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Abstract

Mathematical modeling is a powerful tool to understand and design pharmaceutical syntheses,
and is explicitly promoted by regulatory agencies within the progressive Quality by Design ini-
tiative. Since pharmaceutical syntheses frequently exhibit substantial mechanistic complexity
with significant uncertainties about the involved reactions and other physical phenomena, sys-
tematic approaches following process systems engineering (PSE) principles facilitate the process
identification procedure and enable reliable process analysis.

In this thesis, multiple concepts have been developed for the model-based process identification
of pharmaceutical syntheses using PSE tools. The major part deals with the development of a
mechanistic model for the two steps of the semi-synthesis of the antimalarial artemisinin (ART).
In a milliscale flow reactor, the photo-induced conversion of dihydroartemisinic acid (DHAA)
to a hydroperoxide is followed by an acid-catalyzed sequence in a second reactor yielding ART.
The main challenges for the identification of this semi-synthesis process were limited available
measurement information and incomplete knowledge about the occurring reaction mechanisms.
Here, model-based design of experiments (MBDoE) ensured that the experimental measurements
were sensitive to the model parameters. This enabled the description of the three-dimensional
radiative transfer by the Beer-Lambert law. Relative deviations between simulated predictions
from the applied two-fluid model and the observed formation of the hydroperoxide in the first
step were 7.3 % on average. A global sensitivity analysis (GSA) revealed that the experimentally
determined distribution factor of the two-fluid model had the largest impact on the species
concentrations among the model parameters.

For the acid-catalyzed sequence, more than 60 different model candidates were proposed. High
estimated reaction orders and another GSA identified the acid concentration to be the key factor,
that significantly impact the reaction rates and the overall selectivity of ART. The selected model
candidate for the acid-catalyzed reaction network was connected to the photo reactor and resulted
in deviations of 14 % on average for the prediction of ART concentrations. The overall process
was then optimized for ART yields under the consideration of parametric uncertainty, against
which the developed process model showed to be very robust. The ART yield increased from
55 % to 61 % when the acid was fed before the photo reactor instead of dosed downstream at the
synthesis reactor inlet. The optimized space-time yield reached 7.7 g/(ml d).
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Abstract

As for the semi-synthesis of ART, model selection problems frequently suffer from high non-
linearities, significant uncertainties and missing mechanistic knowledge. Traditional approaches
based on the integration of the underlying differential equations might lead to sub-optimal or
misleading results. In the last part of this thesis differential flatness is therefore proposed as an
alternative and exploited for model selection problems under parametric uncertainty for the first
time. In this concept, an inverse model is identified, where the optimal controls from a robustified
MBDoE ensure improved model selection trajectories, that are expressed analytically with low
computational costs. The developed method was successfully applied to a biocatalytic reaction
step simulating the carboligation of aldehydes. This showed that differential flatness can be a
viable alternative for challenging model selection problems beyond its traditional use in control
theory.
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Kurzfassung

Mathematische Modellierung kann entscheidend zum Verständnis und bei der Auslegung von
pharmazeutischen Syntheseprozessen beitragen und wird von Regulierungsbehörden im Rahmen
der Quality by Design-Initiative ausdrücklich gefördert. Da pharmazeutische Synthesen häufig
eine erhebliche mechanistische Komplexität aufweisen und Unsicherheiten über die beteiligten
Reaktionen und andere physikalische Phänomene bestehen, bedarf es systematischer Ansätze, die
den Prinzipien der Systemverfahrenstechnik (engl. Process Systems Engineering, PSE) folgen
und somit eine verlässliche Prozessidentifikation und -analyse ermöglichen.

In dieser Arbeit wurden mehrere Konzepte für die modellbasierte Prozessidentifikation von phar-
mazeutischen Synthesen unter Verwendung von PSE-Methoden entwickelt. Der Hauptteil befasst
sich mit der Entwicklung eines mechanistischen Modells für die zwei Schritte der Partialsynthese
des Antimalaria-Wirkstoffes Artemisinin (ART). In einem kleinskaligen Durchflussreaktor folgt
der photoinduzierten Umwandlung von Dihydroartemisininsäure (DHAA) in ein Hydroperoxid
eine säurekatalysierte Reaktionskaskade hin zu ART. Die größten Herausforderungen für die
Identifizierung dieses Synthese-Prozesses waren begrenzt verfügbare Messinformationen und
unvollständiges Wissen über die auftretenden Reaktionsmechanismen. Der Einsatz von modell-
basierter Versuchsplanung (engl. Model-Based Design of Experiments, MBDoE) stellte hierbei
sicher, dass die experimentellen Messungen sensitiv gegenüber den Modellparametern waren.
Dies ermöglichte die Beschreibung der dreidimensionalen Wärmestrahlung durch das Lambert-
Beersche Gesetz. Die relativen Abweichungen zwischen Vorhersagen aus dem angewende-
ten Zwei-Fluid-Modell und der Konzentrations-Messdaten des Hydroperoxids im ersten Schritt
betrugen durchschnittlich 7.3 %. Eine globale Sensitivitätsanalyse (GSA) ergab, dass der ex-
perimentell bestimmte Verteilungsfaktor des Zwei-Fluid-Modells den größten Einfluss auf die
Spezieskonzentrationen unter den Modellparametern hatte.

Für die säurekatalysierte Reaktionskaskade wurden mehr als 60 verschiedene Modellkandi-
daten aufgestellt und analysiert. Hohe geschätzte Reaktionsordnungen und eine weitere GSA
identifizierten die Säurekonzentration als den Schlüsselfaktor, der die Reaktionsraten und die
Gesamtselektivität von ART erheblich beeinflusst. Der ausgewählte Modellkandidat für das
säurekatalysierte Reaktionsnetzwerk wurde mit dem Photoreaktor-Modell verbunden und führte
zu Abweichungen von durchschnittlich 14 % bei der Vorhersage der ART-Konzentrationen. Die
Partialsynthese wurde dann unter Berücksichtigung der identifizierten Unsicherheiten in den
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Kurzfassung

Modellparametern für eine hohe ART-Ausbeute optimiert, wobei sich das entwickelte Prozess-
modell als sehr robust erwies. Die ART-Ausbeute stieg von 55 auf 61 %, wenn die Säure vor dem
Photoreaktor zugeführt wurde anstatt am Einlass des nachgeschalteten Synthesereaktors. Die
optimierte Raum-Zeit-Ausbeute erreichte 7.7 g/(ml d).

Wie bei der Partialsynthese von ART trifft man bei der Modellselektion regelmäßig auf sig-
nifikante Nichtlinearitäten, nicht vernachlässigbare Unsicherheiten und fehlendes mechanistis-
ches Wissen. Traditionelle Ansätze, die auf der Integration der zugrunde liegenden Differen-
tialgleichungen basieren, können dabei in suboptimalen oder irreführenden Ergebnissen resul-
tieren. Im letzten Teil dieser Arbeit wird infolgedessen die differentielle Flachheit als Alternative
vorgeschlagen und erstmals auf die Modellselektion bei gleichzeitiger Berücksichtigung von
Unsicherheiten in Modellparametern übertragen. Bei diesem Ansatz wird ein inverses Modell
identifiziert, welches im Gegensatz zur numerischen Integration analytische Lösungen liefert, die
in einem robustifizierten MBDoE eingesetzt schließlich zu optimalen Steuerungsgrößen für die
Modellselektion führen. Die entwickelte Methode wurde erfolgreich an einem biokatalytischen
Reaktionsschritt angewendet, der die Carboligation von Aldehyden simuliert. Die Ergebnisse
zeigten, dass die differentielle Flachheit jenseits ihrer traditionellen Verwendung in der Regelung-
stechnik eine nützliche Alternative bei anspruchsvoller Modellselektion darstellen kann.
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1 Motivation and Scope

Modeling and simulation of physical systems has become ubiquitous in many sciences. The impor-
tance of process modeling stems from the fact that it is a prerequisite for system understanding,
process control, process optimization and process design [1]. For solving the corresponding
problems in chemical and biochemical processes, the scientific discipline of process systems
engineering (PSE) provides the necessary systematic framework [2]. PSE has been drawing
increasingly attention in pharmaceutical manufacturing as its tools and methods comply with the
regulatory framework of Process Analytical Technology (PAT) [3] and the Quality by Design
(QbD) approach [4, 5] that were introduced in the pharmaceutical industry around 20 years ago.
This trend is equally mirrored in the published scientific literature, Figure 1.1. Conventionally,
laboratory testing of samples collected from batch runs ensures the pharmaceutical quality stan-
dards. In contrast, the QbD approach advocates a systematic and risk-based methodology for the
design, development and manufacturing of medicines as "quality cannot be tested into products;
it should be built-in or should be by design" [3]. QbD and the QbD-consistent PAT framework
both emphasize process understanding and control based on scientific principles [7] and the
utilization of innovative process and strategic technologies and tools [3, 8]. Consequentially, the
application of mathematical models for supporting process design, analytical procedures, and
process monitoring and control is explicitly promoted from a regulatory perspective [8–10]; and
PSE is foreseen to play an essential role in the development of future pharmaceutical processes
[2, 11–16].
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Figure 1.1: Increasing importance of process modelling, a key discipline of process systems engineering, in the phar-
maceutical industry. Data was extracted from Scopus database with the following keywords employed in a
logical and search within article title, abstract, and keywords: process, modelling, pharmaceutical [6].
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1 Motivation and Scope

1.1 Process Systems Engineering for
Pharmaceutical Synthesis

To develop and optimize the synthetic production of active pharmaceutical ingredients (APIs)
by (bio)chemical reactions, knowledge of the underlying mechanism and kinetics, that decisively
determine the macroscopic process behavior and therefore reactor design, is key [17–19]. How-
ever, the identification of such a kinetic model is by no means a trivial task, even for well-studied
reaction networks [20]. A major difficulty is the vast number of possible reactions, reaction inter-
mediates and products [21], that is, a lack of information about the reaction network – a recurring
problem in (bio)chemical syntheses and a major bottleneck for model-based process development
[22, 23]. Additional challenges for identifying a process model with an underlying (bio)chemical
reaction network arise from complex flow phenomena, limited availability of measurement data
and substantial non-linearities in the process dynamics [24–27]. In such challenging settings,
systematic approaches following PSE principles facilitate the model identification procedure [27,
28].

In model identification, notably model selection and parameter estimation, model-based design
of experiments plays a pivotal role in the sense that it systematically reduces uncertainties in
model structure and model parameters while keeping the experimental effort small [29–33].
Consideration of uncertainties is of significant importance as inference drawn from the usage
of the model heavily relies on the accuracy of the model itself, its parameters and its input
conditions [34]. This particularly holds for pharmaceutical processes where patient safety is
paramount. To cope with parametric uncertainties, e.g., due to imperfect measurements, and
variability in process inputs, sensitivity analysis offers a versatile toolbox to study the behavior
of a (bio)chemical process and its influencing factors [35–37]. Methods for sensitivity analysis
can be likewise applied in model-based process design to robustify against the uncertainties and
variability, thereby increasing the design’s reliability [38–40].

