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Abstract. Erdős, Füredi, Rothschild and Sós initiated a study of classes of graphs that
forbid every induced subgraph on a given number m of vertices and number f of edges.
Extending their notation to r-graphs, we write (n, e) →r (m, f) if every r-graph G on n
vertices with e edges has an induced subgraph on m vertices and f edges. The forcing
density of a pair (m, f) is

σr(m, f) = lim sup
n→∞

|{e : (n, e) →r (m, f)}|(
n
r

) .

In the graph setting it is known that there are infinitely many pairs (m, f) with positive
forcing density. Weber asked if there is a pair of positive forcing density for r ⩾ 3 apart
from the trivial ones (m, 0) and (m,

(
m
r

)
). Answering her question, we show that (6, 10) is

such a pair for r = 3 and conjecture that it is the unique such pair. Further, we find necessary
conditions for a pair to have positive forcing density, supporting this conjecture.
Keywords. Induced hypergraphs, forcing density
Mathematics Subject Classifications. 05C35, 05C65

1. Introduction

The Turán function ex(n,H) is the maximum number of edges in an H-free n-vertex r-graph.
The Turán density of H , denoted by π(H), is defined as follows

π(H) = lim
n→∞

ex(n,H)(
n
r

) .
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Determining the Turán function for graphs and hypergraphs is a central topic in extremal graph
theory with many challenging open problems, trying to identify what graph density forces the
occurrence of a specific subgraph. Here, we are concerned with conditions on the graph density
that forces the occurrence of an induced subgraph on a given number of vertices and a given
number of edges, i.e., a given order-size pair. Erdős, Füredi, Rothschild and Sós [EFRS99]
studied the class of graphs that does not contain a vertex subset of a given size m that spans
exactly f edges. Given pairs of non-negative integers (n, e) and (m, f) we write

(n, e) →r (m, f)

if every r-graph G on n vertices and with e edges contains a vertex subset of a given size m that
spans exactly f edges. The forcing density of a pair (m, f) is

σr(m, f) = lim sup
n→∞

|{e : (n, e) →r (m, f)}|(
n
r

) .

Erdős, Füredi, Rothschild and Sós [EFRS99] studied σ2(m, f) for different choices of (m, f).
They showed that if (m, f) ∈ {(2, 0), (2, 1), (4, 3), (5, 4), (5, 6)}, then σ2(m, f) = 1; other-
wise, σ2(m, f) ⩽ 2

3
. They also gave a construction that shows that for most pairs (m, f)

we have σ2(m, f) = 0. The upper bound 2
3

was subsequently improved by He, Ma, and
Zhao [HMZ23] to 1

2
. On the other hand, Erdős, Füredi, Rothschild and Sós [EFRS99] showed

that there are infinitely many pairs of positive forcing density, in particular there are infinitely
many pairs (m, f) with σ2(m, f) ⩾ 1

8
. He, Ma, and Zhao [HMZ23] improved this result, by

showing that there are infinitely many pairs (m, f) with σ2(m, f) ⩾ 1
2
. Considering the hyper-

graph setting, Weber [Web24] showed that for any r,m ∈ N, r,m ⩾ 3, all but at most m
r

r−1 of
all possible

(
m
r

)
pairs (m, f) satisfy σr(m, f) = 0.

Axenovich and Weber [AW24] asked whether there are pairs (m, f) for which not
only σr(m, f) = 0, but a stronger statement holds. A pair (m, f) is absolutely r-avoidable
if there is n0 such that for each n > n0 and for every e ∈ {0, . . . ,

(
n
r

)
}, (n, e) ̸→r (m, f).

In [AW24] it was shown that for r = 2 there are infinitely many absolutely avoidable pairs.
Moreover, there is an infinite family of absolutely avoidable pairs of the form (m,

(
m
2

)
/2) and for

every sufficiently large m, there exists an f such that (m, f) is absolutely avoidable. In [Web24]
this result was extended to higher uniformities to show that for every r ⩾ 3, there exists m0 such
that for every m ⩾ m0 either (m, ⌊

(
m
r

)
/2⌋) or (m, ⌊

(
m
r

)
/2⌋ −m− 1) is absolutely avoidable.

While there are many pairs (m, f) for which σr(m, f) = 0, not a single (non-trivial) pair
with positive forcing density was known for r-graphs when r ⩾ 3. We denote by Kr

t the r-graph
on t vertices where every r-set is an edge. Note that σr(r, 1) = σr(r, 0) = 1 and for f = 0,
σr corresponds to the Turán density, i.e., σr(m, 0) = σr(m,

(
m
r

)
) = π(Kr

m), where the best
currently known general bounds on the Turán density are

1−
(

r − 1

m− 1

)r−1

⩽ π(Kr
m) ⩽ 1−

(
m− 1

r − 1

)−1

,

due to Sidorenko [Sid81] and de Caen [dC83]. Weber [Web24] asked whether for m > r ⩾ 3,
there is any f with 0 < f <

(
m
r

)
such that σr(m, f) > 0 and suggested the pair (6, 10) as a

candidate when r = 3. We answer this question in the affirmative and prove σ3(6, 10) > 0.
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Given families of r-graphs F ,G, we denote by ex(n, indF ,G) the maximum number of edges
in an n-vertex r-graph not containing any F ∈ F as an induced copy and also not any G ∈ G as
a copy. Further, denote by π(indF ,G) the limit

π(indF ,G) = lim sup
n→∞

ex(n, indF ,G)(
n
r

) .

We mostly consider 3-graphs in this paper. When clear from context, we shall write abc for the
set {a, b, c} corresponding to an edge in a 3-graph. Denote by [n] = {1, 2, . . . , n} the set of the
first n integers. The 3-graph on vertex set [4] with edge set {123, 124, 134} is denoted by K3−

4 .
Let F10

6 be the family of 6-vertex 3-graphs containing exactly 10 edges.

Theorem 1.1. We have that σ3(6, 10) = 1− 2π(indF10
6 , {K3−

4 }). Consequently,

0.42622 ⩽ σ3(6, 10) ⩽ 0.47106.

We do not know whether other pairs (m, f) with m > 3, 0 < f <
(
m
3

)
exist, such

that σ3(m, f) > 0. It seems plausible that for r = 3 there are indeed no other pairs with
positive forcing density.

