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Abstract: Platform heating is one of the effective strategies used in laser powder bed fusion (LPBF) to
avoid cracking during manufacturing, especially when building relatively large-size components,
as it removes significant process-induced residual strains. In this work, we propose a novel and
simple method to spare the elaborate post-processing heat treatment typically needed for LPBF Al-Sc
alloys without compromising the mechanical properties. We systematically investigated the effects
of LPBF platform heating at 200 ◦C on the residual stress relief, microstructure, and mechanical
performance of a high-strength Al-Mn-Sc alloy. The results reveal that LPBF platform heating at
200 ◦C is sufficient to largely relieve the process-induced residual stresses compared to parts built on
an unheated 35 ◦C platform. Meanwhile, the platform heating triggered the dynamic precipitation
of uniformly dispersed (1.5–2 nm) Sc-rich nano-clusters. Their formation in a high number density
(1.75 × 1024 m−3) resulted in a ~20% improvement in tensile yield strength (522 MPa) compared to
the build on the unheated platform, without sacrificing the ductility (up to 18%). The improved
mechanical properties imply that platform heating at 200 ◦C can strengthen the LPBF-synthesised
Sc-containing Al alloys via in situ aging, which is further justified by an in situ measurement study
revealing that the developing temperatures in the LPBF part are within the aging temperature range
of Al-Sc alloys. Without any post-LPBF treatments, these mechanical properties have proven better
than those of most Al-Sc alloys through long-time post-LPBF heat treatment.

Keywords: additive manufacturing; aluminium alloys; LPBF

1. Introduction

Over the past few years, laser powder bed fusion (LPBF) has been intensely explored
and applied in the additive manufacturing (AM) industry to produce a wide range of alloy
systems including aluminium (Al) alloys [1,2]. In comparison with conventional casting,
LPBF enables the realisation of complex-shaped components with innovative degrees of
freedom and with the highest lead-time efficiency [3]. Compared to other AM technologies,
LPBF can achieve a better surface finish and dimensional accuracy [4]. The interest in
LPBF-fabricated Al alloys is growing to meet the high demand for critical lightweight
structural components for a wide range of applications, such as space, aerospace, and
automotive tools and equipment [5–7].

LPBF enables control of the in-process microstructure of Al alloys through processing
parameter optimisation. The rapid cooling rates in LPBF, reaching ~106 K/s (for Al),
generate an ultrafine grain structure that supports alloy strength [8]. In addition, the rapidly
solidifying tracks result in a highly supersaturated solid solution. A much higher degree
of solute supersaturation within the Al matrix can be achieved compared to conventional
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processing [5]. Subsequently, Al alloys can be solid-solution-strengthened and precipitation-
hardened to unprecedented high degrees, which improve the part’s functional performance.
For these reasons, many works have reported that the tensile properties of LPBF parts
outperform those of conventionally manufactured parts [9,10]. Yet, the fatigue performance
of LPBF parts falls short of their conventional counterparts [4]. This has been mainly
attributed to the process-induced defects and residual stresses [10,11]. LPBF platform
heating has been found to be critical in controlling the microstructure and the mechanical
performance [12,13]. The use of a heated platform (160–200 ◦C) reduced the residual
stresses that normally develop in LPBF parts [10,14]. Besides residual stress alleviation, a
platform heated to 90 ◦C has been found to be effective in generating uniform precipitation
in the Al matrix [9]. Despite the fact that heating the platform (200 ◦C) did not improve
the mean fatigue strength of Al, it somewhat reduced the fatigue scattering compared
to parts built using an unheated platform [10]. The reason for the scattering control has
been attributed to the reduction in thermal gradients and cooling rates associated with a
preheated platform. As a result, the possibility of stress-induced cracks is lessened.