For pharmaceutical syntheses frequently exhibit substantial complexity and encounter model and
parameter uncertainties, model identification and integration of uncertainties in model-based
activities is an active research field [41–43]. In parameter estimation, the standard procedure
with a great success history for many academic and industrial problems is the consideration of
output residuals to estimate model parameter values, known as least squares [27]. It involves a
comparison of the commonly integrated model dynamics with the available measurement data.
However, in cases with high uncertainties and strong non-linearities, alternative approaches have
been proposed in literature that ease the parameter estimation procedure and can lead to more
reliable parameter estimates. Several approaches have in common that they release themselves
from integrating the model dynamics, but propose functional relations for the model predictions
and constrain these relations by the model dynamics [44–47]. In contrast, the application of an
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1.2 Partial Synthesis of the Antimalarial Artemisinin

inverse model inherently considers the model dynamics, that makes it able to precisely back-
calculate the inputs of the model for a given system trajectory. Here, inverting models based
on differential flatness, a system property introduced in 1992 [48], has been proven beneficial in
postulating a well-posed parameter estimation problem [49]. Differential flatness strategies avoid
the numerical problems linked to the integration of the process-underlying differential equations,
reduce the need for experimentally determining corresponding initial conditions, enable straight-
forward feed-forward control, and ease optimization problems by smoothing objective functions
and providing analytic gradient and hessian functions [49, 50].

1.2 Partial Synthesis of the Antimalarial Artemisinin

The partial synthesis of the antimalarial API artemisinin (ART) and its continuous production
is a prominent example of the challenges in pharmaceutical development and manufacturing of
(bio)chemical syntheses. Malaria causes around 230 million infections and demands more than

2005 2010 2015 2020
0

200

400

Year

A
C

T
tre

at
m

en
ts

/1
06

0

500

1,000

A
RT

pr
ic

e
/U

S
−

$/
kg

Figure 1.2: High price of artemisinin-based combination therapies (ACTs), and high volatility in both ACT treatments
[51, 52] and artemisinin (ART) price [53] hinder a fast and successful fight against malaria on the globe.

400, 000 fatalities each year with very high shares of children under five years of more than 75 %
in the past [51]; although it is both preventable and curable if diagnosed and treated promptly
in a correct manner. Medicines based on ART, referred to as artemisinin-based combination
therapies (ACTs), show the best efficacy against malaria and are therefore recommended as
first-line treatment by the World Health Organization since 2001 [54]. Unfortunately, next to
other drivers, the relatively high and volatile price of ACTs hinders a fast and successful fight
against the disease, Figure 1.2, in particular as malaria primarily appears in countries with
low economic strength [55]. Despite a decrease since 2010, ACT prices are still much more
expensive than other antimalarials [56]. New technologies for the production of ART have barely
entered the ART market for high investment risks: Industrial attempts by companies Amyris and
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Figure 1.3: Integration of the artemisinin partial synthesis starting from the extract byproduct dihydroartemisinic acid
(DHAA) increases the artemisinin (ART) yield of the plant-based production [61]. Traditionally, ART
production relies on solvent extraction of the existing ART in the plant and subsequent separation by
multi-stage crystallization and normal-phase liquid chromatography to obtain purified ART [62]. The
partial synthesis consists out of two major steps. In the photooxygenation, the DHAA is converted to
the hydroperoxide PO1 by consuming singlet oxygen, that is photochemically produced with the help of
a photosensitizer (PS). In the second step, ART is formed in an acid-catalyzed sequence. The Figure is
reproduced and adapted from [61].

Sanofi have ceased operation [57]. One major cause of the price volatility are oscillations in the
artemisinin supply, that are rooted in an unpredictable ART demand and a varying production
of the natural source [53, 56]. The sole industrial supply technology of ART is the extraction
of ART from leaves of the plant Artemisia annua. The bottlenecks of this established process
are long production cycles, varying crop yields, competition for agricultural land, and a distinct
inflexibility of the supply chain [56]. Next to the classical extraction of ART, processes based
on syntheses from advanced precursors termed partial or semi-syntheses, like the Amyris and
Sanofi examples, promise economic potential. Additional research stimuli result from findings
that ART and its derivatives are not only antimalarial, but exhibit further active properties like
anti-cancer, anti-inflammatory or anti-viral [58], and therefore motivate drug repurposing [59].

In contrast to batch and semi-batch operations of the Amyris and Sanofi partial syntheses,
Lévesque and Seeberger [60] introduced a promising continuous-flow photochemical conversion
of dihydroartemisinic acid (DHAA) to ART. DHAA is converted to artemisinin in a two-step
process of a photooxygenation and a subsequent acid-catalyzed reaction cascade, Figure 1.3. The
authors reported ART yields of up to 69 % based on initial DHAA concentration [60, 63]. The
successful conversion of DHAA to ART by the presence of light has been previously observed
during drying of A. annua [64] as DHAA is also found in the plant itself. Triemer and co-workers
[65] combined the previous findings and produced ART from DHAA in the usually discarded
extract of A. annua plants in a continuous photo-flow reactor. They made use of the in the plant
existent chlorophylls as photosensitizers, resulting in a synthetic process that naturally supplies
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the required photosensitizer and performs at least equally well as in the case of using pure reagents,
Figure 1.3.

The proposed continuous photo-flow process for the production of ART is a promising route to
decrease the medication costs with the prospective of a sustainable manufacturing process that
helps to attain the vision of a world free of malaria. However, the physical phenomena in the
two-phase flow reactor and the occurring (photo)chemical reactions exhibit a substantial degree of
complexity, that are not sufficiently well understood to be used for process design and to be finally
translated into a large-scale industrial manufacturing process. To this end, strategies within PSE
exploit the potential of having a mathematical description of the real process at hand following
a systematic model identification procedure. Characteristically for pharmaceutical synthesis, the
process model identification for the partial synthesis of ART is in particular challenged by the
identification of the reaction mechanisms, that are partly unknown. Further difficulties are the
low number of measurable components and restricted possibilities to draw samples due to the
process’ complexity. Another challenge lies in the technology of flow photochemistry [66], that
is, in the quantification of the two-phase fluid dynamics and the radiative heat transfer.

1.3 Scope and Structure of Thesis

The core research challenge in this work is the reliable identification of process models for
pharmaceutical synthesis by following PSE strategies. In a first part of this thesis, the partial
synthesis of artemisinin from dihydroartemisinic acid in a continuous-flow experimental setup is
considered. A process model is to be developed for obtaining mechanistic and process-related
insights. It should have manageable complexity to facilitate process understanding of the most
influential parameters and to enable straightforward model-based process optimization. The
difficulty originates in the limited available measurement data on the one and the complexity
and incomplete knowledge of the occurring physical phenomena on the other hand – a common
setting in pharmaceutical synthesis.

In a second part, inverse modeling is exploited for the problem of identifying a mathematical
model for (bio)chemical syntheses in the pharmaceutical industry under the consideration of
parametric uncertainties. Notably, the following research question is addressed: Is the utilization
of inverse modeling techniques based on differential flatness a beneficial alternative to established
methods for model identification? For answering, a first transfer of the differential flatness concept
from control theory to model selection problems in (bio)chemical syntheses has to be performed.
As a case study, a biocatalytic process from a carboligation reaction system that forms an essential
precursor in pharmaceutical synthesis is investigated.

The specific goals of this work can be summarized as follows:
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1. To identify a process model in the photooxygenation step that takes the interplay between
light, mass transfer and chemical reactions into account.

2. To exploit the identified process model describing the photooxygenation for an analysis of
the process behavior that is supported by a global sensitivity analysis.

3. To develop different reaction networks that potentially describe the acid-catalyzed sequence
step of the partial synthesis. Subsequently, to perform a systematic identification analysis
of the proposed networks with the help of the available sparse measurement data.

4. To utilize the overall process model, i.e., combining the identified photooxygenation model
with the best reaction network candidate of the acid-catalyzed sequence, for a yield-based
process optimization.

5. To develop a robust model selection strategy for pharmaceutically related (bio)chemical
processes based on differential flatness.

6. To show that differential flatness is a beneficial alternative in model identification of
pharmaceutical syntheses by applying the developed strategy to an enzymatic reaction
network.

Following this introductory Chapter 1, Chapter 2 and 3 contain the fundamentals for the Chapters
4, 5 and 6, where the main research contributions are presented. A corresponding graphic outline
is given in Figure 1.4. The thesis is closed with a concluding Chapter 7. Summaries of the
Chapters are given in the following.

Chapter 2 – Introduction to the Artemisinin Partial Synthesis and the Applied Experi-
mental Setups. After a short background on the partial synthesis of artemisinin, industrial
and academic approaches to a continuous production are discussed. Closing, the experimental
setups for the partial synthesis are explained.

Chapter 3 – Mathematical Methodologies. The mathematical fundamentals of the system-
atic strategy, that is used for the identification of the process models describing the experimental
setups, are presented.

Chapter 4 – Step 1: Photooxygenation. With the information from the preceding two Chap-
ters, the model describing the photooxygenation is first identified and then exploited for a model-
based analysis using global sensitivities. The identified structure of the process model is further
used in Chapter 5.
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Chapter 5 – Step 2: Acid-Catalyzed Sequence. The challenge of identifying a model for the
acid-catalyzed sequence is discussed in detail, and the systematic solution strategy is presented.
Different model candidates are proposed that are afterwards used to identify the most probable
candidate predicting both continuous flow and batch measurement data. Finally, the developed
overall process model is applied in a process optimization study for improving artemisinin yields.

Chapter 6 – Differential Flatness for Model Identification. The general question of a re-
liable identification of a process model is discussed. Differential flatness is then proposed for
the task of model selection of (bio)chemical syntheses in the pharmaceutical industry under the
consideration of parametric uncertainties. The approach is applied to an enzymatic reaction
network.

Chapter 7 – Conclusions and Future Directions. In this final Chapter, a summary with the
main findings is provided. A discussion about open questions and research ideas, that might be
addressed in the future, concludes this Thesis.
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Figure 1.4: Graphic outline of this Thesis indicating the Chapters where phenomena of (bio)chemical reaction engineer-
ing, process systems engineering methods and experimental setups are introduced and the Chapters where
they are applied (MBDoE: model-based design of experiments).
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2 Introduction to the Artemisinin
Partial Synthesis and the Applied
Experimental Setups

In this Chapter, the partial synthesis of artemisinin, that is fundamental to the Chapters 4 and
5, is introduced and a current state of research on continuous artemisinin production is given.
Subsequently, the experimental setups, that provided the data for the process model identification
of the partial synthesis, i.e., the targeted continuous flow setup and an additional setup for batch
experiments, are explained. For the interested reader, additional information about malaria,
artemisinin and its production is given in the Appendix A.

2.1 Partial Synthesis

Today, the Artemisia annua plant is the sole global source of artemisinin (ART) [67], that is
obtained by extraction, with main cultivation areas in China, Vietnam and East Africa [68].
The weight content of ART in wild and cultivated types is low and, depending on climatic
conditions and chemotype, widely ranges from 0.01 to 1.5 wt−% based on dry matter [69–72],
with unpublished reports of 2 wt−% [68]. Most often the leaves of the plant are considered,
although ART content in the flowers might be higher [73]. The low ART weight content in the
A. annua plant and the stimuli described in Section 1.2 are responsible for extensive research in
artemisinin and its derivatives [74]. Next to extraction from its natural source, the production
of ART can be categorized into two further approaches: Total syntheses from readily available
and cheap chemical stocks, and semi- or partial syntheses, that either start with extraction
byproducts or with species from heterologous production, see also Section A.3 and Figure A.4
in the Appendix. Potential starting points for a partial synthesis are artemisinic acid (AA) and
dihydroartemisinic acid (DHAA), that are both oxidation products of amorphadiene (AD) in the
metabolism of A. annua [75]. In opposite to AA, where its precise metabolic role is still under
discussion [64, 75, 76], DHAA is a known direct precursor of ART spontaneously converting to
ART on exposure to air and sunlight [75], which implicates a correlation between DHAA and
ART contents in the plant [72, 77]. Thus, the DHAA content of studies in the published literature
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Figure 2.1: Simplified semi-synthetic path from dihydroartemisinic acid (DHAA) to artemisinin (ART) based on the
fundamental works by Acton and Roth [83–85] with the singlet oxygen formed by a photo-induced process
(PS: photosensitizer).

as well differs widely. It ranges from below 0.1 wt−% based on dry matter [76, 78] (<15 %
relative to ARTcontent) to 1.8 wt−% (190 % relative) [72]. AA’s content is up to 10-fold higher
than the ART content [77], but is observed to be negatively correlated to both ART and DHAA
content [72].

