Ziabakhsh-Ganji and 
Kooi [33].  

• Activity coefficient (γi) 

The reduction of the activity coefficient, caused by the interaction 
between solutes in the brine, is determined by a virial expansion of 
Gibbs excess energy. This expansion is derived using the Pitzer model 
[45]: 

ln(γi) =
∑

C
2mCλi− C +

∑

A
2mAλi− A +

∑

C

∑

A
mAmCζi− A− C (21)  

Where i refers to the dissolved gases of CH4, CO2, N2, and H2S. The 
calculated activity factors will be used for computing the equilibrium 
constants Eq. (6). mC and mA in Eq. (21) denote cations and anions 
molality in the AqP. The second (λ) and third-order (ζ) gas-dependent 
interaction parameters are calculated by: 

Par(T,P) = c1 + c2T +
c3

T
+ c4P +

c5

P
+ c6

P
T
+ c7

T
P2 +

c8P
630 − T

+ c9Tln(P)

+ c10
P
T2

(22) 

In Eq. (22), Par(T,P) can be either λ or ζ. Following Duan and Sun 
[22] and Ziabakhsh-Ganji and Kooi [33], we assumed that (λi− A = 0,
λi− C = λi− Na, and ζi− A− C = ζi− Na− Cl). For the other constant factors and 

the procedure of calculating the molality of the ions, refer to 
Ziabakhsh-Ganji and Kooi [33]. As an example, in a system of sodium 
(Na), calcium (Ca), potassium (K), and magnesium (Mg) salts, the ac-
tivity coefficient is given by: 

ln(γi) = 2λi− Na
(
mNa + 2mCa +mK + 2mMg

)

+ ζi− Na− ClmCl
(
mNa +mK +mMg +mCa

)
(23)    

• H2O–CO2 binary mixture 

Since the fugacity of a gas component in a binary gas-brine system 
does not depend on the composition, its solubility in the AqP can be non- 
iteratively determined. For a binary mixture of H2O–CO2, the mole 
fraction of water in the NaqP and the CO2 solubility in AqP can be 
calculated by the following equations: 

yH2O =

(

1 −
P∅CO2

KHH2 OγCO2

)

((

1

/
K0

H2 O
∅H2 OP exp

[
(P− P0)VH2 O

RT

])

−
P∅CO2

KHH2 OγCO2

) (24)  

xCO2 =
P∅CO2

KHH2OγCO2

⎛

⎜
⎜
⎜
⎝

1 −

(

1 −
P∅CO2

KHH2 OγCO2

)

((

1

/
K0

H2 O
∅H2 OP exp

[
(P− P0)VH2 O

RT

])

−
P∅CO2

KHH2 OγCO2

)

⎞

⎟
⎟
⎟
⎠

(25) 

Eqs. (24) and (25) are provided by combining Eqs. (6) and (10) 
following the general rule: 
∑

i=CO2 , H2O
xi = 1,

∑

i=CO2 , H2O
yi = 1 (26)    

• Flash calculation and general iterative algorithm 

Nevertheless, vapor-liquid flash calculations are required to compute 
the gas mixture mutual solubility. In this case, the total pressure, tem-
perature, and mole fraction of each component in the two-phase mixture 
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(zi) are received as inputs. Then, the Rachford–Rice equation is imple-
mented to calculate the mole fraction of NaqP (nv): 

∑N

i=1

Zi(Ki − 1)
1 + (Ki − 1)nv = 0 (27)  

Where Ki is defined as: 

Ki =
yi

xi
, i = H2O,CO2,CH4,N2,H2S (28) 

Using the formerly derived equations Eqs. (6) and ((10)), the k-value 
of water and other components can be alternatively calculated by: 

KH2O =
K0

H2O

P∅H2O
exp
[
(P − P0)VH2O

RT

]

(29)  

Ki =
KHiγi

P∅i
, i = CO2,CH4,N2,H2S (30) 

With the known values of Zi, Ki, and nv, it is now possible to compute 
the composition of each phase: 

xi =
Zi

1 + (Ki − 1)nv, yi =
ZiKi

1 + (Ki − 1)nv (31) 

Using pressure, temperature, and two-phase composition as inputs 
makes this F-A algorithm an unattractive option to be included in the 
numerical simulation of two-phase multicomponent flows. Indeed, most 
of the conducted studies on modeling two-phase flows in reservoirs solve 
the partial differential equations of continuity, momentum, and energy 
to calculate the main variables of pressure, enthalpy, and velocity. 
Therefore, the fluid temperature cannot be provided as input to the F-A 
model. As shown in Fig. 1, using enthalpy instead of temperature as an 
input multiplies the required iteration for calculating solubility. This 
iterative F-A algorithm is highly precise in predicting the mutual solu-
bilities of gas mixtures in brine. Therefore, it is suitable for producing a 
large dataset to train a new ML-based equation of state that can perform 
this calculation without the need for iteration. Gene expression pro-
gramming is the artificial intelligence technique employed by this study 
to develop the new EOS. This method is elaborately introduced in the 
next section. 

2.2. Gene expression programming 

The GEP method, an extension of genetic programming (GP), was 
introduced by Ferriera [46] as an evolutionary AI technique. Its purpose 
is to enhance the performance of the traditional GP approach and 
address its limitations, which include inadequate exploration of the 
research space, limited regression strategies, and a slow convergence 
rate. This method is chosen for the development of the equation of state 

as it is capable of generating high-preciseness explicit formulas for the 
non-iterative prediction of target outputs. The new formulation can be 
easily implemented in other codes and software systems, eliminating the 
need for iteration in conventional F-A and F-F algorithms. 