Producing high-performance Al alloys through LPBF remains challenging, especially
for relatively large-scale components. This is because the parts fabricated via LPBF normally
contain high levels of thermally induced residual stresses due to the rapid solidification
associated with the LPBF process [15]. Moreover, such internal residual stress tends to
become exaggerated in large-size components with a prolonged fabrication time. This
can lead to crack formation, distortion, delamination, and even the complete failure of the
built part [16,17]. To address these issues, using a heated building platform during the
LPBF process has been considered one of the effective strategies. For example, previous
studies have reported a substantial distortion reduction in the LPBF AlSi10Mg part when the
building platform was maintained at 150 ◦C [18]. Meanwhile, peak hardness of in situ ageing
can be achieved at this temperature and, thus, post-heat treatments may not be required.
For a higher platform temperature that is more effective for distortion reduction, however,
the in situ ageing effect tends to impair the mechanical properties of Al-Si alloys [19,20].
In addition, for the crack-sensitive 2xxx and 7xxx Al alloy series, a heated platform at
the temperature range of 100–500 ◦C has been previously considered [21–26]. The high
temperature of the platform was applied to lower the thermal gradient and cooling rate
during solidification to mitigate the solidification cracks. Despite the density improvement
in some cases, producing crack-free parts has still been found to be challenging in these
alloys [21,22]. Also, the conventional post-processing T6 treatment did not necessarily
improve the LPBF strength compared to their wrought counterparts [27]. Therefore, from
these studies, the platform heating strategy for distinct Al alloys is different and requires
special considerations in terms of residual stress and distinct microstructural features.

Recently, scandium (Sc)-containing Al alloys specific to LPBF have been developed.
These alloys have exhibited an excellent LPBF processability associated with ultra-high
strength and, thus, provide great potential over traditional 2xxx and 7xxx Al alloys. Typi-
cally, a commercial alloy, known as the Scalmalloy (Al-Mg-Sc-Zr) alloy, has been specifically
developed by Airbus Group for AM [8,28]. Owing to the addition of Sc, the unique Scal-
malloy can achieve a superior yield strength (YS) reaching beyond 480 MPa after HT [29].
Further studies have shown that LPBF Sc-containing Al-Mn, Al-Mg, and Al-Zn alloys
combine superior high strength with YS in the range of 325–625 MPa with an extraor-
dinary level of ductility, reaching ~18% after heat treatment (HT) [5]. Sc-containing Al
alloys are designed to develop nano-sized <5 nm) Al3Sc-type precipitates that can enhance
the strength through a significant age-hardening response in the temperature range of
250–350 ◦C [28,30,31]. Though this precipitation may potentially occur during LPBF fabri-
cation through the effect of the intrinsic heat treatment experienced by previously solidified
material [32,33], it is barely accomplished, considering the ultrafast cooling rates (106 K/s
for Al) in LPBF [8]. Therefore, a post-processing heat treatment is commonly needed. An
intrinsic heat treatment via platform preheating (200 ◦C) has been applied to a Sc-modified
5xxx Al-alloy (i.e., the Al-3.4 wt.%Mg-1.08wt.%Sc-0.23wt.%Zr-0.5wt.%Mn-0.44wt.%Cu
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alloy) [34]. It was found that the strength improved by ~50–100 MPa compared to its
counterparts printed using the 35 ◦C platform. It was further suggested that such a strength
improvement was attributed to the coarsening of the Cu-rich particles that are expectedly
over-aged at a temperature higher than 250 ◦C, rather than Al3Sc precipitation that typically
reaches the peak at similar temperatures [29,34–36]. Yet, the nucleation of the Al3Sc-type
precipitates has been found to commence in the lower temperature range of 200–250 ◦C [37].
This proposes the feasibility of an in situ ageing effect in Al-Sc alloys during fabrication.