The total synthesis of ART is a very complicated and expensive endeavor due to its molecular
structure with several asymmetric carbon atoms and a relatively unstable endoperoxide interme-
diate [79]. A first total synthesis approach was published by Schmid and Hofheinz from LaRoche
in 1983 [80]. On the other hand, partial syntheses from artemisinin precursors are potential and
cost-effective alternatives [81, 82]. Fundamental studies about the semi-synthetic pathway from
AA to ART were published by Acton and Roth beginning in 1989 [83–85].In a first step, AA
is hydrogenated to DHAA [86]. Following, the partial synthesis of ART from DHAA can be
summarized into two further steps, that are similar in different synthetic pathways via DHAA
[81], including the metabolism in the A. annua plant [87], Figure 2.1. DHAA is first oxygenated to
the DHAA hydroperoxide PO1 in a stereoselective ene-type reaction initiated by in situ generated
singlet oxygen. The singlet oxygen is not necessarily formed by a photo-induced process, but
might also be chemically generated [81, 86]. In an acid-catalyzed sequence with several steps
including a chemical oxidation, the final molecule ART is gained.

Based on the preparatory work by Acton and Roth and studies about AD production in bacteria
[88, 89] and AA production in yeast [75, 90], the semi-synthesis of ART has been attempted to
be industrialized by the companies Amyris and Sanofi [81, 86, 91]. In the Amyris approach, the
chemical conversion from AA to ART was not suitable for scale-up, a prerequisite for a successful
industrialization [92]. ART yields of the partial synthesis reached 40 to 45 % and pure ART was
obtained with a yield of 19 % [91]. Albeit, Amyris is still working on ART [92], and in 2017, they
reported a semi-synthesis starting with AD instead of AA as it is produced in a 2-fold higher molar
yield, obtaining pure ART with a yield of 60 % [93]. The cheaper and less advanced intermediate
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AD has also been investigated in very recent publications [94, 95]. Despite process improvements
by Sanofi to the Amyris process, the built plant for the production of ART ceased operation in
2015 mainly due to low ART market prices [53, 57]. After its shutdown, Sanofi sold the factory
to Huvepharma in Hungary, that, according to its CEO, produced 20 t of semi-synthetic ART in
2017 [92]. Similar to the Amyris process, Sanofi used a DHAA derivative, i.e., an anhydride
of DHAA, to prevent loss reactions. Contrary to the Amyris counterpart, Sanofi employed a
photochemically induced process for the generation of singlet oxygen, thereby mimicking the
biosynthetic pathway. They applied tetraphenylporphyrin (TPP) as photosensitizer and added
trifluoroacetic acid (TFA) in dichloromethane before entering the photo reactor in order to have
both steps happening in one reactor. The overall Sanofi process yield for pure ART from AA is
55 % [91], a significant improvement to the Amyris process. In 2016, Burgard et al. [96] from
Sanofi published an improvement to their process. The energy-intensive mercury lamps were
replaced by LED modules and the omission of the derivatization step to the DHAA anhydride
was investigated. The replacement with LED lamps resulted in a yield of 50 % and a total reaction
time of 8 h. Additionally, using DHAA instead of its derivative gave yields between 47 to 59 %
for different measurement campaigns and batches, and a maximum yield of 62 % for diastomeric
pure DHAA.

2.2 Continuous Manufacturing of Artemisinin

Both the Amyris and the Sanofi process are run in batch and semibatch reactors, as it is standard
in the pharmaceutical industry until today. Batch processes are not very well understood on a
micro-scale, have low yields, are difficult to scale-up, and therefore inherently hinder a good
product quality [97]. Continuous processes in turn, as established in the chemical industry, offer
considerable potential in improving efficiency, safety, material consumption, scale-up, process
understanding, monitoring and control, and in finding new synthetic routes, leading ultimately
to increased product quality and economic benefits, for both development and manufacturing
[98]. Relating to the process in this work, the photooxygenation of DHAA to PO1 requires
efficient irradiation of the reactant solution and sufficient supply of oxygen to achieve good yields
within an acceptable time frame. Likewise, sufficient supply of oxygen is needed in the acid-
catalyzed section. Milliscale flow reactors in Taylor flow mode offer high surface area between
gas and liquid phase and efficient irradiation of the substrate due to the small channel depths.
Flow microreactors are therefore suitable for the production of ART using the here considered
partial synthesis route, not least as multiple phases and photoreactions are involved. Besides the
manufacturing perspective, the same advantages of continuous flow microreactors are beneficial
for the study of kinetic reactions alike [99–102]. Additionally, the regulatory Quality-by-design
and Process Analytical Technology initiatives by the U.S. Food and Drug Administration stimulate
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Figure 2.2: Semi-synthetic path from dihydroartemisinic acid (DHAA) to artemisinin (ART) [60].

innovations such as continuous manufacturing processes [98]; see the work by Mascia et al. [103]
for an end-to-end continuous pharmaceutical process example.

The research groups of Seeberger and Seidel-Morgenstern have been developing a continuous
process for the production of artemisinin and derivatives, starting from extraction, across synthesis
up to purification [60, 63, 65, 104–109]. For the synthesis part, the pathway starting from DHAA
is extensively explored, and led to a significant reduction in residence times to several minutes
for the production of ART because of the use of milliscale flow reactors. Next to the provision
of DHAA from heterologous production, the authors suggest to utilize the DHAA content of the
plant itself.

Converting DHAA to ART was conducted in a single flow reactor with three different sections
[63]. The first section comprised the photoreactor, the trailing two sections temperature-controlled
regions for the acid-catalyzed synthesis. The conversion from DHAA to ART proceeds along
the pathway that is shown in Figure 2.2. DHAA reacts with singlet oxygen, that is formed
photochemically using either TPP [60] or dicyanoanthracene (DCA) [63] as photosensitizer, in an
ene-type reaction to the desired hydroperoxide PO1, besides other hydroperoxides [63]. Next, by
terminal protonation with TFA, a Hock cleavage is induced that converts PO1 to the enol. With
the addition of triplet oxygen, the enol reacts to the enol hydroperoxide, that further reacts to the
final product ART under acidic conditions.

In a first attempt with TPP and TFA in dichloromethane and a mercury lamp, a by chromatography
purified ART yield of 39 % was achieved with a total residence time in the reaction lines of
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only 4.5 min [60]. Later, the more chemically-stable DCA replaced TPP, toluene replaced
dichloromethane, and an LED module replaced the mercury lamp [63]. The selectivity of the
photooxygenation was increased by setting the reaction temperature to −20 ◦C, and an ART yield
of 65 % was achieved resulting in a space-time yield of 3.5 g/(ml d). Following a temperature
screening of both the photo reactor and the reaction line temperature, a maximum ART yield of
69 % was achieved [63]. In contrast to the utilization of synthetically produced photosensitizers,
Triemer et al. [65] showed that in a similar setup the DHAA-containing crude plant extract can be
directly used to produce artemisinin in similar yields, i.e., 67 %, where the present chlorophylls
act as natural photosensitizers.

The experimental setups, whose measurement data is used in this study, build upon the introduced
continuous processes in [60], [63] and [65], and are explained in more detail in the following
Sections.

2.3 Experimental Setups for Artemisinin Synthesis

For the identification of the process model describing the continuous partial synthesis of ART,
Chapters 4 and 5, measurement data is required. The corresponding continuous setup was de-
signed and constructed by Susann Triemer and co-workers at the Max Planck Institute Magdeburg,
Figure 2.3. She also run the experiments, collected and analyzed the measurement samples. To
support the kinetic analysis of the continuous reaction system under study, experiments in a batch
reactor have been likewise performed by Susann Triemer in parallel. Detailed descriptions of the
setups, the used equipment, and the operational and measurement procedures are found in her
dissertation [61], and are summarized in the following.

The main components are two reactors that are connected in series: The photoreactor and a
reaction unit for the subsequent acid-catalyzed sequence, also referred to as synthesis reactor.
The inner diameters of the fluorinated ethylene propylene tubing are 0.8 mm in the photoreactor
and 1.6 mm in the acid-catalyzed part beginning with the three-way valve, Figure 2.3a. Through
this tubing, liquids are pumped by syringe pumps to ensure constant and low-fluctuating flows.
Gas is provided by the in-house gas supply and regulated to 7 bar by two pressure regulators at the
end of the liquid and gas line. Inside the photoreactor, the tubing is coiled around two polystyrene
pillars, and shielded from light at the beginning and at the end to allow for equilibration. The
lengths of the tubing can be varied in five steps from 1 to 10 m. The stainless-steel casing has
two polystyrene windows on its opposite sides, through which LED modules with 25 · 25 mm
emission windows emit light in a 120◦ angle and in wavelengths of either 417 nm or 660 nm.By
design, the coiled tubing is completely irradiated by each of the LED modules and light cannot
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Figure 2.3: Continuous photo-flow reactor setup at the Max Planck Institute Magdeburg for the semi-synthesis of
artemisinin. The schemes are reproduced and adapted, and the pictures are reprinted from [108] and [61].

leave the reactor. The temperature in the photoreactor is controlled by a cooling liquid that fills
the casing.

In the acid-catalyzed section, the inner diameter of the FEP tubing is doubled to retard the pressure
drop while providing sufficient reaction volume to allow the slower conversion to ART to finish.
The tubing is coiled around a stainless-steel frame, that is located in a stainless-steel casing with
the possibility of temperature control.

Phase separation occurs first in a membrane unit before the gas stream enters a stainless steel
cylinder for a second phase separation to prevent liquid affecting the downstream devices. The
gas flow is measured by a mass flow meter, and its liquid counterpart is sampled for subsequent
measuring by proton nuclear magnetic resonance (1H-NMR).

The setup can be operated in two different modes. First, in photooxygenation mode the two-phase
flow does not enter the acid-catalyzed reaction line and no acidic feed is supplied (Chapter 4),
see three-way-valve in Figure 2.3. Second, in full synthesis mode the two-phase flow first passes
through the photoreactor to produce the hydroperoxide reactant PO1, and, dosed with acid, enters
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gas
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liquid
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(a) Scheme of Taylor flow conditions in a circular channel. (b) Developed Taylor flow in reac-
tor setup.

Figure 2.4: Total flow rates between 0.5 and 2 ml/min ensure Taylor flow conditions in the continuous reactor setup.
Taylor flow is characterized by alternating gas bubbles and liquid slugs, thin film formation between bubbles
and wall, and Taylor recirculation within the slugs. The picture is reprinted from [61].

the synthesis reactor (Chapter 5). The specific procedures for operating in one of the two modes
are described in the following Section.