The operators employed by the GEP method are all inspired by the 
biological evolution in nature. They range from fundamental genetic 
operators (e.g., mutation, crossover, selection) to some advanced oper-
ators like transposition, insertion, and recombination. Each GEP model 
uses the three primary components of chromosomes, genes, and 
expression trees (ET) in the optimization process. Chromosomes are 
composed of one or several genes. They possess a fixed length and mimic 
candidate solutions within the code. Genes themselves consist of ter-
minals (tails) which can be either some variables (e.g., pressure, tem-
perature) or functions (heads) such as (+, -, /, ×, tan, log). The 
expression trees also represent the real candidate expressions. In 
establishing a general GEP framework, control parameters such as 
population size, gene length, and mutation rate are defined. Following 
this, an initial population is created, comprising randomly encoded 
potential solutions represented as chromosomes. Each individual chro-
mosome is assessed by a fitness function, and the fittest (best) solutions 
are selected for reproduction in the new population. The genetic oper-
ators are subsequently applied to the chosen individuals to generate new 
offspring. As shown in Fig. 2, the processes of selection, replication, 
mutation, inversion, transposition, and recombination are re-iterated 
until a stopping criterion is fulfilled. This study utilized GeneXpro-
Tools v5.0, a gene expression algorithm software, to generate precise 
formulas that correlate input and output parameters. For more details 
about the implementation process alongside with code examples, refer 
to Ferriera [46] and Gao et al. [47]. 

3. Results and discussion 

Although not favoring fast computation of fluid properties, the 
iterative algorithm of the F-A model shows high accuracy in the repro-
duction of experimental data [33]. Herein, we use this thermodynamic 
scheme to generate a large amount of reliable solubility data, which is 
required for training the GEP model. In the next step, the GEP functions 
can entirely replace the time-consuming iterative F-A algorithm or at 
least decrease the number of iterations for determining each phase 
composition. This study introduces two sets of GEP functions to calcu-
late fluid temperature and equilibrium constants. The presented GEP 
equations can predict the fluid temperature as a function of pressure, 
enthalpy, and two-phase composition. Nevertheless, even using these 
functions, the algorithm is still iterative as computing equilibrium 
constant as a function of temperature requires some iterations. There-
fore, a new set of straightforward GEP functions are developed to 
directly calculate the equilibrium constants as functions of pressure, 

Fig. 1. Flow chart for the conventional iterative calculation of temperature and equilibrium constants as functions of pressure, enthalpy, and two-phase fluid 
composition. 
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temperature, and two-phase composition and bypass the iterations. The 
following section discusses the precision and computational speed of the 
new GEP-based EOS. 

The predicted temperatures derived from the GEP are compared to 
those calculated by the iterative F-A algorithm for 1000,000 arbitrary 

sets of [pressure, enthalpy, two-phase composition]. The same com-
parison is conducted for the equilibrium constant values, with the dif-
ference that the inputs were [pressure, temperature, two-phase 
composition]. The range of input values is mentioned in Table 1. The 
accuracy of suggested GEP equations in predicting target values is 

Fig. 2. The flowchart of gene expression algorithm. Pressure, enthalpy, and two-phase fluid composition are assumed inputs, while the R-squared in calculating 
temperature and equilibrium constants is considered as a fitness function. 
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elaborately discussed in the next sections. 

3.1. Comparing fast GEP-based EOS to iterative method 

3.1.1. Temperature 
In our approach, 10,000 data sets are used for training the GEP 

equations with the settings addressed in Table 2. Then, the precision of 
developed equations in predicting 1000,000 other data points (i.e., 
validation cases) is meticulously evaluated. The GEP method shows a 
better performance in predicting fluid temperature when it is normal-
ized by enthalpy. Therefore, the presented GEP function is trained to 
calculate the value of temperature/enthalpy (displayed as T/H in Fig. 3). 
Since fluid enthalpy is assumed to be a known input, it is easy to sub-
sequently compute the fluid temperature (T=T/H×H). The strong 
nonlinear behavior of T/H as a function of pressure does not allow for 
developing a single high-preciseness equation for predicting tempera-
ture over the whole range of 1MPa < P < 50MPa. For improved accuracy 
in temperature estimation, we partitioned the pressure range (1MPa to 
50MPa) into two distinct sub-domains. To determine the optimal 
boundary within this range, we conducted a comprehensive evaluation 
by testing eleven different pressure values: 1, 5, 10, 15, and so forth, up 
to 50MPa. The analysis revealed that the 10MPa pressure threshold 
yields the most precise results. Consequently, we recommend employing 
two separate GEP equations for temperature calculation within the 
specified pressure intervals: 1MPa < P < 10MPa and 10MPa < P <
50MPa. Fig. 3 shows the R-squared and relative error of these two 
equations in computing the temperature of validation cases (the 
1000,000 data sets). Both equations can predict the fluid temperature 
with the R-squared of ≈ 0.998 and the median relative error of less than 
0.6%, which indicates their reliability for accurate computation of fluid 
temperature. 

Even this small error may be unacceptable in some applications. In 
this case, the proposed GEP equations can be used as an initial guess for 
temperature in the F-A algorithm shown in Fig. 1. It is guaranteed that, 
after the first iteration, the error will be almost zero (Fig. 4). 

For ease of implementation, the GEP functions are provided as sim-
ple C++ codes in (Appendix A: C++ codes) 

3.1.2. Equilibrium constants 
The new GEP equations for calculating equilibrium constants are 

developed with the settings mentioned in Table 3. Like other machine 
learning techniques, the performance of GEP models depends on 

hyperparameters. Fortunately, GeneXproTools addresses many hyper-
parameters (e.g., mutation, inversion, IS transformation) within the 
optimal evolution strategy. Nevertheless, some crucial factors, such as 
the number of chromosomes, genes, and composing functions, which 
influence the length and complexity of the formula, must still be selected 
by the user. In cases of highly nonlinear input-output relationships, 
equations can become lengthy and intricate. The choice of these pa-
rameters typically involves a trial-and-error approach. In the case of 
equilibrium constants, it has been observed that for chromosome sizes 
exceeding 30 and gene sizes greater than 8, predictive accuracy does not 
improve, but the learning process becomes more time-consuming. 