Conjecture 1.2. Let m and f be positive integers, 0 < f <
(
m
3

)
. If σ3(m, f) > 0,

then (m, f) = (6, 10).

The following result provides evidence for this conjecture to be true.

Theorem 1.3. Let m and f be positive integers, 0 < f <
(
m
3

)
. If σ3(m, f) > 0, then there

exist x1, x2, x3 ∈ [m− 1] such that

f =

(
x1

3

)
=

(
m

3

)
−
(
x2

3

)
=

(
x3

3

)
+

(
x3

2

)
(m− x3). (1.1)

Thus, in particular if there are no other non-trivial solutions except for m = 6, x1 = 5,
x2 = 5, x3 = 3, to the above Diophantine equation, then Conjecture 1.2 is true. A computer
search for suitable solutions of (1.1) did not give a result for m ⩽ 106.

This paper is organized as follows: In Section 2 we prove Theorem 1.1. In Section 3 we
prove Theorem 1.3. Finally, in Section 4 we make concluding remarks and state open problems.

2. Proof of Theorem 1.1

We say a 3-graph G induces (6, 10) if G contains an induced copy of some F ∈ F10
6 . If G

does not contain any F ∈ F10
6 as an induced copy, we say G is (6, 10)-free, i.e., a 3-graph is

(6, 10)-free if no 6-vertex set induces exactly 10 edges.
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2.1. Proof idea

Before proving Theorem 1.1, we give a short sketch of the proof. We shall show that for
every ε > 0 there is n0 such that for every n > n0 if G is an n-vertex 3-graph satisfying

e(G)(
n
3

) ∈
[
π(indF10

6 , {K3−
4 }) + ε, 1− π(indF10

6 , {K3−
4 })− ε

]
, (2.1)

then G induces (6, 10). Then we first use a standard Ramsey type argument to partition most
of the vertices of G into many large homogeneous sets. First, we rule out the case that there is
a large clique and a large independent set that are disjoint. Thus, most of the vertex set of G
or its complement Gc can be partitioned into large independent sets. Due to the symmetry of
the problem, if we find a (6, 10)-set in Gc, we also find a (6, 10)-set in G. Thus, without loss
of generality, we can assume that most of the vertices of G can be partitioned into many large
independent sets. Using a classical supersaturation result and the density assumption on G,
we find many copies of K3−

4 in G and thus, in particular, four large independent sets spanning
many transversal copies of K3−

4 . Using a final cleaning argument, we find a (6, 10)-set in this
substructure.

On the other hand, we fix an arbitrary 3-graph G on ex(n, indF10
6 , {K3−

4 }) edges that is
(6, 10)-free and K3−

4 -free. Then every set of 6 vertices spans at most 9 edges, so there is
a graph on n vertices and e edges, for any e ⩽ ex(n, indF10

6 , {K3−
4 }), that is (6, 10)-free.

By taking complements, there also is a graph on n vertices and e edges for
every e ⩾

(
n
3

)
− ex(n, indF10

6 , {K3−
4 }), that is (6, 10)-free.

2.2. Definitions, notations, and construction

An independent set in an r-graph is a vertex subset containing no edges. A clique in an r-graph
is a vertex subset in which every r-set is an edge. A homogeneous set in an r-graph is a clique
or an independent set.

Let G be a 3-graph and let X, Y, Z ⊆ V (G), not necessarily disjoint from each other. Then,
let EG(X, Y, Z) = {(x, y, z) : {x, y, z}∈E(G), x∈X, y ∈ Y, z ∈Z, x, y, z pairwise distinct}.
We say EG(X, Y, Z) is complete if EG(X, Y, Z) = {(x, y, z) : x ∈ X, y ∈ Y, z ∈ Z, x, y, z
pairwise distinct}, andEG(X, Y, Z) is empty ifEG(X, Y, Z) = ∅. If the 3-graphG is clear from
the context, we might omit the index and simply write E(X, Y, Z). Given a set S ⊆ V (G), the
induced subhypergraph G[S] is the r-graph whose vertex set is S and whose edge set consists
of all of the edges in E(G) that have all endpoints in S.

Let H be an r-graph and t ∈ N. The t-blow-up of H , denoted by H(t), is the r-graph with
its vertex set partitioned in |V (H)| sets V1, V2, . . . , V|V (H)|, each of size t and edge
set {{a1, . . . , ar} : aj ∈ Vij , j = 1, . . . , r, {i1, . . . , ir} ∈ E(H)}. Informally, H(t) is ob-
tained from H by replacing each vertex i with an independent set Vi and each hyperedge e of H
with a complete r-partite hypergraph with parts corresponding to the vertices of e.

We say that a 3-graph G is a weak t-blowup of H , which we also call weak H(t), if the
vertex set of G can be partitioned into |V (H)| sets V1, V2, . . . , V|V (H)| each of size t such that
if ijk ∈ E(H) then for every a ∈ Vi, b ∈ Vj, c ∈ Vk we have abc ∈ E(G), and if ijk ̸∈ E(H)
then for every a ∈ Vi, b ∈ Vj, c ∈ Vk we have abc ̸∈ E(G). Moreover, Vi is an independent set
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for i = 1, . . . , |V (H)|. Note that we do not impose any condition on 3-tuples of vertices with
exactly two vertices in some part Vi.

Denote by rr(t, t) the Ramsey number of Kr
t versus Kr

t , i.e., the minimum number of ver-
tices m such that every 2-coloring of the edges of Kr

m contains a monochromatic Kr
t . Erdős,

Hajnal and Rado [EHR65] showed that there exists a constant c > 0 such that r3(t, t) < 22
ct
.

Next, we shall provide a construction of a (6, 10)-free graph that we shall use to provide an
upper bound in Theorem 1.1.

2.2.1 Construction of the 3-graph H it
n

Let H be the 3-graph with vertex set [6] and edges 123, 124, 345, 346, 561, 562, 135, 146,
and 236. Note that adding the edge 245 to H results in a 5-regular 3-graph on 6 vertices, which
is K3−

4 -free and the basis for the construction for the lower bound on π(K3−
4 ) by Frankl and

Füredi [FF84].
We define the following iterated unbalanced blow-up of this graph. Denote byHn the 3-graph

on n vertices where the vertex set is partitioned into six sets A1, A2, A3, A4, A5, A6, where

|A1| = |A3| = |A6| =
⌈

n

3
√
3

⌉
, |A2| = |A4| =

⌈
n

(
1

3
− 1

3
√
3

)⌉
and |A5| = n

(
1

3
− 1

3
√
3

)
+O(1).