2.3.1 Continuous Steady-State Experiments

The photoreactor and the synthesis reactor are kept at −20 and 20 ◦C, respectively. DHAA and
DCA are dissolved in toluene. Before operation, the whole system is rinsed with the solvent and
N2. The total flow rate is varied between 0.5 and 2 ml/min to ensure Taylor flow conditions,
Figure 2.4. Correspondingly, the gas flow rates are set by the mass flow controllers to a gas-liquid
ratio of 4:1 (v:v). If acid is required, TFA is dissolved and dosed prior to the synthesis reactor in a
ratio of 9:1 (v:v, based on the liquid volume). After a system pressure of 7 bar stabilizes, the LED
modules with set light intensity are switched on, and the experiment starts. As soon as the system
reaches steady-state, samples of the reactor effluent in duplicate or triplicate are collected. After
sampling, a new experiment can be started by altering the experimental conditions and repeating
the described procedure. Thus, each of the samples drawn at the end of the line corresponds to
one steady-state operating point. The samples are analyzed offline and not necessarily on the
same day by 1H-NMR.

2.3.2 Batch Experiments

With the goal of a more complete insight into the investigated dynamic kinetics in the acid-
catalyzed sequence, time-resolved experiments in a batch reactor are performed next to the
continuous ones. Since radiative and mass transfer in batch reactors is in general limiting [100],
the batch experiments aim at the acid-catalyzed reaction steps that do not involve oxygen.

The reactant PO1 is prepared using the continuous setup described above on the day before the
batch experiments. The reactor effluent is stored in a brown flask overnight in a fridge at 4 ◦C, and
is directly used as feed in the upcoming batch experiments. A double-walled glass reactor with
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temperature control ensuring 20 ◦C is rinsed with nitrogen before dissolved TFA in 1 mL toluene
is added to the 30 ml solution in the reactor. A syringe attached to a rubber stopper is used for
sampling. The samples are directly quenched with triethylamine dissolved in 0.4 ml toluene, and
analyzed by 1H NMR as in the continuous experiments.
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3 Mathematical Methodologies

In this Chapter, the key steps of the systematic approach to model identification are outlined.
They are used for the development of a mathematical process model simulating the continuous
experimental setup from the previous Chapter and for the model-based analysis of its process
behavior. A brief introduction into the discipline of process systems engineering, on which the
systematic approach is based, is followed by the theoretical foundations to build the process model
and the mathematical fundamentals for the model identification and the model-based analysis.
Contents of this Chapter have been published in [110] and [108].

3.1 Process Systems Engineering

The term process systems engineering (PSE) was coined at the 1st Process Systems Engineering
conference in Kyoto in 1982 [111, 112]. Originally applied in chemical engineering and in various
different fields nowadays [2], PSE is about the systematic and model-based solution of systems
problems [113]. For an effective implementation of Quality by Design and Process Analytical
Technology strategies, PSE offers useful modeling and simulation tools, which is especially true
for the fast growing biopharmaceutical market [114–116]. At a systems problem’s core in PSE
lies a mathematical representation of a physical process, i.e., a mathematical process model M,
Equation (3.1), shown in Figure 3.1. It represents a system with model parameters 𝜽 ∈ R𝑛𝜃 and
defined boundaries, across which inputs 𝒖 ∈ R𝑛𝑢 and outputs of the system 𝒚 ∈ R𝑛𝑦 might exist,
see also Figure 3.2a. The vector function 𝒇 : R𝑛𝑢 −→ R𝑛𝑦 relates the inputs of the system to its
outputs; thus, describing the system’s behavior.

The two systematic and iterative PSE work cycles in Figure 3.1 are referred to as identification
and application cycle. The former ensures the reliable identification of a process model, whereas
the latter here illustrates process design, but might be replaced by other tasks like prediction,
scale-up, process control, fault detection, or gaining process understanding. Importantly, the link
between the two cycles is the process model M, Section 3.3. That is, the systematic identification
of a reliable process model is crucial for the informative value of subsequent application tasks
[28, 33, 117].
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3.2 Identifying a Process Model

Identifying a process model M from data 𝒚̃ requires to mathematically model the inherently
random data. The most common approach is to assume that a data point 𝑦̃𝑖 , 𝑖 ∈ {1, 2, . . . , 𝑁},
follows the additive noise model

𝑦̃𝑖 = 𝑦𝑖 + 𝜖𝑖 , (3.2)

with 𝑦𝑖 the output of the process model M, and 𝜖𝑖 a random error term, also referred to as residual
[27]. A corresponding diagram is given in Figure 3.2a, where the same additive noise model
applies to the real system output 𝑦★

𝑖
with 𝜂𝑖 the stochastic measurement error. For quantification
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(b) Bias variance tradeoff, Equation (3.3).

Figure 3.2: Identifying a process model from data involves assuming a data model, e.g., the additive noise model. Its
model error shows contradicting trends for bias and variance with increasing structural complexity.
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of the predictive capabilities of M, the mean squared error between the data and the model output
is a natural choice and reads in a probabilistic setting as [118]

MSE(M) = E
[
(𝑌 − 𝑌 )2] = (

𝑌★ − E[𝑌 ]
)2︸           ︷︷           ︸

(bias error)2

+E
[
(𝑌 − E[𝑌 ])2]︸               ︷︷               ︸
variance error

+V[𝐻2], (3.3)

where capital letters are used to indicate that the variables are in general of random nature, andE[·]
andV[·] are the expected value and the variance operator, respectively. Next to the non-reducible
measurement variance V[𝐻2], Equation (3.3) tells us that the model error is composed of a bias
and a variance error term, that both need to be reduced at the same time for a minimum prediction
error. However, the two terms have opposite trends, i.e., increasing structural complexity by, for
example, adding model parameters, decreases the bias but increases the variance term and leads
to overfitting [119], Figure 3.2b. Identifying a process model from data will therefore always
consider a tradeoff between bias and variance, that is usually driven by the principle of parsimony,
i.e., to have a model structure complexity as simple as possible, but no simpler [120]. While
identifying a process model from data, one frequently faces two challenges: (i) selecting a model
structure M following the principle of parsimony, and (ii) estimating its model parameters 𝜽 .
Model selection is required when the mathematical description of the system’s behavior is not
or not fully known, but potential descriptions can be postulated. It then comprises the structural
identification of a model from the set of proposed model candidates, that is, the detection of
the interplay between inputs 𝒖, outputs 𝒚 and parameters 𝜽 . Contrarily, parameter estimation
means to determine numerical values for a subset of the model parameters 𝜽 that cannot be
identified by other means, e.g., by values found in literature or based on previous experience. To
draw inference about a model structure and its parameters from data, the inherent randomness of
the data is commonly mathematically described by a probability density function pdf ( 𝒚̃ |𝜽 ,M)
(PDF), that evaluates the probability of the data 𝒚̃ given the parameters 𝜽 and a model M. A
standard representative of PDFs is based on the Normal or Gauss distribution N :

pdf ( 𝑦̃ |𝜇, 𝜎,N) = 1
√

2𝜋𝜎2
exp

[
− ( 𝑦̃ − 𝜇)2

2𝜎2

]
, (3.4)

with realization or data 𝑦̃ of the random variable 𝑌 , and the two parameters of the Normal
distribution 𝜇 and 𝜎, the mean and the standard deviation, respectively [119].

In both challenges, i.e., precise parameter estimation and reliable model selection, approaches
following model-based design of experiments (MBDoE) have proven beneficial over the last few
decades [29, 121–123], Section 3.7, as they ensure high informative content in the experimental
data, and have therefore become an important part within PSE. A detailed scheme of the identifi-
cation cycle including MBDoE, that is used in this work and loosely guides through this Chapter,
is given and explained in Figure 3.3.
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Figure 3.3: Systematic strategy for model identification [118, 124]: A closer look into the iterative identification cycle in
Figure 3.1. Defining the targets of the modeling scenario determines the type and the complexity of the model.
Constraints on the amount of data and its quality, on computational and human resources, on experiences and
expert knowledge, and on available time should be considered at this stage. Subsequently, different model
structures are postulated resulting in a set of model candidates M1 = {M𝑖 |𝑖 ∈ N+}. Identifying a model
requires experimental data with the experiments designed by, at best model-based, design of experiments
(MBDoE). The design vector 𝝃 determines the experimental settings, that deliver highly informative data 𝒚̃.
Estimating the model parameters, yielding 𝜽, and model selection ideally leaves one model candidate, that
is validated and can be deployed for application scenarios afterwards. If the targets are not met, different
scenarios are possible depending on the number of candidates left: reconsider the targets, construct new
model candidates, or design a new experiment.
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3.3 Mathematical Models for (Bio)Chemical
Processes

Dynamic process models in PSE, that describe (bio)chemical processes, are commonly math-
ematically described by ordinary differential equations (ODEs). Their state-space formulation
comprises a state and an output equation, where the former describes the dynamic behavior and
the latter the measured quantities of the system. The state equation reads

d𝒙
d𝑡

= 𝒇𝑥 (𝒙(𝑡), 𝒖(𝑡), 𝜽), (3.5a)

with 𝑡 the independent variable, here time, 𝒙 ∈ R𝑛𝑥 the time-dependent system states, 𝒖 ∈ R𝑛𝑢
the time-dependent system inputs or controls, 𝜽 ∈ R𝑛𝜃 the parameter vector, and 𝒇𝑥 : R𝑛𝑥 ×
R𝑛𝑢 ×R𝑛𝜃 −→ R𝑛𝑦 a vector field defining the dynamics of the system. For the forward solution of
the ODEs initial conditions

𝒙(𝑡 = 0) = 𝒙0 (3.5b)

must be provided. The output function is defined as

𝒚(𝑡) = 𝒇𝑦 (𝒙(𝑡), 𝒖(𝑡), 𝜽), (3.5c)

with 𝒇𝑦 : R𝑛𝑥 × R𝑛𝑢 × R𝑛𝜃 −→ R𝑛𝑦 the (non-)linear output function. In many cases, the system
outputs are a (linear) function of the system states only; that is, 𝒚(𝑡) = 𝒇𝑦 (𝒙(𝑡)).

In first principles modeling, the state equation, Equation (3.5a), is based on physics and
(bio)chemistry principles and yields a process modelM, Equation (3.1), whose dynamic behavior
is fully determined by the set of the three Equations (3.5). Essential in the case of (bio)chemical
processes are (bio)chemical kinetics, that might be driven by photon transfer as in the artemisinin
partial synthesis. If the reaction kinetics are combined with a reactor model, a process model
is obtained. The reactor model comprises the description of the physical phenomena occurring
within the reactor, namely the setup-specific flow conditions and mass transfer. Balance equa-
tions for the conserved quantities mass, momentum and energy, where the chemical kinetics are
integrated, are postulated and form the differential equations (3.5a). In the adjacent Sections,
both parts of the process model are introduced, before the focus is shifted towards the model
identification aspects.
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3.3.1 Modeling of Chemical Reactions

In a chemical reaction
𝑎A + 𝑏B 𝑐C + 𝑑D (3.6)

with reactants A and B, products C and D, and their stoichiometric coefficients 𝑎,𝑏,𝑐 and 𝑑, the
rate of reaction is

𝑟 =
1
ν𝑖
𝑟𝑖 =

1
ν𝑖𝑉

d𝑛𝑖
d𝑡
, ∀𝑖 ∈ {A,B,C,D}, (3.7)

with 𝑛 the number of moles, 𝑉 the volume of the reaction mixture, and ν the stoichiometric
number [26]. The stoichiometric numbers are the negatives and positives of the stoichiometric
coefficients in the reaction (3.6) for the reactants and the products, respectively, e.g., νB = −𝑏.
For constant volume 𝑉 , the rate of reaction 𝑟 from Equation (3.7) can be written in terms of the
concentrations as

𝑟 =
1
ν𝑖

d𝑐𝑖
d𝑡
. (3.8)

If species 𝑖 is involved in several reactions 𝑘 , its rate of concentration change is thus

𝑟𝑖 =
d𝑐𝑖
d𝑡

=
∑︁
𝑘

ν𝑖,𝑘𝑟𝑘 . (3.9)

To describe the rate of reactions 𝑟𝑘 , kinetic laws can be utilized, that are discussed after key
measures for chemical reactions are introduced in the following.