The equilibrium constant exhibits extremely nonlinear behavior and 
covers a broader range of values (0.1 - 10,000) compared to the tem-
perature domain (10 - 100◦C), making it a formidable challenge to 
develop highly precise functions. Nevertheless, the herein-introduced 
GEP equations can compute the equilibrium constants of the 1000,000 
(validation) data set with a median relative error of ≈ 6% (Fig. 5 and 
Table 4). Using these equations as an initial guess for solving the 
Rachford-Rice equation (Fig. 1) is highly recommended as it results in a 
median relative error of only ≈ 1% after the first iteration. Accurate 
determination of equilibrium constants ensures consistent adherence to 
the conservation laws previously stated (Eq. (26)). Indeed, the equilib-
rium constants and the fractional composition of each component in the 
gas/liquid phase are interrelated parameters (Eq. (31)). This correlation 
arises from the Rashford-Rice equation (Eq. (27)), which ensures that 
the sum of mole fractions in the liquid and gas phases equals 1. 

The F-A algorithm typically needs nine iterations for the simulta-
neous calculation of fluid temperature and equilibrium constants as 
functions of enthalpy, pressure, and two-phase composition. However, 
using the developed GEP functions as initial guesses for temperature and 
equilibrium constant can yield accurate results in only one iteration. 
This leads to an 89% reduction (8/9×100) in the number of iterations, 
which now makes GenEOS an exciting option to be included in the fast 
simulation of two-phase multicomponent flows. 

3.2. GenEOS calculation scheme for fluid properties 

After determining temperature and phase composition using the non- 
iterative GEP algorithm, it is also possible to calculate the thermo-
physical properties of these fluids. This section presents the GEP scheme 
for calculating fluid properties, with three main objectives: 1) to 
enhance the transparency of GenEOS as an EOS, 2) to demonstrate its 
accuracy through validation against international standards, experi-
mental data, and numerical methods, and 3) to show that its capabilities 
are beyond computing gas solubility in brine. 

3.2.1. Enthalpy  

• Liquid phase 

For the pressure range of (1MPa < P < 50MPa) and temperature 
domain of (10◦C < T < 100◦C), the enthalpy of pure liquid water can be 
calculated by: 

HAq
H2O(T, P+ΔP) − HSL

H2O(T, P) = V[1 − εT]ΔP (32) 

In which HSL
H2O, V, and ε represent the enthalpy of saturated liquid 

(reference condition), specific volume, and thermal expansion 

Table 1 
Range of input parameters for training GEP functions (mf stands for mole frac-
tion in two-phase mixture).  

variable min max 

Pressure (MPa) 1 50 
Enthalpy (MJ⋅Kg− 1⋅K− 1) − 13 114 
mf (H2O) 0.5 0.93 
mf (CH4) 0 0.27 
mf (CO2) 0 0.26 
mf (N2) 0 0.32 
mf (H2S) 0 0.28 
mf (NaCl) 0 0.027 
mf (KCl) 0 0.026 
mf (CaCl2) 0 0.025 
mf (MgCl2) 0 0.026  

Table 2 
GEP settings for the calculation of Temperature.  

Number of chromosomes 30 Head size 10 Number of genes 4 

Linking function / Fitness function R2 Mutation 0.00138 
IS Transposition 0.00546 RIS Transposition 0.00546 Inversion 0.00546 
One-point Recombination 0.00277 Two-point Recombination 0.00277 Gene Transposition 0.00277 
Constants per gene 10 Range of constants − 10 to +10 Data type Floating point  
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coefficient, respectively. The procedure for calculating these parameters 
is discussed in Appendix A.1. The average relative error of Eq. (32) in 
calculating water enthalpy is below 1% when compared to the IAPWS 
[48] database. 

The enthalpy of Water+NaCl solution is computed through a model 
developed by Driesner [49]. 

Hsolution(T,P,XNaCl) = HAq
H2O
(
T∗

h ,P
)

(33) 

This simple model declares that the enthalpy of brine mixture 
(Hsolution) at a specific pressure, temperature, and salinity equals pure 
water enthalpy at another temperature (T∗

h), calculated by: 

T∗
h = q1 + q1T (34)  

Where q1 and q2 are functions of pressure and temperature [49]. Specific 
enthalpies computed using Eq. (33) typically agree within 1–3% with 
those obtained from experimental studies. Calculation of enthalpy of a 
brine mixture containing other salts (Hsolution) and dissolved gases in the 
AqP (H′

solution) are explained in Appendix A.2 and Appendix A.3.  

• Gas phase 

The classic Peng-Robinson EOS is employed for computing gas 

Fig. 3. The R-squared and relative error of the GEP equation in the calculation of fluid temperature when (a-b) pressure > 10MPa and (c-d) pressure < 10MPa.  

Fig. 4. Accuracy of calculated temperatures after the first iteration when the 
GEP equation is used as the initial guess in the Fugacity-activity algo-
rithm (Fig. 1). 

Table 3 
GEP settings for the calculation of equilibrium constant.  

Number of chromosomes 30 Head size 10 Number of genes 8 

Linking function / Fitness function R2 Mutation 0.00138 
IS Transposition 0.00546 RIS Transposition 0.00546 Inversion 0.00546 
One-point Recombination 0.00277 Two-point Recombination 0.00277 Gene Transposition 0.00277 
Constants per gene 10 Range of constants − 10 to +10 Data type Floating point  
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enthalpy [50]: 

HNaq − HNaq
0 = RT(Z − 1) +

⎛

⎜
⎜
⎝

a − T
(

da
dT

)

2
̅̅̅
2

√
b

⎞

⎟
⎟
⎠ln

(
Z − 0.414B
Z + 2.414B

)

(35)  

Where HNaq
0 represents ideal gas enthalpy. For a gas mixture, the term of 

( da
dT
)

is calculated by: 

da
dT

=
1
2
∑

i

∑

j
wiwj

(
1 − Kij

) ̅̅̅̅̅̅̅̅̅̅̅̅(
aiaj
)√ [

1
ai

dai

dT
+

1
aj

daj

dT

]

(36)  

Where 

da(T)
dT

= − ka(Tc)

̅̅̅̅̅̅̅̅̅̅

a(T)
TTC

√

(37) 

The PR EOS cannot describe the behavior of non-boiling water in 
NaqP. As reported by Pan et al. [51], the small water content of the NaqP 
behaves like a mixture of "vapor-like" and "liquid-like" components. The 
gas phase pressure increment plays an essential role in deviating its 
properties from "vapor-like" to "liquid-like". The proposed method for 
computing water enthalpy is elaborately discussed in Appendix A.4.  