The 3-graph Hn consists of all triples xyz, where x ∈ Ai, y ∈ Aj and z ∈ Ak and ijk ∈ E(H).
Now, letH it

n be the 3-graph constructed fromHn by iteratively adding a copy ofH|Ai| with vertex
set Ai for all i ∈ [6] if |Ai| ⩾ 100.

Lemma 2.1. The graphH it
n is an n-vertex 3-graph with 4

3+7
√
3

(
n
3

)
+o(n3) edges such that every 6

vertices in H it
n induce at most 9 edges. In particular, H it

n is (6, 10)-free.

We present the proof of this lemma in the appendix.

2.3. Lemmas

The following lemma shows that every sufficiently large 3-graph can be partitioned into many
large homogeneous sets.

Lemma 2.2. Let t > 0. Then there exists n0 = n0(t) such that for every n ⩾ n0, if G is an
n-vertex 3-graph, then G or Gc contains at least n/t−

√
n pairwise disjoint homogeneous sets

of size t.

Proof. Let t > 0 be fixed. Set n0 = (⌈22ct⌉)2 and let n ⩾ n0. Let G = G0 be an n-
vertex 3-graph. Since n ⩾ r3(t, t), there exists a homogeneous set of size t in G. Call it D0

and define G1 = G0 \ D0. We iteratively repeat this process. Define Gi+1 := Gi \ Di,
where Di is a homogeneous set of size t in Gi. We can proceed as long as |V (Gi)| > r3(t, t).
Since r3(t, t) ⩽

⌈
22

ct⌉
⩽

√
n0 ⩽

√
n, we have found at least (n−

√
n)/t ⩾ n/t−

√
n pairwise

disjoint homogeneous sets of size t each.
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The following Lemma analyses the structure “between” two large vertex sets. This is partly
motivated by a result by Fox and Sudakov [FS08] for 2-graphs.

Lemma 2.3. Let t ⩾ 0. Then there exists n0 such that for all n ⩾ n0 the following holds. Let G
be a 3-graph with vertex set V (G) = A ∪ B with A ∩ B = ∅, |A| = |B| = n. Then there
exist sets A′ ⊆ A, B′ ⊆ B with |A′| = |B′| = t such that each of the edge sets E(A′, A′, B′)
and E(A′, B′, B′) is either empty or complete.

Proof. Letm = 44
···4

t︸ ︷︷ ︸
2t

, letn0 = 44
···4

2t−1︸ ︷︷ ︸
m

. LetA andB be sets of sizen ⩾ n0. For a ∈ A,X ⊆ B

we define an auxiliary 2-graph GX
a = (X,

(
X
2

)
) and an edge-coloring cXa : E(GX

a ) → {r, b}

with cXa ({b1, b2}) =

{
r, {a, b1, b2} ∈ E(G),

b, else.
Note that by the standard bound on the diagonal Ramsey number r2(s, s) ⩽ 4s, each 2-colored
2-clique on k vertices contains a monochromatic clique of size log4(k).

Let A = {a1, . . . , an}, let B1 ⊆ B be the vertex set of a monochromatic clique in GB
a1

of
size log4(|B|). Now assume Bi, i ⩾ 1, has been chosen. Let Bi+1 ⊆ Bi be a monochromatic
clique in GBi

ai+1
of size log4(|Bi|). Thus, after m iterations we obtain a set Bm of

size |Bm| = log4 · · · log4︸ ︷︷ ︸
m

(n) ⩾ 2t − 1, such that for each ai, i ∈ [m], the set E({ai}, Bm, Bm)

is either empty or complete. Thus, there exists a subset A′′ ⊂ A, |A′′| =
⌈
m
2

⌉
⩾ 44

···4
t︸ ︷︷ ︸

2t−1

, such that

the set E(A′′, Bm, Bm) is either empty or complete.
Now we repeat this process with vertices in B′′ = Bm, to obtain a subset A′ ⊆ A′′,

|A′| = log4 · · · log4︸ ︷︷ ︸
|B′′|

(|A′′|) ⩾ t, such that for each vertex b ∈ B′′, the set E(A′, A′, {b}) is ei-

ther empty or complete. Thus, there exists a subset B′ ⊆ B′′, |B′| ⩾
⌈
|B′′|
2

⌉
= t such that

the set E(A′, A′, B′) is either empty or complete. The sets A′, B′ satisfy the conditions of the
lemma, completing the proof.

The next lemma shows that in a (6, 10)-free 3-graph there cannot be a large independent set
and a large clique that are disjoint.

Lemma 2.4. There exists t0 > 0 such that for all t ⩾ t0 the following holds. Let G be a 2t-vertex
3-graph with vertex set V (G) = A ∪ B where A ∩ B = ∅, |A| = |B| = t, G[A] is a clique
and G[B] is an independent set. Then G induces (6, 10).

Proof. By Lemma 2.3, for sufficiently large t, we can find subsets A′ ⊆ A, B′ ⊆ B
with |A′| = |B′| = 5 such that the two sets E(A′, A′, B′) and E(A′, B′, B′) are either empty or
complete.

If E(A′, B′, B′) is complete, then any vertex from A′ together with the 5 vertices from B′

induces (6, 10). If E(A′, A′, B′) is empty, then any vertex from B′ together with the five vertices
from A′ induces (6, 10). Hence, we may assume that E(A′, B′, B′) is empty and E(A′, A′, B′) is
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complete. But then three arbitrary vertices fromA′ together with three arbitrary vertices fromB′

induce (6, 10).

Lemma 2.2 together with Lemma 2.4 immediately implies the following lemma.

Lemma 2.5. There exists t0 such for all t ⩾ t0 the following holds. There exists n0 = n0(t)
such that for all n ⩾ n0, if G is a (6, 10)-free n-vertex 3-graph, then either G or Gc contains at
least n/t−

√
n pairwise disjoint independent sets of size t.