Key Measures for Chemical Reactions

The residence time is crucial for reaction engineering, as precise understanding of the reactor
behavior necessitates the knowledge of the velocity distribution within the reactor [26]. Alterna-
tively, when no velocity distribution is available or ideal reactor behavior is assumed, a superficial
residence time can be calculated for a two-phase flow reactor from

𝜏s =
𝑉

¤𝑉l,0 + ¤𝑉g,0
, (3.10)

with 𝑉 the considered reactor volume and ¤𝑉l,0 and ¤𝑉g,0 the initial liquid and gas volumetric
flow, respectively. Note that the superficial residence time in the continuous setup introduced in
Chapter 2 will underestimate the actual residence time as the gas flow rate will decrease with
the formation of hydroperoxides and artemisinin in the photooxygenation and acid-catalyzed
sequence, respectively.
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The yield of the formed species C relative to the consumed species B in the reaction (3.6) in a
constant volume reactor is [125]

YC =
[C] − [C]0

[B]0

−νB

νC
, (3.11)

where square brackets indicate concentration and the subscript 0 marks the reference state, e.g.,
the initial conditions. The corresponding conversion of species B is [125]

XB =
[B]0 − [B]

[B]0
. (3.12)

For reactor evaluation, the space-time yield is another important measure, that gives insight about
production efficiency of the formed species C relative to the reactor volume and time [125]:

STYC =
¤𝑛C

𝑉
, (3.13)

with ¤𝑛C the molar production rate of species C. Lastly, the recovery of the species B indicates the
amount of species Ci descendant of B that could be found in measurements:

RB =

∑
𝑖 [Ci]
[B]0

. (3.14)

Kinetic Laws

The stoichiometric description of the chemical reaction in Equation (3.6) yields species balances,
but does not necessarily give insight about the reaction mechanism and velocity described by the
rate of reaction 𝑟 , Equation (3.8). Commonly, kinetic laws are postulated following the idea of
mass action kinetics. Considering the chemical reaction in Equation (3.6), its rate of reaction
might then be defined as [26]

𝑟 = 𝑘 [A]𝑚A [B]𝑚B , (3.15)

with kinetic rate coefficient 𝑘 , and the occurring powers 𝑚𝑖 referred to as reaction orders.
Reactions whose rates follow their stoichiometric equations, i.e., the reaction orders equal the
absolute values of their stoichiometric numbers ν𝑖 , are referred to as elementary reactions. The
number of reactants involved in an elementary reaction, also termed molecularity, is usually one,
two, or occasionally three [26]. In non-elementary reactions, the reaction orders in Equation (3.15)
might not align with stoichiometry, or the kinetic law for the reaction rate 𝑟 itself might assume
a different structure. However, non-elementary reactions are often a summary of elementary
reactions, that take place in the considered mechanism and that is often a consequence of made
assumptions considering the mechanism [26].
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For deriving a process model, the kinetic laws describing the (bio)chemical reaction network must
be connected to a reactor model that describes the experimental setup. In the adjacent Section,
the two-fluid model is introduced, that was used to simulate the continuous experimental reactor
setup, Section 2.3.

3.3.2 Modeling of Multiphase Flow Reactors

Motivation for the Two-Fluid Model

Generally speaking, reactor models consider mass, momentum and energy balances; and the
radiative transport equation if photo-induced processes are involved. Because of the complex
and diverse nature of multiphase flows, there is a vast number of different mathematical models
that commonly average the local formulations of the aforementioned field equations in some
form [126]. A well-established approach is the multi-fluid model with its special case the two-
fluid model, in particular in nuclear reactor technology and in the petroleum industry, where
it is successfully applied for diverse flow regimes and in different operating situations [126–
128]. In the microreactor community, on the contrary, multifluid models are less frequently
considered [129, 130]. The reasons are twofold; first, the phase interface is not explicitly
captured despite its importance. And second, the required interfacial transfer descriptions are
based on isolated particles that do not reflect reality in small channels [130]. However, opposite
to the goal of a precise resolution of the fluid interfaces, successful multifluid approaches for
microchannel systems do exist in literature yielding good model-data fits [131–135]. Furthermore,
data and correlations for microchannel (flow) properties that might be used for closure relations in
multifluid models are widespread in the literature, see [136] and references therein. Additionally,
in the experimental setup at hand, only small relative pressure drops over the reactor (0.1 to 0.5 bar
at 7 bar absolute pressure) and a low slip between gas and liquid phase were observed, Equation
4.19, supporting the omission of a differential momentum balance [131]. Moreover, the reactor
was operated isothermally, resulting in the assumption of absence of an internal thermal gradient
and therefore allowed to neglect an energy balance.
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Material Balances of the Two-Fluid Model

In the two-fluid model, each of the two phases is balanced separately. In a phase 𝑘 ∈ {l, g} (l:
liquid, g: gaseous) that is in steady-state and does not exhibit diffusion, the mass species balance
of a species 𝑖 along the spatial reactor coordinate 𝑧 of a flow reactor is [126]

d(𝛼𝑘𝐴𝜌𝑘w𝑘,𝑖𝑢𝑘)
d𝑧

=
∑︁
𝑗

𝛼𝑘𝐴𝑆𝑘,𝑖, 𝑗 . (3.16)

𝜌𝑘 is the density of the phase, 𝑢𝑘 is the velocity of the phase, w𝑘,𝑖 is the weight fraction of species
𝑖 in the phase, and the terms 𝑆𝑘,𝑖, 𝑗 on the right-hand-side denote sources and sinks of species
𝑖 in phase 𝑘 , namely chemical reactions and mass transfer from one to the other phase. The
cross-sectional area of the channel 𝐴 is the sum of the unspecified cross-sectional areas 𝐴g and
𝐴l that are covered by the gas volumetric flow ¤𝑉g and the liquid volumetric flow ¤𝑉l, respectively,

𝐴 = 𝐴g + 𝐴l. (3.17)

They are linked via the gas fraction 𝛼g, or short 𝛼:

𝛼g = 𝛼 =
𝐴g

𝐴
, 𝛼l = 1 − 𝛼 =

𝐴l

𝐴
. (3.18)

The phase velocities are then given as

𝑢g =
¤𝑉g

𝐴g
=

¤𝑉g

𝛼𝐴
, 𝑢l =

¤𝑉l

𝐴l
=

¤𝑉l

(1 − 𝛼)𝐴 . (3.19)

Thus, alternatively, Equation (3.16) can be reformulated:

d(𝜌𝑘w𝑘,𝑖 ¤𝑉𝑘)
d𝑧

=
∑︁
𝑗

𝛼𝑘𝐴𝑆𝑘,𝑖, 𝑗 . (3.20)

In the following, we derive the balances for the gas and the liquid phase, and might drop the phase
index 𝑘 for clarity if free of confusion.

Liquid Phase. In the liquid phase, we derive the species mass balance on a concentration basis.
With mass fraction wl,𝑖 =

𝑐𝑖𝑀𝑖

𝜌l
(𝑀𝑖: molar mass of species 𝑖), we obtain from Equation (3.20)

d(𝑐𝑖 ¤𝑉l)
d𝑧

=
∑︁
𝑗

(1 − 𝛼)𝐴𝑆m
l,𝑖, 𝑗 , (3.21)

25
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where the sources and sinks are now molar-based, denoted by the superscript m. Despite mass
transfer from the gas phase into the liquid phase, and composition changes of the liquid phase
due to reactions, the liquid density is assumed to be constant over the reaction line. Hence, to
ensure mass continuity, the volumetric liquid flow is constant resulting in

d𝑐𝑖
d𝑧

=
1
𝑢l
(𝑟𝑖 + 𝑗𝑖), (3.22)

where 𝑟𝑖 is the net rate of reaction, Equation (3.9), and 𝑗𝑖 is the net material transfer from the gas
to the liquid phase.

Gas Phase. For the gas phase, a derivation based on molar fractions is preferred. The mass
fraction can be converted to molar fraction via

x𝑖 = w𝒈,𝑖
𝑀

𝑀𝑖
, (3.23)

where the total molar mass of the gas phase is 𝑀 =
∑
𝑖 𝑥𝑖𝑀𝑖 . Assuming an ideal gas mixture, the

density can be calculated from [137]

𝜌g =
𝑝𝑀

𝑅𝑇
(3.24)

with the total pressure 𝑝, the universal gas constant 𝑅, and the temperature 𝑇 . The molar fraction
of a species 𝑖 in an ideal gas mixture is [137]

x𝑖 =
𝑉𝑖

𝑉g
. (3.25)

Plugging the provided relations into the species balance, Equation (3.20), results in

d
( 𝑝
𝑅𝑇

x𝑖 ¤𝑉g
)

d𝑧
=

∑︁
𝑗

𝛼𝐴𝑆m
g,𝑖, 𝑗 . (3.26)

Assuming constant pressure and temperature, see Section 3.3.2, we obtain for the molar fraction
of species 𝑖

dx𝑖
d𝑧

=
1
¤𝑉g

(
𝑅𝑇

𝑝

∑︁
𝑗

𝛼𝐴𝑆m
g,𝑖, 𝑗 − x𝑖

d ¤𝑉g

d𝑧

)
(3.27)

The derivative of the volumetric gas flow follows from Equation (3.26), if we set the species 𝑖 to
the gas phase (i.e., xg = 1):

d ¤𝑉g

d𝑧
=
𝑅𝑇

𝑝
(1 − 𝛼)𝐴

∑︁
𝑖

𝑗𝑖 , (3.28)
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with mass transfer terms 𝑗𝑖 as the only sinks and sources. Please note that (1 − 𝛼) on the right
hand side of Equation (3.28) is the correction of the mass transfer, since the mass transfer terms
𝑗𝑖 are based on the liquid volume.

The foundations for the modeling of chemical reactions, Section 3.3.1, and multiphase flows,
Section 3.3.2, have been laid out. The process model can therefore be built and subsequently be
identified as outlined in the coming Sections.