To preserve the peculiarity of the LPBF Al alloy microstructure, novel heat treatment
strategies, other than those conventionally used, need to be explored. The optimum
treatment would preserve the microstructure fineness, address the residual stress issues,
and improve the mechanical performance. In this study, we explore the possibility of
using a platform-heating strategy to enhance mechanical properties and to relieve residual
stresses during LPBF fabrication. We first examine the residual stresses that develop in
parts printed using 35 ◦C and 200 ◦C platforms. Then, the precipitates are characterised
and quantified to explain the property enhancements. Through in situ measuring of the
temperature of the printed part throughout LPBF fabrication, we show that the attained
temperatures are within the aging temperature regime of Al-Sc alloys. Thus, the results
of this work are used to recommend a simple in-processing heating method, omitting the
time-consuming post-processing artificial aging treatment mostly applied to LPBF Al-Sc
alloys, and relieving the high internal residual stresses that typically form within printed
parts, while simultaneously maintaining their superior mechanical properties.

2. Methods
2.1. Specimen Preparation

Gas-atomised powder was prepared for the alloy composition using a vacuum in-
duction gas atomisation (VIGA) process. The chemical composition was determined
via inductively coupled plasma atomic emission spectroscopy (ICP-OES) as Al-2.32Mn-
1.42Mg-0.56Sc-0.13Zr-0.03Fe-0.04Si (at.%), i.e., Al-4.58Mn-1.24Mg-0.91Sc-0.42Zr-0.07Fe-
0.04Si (wt.%). The powder particle size range was 20–70 µm, with an average size of
~35 µm. The sample processing was performed using a commercial EOS M290 powder-
bed machine (Krailling, Germany) equipped with an Yb-fiber laser with a wavelength of
1060–1100 nm, maximum power of 400 W, and spot size of around 100 µm. Samples were
built with 350 W (laser power), 1600 mm/s (scan speed), 0.1 mm (hatch distance), and
30 µm (layer thickness), with a laser beam rotation of 67◦ alternating between consecutive
layers. The processing was performed under a controlled argon environment with a mini-
mum oxygen level of 0.1 vol.%. Before the LPBF process was started, the build platform
was heated to 35 ◦C or 200 ◦C. In both cases, the applied parameters yielded material
densification beyond 99.5%. Parts built using the 35 ◦C platform are designated as AF in
this work, while those built using the platform heated to 200 ◦C are designated as AF-200.

2.2. Residual Stress Measurement

The residual stress measurements were performed at seven points along the build
direction on (30 mm × 30 mm × 5 mm) rectangular plates. The sin2ψ method of the
XRD technique was used to determine the residual stress magnitude in AF and AF-200
plates. The XRD pattern for residual stress measurements was obtained using a Bruker
D8 Discover X-ray diffractometer (Billerica, MA, USA), using a Cu-Kα radiation source
(λ = 1.5405 Å).

2.3. Mechanical Testing

Samples for tensile testing were machined according to ASTM E8/E8M-16a at room
temperature using a 100 KN Instron 5982 machine (Norwood, MA, USA) at a strain rate of
0.015 min−1. Three horizontal samples (with the tensile axis normal to the build direction)
were tested for every condition. The yield strength (YS) is defined as the stress at a plastic
strain of 0.2%.
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2.4. Microstructure Characterisation

Samples for scanning electron microscopy (SEM) imaging were cut from the built
samples, ground to 2400 Grit size, and polished using silica colloidal suspension. The
backscattered electron (BSE) imaging was performed on a JEOL 7001 F field emission gun
(FEG) SEM (Tokyo, Japan). For transmission electron microscopy (TEM) imaging, bulk
samples were prepared via electro-polishing at −25 ◦C and 12 volts using a solution of 33%
(volume) nitric acid in methanol and then examined in an FEI Tecnai G2 T20 Twin LaB 6
TEM microscope (Hillsboro, OR, USA).