Lemma 2.6. Let t′ > 0. Then there exists t0 > 0 such that for all t ⩾ t0 the following holds.
Let G be a (6, 10)-free 2t-vertex 3-graph with vertex set V (G) = A ∪ B where |A| = |B| = t,
A ∩ B = ∅, G[A] and G[B] are independent sets. Then there exists A′ ⊆ A, B′ ⊆ B of
sizes |A′| = |B′| = t′ such that the two sets E(A′, B′, B′) and E(A′, A′, B′) are empty.

Proof. We apply Lemma 2.3 for t′. Then there exists t0 such that for t ⩾ t0, we find A′ ⊆ A,
B′ ⊆ B, such that the two sets E(A′, A′, B′) and E(A′, B′, B′) are either empty or complete.
Assume the set E(A′, A′, B′) is complete. Then we find induced (6, 10) by taking any 5 vertices
from A′ and 1 vertex from B. By symmetry the same holds for the set E(A′, B′, B′), so in
particular, G[A′ ∪B′] is the empty graph.

Lemma 2.7. There exists t0 > 0 such that for all t ⩾ t0 a weak K3
4(t) induces (6, 10), and also

a weak K3−
4 (t) induces (6, 10).

Proof. Let G be a weak K3−
4 (t) with independent sets V1, V2, V3, V4. By iteratively applying

Lemma 2.6 to all of the tuples (Vi, Vj), 1 ⩽ i < j ⩽ 4, we obtain an induced copy H ⊆ G
of K3−

4 (2) with sets X1, X2, X3, X4, Xi ⊂ Vi, i ∈ [4], i.e., H[Xi ∪ Xj] is empty for all i ̸= j,
the sets E(Xi, Xj, Xk) are complete for {i, j, k} ∈

(
[4]
3

)
except for E(X2, X3, X4), which is

empty. Let x1, x
′
1 ∈ X1, x2, x

′
2 ∈ X2, x3 ∈ X3 and x4 ∈ X4. Then {x1, x

′
1, x2, x

′
2, x3, x4}

induces (6, 10).
Now assume there is a weak K3

4(t) called G with independent sets V1, V2, V3, V4. By
iteratively applying Lemma 2.6 to all of the tuples (Vi, Vj), 1 ⩽ i < j ⩽ 4, we obtain an
induced copy H ⊆ G of K3

4(3) with sets X1, X2, X3, X4, Xi ⊂ Vi, i ∈ [4], i.e.,
H[Xi∪Xj] is empty for all i ̸= j and the setsE(Xi, Xj, Xk) are complete for all {i, j, k} ∈

(
[4]
3

)
.

Let x2 ∈ X2, x3 ∈ X3, x4 ∈ X4. Then H[X1 ∪ {x2, x3, x4}] is a 6-vertex 3-graph spanning ex-
actly 10 edges.

Lemma 2.8. Let t > 0 be an integer and δ > 0. Then there exists m0 = m0(t, δ) such that
for all m ⩾ m0 the following holds. Let G be a 3-graph on 4m vertices such that the vertex set
of G can be partitioned into four independent sets V1, V2, V3, V4 of size m each and the number
of copies of K3−

4 with one endpoint from each of the V ′
i s is at least δm4. Then G contains an

induced copy of a weak K3
4(t) or a weak K3−

4 (t).

Proof. Define the auxiliary 4-graph H on 4m vertices where a 4-set spans an edge iff the cor-
responding four vertices in G form a copy of K3−

4 . We 5-color the edges of H in the fol-
lowing way: An edge {v1, v2, v3, v4} of H with vi ∈ Vi for i ∈ [4] is colored with j ∈ [4]
if {v1, v2, v3, v4} \ {vj} is not an edge in G, and it is colored with color 5 if {v1, v2, v3, v4}
induces a K3

4 in G.
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By pigeonhole principle, there exists (δ/5)m4 edges of the same color. Erdős [Erd64] proved
that π(K4

4(t)) = 0 and thus, there exists a monochromatic copy of K4
4(t) in H . Denote by T the

vertex set of this monochromatic copy. The 3-graph G[T ] is a weak K3
4(t) or weak K3−

4 (t).

We will use a supersaturation result discovered by Erdős and Simonovits [ES83]. The proof
presented below follows a proof given by Keevash (Lemma 2.1. in [Kee11]).

Lemma 2.9. For ε > 0 and families F ,G of r-graphs, there exists constants δ > 0 and n0 > 0
so that if G is an r-graph on n > n0 vertices with e(G) > (π(indF ,G) + ε)

(
n
r

)
, then G contains

at least δ
(

n
|V (H)|

)
copies of H for some H ∈ G, or at least δ

(
n

|V (H)|

)
induced copies of H for

some H ∈ F .

Proof. LetG be an r-graph on sufficiently many vertices nwith e(G) > (π(indF ,G)+ε)
(
n
r

)
. Fix

an integer k ⩾ r, k ⩾ |V (H)| for all H ∈ F ∪G so that ex(k, indF ,G) ⩽
(
π(indF ,G) + ε

2

) (
k
r

)
.

There are at least ε
2

(
n
k

)
k-sets K ⊆ V (G) with e(G[K]) > (π(indF ,G) + ε

2
)
(
k
r

)
. Otherwise, we

would have ∑
K⊆V (G)
|K|=k

e(G[K]) ⩽

(
n

k

)(
π(indF ,G) + ε

2

)(
k

r

)
+

ε

2

(
n

k

)(
k

r

)

= (π(indF ,G) + ε)

(
n

k

)(
k

r

)
,

but we also have∑
K⊆V (G)
|K|=k

e(G[K]) =

(
n− r

k − r

)
e(G) >

(
n− r

k − r

)
(π(indF ,G) + ε)

(
n

r

)

= (π(indF ,G) + ε)

(
n

k

)(
k

r

)
,

a contradiction. By the choice of k, each of these k-sets K contains an induced copy of
some H ∈ F or a copy of some H ∈ G. By the pigeonhole principle, there exists H1 ∈ F
such that at least ε

2(|F|+|G|)

(
n
k

)
of these k-sets K contain an induced copy of H1, or there ex-

ists H2 ∈ G such that at least ε
2(|F|+|G|)

(
n
k

)
of these k-sets K contain a copy of H2. Thus, in the

first case, the number of induced copies of H1 is at least

ε
2(|F|+|G|)

(
n
k

)(
n−|V (H1)|
k−|V (H1)|

) = δ

(
n

|V (H1)|

)
, for δ =

ε

2(|F|+ |G|)
(

k
|V (H1)|

) .
Similarly, in the second case, the number of copies of H2 is at least

δ

(
n

|V (H2)|

)
for δ =

ε

2(|F|+ |G|)
(

k
|V (H2)|

) .
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2.4. Proof of Theorem 1.1.