3.4 Parameter Estimation

Estimating parameters of process models is pivotal in PSE. Methods for parameter estimation
are therefore vast in literature [138, 139]. In a frequentist setting, parameter inference is often
quantified with a 100(1 − 𝜙)% confidence interval for the true parameter 𝜃★, where

Pr{𝜃★ ∈ [𝑙𝑏(𝒀̃), 𝑢𝑏(𝒀̃)]} = 1 − 𝜙, (3.29)

with 𝒀̃ a vector of random variables representing the data and 𝑙𝑏 and 𝑢𝑏 the lower and upper
bound of the confidence interval, respectively [140]. That is, when resampling the data 100 times,
(1 − 𝜙)100 of the corresponding intervals will cover the true parameter 𝜃★. Ideally, parameter
estimation will result in a confidence interval as short as possible [140]. To find such an optimal
estimator 𝜃 (𝒀̃), a look at the mean squared error gives again insight (compare with Equation
(3.3)) showing a similar bias and variance error term:

MSE(𝜃) = E[(𝜃 − 𝜃★)2]
= (E[𝜃] − 𝜃★)2︸          ︷︷          ︸

(bias error)2

+E
[
(𝜃 − E[𝜃])2]︸              ︷︷              ︸
variance error

. (3.30)

In practice, estimators are searched that have zero bias and minimum variance, referred to as
minimum variance unbiased estimators (MVUEs). A popular representative is the maximum
likelihood estimator (MLE), that is asymptotically optimal, as it is unbiased with an approximate
Normal distribution and has minimum variance for large enough data sets, i.e., it is asymptotically
an MVUE [141]. The maximum likelihood estimate follows from maximizing the likelihood
function given data 𝒚̃ and a statistical model M:

𝜽MLE = arg max
𝜽

L(𝜽 | 𝒚̃,M). (3.31)
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Based on Equation (3.4), the logarithmic likelihood function with independent additive Normal
errors, that have zero means, is:

logL(𝜽 ,𝝈 | 𝒚̃,M) = −1
2

𝑛𝑦 (𝑡𝑘 )∑︁
𝑗=1

𝑛𝑡∑︁
𝑘=1

[
log(2𝜋𝜎2

𝑗 (𝑡𝑘)) +
(
𝑦̃ 𝑗 (𝑡𝑘) − 𝑦 𝑗 (𝑡𝑘 , 𝜽)

𝜎𝑗 (𝑡𝑘)

)2
]
. (3.32)

Here, it is considered, that different samples at time points 𝑡𝑘 might have different numbers of
data points 𝑛𝑦 (𝑡𝑘). The total number of data points is then 𝑁 =

∑𝑛𝑦 (𝑡𝑘 )
𝑗=1

∑𝑛𝑡
𝑘=1 1.

A (1 − 𝜙)100% asymptotic confidence interval for a parameter 𝜃𝑖 is evaluated as follows:

𝜃𝑖 ± z1−𝜙/2
√︁
𝐶𝜃,𝑖𝑖 , (3.33)

with z the 1−𝜙/2 quantile of Z∼N(0, 1), and𝐶𝜃,𝑖𝑖 the diagonal entries of the parameter covariance
matrix C𝜃 . The latter can be approximated via the inverse of the Fisher information matrix (FIM)

C𝜃 ≈ FIM−1, (3.34)

with the FIM named in honor of Ronald A. Fisher [142, 143], that can be calculated from

FIM = −E
[
𝜕2 pdf ( 𝒚̃ |𝜽)
𝜕𝜽𝜕𝜽ᵀ

����
𝜽★

]
. (3.35)

In the case of independent Gaussian errors, Equation (3.32), the FIM can be calculated as [141]:

FIM N
=

[
𝜕𝒚(𝜽)
𝜕𝜽︸ ︷︷ ︸
SM

����
𝜽★

] ᵀ
𝚺−1 𝜕𝒚(𝜽)

𝜕𝜽

����
𝜽★
, (3.36)

with 𝚺 the measurement covariance matrix, and SM = 𝜕𝒚/𝜕𝜽 the sensitivity matrix of the model
parameters. The FIM in Equation (3.36) generally cannot be evaluated due to lack of knowledge
about the true parameter value 𝜽★. In practice, the FIM is therefore approximated using either
Equation (3.35) or Equation (3.36) by utilizing the MLE. In the former case, the FIM follows
from the log likelihood function, Equation (3.32) [141]:

FIM ≈ − 𝜕2 logL(𝜽)
𝜕𝜽𝜕𝜽ᵀ

����
𝜽MLE

. (3.37)

Alternatively, the FIM can be determined from the parameter sensitivities:

FIM ≈ [SM |𝜽MLE
]ᵀ𝚺−1SM |𝜽MLE

. (3.38)

28



3.5 Model Selection

Hence, the second alternative is especially helpful if data is not or not yet present. Accordingly,
the FIM in Equation (3.37) is usually termed the observed FIM, and the FIM in Equation (3.38)
is referred to as expected FIM [144].

A special case in parameter estimation forms, if the errors in the log likelihood function in
Equation (3.32) are additionally identically distributed. The log likelihood function can then
be reduced to the widely applied ordinary least squares (OLS) objective function for parameter
estimation [27]:

JOLS (𝜽) = RSS(𝜽) =
𝑛𝑦 (𝑡𝑘 )∑︁
𝑗=1

𝑛𝑡∑︁
𝑘=1

(
𝑦̃ 𝑗 (𝑡𝑘) − 𝑦 𝑗 (𝑡𝑘 , 𝜽)

)2
. (3.39)

Thus, in OLS parameter estimation, the goal is to minimize the residual sum of squared errors
(RSS) over the parameter space. Frequently, the measurement variance 𝜎2 cannot be deduced
from the experimental data, but instead, it is considered another parameter to estimate. In OLS
parameter estimation, the measurement variance can be obtained a posteriori from its maximum
likelihood estimate

𝜎̂2 =
RSS(𝜽MLE)

𝑁
. (3.40)

Note that in the maximum likelihood approach, it is inherently assumed that the model structure
is known and indeed simulates the physical system, Figure 3.2a. However, frequently, the correct
model structure is not given or only partially known. Thus, methods beyond Fisher’s likelihood
theory have to be applied, with the goal of selecting a model structure from a set of model
candidates, referred to as model selection as explained in the following Section.

3.5 Model Selection

The here used iterative approach to model selection, where from a set of model candidates
M𝑖 the best candidate according to a chosen criterion is searched, Figure 3.3, is very common
in (bio)chemical process models [145, 146]. Criteria for model assessment and selection are
subject to different dimensions: falsifiability, explanatory adequacy, interpretability, faithfulness,
goodness-of-fit, complexity/simplicity and generalizability [27]. In general, there is no master
strategy for model selection and therefore no universal criterion [147]. If data abundance is
not an issue, splitting the data set into a training, validation and an external test data set is a
straightforward approach. However, several methods have been developed that make better use of
the available data, where an additional test data set might not absolutely be necessary [118]. Next
to the computationally expensive cross validation, and statistical tests, information criteria are
widely applied [118]. In general, information criteria can be expressed as functions of model-data
mismatch and model complexity, thereby considering the bias variance dilemma, Figure 3.2b. A
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well-known information criterion is the Akaike information criterion (AIC) or its small-sample
analog, the corrected Akaike information criterion AICc [120]. It evaluates the model response
residuals as well as the model complexity in terms of the dimension of the model parameter
vector:

AIC = −2L(𝜽MLE) + 2𝐾, (3.41)

with 𝐾 the number of estimated parameters, that is in general not equal to the number of estimated
process model parameters. The corrected AIC is

AICc = AIC + 2𝐾 (𝐾 + 1)
𝑁 − 𝐾 − 1

, (3.42)

where its use is recommended for 𝑁/𝐾 ratios below 40 [120]. From Equation (3.41), it is obvious
that the AIC inherently considers the bias variance tradeoff, Equation (3.3), by penalizing the
goodness-of-fit measure, i.e., the log likelihood value at the MLE, through the number of estimated
parameters 𝐾 . Hence, selecting a best model candidate using the AIC basically means to perform
a maximum likelihood estimation of the model parameters, as outlined in Section 3.4. Note that
the AIC is a relative measure and therefore must be interpreted as such, where AIC values ranging
from large negative values to values as high as 304, 000 have been observed [120]. In this work,
the AIC serves as a heuristic and supports the model selection procedure.

In situations when parametric uncertainties in the model are considered, alternative criteria are
better suited than the AIC, as it solely considers a point estimate within the parameter space,
the MLE, and the corresponding model responses [147]. For instance, the so-called overlap
approach emphasizes the fact that in reality, model parameters are uncertain, which is in turn
not regarded in many common discrimination criteria as the AIC or the Bayesian information
criterion [148]. Assuming additive measurement noise and according to the Doob-Dynkin lemma
[149], the identified model parameters 𝜽 can be considered to be random variables. The overlap
approach accounts for parameter uncertainties by considering the trajectory confidence intervals.
The overlap of two models considering parametric uncertainties is

OVL =

𝑇∑︁
𝑘=0

2
√︃
𝜎2

1,𝑘𝜎
2
2,𝑘

𝜎2
1,𝑘 + 𝜎

2
2,𝑘

exp
−0.5(𝜇1,𝑘 − 𝜇2,𝑘)2

𝜎2
1,𝑘 + 𝜎

2
2,𝑘

, (3.43)

where 𝜇𝑖,𝑘 and 𝜎𝑖,𝑘 are the expected value and the variance of the output function of model 𝑖 at
time point 𝑘 resulting from the stochastic nature of the parameters, respectively. Thus, a larger
overlap value between one pair of model candidates over another emphasizes the fact that the
model candidates of the first pair is less distinguishable in their uncertain predictions.

Concluding, criteria and objectives for parameter estimation and model selection have been
outlined. That is in the former case in particular the goodness-of-fit measure RSS, Equation
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(3.39), the estimated measurement variance, Equation (3.40), and the confidence intervals for
parameters, Equation (3.29). In model selection, the AIC evaluates the bias-variance trade-
off for estimated model candidates, Equation (3.40), and the the OVL represents an alternative
when parametric uncertainties are considered. In the following, the related issue of parameter
identifiability is addressed.

3.5.1 Assessment of model structure and estimated
parameters

Estimating parameters of nonlinear models is often a difficult task with several causing factors
[150]. One major reason is the question of parameter identifiability, i.e., if the model parameters
can be uniquely determined with respect to the model structure and the available data. This
issue is closely related to parameter sensitivities, as only residuals, Equation 3.39, that are
sensitive to parameters can be identified. Even in simple (bio)chemical models, parameter
identifiability might not be given [151, 152]. Besides easing parameter estimation, parameter
identifiability studies enable reliable physical interpretation of the determined magnitudes of the
model parameters. In parameter identifiability, the literature distinguishes between structural
and practical identifiability. The former, in literature also referred to as theoretical identifiability
or simply identifiability, deals with the situation if the structure of our model permits a unique
determination of the model parameters before seeing the data. The latter, also named estimability,
answers the question if the model parameters are identifiable from a given data set. A practically
identifiable parameter is therefore also theoretically identifiable, but the reverse conclusion does
not hold. This stresses out that both dimensions of parameter identifiability should be investigated
[151]. To optimally assist the parameter estimation problem, structural identifiability should be
checked best before the estimation is addressed [153]. Furthermore, between locally and globally
identifiable parameters is differentiated. Locally identifiable parameters can only be recovered
in sub spaces of the parameter space, whereas globally identifiable parameters are identifiable
everywhere.

Structural Identifiability

In the case of linear models, structural identifiability is well understood and effective methods
are available. On the contrary, methods for structural identifiability of non-linear models are
limited in applicability and usability, and are an on-going research topic. Among others, existing
methods are the Taylor series method, the generating series method, the similarity approach
method, approaches relying on the implicit function theorem, and methods based on differential
algebra [27, 154]. Established toolboxes are the DAISY toolbox [155], that is based on the
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differential algebra approach and has global scope, and the GenSSI toolbox [156]. However, these
methods suffer from computational burden, lacking ready-to-use implementations, or limited
applicability [153, 157]. A remedy can be found in sensitivity-based local approaches that can be
seen as a bridge between methods testing structural identifiability and methods testing practical
identifiability, as they do not need measurement data, but might require the number and location
of the measurements, and a usually local parameter estimate for evaluation [153]. Furthermore,
they do not use the model structure information in a direct sense, but by way of parameter
sensitivities [153]. On the other hand, their biggest advantage compared to methods testing
structural identifiability is the straightforward usability and applicability to all models that allow
the calculation of sensitivities coefficients with respect to the model parameters.