The tip samples for atom probe tomography (APT) were prepared using a Zeiss
Auriga Dual Beam FIB (Oberkochen, Germany), using Ga+ ions. The region of interest was
protected by a layer of Pt before milling. The APT data were acquired under an ultra-high
vacuum at a base temperature of 50 K using a Local Electrode Atom Probe (LEAP) Cameca
4000 XR (Gennevilliers, France). The standing high voltage was controlled by the detection
rate, set to 0.5%. The device was operated using laser pulsing with a pulse energy of 30 pJ
and a 100–200 kHz pulse repetition rate. The APT data were reconstructed and evaluated
using Cameca IVAS 3.6.14 software. Isoconcentration surfaces of 2 at.% Sc were used to
reveal the precipitates. Second-order nearest neighbour analysis was used to reveal the
cluster distribution.

2.5. Powder Temperature Measurement

Thermocouples were used to measure the temperature at various locations in the part
during LPBF processing. For that, a cuboid specimen was built to half height (coloured
dark grey in Figure 1). Then, the build was paused, and the powder was removed to install
three thermocouples (T1, T2, T3) in embedded (0.9 mm) channels. T1 was located at ~1 mm
below the top surface onto which the first layer was deposited (measured from the channel
centre to the upper edge of the half-built part). T2 and T3 were separated by ~3 mm along
the build direction. Afterward, the powder was backfilled and the LPBF process was
resumed. Measurements from thermocouples were collected via a data-logging device
every 100 ms.
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 Figure 1. Schematic diagram showing the built specimen with a cuboid shape. There are 3 embedded
thermocouple channels shown in the dark grey region (dimensions are in mm).

3. Results

To compare the effect of platform heating for stress relief, the residual stress measure-
ments were first performed across 3 cm profile (as shown in Figure 2) along the building
direction for both the AF and AF-200 specimens. The measurement results shown in
Figure 2 reveal significant tensile residual stresses, ranging between σmin = 154 ± 4 MPa
and σmax = 190 ± 2 MPa, at the different heights from the base plate of the AF material. In
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comparison, heating the platform to 200 ◦C reduced the residual stresses of the building
process to a lower range of σmin = 59 ± 2 MPa and σmax = 88 ± 3 MPa.
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Given the apparent difference in the residual stress between the AF and AF-200
conditions, we further examined their tensile properties. Due to the fair uniformity of the
residual stresses and a lack of severe stress oscillations across the build direction, the tensile
properties have been measured at a single height level ~0.8 cm from the platform. The
stress–strain curves in Figure 3 reveal an obvious effect of platform heating on the tensile
strength. For the AF sample built at the room-temperature base plate, the yield strength
(YS) is 438 ± 3.8 MPa, and the total elongation (El) reaches 20 ± 1.2%. In comparison, the
specimens built using a preheated platform at 200 ◦C are strengthened while keeping good
ductility. Specifically, the YS reaches 522 ± 3.3 MPa, increased by ~20% compared to the AF
sample, while the fracture strain slightly reduces to 18 ± 1%. A yield-drop phenomenon
followed by a long plateau is believed to originate from the limited work-hardening
capacity associated with the exceptionally refined grains. The underlying mechanism for
the evolution of non-uniform plasticity was studied and explained in earlier work [30].

Materials 2023, 16, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 3. Engineering stress–strain curves of the alloy produced in the AF and AF-200 conditions. 

To better understand the origin of the strength improvement of the AF-200 sample 
compared to the AF counterparts, the microstructures in both conditions were examined 
and compared. As shown in the SEM-BSE images in Figure 4a,b, the AF-200 sample keeps 
the typical bimodal grain structure that has been identified in the AF specimen [38]. Al-
ternating regions of fine grains (FGs) and coarse grains (CGs) are observed in the as-fab-
ricated material, whether 200 °C platform heating was applied or not. A close inspection 
of the grain structure in an FG region of the AF-200 sample reveals that most of the grain 
sizes are still submicron-sized (<1 µm), similar to the grain sizes in the AF sample that 
have previously been reported [38]. 

 
Figure 4. SEM-BSE image showing (a) AF and (b) AF-200; (c) bright-field TEM image for an FG 
region in AF-200. 