• Two-phase mixture 

The mass-average two-phase enthalpy (H) is calculated through 
[52]: 

H = wAqH′
solution + wNaqHNaq (38) 

The calculated enthalpies by GenEOS are validated against experi-
mental data, accurate numerical studies, and international standards 
like IAPWS [48] and NIST [53]. Some validation cases are addressed in 
Fig. 6. 

3.2.2. Density  

• Liquid phase 

Al Ghafri et al. [54] performed a series of experiments with a 
vibrating-tube densimeter to measure the density of brine containing 
various salts (i.e., MgCl2, CaCl2, KI, NaCl, KCl, and AlCl3). Their pro-
posed correlations for calculating density are very accurate for pressures 
up to 68.5MPa, temperature range of (10◦C to 200◦C), and salt molality 
of (b < 5). This model is implemented in GenEOS and expresses the brine 
density as: 

ρ(T,P, b) = ρref (T, b)
{

1 − C(b)ln
[

B(T, b) + P
B(T, b) + Pref (T)

]}− 1

(39)  

and the density of a brine mixture containing various salts can be 
computed by: 

ρsolution(T,P, b) =

[
∑

i
xi(1+ bMi)

]

×

[
∑

i

xi(1 + bMi)

ρi(T,P, b)

]− 1

(40) 

Here, xi and Mi represent the mole fraction of electrolyte i in the 
mixed salt and the molar mass of salt i. ρi is the density of the single 
electrolyte solution at the pressure, temperature, and molality of the 
mixed electrolyte solution. For further details regarding the computa-
tion of parameters used in Eqs. (39) and (40), refer to Appendix B.1. This 
model re-produces experimental data with absolute average relative 
deviations of 0.03, 0.06, 0.04, 0.02, and 0.02 percent for the MgCl2(aq), 
CaCl2(aq), KI(aq), NaCl(aq), and KCl(aq) systems, respectively. How-
ever, it’s worth noting that this error can increase to 0.05 percent for 
mixed electrolyte solutions. The procedure of computing brine density 
after gas dissolution (ρ′

solution) is addressed in Appendix B.2. 

Fig. 5. The relative error in calculating the equilibrium constant of (a) Methane (b) Carbon dioxide (c) Nitrogen (d) Hydrogen sulfide. The orange columns display 
the outcomes obtained from the F-A model after the first iteration, using GEP equations as the initial guess. 

Table 4 
The median relative error of GEP equations in computing equilibrium constants.  

component Relative error (%) 

GEP equation After first iteration 

CH4 6.2 0.8 
CO2 5.6 1.4 
N2 6.1 0.5 
H2S 10.0 1.1  
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• Gas phase 

The density of a gas mixture is given as: 

ρ =
MWg

νg + cm
(41)  

Where 

νg =
ZgRT

P
(42) 

In these equations, Zg is the compressibility factor computed by the 
PR EOS, νg represents molar volume, and MWg denotes the molecular 
weight of the gas phase. cm, the gas-dependent volume shift factor, is 
introduced by Shabani and Vilcáez [55] to increase the accuracy of these 
equations in calculating gas density. By employing this approach, we 
successfully re-produced densities of pure gases, as well as gas mixtures, 
with an error of less than 1%, assuming NIST data as the reference. 

As mentioned before, the PR EOS cannot be used to determine non- 
boiling water density in the NaqP. The corresponding calculation is 
outlined in Appendix B.3.  

• Two-phase mixture 

The mass-average two-phase density (ρ) is calculated through: 

ρ = wAqρ′
solution + wNaqρNaq (43) 

Some validated/calculated densities by GenEOS are shown in Fig. 7. 

3.2.3. Viscosity  

• Liquid phase 

Laliberte’ [56] introduced an experimental correlation for 
computing brine viscosity: 

ηAq = ηww
w

∏
ηwi

i (44) 

In Eq.  (44), ηw and ηi are water and salt viscosities, respectively. 
These properties are defined by: 

ηw

/

mPa⋅s =
T/∘C + 246

(0.05594T/∘C + 5.2842)T/∘C + 137.37
(45)  

ηi

/

mPa⋅s =
e

(
ν1 (1− ww )ν2 +ν3

ν4 (T/
∘C)+1

)

ν5(1 − ww)
ν6 + 1

(46)  

Where ν1-ν6 are salt-dependent constants. The average relative error of 
Eq.  (44) in predicting an experimental viscosity database with 1700 
points is reported to be 2.7% [56].  

• Gas phase 

To the best of our knowledge, there is no single high-preciseness 
equation for calculating the viscosities of all the gases included in 
GenEOS (i.e., CO2, CH4, N2, and H2S). Therefore, various models are 
employed for computing gas viscosities. Subsequently, a mixing rule is 

Fig. 6. Calculation and validation of enthalpy of (a) single gas [CH4, P=10MPa] (b) pure liquid water and brine [P=10MPa, mole fraction of NaCl = 0.1]. The red 
line is solely included to illustrate the behavior of brine enthalpy. (c) non-boiling water in NaqP (T=70◦C). 
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used to compute gas mixture viscosity.  