Proof of Theorem 1.1. Let ε > 0. Fix an integer t whose existence is guaranteed by Lemma 2.7,
such that every weak K3

4(t) and also every weak K3−
4 (t) induces (6, 10), see the paragraph

before Lemma 2.7 for the definition of a weak blow-up. Fix δ > 0 and n1 ∈ N, given
by Lemma 2.9, such that every (6, 10)-free 3-graph G on n ⩾ n1 vertices satisfying
e(G) ⩾ (π(indF10

6 , {K3−
4 }) + ε)

(
n
3

)
contains at least 2δ

(
n
4

)
copies of K3−

4 . Let m0 = m0(t, δ)
be given by Lemma 2.8. Fix integers m1 and n2 whose existence is guaranteed by Lemma 2.5,
such that m1 ⩾ m0 and for all n ⩾ n2, if G is (6, 10)-free n-vertex 3-graph, then either G
or Gc contains at least n/m1 −

√
n pairwise disjoint independent sets of size m1.

Choose n0 := max{n1, n2,m
2
1, ⌈40000δ−2⌉} and let n ⩾ n0.

Let G be a (6, 10)-free n-vertex 3-graph satisfying the density assumption (2.1):

e(G)(
n
3

) ∈
[
π(indF10

6 , {K3−
4 }) + ε, 1− π(indF10

6 , {K3−
4 })− ε

]
.

By Lemma 2.5 either G or Gc contains at least n′ := n/m1 −
√
n pairwise disjoint independent

sets, each of size m1. Since the density assumption is symmetric, and since G induces (6, 10)
if and only if Gc induces (6, 10), we can assume, without loss of generality, that G contains at
least n′ pairwise disjoint independent sets V1, V2, . . . , Vn′ of size m1 each.

By Lemma 2.9, G contains at least 2δ
(
n
4

)
(not necessarily induced) copies of K3−

4 . We call
a 4-set transversal in G if each of the four vertices is in a different Vi. A copy of K3−

4 in G is
called transversal if the vertex set of the copy is transversal in G. The number of 4-sets which
are not transversal in G is at most

√
nn3 + n′

(
m1

2

)
n2 ⩽ n

7
2 +m1n

3 ⩽ 2n
7
2 ,

for n ⩾ m2
1. The number of transversal copies of K3−

4 in G is at least 3
2
δ
(
n
4

)
, since

2δ

(
n

4

)
− 3

2
δ

(
n

4

)
=

δ

2

(
n

4

)
⩾

δ

2

n4

2 · 4!
=

δ

96
n4 > 2n7/2,

where the last inequality holds for n ⩾ 40000δ−2. By pigeonhole principle there exist
1 ⩽ i1 < i2 < i3 < i4 ⩽ n′, such that the number of copies of K3−

4 with one endpoint in
each of Vi1 , Vi2 , Vi3 , Vi4 is at least

3
2
δ
(
n
4

)(
n′

4

) ⩾
δ n4

4!(
n

m1

)4

4!

= δm4
1.

By Lemma 2.8, the 3-graph G[Vi1 ∪ Vi2 ∪ Vi3 ∪ Vi4 ] contains a weak K3−
4 (t) or a weak K3

4(t) as
an induced subhypergraph. This contradicts Lemma 2.7.

We conclude σ3(6, 10) ⩾ 1 − 2π(indF10
6 , {K3−

4 }). In fact, by the following argument,
σ3(6, 10) = 1 − 2π(indF10

6 , {K3−
4 }) holds: Let G be an n-vertex K3−

4 -free and (6, 10)-free
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3-graph with exactly ex(n, indF10
6 , {K3−

4 }) many edges. Since G is K3−
4 -free, every four ver-

tices span at most 2 edges, so using double counting, we see that every 6 vertices span at
most

(
6
4

)
· 2/3 = 10 edges. Since G is also (6, 10)-free, every 6 vertices span only at most 9

edges. We conclude that every subgraph G′ ⊆ G is (6, 10)-free. Further, by symmetry, also the
complement 3-graph of any G′ ⊆ G is (6, 10)-free. This proves the first part of the theorem.

To get specific numerical bounds on the forcing density, recall again that if
e(G)(

n
3

) ∈
[
π(indF10

6 , {K3−
4 }) + ε, 1− π(indF10

6 , {K3−
4 })− ε

]
,

then G induces (6, 10). In particular, if e(G)

(n3)
∈

[
π(K3−

4 ) + ε, 1− π(K3−
4 )− ε

]
, then G in-

duces (6, 10). The Turán density of K3−
4 is not known precisely. The best currently known

bounds on the Turán density of K3−
4 are 0.28571 ≈ 2

7
⩽ π(K3−

4 ) ⩽ 0.28689, where the lower
bound construction was given by Frankl and Füredi [FF84]. The upper bound was proved by
Vaughan [Vau] who applied the flag algebra method, see also the webpage of Lidický [Lid].
Thus σ3(6, 10) ⩾ 1− 2 · 0.28689 = 0.42622. However, from Lemma 2.1, we have that there is
a 3-graph on n vertices and 4

3+7
√
3

(
n
3

)
(1 + o(1)) hyperedges, such that each of its subgraphs is

(6, 10)-free. Moreover, the complement of this 3-graph has
(
1− 4

3+7
√
3

(
n
3

))
(1 + o(1)) hyper-

edges and each of its supergraphs is (6, 10)-free. Thus σ3(6, 10) ⩽ 1− 2 4
3+7

√
3
⩽ 0.47106.

3. Proof of Theorem 1.3

3.1. Constructions and notations

We shall first construct a special class of 3-graphs.
Let n, k ∈ N, k ⩽ n and S ⊆ [2]. Let G(S, n, k) be the 3-graph with vertex set A ∪ B,

|A| = k, |B| = n−k, whereA andB are disjoint such thatA induces a clique,B induces an inde-
pendent and we have the additional edges

⋃
i∈S Ei, where Ei={A′∪B′ : A′∈

(
A
i

)
, B′∈

(
B
3−i

)
}.