While there is no apparent difference in the grain structure between the AF and AF-
200 samples, we further investigated the secondary phases in the Al matrix. This is be-
cause some Sc-rich precipitates, subject to in situ heat treatment, have been suggested in 
a previous work [39]. Figure 5a provides a BF-TEM image from a CG region of an AF-200 
specimen. Although not clear, very tiny bright dots seem to distribute in the matrix. On 
this basis, weak diffraction spots other than Al have been detected, as marked by the ar-
rows in the corresponding diffraction pattern shown in Figure 5b. Based on the previous 
work, the position of these diffraction spots indicates the appearance of the L12 structure.  

Figure 3. Engineering stress–strain curves of the alloy produced in the AF and AF-200 conditions.

To better understand the origin of the strength improvement of the AF-200 sample
compared to the AF counterparts, the microstructures in both conditions were examined
and compared. As shown in the SEM-BSE images in Figure 4a,b, the AF-200 sample
keeps the typical bimodal grain structure that has been identified in the AF specimen [38].
Alternating regions of fine grains (FGs) and coarse grains (CGs) are observed in the as-
fabricated material, whether 200 ◦C platform heating was applied or not. A close inspection
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of the grain structure in an FG region of the AF-200 sample reveals that most of the grain
sizes are still submicron-sized (<1 µm), similar to the grain sizes in the AF sample that have
previously been reported [38].
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region in AF-200.

While there is no apparent difference in the grain structure between the AF and
AF-200 samples, we further investigated the secondary phases in the Al matrix. This is
because some Sc-rich precipitates, subject to in situ heat treatment, have been suggested in
a previous work [39]. Figure 5a provides a BF-TEM image from a CG region of an AF-200
specimen. Although not clear, very tiny bright dots seem to distribute in the matrix. On this
basis, weak diffraction spots other than Al have been detected, as marked by the arrows in
the corresponding diffraction pattern shown in Figure 5b. Based on the previous work, the
position of these diffraction spots indicates the appearance of the L12 structure.
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To confirm the occurrence of tiny precipitates in the AF-200 sample, the APT was used
to examine a tip sample taken from a height level of ~0.8 cm from the platform. The AF
sample at the same height was also examined for comparison. Isoconcentration surfaces
were applied to outline regions of the data comprising an atomic concentration of Sc above
2%. The 3D reconstruction maps for Sc solute (in pink dots), presented in Figure 6a,b, reveal
a large volume fraction of fine distribution of Sc-rich precipitates in the AF-200 sample,
exhibiting a nearly spherical morphology. Conversely, very limited clusters have been
observed in the AF material.

The proximity histogram in Figure 6c displays the composition profile across the
interface between the α-Al matrix and the nano-sized Sc-rich clusters. The profile shows
that the clusters consist of Al and Sc and minor other alloying elements. Specifically, the
average composition of the Sc-rich clusters comprises 72 at% Al, 20 at% Sc, 3.6 at% Mg,
3.2 at% Mn, and 1.4 at% Zr. This stoichiometry suggests that the clusters have a chemical
composition close to the Al3Sc precipitates with a relatively high Al/Sc ratio compared
to the expected equilibrium stoichiometry of Al3Sc. Interestingly, the composition profile
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confirms that the Sc-rich precipitates are lacking Zr content, i.e., no Zr-rich shell formed
onto the Al3Sc precipitates.
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Figure 6. APT reconstruction revealing the solute and precipitate distributions of Sc in (a) AF and
(b) AF-200 tip samples. (c) Proximity histogram, combining 1000 precipitate showing the composition
profile of Sc-rich precipitates in AF-200 tip. The inset image shows a typical atomic configuration of a
Sc-rich precipitate from the AF-200 tip, with Sc atoms shown in pink, and Al in blue.