- Carbon dioxide 

Fenghour and Wakeham [57] proposed an empirical equation for 
computing CO2 viscosity, which is valid for pressures up to 300MPa and 
temperatures below 1000K. according to this model, CO2 viscosity is 
decomposed into three separate terms: 

η(ρ,T) = η0(T) + Δη(ρ,T) + Δηc(ρ,T) (47)  

Where η0, Δη, and Δηc stand for viscosity in the zero-density limit, the 
viscosity increase at elevated density over the dilute gas value, and the 
viscosity alteration in the immediate vicinity of the critical point. The 
calculation of these terms is explained in Appendix C.1.  

- Methane 

The viscosity of methane is calculated using a simple empirical 
equation suggested by Tadashi et al. [58]: 

η =
∑4

i=0
B0iTi + P

∑2

i=0
B1iTi + P2

∑3

i=0
B2iTi + P3

∑3

i=0
B3iTi + P4

∑2

i=0
B4iTi

(48) 

Eq. (48) re-produces experimental data with a standard deviation of 
0.52.  

- Nitrogen 

Stephan and Krauss [59] developed a model that splits the viscosity 

of nitrogen into two contributions of zero-density limit (dilute-gas 
function, η0) and residual part (excess function, ΔηR): 

η(ρ,T) = η0(T) + ΔηR(ρ) (49) 

The process of computing η0 and ΔηR is explained in Appendix C.2. 
Eq. (49) yielded a mean error of 0.165%, a standard deviation of 1.15%, 
and an absolute mean error of 0.8% in computing nitrogen viscosity.  

- Hydrogen sulfide 

An empirical correlation proposed by Giri et al. [60] is employed by 
GenEOS for computing H2S viscosity: 

η
μPas

= a0 + a1

(
T
K

)

exp

[(

a2 +
a3

(T/K)
+

a4

(T/K)
2

)

⋅
(

ρ(T,P)
kgm− 3

) ]

(50) 

This model is valid for pressures up to 100MPa and temperatures 
below 483K. Eq. (50) can replicate experimental data with an Average 
Absolute Deviation (AAD) of around 5 percent.  

- Gas mixture 

A mixing rule developed by Wilke [61] is used for computing the gas 
mixture viscosity: 

ηNaq =
∑n

i=1

ηi

1 + 1
xi

∑j=n
j=1
j∕=i

xjϕij
(51)  

where ϕij is defined as: 

Fig. 7. Calculation and validation of density of (a) single gas [CO2, P=10MPa] (b) H2O–CaCl2 solution [b=1 mol⋅Kg− 1], experimental data are taken from Al Ghafri 
et al. [54] (c) non-boiling water in NaqP [T=70◦C] d) CO2-saturated water [T=70◦C]. 
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ϕij =

[
1 +

(
ηi
/

ηj
)1/2(Mj

/
Mi
)1/4
]2

(
4
/ ̅̅̅

2
√ )[

1 +
(
Mi
/

Mj
)]1/2 (52) 

M in Eq. (52) denotes the molecular weight of each component.  

• Two-phase mixture 

The mass-average two-phase viscosity (ρ) is written as: 

η = wAqηAq + wNaqηNaq (53) 

Fig. 8 depicts some validated viscosities by GenEOS. 

3.2.4. Thermal conductivity  

• Liquid phase 

The following equation can be used for calculating the thermal 
conductivity of multicomponent electrolyte solutions [62]: 

λAq = λ0

(

1+
∑k

i=1
βici

)

(54)  

Where β, c, and k denote the gas-dependent constant, the mass content of 
electrolyte in the solution, and the number of components, respectively. 
λ0, the thermal conductivity of pure water, is written as: 

λ0 = 10− 3( L0 + L1Ψ+L2Ψ1.5 +L3Ψ2.5 + L4Ψ3) (55) 

Eq.  (55) is valid for the temperature range of (0◦C < T < 135◦C), and 
Ψ is given by (Ψ = 0.01T(∘C)).  

• Gas phase 

The thermal conductivity of each gas is described by a specific 
model, and subsequently, a mixing rule is implemented for computing 
the gas mixture’s thermal conductivity.  

- Carbon dioxide 

Amooey [63] developed a model that computes the CO2 thermal 
conductivity as a function of density and temperature: 

λ =
A1 + A2ρ + A3ρ2 + A4ρ3T3 + A5ρ4 + A6T + A7T2

̅̅̅̅
T

√ (56) 

The constant factors of A1-A7 are calibrated to cover the thermal 

conductivity in the temperature range of (290K < T < 800K) and den-
sities below 1200 Kg⋅m− 3. The average relative error in computing 
methane carbon dioxide thermal conductivity using Eq. (56) is 
approximately 2.74 percent.  

- Methane 

Prasad et al. [64] proposed a correlation for calculating CH4 thermal 
conductivity, which is valid for the temperature range of (120K < T <
400K) and pressure domain of (2MPa < P < 70MPa). According to this 
model, the total thermal conductivity is composed of two primary terms: 

λ = λ1 + Δλe (57) 

In which λ1, the thermal conductivity at low pressures, is calculated 
by: 

λ1 =
̅̅̅̅̅
Tr

√
/
∑n

k=0

(
ak
/

Tk
r

)
(58) 

And the excess value of thermal conductivity in high-density regions 
(Δλe) is given by: 

Δλe =
∑m

i=0

∑n

j=0
bijTi

rρj
r (59) 

In Eqs. (58) and (59), Tr and ρr are temperature and density, 
normalized by the critical value of the corresponding property. For the 
constant factors of ak and bij refer to the reference paper. The maximum 
estimated uncertainties in computing methane thermal conductivity 
stand at 3 percent.  

- Nitrogen 

Lemmon and Jacobsen [65] proposed a model for computing the 
Nitrogen thermal conductivity as a function of temperature and density: 

λ = λ0(T) + λr(τ, δ) + λc(τ, δ) (60)  

Where τ = Tc/T and δ = ρ/ρc. The procedure for computing (λ0, λr, and 
λc) is explained in Appendix D.1. The uncertainties of calculated values 
derived from Eq. (60) typically fall within a 2% margin, with the 
exception of the critical region, where uncertainties are greater.  