The independent set B we call base independent set. The 3-graph G(∅, n, k) is just a clique
on k vertices and n−k isolated vertices, and the 3-graph G([2], n, k) is the complete graph on n
vertices with a clique of size n− k removed. For an illustration of G({2}, n, k) see Figure 3.1.

Let f(S, n, k) = |E(G(S, n, k))|. We call a 3-graph G m-sparse if every subset of size at
most m vertices in G induces at most m edges. For a fixed choice of m, we say that a 3-graph G
is canonical plus with parameters (S, n, k), or simply canonical plus, if G is a 3-graph obtained
as a union of G(S, n, k) and an m-sparse graph whose vertex set is the base independent set B
of G(S, n, k). For a fixed choice ofm, a 3-graph G is canonical minus with parameters (S, n, k),
or simply canonical minus, if G is a 3-graph obtained from G(S, n, k) by removing the edges of
a copy of an m-sparse graph from the clique A of G(S, n, k). We see (letting

(
y
x

)
= 0 for y < x),

that
f(S, n, k) =

(
k

3

)
+
∑
i∈S

(
k

i

)(
n− k

3− i

)
.

Moreover, |f(S, n, x)−f(S, n, x−1)| = O(n2). Note that any induced subgraph of a canoni-
cal plus 3-graph with parameters (S, n, k) is a canonical plus 3-graph with parameters (S, n′, k′),
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A B

k n− k

Figure 3.1: Illustration of G({2}, n, k).

for somen′ and k′. A similar statement holds for canonical minus graphs. Thus, these two classes
of graphs are hereditary.

We see that if an m-vertex 3-graph is canonical plus with parameters (S,m, x), then the
number of edges in such a graph is in the interval [f(S,m, x), f(S,m, x) + m]. Similarly,
the number of edges in a canonical minus graph with parameters (S,m, x) is in the
interval [f(S,m, x)−m, f(S,m, x)]. Thus, if f is the number of edges of a canonical plus graph
and also of a canonical minus graph, with first parameter S and m vertices, then f ∈ F (S,m),
where

F (S,m) =
m−1⋃
x=0

[f(S,m, x), f(S,m, x) +m] ∩
m⋃

x=1

[f(S,m, x)−m, f(S,m, x)]

⊆
{
0, 1, . . . ,

(
m

3

)}
.

3.2. Proof idea

We are using the following general principle:

Proposition 3.1. Let m and f be positive integers, 0 < f <
(
m
r

)
. Let C1, . . . , Ck be classes of

r-graphs such that for every 0 < c < 1/2 there exists n0 ∈ N and for every n ⩾ n0 the following
holds:

• for every e with c
(
n
r

)
⩽ e ⩽ (1− c)

(
n
r

)
, there is a graph Gi ∈ Ci on n vertices and e edges

for all i ∈ [k], and

• for some i ∈ [k], each n-vertex graph in Ci is (m, f)-free.

Then σr(m, f) = 0.

Here, we use two classes C1 and C2 of 3-graphs that are canonical plus and canonical minus
with the same first parameter S. Specifically, the main idea of the proof of Theorem 1.3 is that for
any sufficiently large n, any S ⊆ [2], and any e in the interval [c

(
n
3

)
, (1− c)

(
n
3

)
] for 0 < c < 1/2,

there is a canonical plus 3-graph G1(S, n, e) and a canonical minus 3-graph G2(S, n, e) with
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first parameter S, on n vertices and e edges. If, for a pair (m, f), f ̸∈ F (S,m) for some S ⊆ [2],
then the pair (m, f) is not representable as a canonical plus or canonical minus graph with first
parameter S. Then in particular, G1(S, n, e) or G2(S, n, e) is (m, f)-free and (n, e) ̸→ (m, f).
Letting c be arbitrarily small, we conclude that σ3(m, f) = 0 for such a pair (m, f). Finally, we
derive number theoretic conditions for a pair (m, f) not being representable by a canonical plus
or a canonical minus graph.

3.3. Lemmas

In the following lemmas, n,m, f, e are non-negative integers with m > 3, 0 < f <
(
m
3

)
.

In [Web24] it was shown that for any m ⩽ 15 and for any 0 < f <
(
m
3

)
such that

(m, f) ̸= (6, 10), σ3(m, f) = 0. Thus, we can assume that m ⩾ 16. The following result
can be obtained by a standard probabilistic argument.

Lemma 3.2. Let m > 0. Then for any sufficiently large n there exists an n-vertex 3-graph
with Ω(n2+ 1

m+1 ) edges which is m-sparse.

For a proof of Lemma 3.2 see e.g. [Web24]. The next lemma is a generalization of a similar
statement proven in [EFRS99] for graphs.

Lemma 3.3. Let S ⊆ [2] and c be a constant, 0 < c < 1/2. For n ∈ N sufficiently large and
any ewhere c

(
n
3

)
< e < (1−c)

(
n
3

)
, there exist 3-graphsG1(S, n, e) andG2(S, n, e) on n vertices

and e edges that are canonical plus and canonical minus with first parameter S, respectively.

Proof. Letn be a given sufficiently large integer. The function f(S, n, k)might not be monotone.
Yet, there exists a non-negative integer k such that f(S, n, k) ⩽ e ⩽ f(S, n, k + 1) holds, e.g.
we can choose k < n to be the largest integer such that f(S, n, k) ⩽ e holds. This is possible
as f(S, n, 0) = 0 and f(S, n, n) =

(
n
3

)
. Note that since e ⩽ (1 − c)

(
n
3

)
and e ⩾

(
k
3

)
, we

get
(
k
3

)
⩽ (1− c)

(
n
3

)
and thus, k ⩽ c′n, where c′ < 1 is a constant.

