KIT | KIT-Bibliothek | Impressum | Datenschutz

Implicit Shape Model Trees: Recognition of 3-D Indoor Scenes and Prediction of Object Poses for Mobile Robots

Meißner, Pascal ; Dillmann, Rüdiger 1,2
1 Karlsruher Institut für Technologie (KIT)
2 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)

Abstract:

This article describes an approach for mobile robots to identify scenes in configurations of objects spread across dense environments. This identification is enabled by intertwining the robotic object search and the scene recognition on already detected objects. We proposed “Implicit Shape Model (ISM) trees” as a scene model to solve these two tasks together. This article presents novel algorithms for ISM trees to recognize scenes and predict object poses. For us, scenes are sets of objects, some of which are interrelated by 3D spatial relations. Yet, many false positives may occur when
using single ISMs to recognize scenes. We developed ISM trees, which is a hierarchical model of multiple interconnected ISMs, to remedy this. In this article, we contribute a recognition algorithm that allows the use of these trees for recognizing scenes. ISM trees should be generated from human demonstrations of object configurations. Since a suitable algorithm was unavailable, we created an algorithm for generating ISM trees. In previous work, we integrated the object search and scene recognition into an active vision approach that we called “Active Scene Recognition”. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000167535
Veröffentlicht am 23.01.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
KIT-Bibliothek (BIB)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2218-6581
KITopen-ID: 1000167535
Erschienen in Robotics
Verlag MDPI
Band 12
Heft 6
Seiten Art.-Nr.: 158
Vorab online veröffentlicht am 23.11.2023
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page