- Gas mixture 

The thermal conductivity of a gas mixture can be computed by [66]: 

Fig. 8. Calculation and validation of viscosity of (a) binary H2O–CaCl2 brine [b=1 mol•Kg− 1], the experimental data are taken from Laliberte’ [56] (b) single 
gas (CO2). 
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λNaq =
∑ yiλi

∑
yiAij

(61)  

Where the interaction parameter (Aij) is defined by: 

Aij =

(
MWj

MWi

)0.5

(62)    

• Two-phase mixture 

The mass-average two-phase thermal conductivity (λ) is calculated 
through: 

λ = wAqλAq + wNaqλNaq (63) 

Some validated/calculated thermal conductivities by GenEOS are 
exhibited in Fig. 9. 

4. Conclusion 

Determining the phase composition plays an essential role in the 
accurate computation of two-phase mixtures properties. Fugacity- 
Fugacity and Fugacity-Activity are popular thermodynamic models to 
quantify the impact of gas dissolution on phase composition. However, 
their iterative algorithms make them computationally expensive. Gen-
EOS is a novel approach to overcome the limitations of conventional 
Fugacity-Fugacity and Fugacity-Activity models. Employing a distinct AI 
approach enables the utilization of advanced and precise EOS methods, 
even for large-scale problems. This approach extends to a wide range of 
applications, including reservoir-like environments, characterized by 
high pressure, high temperature, and high salinity conditions. Gene 
expression programming is used in this study to provide explicit equa-
tions for the prediction of target outputs and support this fast calculation 
of fluid properties. Developing high-preciseness GEP functions requires 
a lot of accurate data for the training process. Hence, in the first step of 
this study, a large database is provided by employing a robust Fugacity- 
Activity method. The generated data points are fed into established GEP 
models to non-iteratively anticipate the fluid temperature and equilib-
rium constants as functions of enthalpy, pressure, and two-phase 
composition. The introduced EOS in this study (GenEOS) uses these 
novel GEP equations to calculate fluid properties quickly. GenEOS 
shows benefits in terms of:  

• Accuracy: The average relative error of 0.6% in predicting fluid 
temperature for 1000,000 arbitrary sets of [pressure, enthalpy, two- 
phase composition] indicates the high accuracy of introduced GEP 
functions in calculating target outputs. This error reduces to zero 
after the first iteration when the GEP function is used as an initial 
guess in the F-A algorithm. Accounting for the highly-nonlinear 
pressure-dependent thermodynamic behavior of non-boiling water 
in the NaqP phase and quantifying the impact of gas dissolution on 
the AqP composition makes GenEOS very accurate in predicting fluid 
properties. 

• Computation speed: The F-A algorithm typically needs three itera-
tions for calculating equilibrium constants as functions of tempera-
ture. However, in the numerical modeling of two-phase flows, the 
conservation equations are solved for computing velocity, pressure, 
enthalpy, and two-phase composition. Therefore, temperature, as an 
input for the EOS, should be guessed at the beginning of the algo-
rithm. It can increase the total number of iterations to nine. Using the 
proposed GEP equations as initial guesses leads to convergence in 
only one iteration and considerably reduces the EOS-related 
computational costs.  

• Applicability: Focusing on geothermal applications, the nine primary 
components of water, carbon dioxide, methane, nitrogen, hydrogen 
sulfide, sodium chloride, potassium chloride, magnesium chloride, 
and calcium chloride are included in GenEOS. This C++ code can 
work stand-alone, without coupling to any other chemical solver. 
Consequently, it can be easily implemented in other modeling plat-
forms while avoiding the complexity of calling multiple linked 
codes/software. GenEOS is also provided as an object in a multi- 
physics object-oriented simulation environment called MOOSE 
[68]. Therefore, all MOOSE-based applications can now benefit from 
this open-access UserObject. So far, GenEOS is included in a 
MOOSE-based wellbore simulator called MOSKITO [69–71].  

• Transparency: GenEOS is a transparent box for computing fluid 
properties. All the new GEP equations for computing fluid temper-
ature and equilibrium constants are presented as simple C++ codes 
in the Appendix. Thus, they can directly and freely be used or con-
verted to any other programming language. Moreover, the imple-
mented equations for calculating other properties and corresponding 
references are clearly addressed in the context of the paper. 

The development of GenEOS opens up new pathways for the accurate 
and efficient computation of fluid properties in two-phase mixtures, 
with broad applications in various fields. In the numerical modeling of 
two-phase fluid flow, GenEOS has a key advantage over traditional EOS 

Fig. 9. Calculation and validation of thermal conductivity of (a) a single gas [P=10MPa] (b) pure water and binary H2O–CaCl2 brine (mass fraction = 20%, 
P=10MPa), experimental data are taken from Akhmedova-Azizova and Abdulagatov [67]. 
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methods. It achieves this by rapidly calculating fluid properties using 
novel GEP equations. This capability enables more precise simulations 
of complex flow phenomena. Furthermore, the application of GenEOS 
can extend to the forecasting of complex processes in pipes, where the 
accurate prediction of fluid properties is critical for optimizing pipeline 
design and operation. 

Another promising area of application for GenEOS is in carbon 
capture and storage, where it can be used to accurately predict the 
behavior of fluids under varying pressure and temperature conditions, 
facilitating the design of efficient and cost-effective carbon capture and 
storage systems. In the field of geothermal reservoirs, GenEOS’s ability 
to accurately calculate fluid properties can aid in the prediction of 
reservoir behavior, improving reservoir management and maximizing 
energy production. 
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Repository: https://github.com/morteza374/GenEOS.git. 
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GenEOS is licensed under the terms of the MIT License, which allows 
for flexibility in how the software is used and distributed. 
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commercial purposes without any restrictions. 
We encourage the community to contribute to GenEOS and help 

improve its functionality and usability. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

No data was used for the research described in the article. 