Let G′ be an m-sparse 3-graph on n − k vertices with |E(G′)| ⩾ (n − k)2+
1

m+1 . The
existence of G′ is guaranteed by Lemma 3.2. Define G′′ to be the 3-graph obtained as a union
of G(S, n, k) and a copy of G′ on the vertex set that is the base independent set of G(S, n, k).
Then |E(G′′)| ⩾ f(S, n, k) + (n− k)2+

1
m+1 ⩾ f(S, n, k + 1) ⩾ e. Here, the second inequality

holds since f(S, n, k + 1) − f(S, n, k) = O(n2). Finally, let G1(S, n, e) be a subgraph of G′′

with e edges, obtained from G′′ by removing some edges of G′.
For the second part of the lemma, we could apply a similar argument by removing an m-

sparse graph from a clique; however, observe that G2(S, n, e) simply can be constructed as the

complement of G1(S
′, n,

(
n
3

)
− e), where S ′ =

{
[2]− S, S ∈ {∅, [2]}
S, else

, whose existence is

guaranteed by the first part of the lemma.

Lemma 3.4. Let S ⊆ [2]. If f ̸∈ F (S,m), then σ3(m, f) = 0.

Proof. Assume we have integers m, f as above, some S ⊆ [2] and f ̸∈ F (S,m). Let c be a
constant, 0 < c < 1/10, n ⩾ n0, and e be any integer satisfying c

(
n
3

)
⩽ e ⩽ (1− c)

(
n
3

)
. Define
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graphs G1 = G1(S, n, e) and G2 = G2(S, n, e) whose existence is guaranteed by Lemma 3.3.
Any induced subgraph of G1 on m vertices is canonical plus with parameters (S,m, x) for

some x and thus, its number of edges is in
m−1⋃
x=0

[f(S,m, x), f(S,m, x) +m]. Any induced sub-

graph of G2 on m vertices is canonical minus with parameters (S,m, x) for some x and thus,

its number of edges is in
m⋃

x=1

[f(S,m, x) −m, f(S,m, x)]. Since f ̸∈ F (S,m), we get that G1

or G2 is (m, f)-free. Letting c go to zero, we see that σ3(m, f) = 0.

In the following lemmas we shall use the set S = ∅, S = {1}, or S = {2}, to claim that for
many pairs (m, f), σ3(m, f) = 0.

Lemma 3.5. Let m ⩾ 7 and 0 < f <
(
m−1
2

)
. Then σ3(m, f) = 0.

Proof. Let S = {1}. By Lemma 3.4, it is sufficient to verify that f ̸∈ F ({1},m). For that it is
sufficient to check that F ({1},m) ∩ [1,

(
m−1
2

)
− 1] = ∅. Recall that

F ({1},m) =
m−1⋃
x=0

[f({1},m, x), f({1},m, x) +m] ∩
m⋃

x=1

[f({1},m, x)−m, f({1},m, x)].

Note that f({1},m, 0) = 0, f({1},m, 1) =
(
m−1
2

)
, and f({1},m, x) ⩾

(
m−1
2

)
, for x > 1. Thus,

we have
m−1⋃
x=0

[f({1},m, x), f({1},m, x) +m] ∩ [1,
(
m−1
2

)
− 1]

= [f({1},m, 0), f({1},m, 0) +m] ∩ [1,
(
m−1
2

)
− 1] = [1,m],

and
m⋃

x=1

[f({1},m, x)−m, f({1},m, x)] ∩ [1,
(
m−1
2

)
− 1] = [f({1},m, 1)−m, f({1},m, 1)− 1]

= [
(
m−1
2

)
−m,

(
m−1
2

)
− 1].

In particular, we have

F ({1},m) ∩ [1,
(
m−1
2

)
− 1] = [1,m] ∩ [

(
m−1
2

)
−m,

(
m−1
2

)
− 1] = ∅,

where in the last step we used that
(
m−1
2

)
> 2m. Thus, σ3(m, f) = 0.

Lemma 3.6. Let m ⩾ 16 and let f be an integer such that
(
m−1
2

)
⩽ f <

(
m
3

)
and for

any x ∈ [m], f ̸=
(
x
3

)
. Then σ3(m, f) = 0.

Proof. Define f as given in the statement of the lemma and S = ∅. By Lemma 3.4, it is
sufficient to prove that f ̸∈ F (∅,m) and in particular it is sufficient to show that
F (∅,m) ∩ [

(
m−1
2

)
,
(
m
3

)
− 1] ⊆ {

(
x
3

)
: x ∈ [m]}. Since f(∅,m, x) =

(
x
3

)
, we have

F (∅,m) =
m−1⋃
x=0

[
(
x
3

)
,
(
x
3

)
+m] ∩

m⋃
x=1

[
(
x
3

)
−m,

(
x
3

)
],
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see Figure 3.2 for an illustration of the set F (∅,m). We claim that for m ⩾ 16,
if
(
x
3

)
+m ⩾

(
m−1
2

)
for some x ∈ [m], then

(
x+1
3

)
−m >

(
x
3

)
+m. Indeed,

(x(x− 1))
3
2 ⩾ x(x− 1)(x− 2) ⩾ 6

((
m− 1

2

)
−m

)
= 3m2 − 15m+ 6

and thus x(x − 1) ⩾ (3m2 − 15m + 6)2/3 > 4m for m ⩾ 16. Therefore
(
x
2

)
> 2m, which is

equivalent to
(
x+1
3

)
−m >

(
x
3

)
+m.

In particular, in this case the interval [
(
x
3

)
,
(
x+1
3

)
] is long enough that we have

[
(
x
3

)
,
(
x
3

)
+m] ∩ [

(
x′

3

)
−m,

(
x′

3

)
] = ∅ for x ̸= x′ and max{

(
x
3

)
,
(
x′

3

)
} ⩾

(
m−1
2

)
. Thus,

F (∅,m) ∩ [
(
m−1
2

)
,
(
m
3

)
] ⊆ {

(
x
3

)
: x ∈ [m]}.

0 . . . . . .

f
(S
,m

, x
0
+
1)

f
(S
,m

, x
0
)

f
(S
,m

, x
0
−
1)

f
(S
,m

,m
−
2)

f
(S
,m

,m
−
1)

(
m
3

)

Figure 3.2: This figure displays the set
m−1⋃
x=0

[f(S,m, x), f(S,m, x) + m] in red and the

set
m⋃

x=1

[f(S,m, x) − m, f(S,m, x)] in blue on the number line. Here, x0 is the smallest in-

teger x such that f(S,m, x+ 1)−m > f(S,m, x) +m.