The existence of the Sc-rich clusters in the AF-200 sample can also be confirmed via
nearest neighbour (NN) distribution analyses. The second-order NN for Sc solute atom
distance curves from the experimental and random data is provided in Figure 7a,b for
AF and AF-200. The NN distance curves revealed a non-random distribution of Sc solute
atoms in AF-200, which can be clearly seen in the deviation between the experimental
and the random dataset curves. On the other hand, a rather good fit occurred between
the experimental and random datasets in AF. The APT analysis reveals the formation of a
huge number density (1.75 × 1024 m−3) of Sc-rich clusters in AF-200 at a volume fraction
reaching 0.47%. However, it is worth noting that the cluster size (radius: ~0.86 ± 0.12) in
AF-200 is smaller than those observed in the peak-aged alloy (radius: ~1.19 ± 0.3) [30].
In addition, the analysis reveals that ~0.41 at.% Sc is still retained in solid solution in the
AF-200 specimen, compared to the nominal composition (0.56 at.%) that has been revealed
in the AF sample. In other words, not all Sc atoms have precipitated from the matrix during
in situ heating incorporated with platform preheating.
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4. Discussion

The current work has shown the possibility of further improving the mechanical
properties of high-strength Al-Mn-Sc alloys through in-processing treatment. Applying
200 ◦C platform heating during LPBF fabrication can largely relieve residual stresses and
achieve an evident improvement in the tensile strength in comparison with the unheated
platform. The residual stress analysis provided in Figure 2 shows that the steep thermal
gradients associated with rapid cooling generate large tensile residual stresses, reaching
up to 43% of the YS of the AF material. It is worth noting that removing the part from
the base platform for residual stress measurement already relieves some of the stress
levels. In other words, the actual residual stresses in the parts could be higher than the
values displayed in Figure 2. Although elevating the platform temperature to 200 ◦C
did not entirely relieve the residual stresses inherent to LPBF, it reduced the stresses to
~57% compared to the AF material. This is a direct effect of lowering the thermal gradient
via platform heating, which reduces the stress levels in the parts. On this basis, heating
the platform to 200 ◦C throughout printing can diminish the crack propagation from the
surface during part removal [40,41]. Particularly, large-scale parts that normally experience
buckling and distortion due to overheating at long production times can be safely fabricated
and removed, given that most of the residual stresses are relieved [19].

In addition to residual stress relief, the tensile strength has improved due to platform
heating. Compared with the Al-Sc alloys fabricated via LPBF and heat-treated, our AF-
200 exhibits an attractive combination of strength and ductility even without any post-
processing heat treatment (Figure 8). Its YS exceeds most of the Al-Sc alloys, including
the high-strength commercially existing Scalmalloy. Moreover, the ductility surpasses
most heat-treated Al-Sc alloys by a significant margin. Interestingly, the AF-200 exhibits
comparable properties with a similar alloy system in the peak-aged condition [5]. Achieving
such superb tensile properties, in the as-fabricated state, contributes to time and energy
savings, because it spares the traditional post-processing artificial aging treatment that is
mostly employed for Al-Sc alloys. Since imperceptible change has been observed in the
grain structure of AF-200 compared to AF, as shown in Figure 4a,b, probably due to the
large number density of thermally stable Sc-rich grain boundary particles stabilising the
microstructure against growth [28,42], the secondary precipitation of Sc-rich nanoparticles
can be reasonably considered the main origin of the strength improvement in AF-200.
During LPBF processing, the underlying solidified material experiences an in situ heat-
treatment effect. The effect of such heat treatment depends on the elemental composition of
the alloy, in addition to the LPBF processing condition, since the latter dictates the cooling
rate. The nucleation of Sc-rich clusters induced via cyclic heating has been observed in
the AF specimens prior to platform heating. The APT analysis in Figure 6a reveals the
formation of tiny <2 nm Sc-rich precipitates in the solidified AF material. Typically, the
ultrafast cooling rate in LPBF (~106 K/S for Al [8]) increases the solute (Sc) supersaturation
and, hence, the drive for precipitation upon heating [43]. However, the Sc clusters observed
in the AF material indicate that the cooling rate might not be enough to completely trap
all Sc in a solid solution. Perhaps, localised regions within each melting pool have been
re-melted and, hence, experienced longer heating times, which trigger the decomposition
of Sc from supersaturated solid solution. Therefore, the Sc-rich clusters in AF are not as
homogenously distributed as in AF-200; compare Figure 6a,b.