Sensitivity coefficients of the sensitivity matrix introduced in Section 3.4, see for example Equa-
tion (3.36), are calculated at a time point 𝑡𝑘 and for a nominal parameter vector 𝜽∗ as

𝑆𝑖 𝑗 (𝑡𝑘) =
𝜕𝑦𝑖 (𝑡𝑘 , 𝜽)
𝜕𝜃 𝑗

����
𝜽∗
. (3.44)

A sensitivity matrix can then be constructed from the sensitivity coefficients:

SM =

©­­­­­­­­­­­­­­­­«

𝑆11 (𝑡1) · · · 𝑆1𝑛𝜃 (𝑡1)

· · · . . . · · ·
𝑆𝑛𝑦1 (𝑡1) · · · 𝑆𝑛𝑦𝑛𝜃 (𝑡1)

...
...

...

𝑆11 (𝑡𝑛𝑡 ) · · · 𝑆1𝑛𝜃 (𝑡𝑛𝑡 )

· · · . . . · · ·
𝑆𝑛𝑦1 (𝑡𝑛𝑡 ) · · · 𝑆𝑛𝑦𝑛𝜃 (𝑡𝑛𝑡 )

ª®®®®®®®®®®®®®®®®¬

. (3.45)

By inspecting the sensitivity matrix, two issues can be investigated. First, if a parameter is non-
identifiable, that is, SM is rank-deficient [158]. Second, parameter dependencies can be inferred
[153]. Several methods are available that exploit the sensitivity matrix [153]. An easy-to-use
algorithm, that also works for large size models, is based on a singular value decomposition
(SVD) of SM. It hunts down parameter non-identifiabilities and dependencies simultaneously,
where the number of involved parameters is not limited [159]. The SVD of SM is

SM = 𝒖1𝜎1v⊺1 + · · · + 𝒖𝑛𝜃𝜎𝑛𝜃 v⊺𝑛𝜃 (3.46)

with left singular vectors 𝒖𝑖 , singular values 𝜎𝑖 , and right singular vectors v 𝑖 . By inspection
of the right singular vectors v 𝑖 with singular values 𝜎𝑖 = 0, i.e., the non-zero elements of v 𝑖 ,
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the combinations of parameters are obtained that cause the model to be non-identifiable. The
difficulty lies in the definition of a singular value being zero. Plotting the singular values in
decreasing order and on a logarithmic scale, rank-deficient matrices typically show a gap that is
clearly visible [159]. Further disadvantages of the SVD method are that only linear parameter
dependencies are detected, and that the SM is evaluated at a single point in the parameter space,
that, though unlikely, might be non-regular [159]. A straightforward workaround is the evaluation
of multiple points in the parameter space [159].

Practical Identifiability

Practical identifiability might be tested following three different approaches:

1. Monte-Carlo simulations,

2. methods based on the FIM, or

3. optimization-based approaches.

Monte-Carlo simulations rely on a large amount of repeated simulations that can become com-
putationally intensive [160–162]. On the other hand, approaches based on the FIM, see Section
3.4, are in general easy to compute. Here, a (nearly) singular FIM indicates non-identifiable
parameters.

Optimization-based approaches are the third option to practical identifiability. Their resulting
workload might be low when local multi-start optimization approaches are used during parameter
estimation [28], as the parameter estimation results can be investigated for practical identifiability.
Basically, the optimization runs are initialized with different samples within the parameter space,
and are compared after they have been completed. Visualization supports the identification
if parameters are practically locally or globally identifiable, where in the ideal case all runs
yield the same estimated parameter vector, that is, globally identifiable parameters. A further
optimization-based and established approach is the exploitation of the profile likelihood [163,
164]. It is able to specify if a parameter is structurally, practically or non-identifiable, and gives
improved confidence intervals over asymptotic ones, Equation (3.33) [165]. Moreover, it might
be used to uncover (non-)linear functional relations between the parameters and does not suffer
from the downside that methods based on local parameter sensitivities, thus including methods
based on the FIM, can only detect linear dependencies between parameters that are rooted in
structural non-identifiability [163]. The profile likelihood of a model parameter 𝜃𝑘 is

PLL𝑘 (𝜃𝑘) = max
𝜃𝑖 ,∀𝑖∈{1,...,𝑛𝜃 }≠𝑘

logL(𝜽), (3.47)
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with the measurement variance 𝜎2 being estimated from Equation (3.40). Approximate 100(1 −
𝜙)% confidence intervals for each parameter are given by [165]

2 logL(𝜽MLE) − 2PLL𝑘 (𝜃𝑘) < 𝜒2
1−𝜙;1, (3.48)

where 𝜒2
1−𝜙;1 is the 1 − 𝜙 quantile of the chi-square distribution with one degree of freedom.

If the profile likelihood has a unique minimum and exceeds the 𝜙 confidence thresholds in
both directions forming a likelihood shape, i.e., if it is possible to determine bounded confidence
intervals from Equation (3.48), the parameter is considered practically and structurally identifiable
[163]. If the profile likelihood is perfectly flat, a structurally non-identifiable parameter is present.
A profile likelihood, that does not exceed the threshold in one or both directions, is a structurally,
but not practically identifiable parameter.

3.6 Global Sensitivities

Proposed sensitivity-based methods for parameter identifiability in Section 3.5.1 are based on
local parameter sensitivities, Equation (3.45), that may lead to suboptimal or misleading results
in model-based design of experiments [166], sensitivity analyses [37], and process design and
optimization under uncertainty [114, 167]. The two main reasons for unsatisfying performance
of local sensitivity methods are that they approximate the sensitivities in a linear fashion, thereby
failing to describe the underlying nonlinearities, and that they are evaluated around a local
parameter estimate, that is potentially biased as the true values are usually not known [166].
Hence, a consideration of global parameter sensitivities might be crucial for reliable problem-
solving strategies. Generally speaking, taking parametric uncertainty into account splits up
into two disciplines: sensitivity analysis (SA) and uncertainty analysis (UA), that are closely
related but aim at different findings. The goal of a SA is to determine the relative influences
of uncertain inputs 𝒖 on the model outputs 𝒚, Equation 3.1. In pharmaceutical manufacturing
and development, it can therefore be used to understand system behavior, and to specify critical
process parameters and critical material attributes on critical quality attributes. Moreover, SA
can assist in issues of parameter identifiability, as it is an extensive framework that complements
the sensitivity-based methods for parameter identifiability described in Section 3.5.1. UA, on the
other hand, assigns uncertainties to inputs, referred to as uncertainty quantification, and propagates
them through the model, coined uncertainty propagation, yielding quantitative evidence about the
output uncertainties. Parametric uncertainties should be considered in all kinds of PSE problems
[35] like MBDoE [29, 168–170] or process design and optimization [171], especially in the
pharmaceutical industry with its high quality standards. Ideally, SA and UA are run in parallel
with an UA usually performed first [37].
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3.6.1 Uncertainty Propagation

Propagating input uncertainties is frequently performed by the calculation of mathematical mo-
ments of the model outputs 𝒚 in Equation (3.1), that are basically evaluations of integrals. The
two most used moments, the first raw and the second central moment, are the expected value, or
mean, and the variance (compare with the mean and the variance for the Normal distribution in
Equation (3.4)). Interpreting the input variables in our model as a vector of continuous random
variables 𝑼, the mean and the variance of a random model output 𝑌 are calculated via

𝜇 = E[𝑌 ] = E[ 𝑓 (𝑼)] =
∫
Ω

𝑓 (𝒖) pdf (𝒖)d𝒖, (3.49a)

𝜎2 = V[𝑌 ] = V[ 𝑓 (𝑼)] =
∫
Ω

( 𝑓 (𝒖) − 𝜇)2 pdf (𝒖)d𝒖, (3.49b)

with pdf (𝒖) the probability density function of 𝑼, and Ω the input space in R𝑛𝑢 . 𝑓 (𝒖) represents
a generic (non)linear function. Usually, no closed solutions of the integrals on the right side
of Equations (3.49a) and (3.49b) are available for nonlinear problems, and therefore must be
evaluated numerically. The brute-force method in UP to determine the moments in Equations
(3.49) is the propagation of input uncertainties by repetitive model evaluations for samples that
have been generated from the input space. Methods, that use random values to approximate a
quantity and often serve as benchmarks for more efficient methods, are referred to as Monte Carlo
(MC) methods. The mean and the variance in MC methods is approximated using the sample
mean 𝑌 and the sample variance 𝑠2:

𝜇 ≈ 𝑌 =
1
𝑛MC

𝑛MC∑︁
𝑖=1

𝑓 (𝑼𝑖), (3.50a)

𝜎2 ≈ 𝑠2 =
1

𝑛MC − 1

𝑛MC∑︁
𝑖=1

(
𝑓 (𝑼𝑖) − 𝑌

)2
, (3.50b)

with 𝑛MC the number of drawn input samples. One major drawback of the MC method is the
usually large number of samples that is needed to obtain a good approximation. This is a general
problem of the integrals in Equations (3.49), whose evaluations are computationally expensive,
in particular, if the recommended bias-free numerical evaluation path is chosen [148, 172]. In the
case of complex functions 𝑓 (𝒖) and a high number of input variables 𝑛𝑢, the determination of the
integrals even might be prohibitive due to the so-called curse of dimensionality. Alternatively,
the point estimate method (PEM), initially developed for generic multi-dimensional integration
problems over symmetrical regions, is a credible and practical method for uncertainty propagation
with low computational cost; see [173] and references within. In PSE, the PEM has been success-
fully applied to robustify various optimization problems, including non-symmetrical probability
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density functions, correlated model parameters, and imprecise parameter uncertainties [114, 174,
175].

The Point Estimate Method

The PEM approximates the integrals in Equation (3.49) by summing over 𝑛PEM weighted sampling
points ∫

Ω

𝑓 (𝒖) pdf (𝒖) d𝒖 ≈
𝑛PEM∑︁
𝑙=1

𝑤𝑙 𝑓 (𝒖𝑙), (3.51)

with weight factors 𝑤𝑙 and input vector realizations 𝒖𝑙 . In detail, assuming a nominal input
vector 𝒖∗, dedicated model input vector realizations, 𝒖𝑙 , form an input vector set, 𝒖𝑙 ∈ O :=
{𝒖∗,O1,−O1,O2,−O2,O3,−O3}, where

O1 := {𝒖∗ [𝑖] + 𝜗, ∀𝑖 ∈ {1, . . . , 𝑛𝑢}},
O2 := {𝒖∗ [(𝑖, 𝑗)] + [+𝜗, +𝜗], ∀𝑖, 𝑗

𝑗>𝑖

∈ {1, . . . , 𝑛𝑢}},

O3 := {𝒖∗ [(𝑖, 𝑗)] + [−𝜗, +𝜗], ∀𝑖, 𝑗
𝑗>𝑖

∈ {1, . . . , 𝑛𝑢}}.