Acknowledgment 

The study is part of the subtopic "Geoenergy" in the program "MTET - 
Materials and Technologies for the Energy Transition" of the Helmholtz 
Association.  

Appendix A. Elaborate calculation of enthalpy 

Appendix A.1 Liquid water 
Enthalpy of saturated liquid water can be expressed as: 

HSL
H2O(T, P) = d1 + d2T + d3T2 + d4T3 + d5T4 + d6T5 (A.1) 

Nevertheless, to calculate the enthalpy of liquid water at any given pressure and temperature (Eq. (32)), it is essential to have the specific volume 
and thermal expansion coefficient, defined by: 

V =
V0 − V0P

B + A1P + A2P2 (A.2)  

ε = r1 + r2T + r3T1.5 + r4T2 (A.3) 

More details about the constant factors of d1-d6, r1-r4, and the equations for computing V0, A1, A2, and B can be found in Fine and Millero [44] and 
Popiel and Wojtkowiak [72]. 

Appendix A.2 Brine mixture 
Nusiaputra [52] proposed a formula for the calculation of the enthalpy of a brine mixture containing KCl, CaCl2, and MgCl2: 

Hsolution(P, T) = wAq
H2OHAq

H2O +
∑

Ni

wAq
i

Mi
hφ

i (A.4)  

Where w, M, and hφ
i stand for mass fraction, molar mass, and apparent molar enthalpy, respectively. 

hφ
i = g01 + g02bi + g03(θ+ 273.15) + g04(θ + 273.15)2

+
(
bc1

i + c2
)
(

c3(θ+ 273.15) − c4ln
(

1 −
θ + 273.15

c5

))

(A.5)  

b in Eq. (A.5) denotes salt molality in the liquid phase. For other constants, refer to Nusiaputra [52]. 
Appendix A.3 Dissolved gases in aqueous phase 
The enthalpy of the dissolved gases in the AqP can be expressed by the summation of gas enthalpy at the corresponding total pressure (hj) and 

dissolution enthalpy (hφ
sol,j). Therefore, the AqP enthalpy after gas dissolution (H′

solution) is governed by [52]: 

H′
solution(P, T) = Hsolution(P,T) +

∑

Nj

wAq
j

(

hj +
hφ

sol,j

Mj

)

(A.6)  

Where Mj represents gas molar mass. The dissolution enthalpy (i.e., the enthalpy change associated with the dissolution of gas in water at constant 
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pressure resulting in infinite dilution) can be computed by using the first derivative of the standard chemical potential ( ∂
∂T (μ

1(0)
j /RT)). Following Pitzer 

et al. [45], the standard chemical potential can be calculated by: 

μ1(0)
j

RT
= s1 + s2T + s3

/

T + s4T2 + s5

/

(630 − T) + s6P + s7Pln(T) + s8P

/

T + s9P

/

(630 − T) + s10P2

/

(630 − T)2
+ s11Tln(P) (A.7) 

The constant parameters of s1-s11 can be found in studies conducted by Duan et al. [22,31,32,36]. 
Appendix A.4 Non-boiling water in non-aqueous phase 
Pan et al. [51] proposed an equation for computing water enthalpy: 

hH2O = (1 − XL)usv + XLusl +
PH2O

ρH2O
(A.8)  

Where 

Xv = 1 − XL =

⎧
⎪⎨

⎪⎩

1 if PH2O ≤ Psat

Psat

PH2O
if PH2O > Psat

(A.9)  

PH2O = yH2OP (A.10)  

Psat = PCexp
{[

Tc

273.15 + θ

]
(
a1 + a2Y1.5 + a3Y3 + a4Y3.5 + a5Y4 + a6Y7.5)

}

(A.11) 

In Eq. (A.8), usv and usl denote the specific enthalpies of water vapor and liquid water, respectively. The constant factors of a1-a6 for a binary 
mixture of H2O–CO2 are addressed in the reference paper. In this case, the enthalpy of NaqP can be computed by: 

HNaq = yH2OhH2O +
(
1 − yH2O

)
hCO2 + wH2O

(
P

ρNaq −
PH2O

ρH2O

)

(A.12) 

For gas enthalpies falling in the range of 5.1E+5 to 6.1E+5, Equation (A.12) can determine the enthalpy with an R-squared value of 0.9995. 

Appendix B. Elaborate calculation of density 

Appendix B.1 Brine mixture 
The method introduced by Al Ghafri et al. [54] calculates brine density as a function of reference density (ρref ), reference pressure (Pref ) and some 

pressure- molality- dependent factors (C and B). These parameters are expressed as: 

ρref (T, b) − ρ0(T) =
∑i=3

i=1
αi0b

i+1
2 +

∑i=3

i=1

∑j=3

j=1
αijb

i+1
2 (T/Tc)

j+1
2 (B.1)  

C(b) = γ0 + γ1b + γ2b3/2 (B.2)  

B(T, b) =
∑i=1

i=0

∑j=3

j=0
βijb

i(T/Tc)
j (B.3)  

ln
(

Pref (T)
Pc

)

= (Tc /T)
(
σ1φ+ σ2φ1.5 + σ3φ3 + σ4φ3.5 + σ5φ4 + σ6φ7.5) (B.4) 

In Eq. (B.4), (Tc = 647.10K) and (Pc = 22.064MPa) stand for critical temperature and pressure of pure water. φ is defined by (φ = 1 − T /Tc) 
and ρ0, the density of saturated liquid water, is given by the auxiliary equation of Wagner and Kretzschmar [48]: 

ρ0(T)
/

ρc = 1 + n1φ1/3 + n2φ2/3 + n3φ5/3 + n4φ16/3 + n5φ43/3 + n6φ110/3 (B.5) 

In which (ρc = 322 kg⋅m− 3) denotes the critical density of water. 
Appendix B.2 Dissolved gases in aqueous phase 
Laliberte’ [56] and Francke et al. [35] introduced a mixing rule that converts the apparent molar volume into AqP density. Using this model, brine 

density after gas dissolution (ρ′
solution) can be written as: 