These observations suggest that preheating the platform to 200 ◦C can induce sec-
ondary Al3Sc precipitation. The formation of Al3Sc clusters, verified using the APT data
in Figure 6b,c, confirms that the high number density of Al3Sc particles (1.75 × 1024 m−3)
has been generated via the effect of the in situ heat treatment using a 200 ◦C preheated
platform compared to AF. The exceptionally high number density of Al3Sc hardening
particles (Figure 6b) improved the tensile strength compared to AF samples. Being closely
spaced and uniformly distributed, these fine clusters effectively resist dislocation motion
without sacrificing ductility.
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During the build of the part, the consolidated material heats up because of the high-
power laser beam constantly scanning the consolidation powder layer. Most of the absorbed
heat from the laser beam will be dissipated downwards through the solidified material to
the build platform rather than to the surrounding powder. Therefore, heating the platform
to 200 ◦C reduces the cooling rate, and the heat could be retained in the consolidated
material for a longer time. We measured the temperature experienced by the part during
the LPBF build by attaching thermocouples at three positions along the build direction.
Though T1 is relatively distant (~1 mm, ~33 deposited layers) from the deposition, the
time–temperature profile in Figure 9a exhibits an apparent increase in the temperature
of the solidified material to a level beyond 200 ◦C throughout the 100 min print. The
enlargement of the first couple of seconds (Figure 9b) shows that the temperature of T1 rises
to 270 ◦C, then settles down to slightly higher than 200 ◦C. It is reasonable to presume that
the top surface layer (~33 layers away from T1) experiences a temperature beyond 270 ◦C.
These rapid thermal cycles are stimulated by the ultrafast laser scan speed (1600 mm/s in
this work).
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Knipling et al. [37] have found that the precipitation of Al3Sc occurs between 200 and
250 ◦C in a binary Al-0.1Sc alloy and reaches its peak at 325 ◦C. Figure 9a shows that for a
30 min scan, the T1 temperature reaches up to 240 ◦C. This temperature level is enough to
induce the dynamic precipitation of Al3Sc particles. The repetitive cyclic heating improves
the diffusion of the solute atoms. With the existence of a high driving force for precipitation,
the nucleation of Sc clusters is triggered. However, the Sc retained in the matrix (up to 73%
of the nominal composition), as confirmed via APT analysis, in addition to the small size of
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the Al3Sc particle (radius = 0.86 nm compared to 1.2 nm in the peak-aged material [30]),
implies that not all Sc precipitate due to the intrinsic heat treatment. This is mostly the
reason behind the relatively lower tensile yield strength (522 MPa) achieved by AF-200
samples compared to peak-aged counterparts (559 MPa) [30]. The amount of Sc retained
in the matrix can still precipitate new particles or coarsen the already formed particles
in AF-200. Therefore, it is worth exploring the precipitation behaviour at higher energy
inputs, such as heating the platform (beyond 200 ◦C) and reducing the scan speed (below
1600 mm/s).