The next lemma follows the same ideas as Lemma 3.6 with red/blue intervals in Figure 3.2
having respective endpoints at f(S,m, x) =

(
x
3

)
+
(
x
2

)
(m− x), where S = {2}.

Lemma 3.7. Let m ⩾ 13 and f be an integer, such that
(
m−1
2

)
⩽ f ⩽

(
m
3

)
−

(
m−1
2

)
and for

any x ∈ [m], f ̸=
(
x
3

)
+
(
x
2

)
(m− x). Then σ3(m, f) = 0.

Proof. Considerm and f as given in the statement of the lemma and let S={2}. By Lemma 3.4,
it is sufficient to prove that f ̸∈ F (S,m) and in particular, it is sufficient to show that

F ({2},m) ∩ [

(
m− 1

2

)
,

(
m

3

)
−

(
m− 1

2

)
] ⊆ {

(
x

3

)
+

(
x

2

)
(m− x) : x ∈ [m]}.

Recall that

F ({2},m) =
m−1⋃
x=0

[f({2},m, x), f({2},m, x) +m] ∩
m⋃

x=1

[f({2},m, x)−m, f({2},m, x)].

From the definition of f , we have that f({2},m, x) =
(
x
3

)
+

(
x
2

)
(m − x). Note that for x < 4

we have f({2},m, x) + m <
(
m−1
2

)
and for x > m − 4, f({2},m, x) − m >

(
m
3

)
−

(
m−1
2

)
.
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Therefore it is sufficient to consider only

m−4⋃
x=4

[f({2},m, x), f({2},m, x) +m] ∩
m−4⋃
x=4

[f({2},m, x)−m, f({2},m, x)].

For m ⩾ 13 and 4 ⩽ x ⩽ m− 4, f({2},m, x)− f({2},m, x− 1) = m(x− 1)+x−x2 > 2m,
where the last inequality holds for x = 4, 5, 6 by checking separately and for x ⩾ 7 because

m(x− 1) + x− x2 − 2m = m(x− 3) + x− x2 ⩾ (x+ 4)(x− 3) + x− x2 = 2x− 12 > 0.

Thus,

m−4⋃
x=4

[f({2},m, x), f({2},m, x) +m] ∩
m−4⋃
x=4

[f({2},m, x)−m, f({2},m, x)]

= {f({2},m, x) : 4 ⩽ x ⩽ m− 4}.

In particular, we have

F ({2},m) ∩ [
(
m−1
2

)
,
(
m
3

)
−

(
m−1
2

)
] ⊆ {

(
x
3

)
+
(
x
2

)
(m− x) : 4 ⩽ x ⩽ m− 4}.

3.4. Proof of Theorem 1.3

Proof. For m ⩽ 15 it was already shown in [Web24], that the only possible pair (m, f)
with 0 < f <

(
m
3

)
and σ3(m, f) > 0 is (6, 10), where 10 =

(
5
3

)
=

(
6
3

)
−
(
5
3

)
=

(
3
3

)
+
(
3
2

)
(6−3).

Now let m > 15, and assume that for some f we have σ3(m, f) > 0. Then applying Lemma 3.5
to (m, f) and (m,

(
m
3

)
− f), we obtain that

(
m−1
2

)
⩽ f ⩽

(
m
3

)
−

(
m−1
2

)
. Applying Lemma 3.6

to (m, f) gives us that f =
(
x1

3

)
, for some x1; applying it again to (m,

(
m
3

)
− f) gives us

that f =
(
m
3

)
−

(
x2

3

)
, for some x2. Lemma 3.7 shows the existence of some x3, for which we

have f =
(
x3

3

)
+
(
x3

2

)
(m− x3). This completes the proof.

Note that applying Lemma 3.7 to (m,
(
m
3

)
− f) will not yield an additional constraint on f ,

since
(
m
3

)
−

(
y
3

)
−

(
y
2

)
(m− y) =

(
x
3

)
+
(
x
2

)
(m− x) for y = m− x.

4. Concluding Remarks

In this paper we investigate 3-uniform hypergraphs and forcing densities σ3(m, f). We show
that σ3(6, 10) > 0 and provide more specific bounds. Apart from the pairs (m, 0), (m,

(
m
3

)
),

the pair (6, 10) is the only known non-trivial pair for which the forcing density is positive. We
conjecture that (6, 10) is the unique pair (m, f) with 0 < f <

(
m
3

)
for which σ3(m, f) > 0.

Theorem 1.3 implies that if there is no m ̸= 6 for which there is a solution (x1, x2, x3),
xi ∈ [m− 1], of the system of Diophantine equations(

x1

3

)
=

(
m

3

)
−
(
x2

3

)
=

(
x3

3

)
+

(
x3

2

)
(m− x3), (4.1)
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then Conjecture 1.2 is true. However, we do not know much about solutions (x1, x2, x3) to
the above system of equations. A computer search for suitable solutions of (4.1) for any
given m ⩽ 106 did not give a result. Considering only the equation

(
x1

3

)
=

(
m
3

)
−

(
x2

3

)
,

Sierpiński [Sie62] found an infinite class of solutions.
It might be possible to find stronger necessary conditions for a pair to have positive forc-

ing density using different constructions than the ones used in the proof of Theorem 1.3. In
particular, the reader might wonder why Lemma 3.4 and the corresponding constructions in
Lemma 3.3 were not used when S = {1}. The reason for this is that the respective func-
tion f({1},m, x) =

(
x
3

)
+ x

(
m−x
2

)
is not monotone, making it difficult to capture the structure

of the setF ({1},m). However, this construction could very well be used to conclude that certain
pairs (m, f) have forcing density zero.

Determining the exact value of σ3(6, 10) remains open. We believe that the upper bound
from Theorem 1.1, coming from the iterated construction H it

n in Lemma 2.1, is tight.

Conjecture 4.1. We have σ3(6, 10) = 1− 2 4
3+7

√
3
≈ 0.47105.

We remark that a standard flag algebra calculation yields π(indF10
6 , {K3−

4 })⩽0.275<2/7.
Using the first part of Theorem 1.1, this gives σ3(6, 10) ⩾ 0.45 which improves the lower bound
on σ3(6, 10) given in the second part of Theorem 1.1.
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