ρ′
solution(T,P, b) =

((

1 −
∑

j
wAq

j

)

ρsolution(T,P, b) +
∑

j

wAq
j

Mj
V∅

j

)− 1

(B.6)  

Where the apparent molar volume of dissolved gases is computed by [52]: 

V∅
j = g1f1 + f2 (B.7)  

g1 =
∑4

n=1
c0nT(n− 1) (B.8) 
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f1(T) =
(
1 + exp

( (
T − Tps

)/(
c1Tps

)))− 1 (B.9)  

f2(T) = c21exp
(
c22.
⃒
⃒
(
T − Tps

)/
Tps
⃒
⃒c23) (B.10) 

In Eqs. (B.9) and (B.10), Tps denotes the pseudocritical temperature of 395∘C. The gas-dependent constants used in Eqs. (B.6) to (B.10) are 
addressed in the study conducted by Nusiaputra [52]. 

Appendix B.3 Non-boiling water in non-aqueous phase 
The suggested empirical equation by Pan et al. [51] for computing water density is: 

ρH2O(P,T) = ρv(P, T) + (1 − Xv)
1.8ρl(P,T) (B.11) 

In which vapor density (ρv) is given by: 

ρv(P,T) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P
PH2O

ρsv(PH2O, T) if PH2O ≤ Psat

P
PH2O

ρsv(Psat,T) if PH2O > Psat

(B.12) 

In Eq. (B.12), ρsv represents the vapor density. For a binary mixture of H2O–CO2, the density of NaqP is written as [51]: 

ρNaq = yH2OρH2O +
(
1 − yH2O

)
ρCO2

(B.13) 

For gas densities within the range of 1 Kg⋅m− 3 to 800 Kg⋅m− 3, Eq. (B.13) can calculate the density with an R-squared value of 0.9992. 

Appendix C. Elaborate calculation of viscosity 

Appendix C.1 Carbon dioxide viscosity 
The proposed model by Fenghour and Wakeham [57] (Eq. (47)) computes nitrogen viscosity as a function of viscosity in the zero-density limit (η0), 

the viscosity increase at elevated density over the dilute gas value (Δη), and the viscosity alteration in the immediate vicinity of the critical point (Δηc). 
The term η0 is given by: 

η0(T) =
1.00697T1/2

ϱ∗
η(T∗)

(C.1) 

In which 

ln
(
ϱ∗

η(T
∗)
)
=
∑4

i=0
ai(ln(T∗))

i (C.2)  

T∗ = kT/ε (C.3) 

The energy scaling parameter (ε/k) in Eq. (C.3) is 251.196K. The term (Δη) is defined as a function of density (ρ): 

Δη(ρ, T) = d11ρ + d21ρ2 +
d64ρ6

T∗3 + d81ρ8 +
d82ρ8

T∗
(C.4) 

The ratio of Δηc(ρ, T)/η(ρ, T) may be greater than 0.01 only within 1% (∼5K) of the critical temperature. For more information about the 
calculation of Δηc as well as the constant parameters in Eqs. (47) to (C.4) refer to Vesovic et al. [73] and Fenghour and Wakeham [57]. The un-
certainties in computing carbon dioxide viscosity range from 0.3% for the viscosity of the dilute gas near room temperature to 5.0% at the highest 
pressures (≈ 300MPa). 

Appendix C.2 Nitrogen viscosity 
The model introduced by Stephan and Krauss [59] computes nitrogen viscosity as a function of viscosity at zero-density limit (dilute-gas function, 

η0) and a residual part (excess function, ΔηR): 
η0 is expressed as: 

η0(T) = 5
/

16[MkT/(πNA)]
0.5
/[

σ2Ω(T∗)
]

(C.5) 

Here, M, k, and NA denote molecular weight, Boltzmann’s constant, and Avogadro’s number, respectively. The constant parameters of π and σ are 
assumed to be 3.14159 and 0.36502496nm. Furthermore, the function Ω(T∗) is written as: 

ln(Ω(T∗)) =
∑4

i=0
Ai(ln(T∗))

i (C.6) 

In which T∗ is the normalized temperature (Eq. (C.3)) by the energy scaling parameter of (ε/k = 100.01654 K). The residual part of viscosity (ΔηR) 
is given by: 

ΔηR(ρ)
ηc

=
C1

(χ − C2)
+

C1

C2
+
∑5

i=3
Ciχi− 2 (C.7)  

Where ηc represents the critical viscosity of nitrogen, and χ stands for normalized density (χ =
ρ

ρc=314.0 kg⋅m− 3). For all the constant parameters used in 
Eqs. (49) to  (C.7), refer to Stephan and Krauss [59]. 
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Appendix D. Elaborate calculation of thermal conductivity 

Appendix D.1 Nitrogen thermal conductivity 
The proposed model by Lemmon and Jacobsen [65] calculates nitrogen thermal conductivity as a function of dilute gas thermal conductivity (λ0), 

the residual part (λr), and alteration in the vicinity of the critical point (λc). The dilute gas thermal conductivity can be computed by: 

λ0(T) = N1

[
η0(T)

1 μPa⋅s

]

+ N2τt2 + N3τt3 (D.1) 

In which η0 represents the dilute gas viscosity, described by: 

η0(T) =
0.0266958

̅̅̅̅̅̅̅̅
MT

√

σ2Ω(T∗)
(D.2) 

In Eq. (D.2), σ stand for the Lennard-Jones size parameter (0.3656nm), and Ω is the collision integral given by Eq.  (C.6). The energy scaling 
parameter of nitrogen is (ε/k = 98.94 K). The residual contribution to the thermal conductivity (λr) is expressed as: 

λr(τ, δ) =
∑n

i=4
Niτti δdi exp

(
− γiδ

li
)

(D.3)  

Where γi is zero when li is zero and one when li is not zero. For all the coefficients of Ni, ti, di, li, and the calculation procedure of λc refer to the reference 
paper. 
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