Notably, the size of the Al3Sc precipitates reported here is much smaller than the
precipitate size formed through the effect of the intrinsic heat treatment in DED-fabricated
Scalmalloy [39]. They reported a radius of 8.1 ± 2.7 nm at the second layer close to the
platform and 1.9 ± 0.4 nm at the seventh layer from the platform, while the radius identified
here is 0.86 ± 0.12 nm at ~8 mm from the platform. This is mainly attributed to the lower
solidification rates in LPBF compared to DED. It can be noted from the temperature profile
in Figure 9c that the temperature fluctuations somewhat settle down, to 210–230 ◦C, in all
thermocouples after the first hour. This is due to the highly localised heating source in
LPBF compared to DED, in addition to the inherent high thermal conductivity of Al. Both
factors improve the rate of heat dissipation in LPBF. This suggests that finer and steadier
Al3Sc cluster sizes can be achieved during LPBF processing compared to DED. In addition,
this temperature level of <230 ◦C experienced by the underlying consolidated layers (see T3
in Figure 9a) cannot lead to over-aging in the printed Al-Sc parts regardless of the printing
time, unlike other Al alloy systems that can reach the maximum strength at 120–200 ◦C [19].

The spherical morphology of the (~1.7 nm) Sc-rich clusters identified in the Al matrix
of AF-200, displayed in Figure 6b, is completely different from the cubic morphology of
the (~50 nm) intragranular primary and the (~100 nm) grain boundary Sc-rich particles
identified in the AF material [42]. Their superfine structure and nearly round morphology
imply that these secondary precipitates mainly form through solid-state phase transfor-
mation from supersaturated Al matrix during the cyclic heating of the solidified material.
The chemical composition of the Sc-rich clusters identified in the AF-200 specimen is not
identical to those observed in conventional processing. The ratio of Al to Sc identified
here is 3.6, which is higher than the typical ratio of 3 identified in casting [49]. Such an
increase in the concentration of Al atoms can be attributed to the ultrafast cooling rate
in LPBF processing, which does not allow enough time for Sc atoms to diffuse to Sc-rich
clusters and form the equilibrium stoichiometry of Al3Sc precipitates. However, care must
be taken, as the trajectory aberration during ion evaporation might also create artifacts
that affect the APT measurement [50]. The absence of Zr shell around the Sc-rich clusters
observed in this work has been similarly observed in peak-aged Al-Mn-Sc alloys [30]. We
suggest that this feature may be attributed to (i) the ultrafast cooling rate that does not
give sufficient time for Zr to diffuse to Sc-rich clusters and form an enriched atomic shell
onto them, considering the slow diffusivity of Zr in Al, (ii) Zr might be entrapped within
large intragranular Sc-rich particles, depriving the matrix of Zr atoms [39,42], (iii) higher
temperature levels (>325 ◦C) are needed for the precipitation of Zr-rich shell onto Sc-rich
clusters [37]. Though such a temperature level might be attained, it will not be retained for
more than a couple of seconds, as can be predicted from Figure 9b.

5. Conclusions

This study presents findings regarding the in situ aging of Al-Sc alloys during LPBF
fabrication. Intrinsic heat treatment by means of platform heating at 200 ◦C proved to
largely relieve residual stresses and trigger massive nanoprecipitation during the LPBF
fabrication of an Al-Mn-Sc alloy. The following conclusions can be drawn:

1. The residual stresses inherent to LPBF have been measured and compared for parts built
on 35 ◦C and 200 ◦C platforms. The measurements confirm the presence of high tensile
residual stress, reaching up to 40% of the yield stress. These residual stresses have been
alleviated and reduced by more than half through platform heating at 200 ◦C.
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2. The evolution of Sc-rich nano-clusters during in situ aging using a 200 ◦C platform
was captured via an atom probe tomography study, from which a high number
density (~1.75 × 1024 m−3) of uniformly dispersed Al3Sc nanoparticles (1–2 nm)
was estimated.

3. The precipitation and evolution of the nano-scale Al3Sc phase formed from the ef-
fect of platform heating improved the tensile strength (yielding strength beyond
520 MPa) and excellent ductility (~18%, compared to the 440 MPa achieved using an
unheated platform).

4. An in situ measurement study revealed that the temperatures attained within parts
built using a 200 ◦C platform are within the aging temperature regime of Al-Sc alloys.
However, the in situ heating effect based on the parameters employed in this work
has not been found sufficient to precipitate all the Sc from the matrix and achieve the
maximum strength.
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