Here, 𝒖∗ [𝑖] means that the 𝑖th element of the nominal parameter vector, 𝒖∗, is permuted via the
spreading parameter, 𝜗, and 𝒖∗ [(𝑖, 𝑗)] that the 𝑖th and the 𝑗 th elements are modified, respectively.
Note that the weight factors, 𝑤𝑙 , as well as the spreading parameter, 𝜗, are determined via a
corresponding algebraic equation system; the interested reader is referred to [173] and references
therein. Based on the input samples, 𝒖∗, the statistics of a given nonlinear function can be
approximated. For instance, the approximations of the expected value and the variance as stated
in Equations (3.49a) and (3.49b) read as

𝜇 ≈ 𝑤0 𝑓 (𝒖0) + 𝑤1

| O𝑤1 |∑︁
𝑙

𝑓 (𝒖𝑙) + 𝑤2

| O𝑤2 |∑︁
𝑙

𝑓 (𝒖𝑙), (3.53a)

𝜎2 ≈ 𝑤0 ( 𝑓 (𝒖0) − 𝜇)2 + 𝑤1

| O𝑤1 |∑︁
𝑙

( 𝑓 (𝒖𝑙) − 𝜇)2 + 𝑤2

| O𝑤2 |∑︁
𝑙

( 𝑓 (𝒖𝑙) − 𝜇)2, (3.53b)

with O𝑤1 := {O1,−O1} and O𝑤2 := {O2,−O2,O3,−O3}. Please note that the overall parameter
sample number, 𝑛PEM, used in Equations (3.53a) and (3.53b) scales quadratically to the dimension
of uncertain model inputs:

𝑛PEM = 2𝑛2
𝑢 + 1. (3.54)
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Table 3.1: Weights and spread parameter of the PEM for a standard Gaussian distribution [173].

Approximation Scheme 𝒘0 𝒘1 𝒘2 𝝑

PEM5 (Equations (3.53a) and (3.53b)) 1 + 𝑛2
𝑢−𝑛𝑢
18

4−𝑛𝑢
18

1
36

√
3

PEM3 (Equations (3.55a) and (3.55b)) 1 − 𝑛𝑢
𝜗2

1
2𝜗2 - 𝜗

At the cost of accuracy (i.e., approximation error introduced via Equation (3.52)), the required
sample numbers in Equations (3.53a) and (3.53b) can be reduced according to:

𝜇 ≈ 𝑤0 𝑓 (𝒖0) + 𝑤1

| O𝑤1 |∑︁
𝑙

𝑓 (𝒖𝑙), (3.55a)

𝜎2 ≈ 𝑤0 ( 𝑓 (𝒖0) − 𝜇)2 + 𝑤1

| O𝑤1 |∑︁
𝑙

( 𝑓 (𝒖𝑙) − 𝜇)2, (3.55b)

where the overall parameter sample number, 𝑛PEM, scales linearly to the dimension of uncertain
model parameters:

𝑛PEM = 2𝑛𝑢 + 1. (3.56)

Equations (3.53) and (3.55) are exact for monomials of up to degrees five and three [173].
Thus, the terms PEM5 and PEM3 are used to distinguish between the two PEM approximation
schemes. In Table 3.1, we summarize the values for the weights, 𝑤𝑙 , and the spread parameter,
𝜗, assuming a standard Gaussian distribution. In the case of PEM3, the spread parameter, 𝜗,
can be considered to be a design parameter, which is frequently set to the corresponding PEM5
value; that is, 𝜗 =

√
3. Please note that any parametric or non-parametric probability distribution

of relevant model inputs can be considered via a (non)linear transformation step, including input
correlations [174].

3.6.2 Global Sensitivity Analysis

A global sensitivity analysis (GSA) apportions the uncertainty in a model output 𝑦 to the uncer-
tainty in each model input 𝑢. Benefits of a sensitivity study are that it may lead to an identifiable
model, a reduced model [176], improved system control [177], or process understanding. For
example, the determination of critical process parameters on critical quality attributes in pharma-
ceutical products can be investigated by a GSA. However, sensitivity analyses of process models
are rarely performed, and if, they often lack reliability with a major reason that the input space
is not properly explored, e.g., in local sensitivity analyses [178]. An overview of current GSA
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methods is given in [179] and [180], where inference is often drawn from different visualizations
as outlined in [181]. The variance-based Sobol’ method has been successfully applied in vari-
ous engineering situations, not least because the variance is a very important and widely used
measure of uncertainty [37]. The Sobol’ method comes with model independence, meaning that
there are no assumptions on the model’s behavior like linearity or monotonicity. Additionally,
it has the ability to capture the influence of each of the inputs over their whole ranges and the
interaction effects among all combinations of inputs [37]. One of its biggest drawbacks is the
computational effort that is required to calculate the first-order and interaction effects that are
based on Monte Carlo simulations. To reduce the computational burden, next to efficient sam-
pling strategies, meta-modeling is usually employed with polynomial chaos expansion the most
prominent representative of surrogate models for GSA [36, 182]. Alternatively, also Bayesian
settings are a possibility to decrease the computational effort [183]. They are also referred to
as density-based or moment-independent methods, and are therefore suitable if more extensive
sensitivity measures than variances are required [179, 184].

Sobol’ Method

Variance-based sensitivity indices are also referred to as Sobol’ indices, because of Sobol’s work
on the decomposition of integrable functions in summands, also known as ANOVA (analysis
of variance) representation, and the proposition of a quasi MC algorithm for the calculation
of the corresponding sensitivity indices [185]. The derivation of the Sobol’ indices and their
mathematical computation are outlined in the Appendix, Sections B.3 and B.4. The first Sobol’
index is

𝑆𝑖 =
V𝑈𝑖

[E𝑼∼𝑖 [𝑌 |𝑈𝑖]]
V[𝑌 ] , (3.57)

that is also known as the first-order sensitivity index of 𝑈𝑖 on 𝑌 , where ∼𝑖 includes all indices
apart from 𝑖 [37]. Thus, the first-order Sobol’ index measures the relative first-order effect of 𝑈𝑖
on𝑌 and must be ≤ 1 [186]. Higher-order indices with order 𝑛, that are able to capture interaction
effects between inputs, can be computed as well according to

𝑆𝑖1𝑖2...𝑖𝑛 =
V[E[𝑌 |𝑈𝑖1 ,𝑈𝑖2 , . . . ,𝑈𝑖𝑛 ]]

V[𝑌 ] , (3.58)

where we now have dropped the indices of the expectation and variance operators in the numerator
with the convention that the argument conditioning the expectation operator, i.e.,𝑈𝑖1 ,𝑈𝑖2 , . . . ,𝑈𝑖𝑛 ,
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3.7 Model-based Design of Experiments

is likewise the set over which we apply the variance operator. Considering independent inputs,
or more precisely orthogonal inputs, the following relation holds [37]:

𝑛𝑢∑︁
𝑖

𝑆𝑖 +
𝑛𝑢∑︁
𝑖

𝑛𝑢∑︁
𝑗>𝑖

𝑆𝑖 𝑗 +
𝑛𝑢∑︁
𝑖

𝑛𝑢∑︁
𝑗>𝑖

𝑛𝑢∑︁
𝑘> 𝑗

𝑆𝑖 𝑗𝑘 + · · · + 𝑆123...𝑛𝑢 = 1. (3.59)

Hence, a complete picture of the sensitivities would encompass the determination of 2𝑛𝑢−1 terms,
too cumbersome to calculate and to analyze. Therefore, a total effect index, that comes at the
same computational cost as the first order indices [37], is usually used:

𝑆T𝑖 = 1 − V[E[𝑌 |𝑼∼𝑖]]
V[𝑌 ] , (3.60)

that measures all order effects that involve the input 𝑈𝑖 . Please note that the sum of the total
indices in general exceeds 1 as contributions from higher-order indices appear in each of the
participating inputs.

The Sobol’ method is tailored for independent model inputs, but dependent model parameters
might occur in reality [36, 187]. A direct way to deal with dependent inputs is to use isoprobabilis-
tic transformation concepts, such as the Rosenblatt and the Nataf transformation [188]. Sampling
from correlated inputs considering copulas has been combined with density-based methods like-
wise [189]. Alternatively, covariance-based sensitivity indices have been introduced in [190] that
are derived from the same function decomposition as for the Sobol’ indices.

3.7 Model-based Design of Experiments

Identifying a reliable process model is a challenging problem, particularly in (bio-)chemical
engineering where often reaction kinetics are not known a priori, see Section 1.1. Even if
the stoichiometries have been established, the mathematical rate laws, Equation (3.15), might
not be readily revealed [26]. Furthermore, model parameters like kinetic constants are usually
unknown and have to be estimated, Section 3.4, or suffer from great uncertainty and parameter
dependencies. One major tool in the systematic identification strategy in Figure 3.3 is therefore
the model-based design of experiments (MBDoE). MBDoE facilitates model identification by
planning experiments with high informative output under the consideration of the formulated
process model or the postulated model candidates, thereby reducing development time and cost
[29, 191, 192]. MBDoE approaches have proven beneficial over the last few decades [29, 121–
123], among which a sequential approach of designing experiments as shown in Figure 3.3, is
known to robustify the overall design of experiment [193].
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In general, Design of experiments (DoE) is applied in both academic and industrial problems,
and accordingly covers a broad range of different approaches, methods, and targeted goals [33,
194]. They all have in common that designing an experiment means to predict the design vector
𝝃 of setup parameters, that can be altered when performing an experiment, to meet a previously
defined target. The prediction of the design vector 𝝃 often involves solving an optimization
problem. The literature distinguishes between statistical design of experiment and MBDoE
approaches. Methods of the former, e.g., factorial designs or response surface methods, are
popular and commonly used because of their simplicity, but are not able to sufficiently handle
complex dynamic systems for the same reason [33]. DoE concepts, that can be considered as
a combination of statistical and model-based DoE, also exist in literature [195]. Moreover, in
contrast to the usually offline performed DoE, one might distinguish adaptive online MBDoE, that
instantly exploits measurement information from a running experiment as soon as it is available
[196]. While all experimental designs aim at decreasing experimental effort for high information
content in the designed experiments, specific goals of MBDoE are versatile. In the following, we
focus on the challenge of precise parameter identification and reliable model selection. Likewise,
practical identifiability, Section 3.5.1, might be considered in MBDoE [192].

3.7.1 Design of Experiments for Model Selection

Common goal of different DoE strategies for model selection is to maximize some measure
on the distance between the different model candidates with the prospect that the measurement
data from the designed experiment ideally fits to only one of the candidates.Different specific
objective functions for the model selection problem can be found in literature [197–199]. In
Bayesian settings, where probability distributions are available, the Kullback-Leibler divergence,
Equation (B.9), is a natural choice [200–202]. In contrast, in point estimate frameworks and if
measurement deviations are assumed to be constant, a common criterion for model selection,
that can be interpreted as Euclidean distances between predicted outputs of 𝑀 different model
candidates, is [203]

JED (𝝃) =
𝑀−1∑︁
𝑖=1

𝑀∑︁
𝑗=𝑖+1

𝑛𝑡∑︁
𝑘=1

[
𝒚𝑖 (𝝃, 𝑡𝑘) − 𝒚 𝑗 (𝝃, 𝑡𝑘)

]2
, (3.61)

with 𝝃 ∈ R𝑛𝜉 the experimental design vector, that summarizes the variables or parameters that
are available and planned to be altered during the course of the designed experiment. For a robust
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formulation of the objective function against parametric uncertainty, a straightforward implemen-
tation is the addition of another term, that penalizes the propagated uncertainty quantified by the
variances of the models’ outputs, Equation (3.49b):

JrED (𝝃) = 𝜆
𝑀−1∑︁
𝑖=1

𝑀∑︁
𝑗=𝑖+1

𝑛𝑡∑︁
𝑘=1

(
E[𝒚𝑖 (𝝃, 𝑡𝑘)] − E[𝒚 𝑗 (𝝃, 𝑡𝑘)]

)2
+ (1 − 𝜆)

𝑀∑︁
𝑖=1

𝑛𝑡∑︁
𝑘=1
V[𝒚𝑖 (𝝃, 𝑡𝑘)], (3.62)

with 𝜆 ∈ [0, 1] the penalty weight factor leading to Pareto optimal points for different values of
𝜆. The expectations E and variances V are with respect to the model parameters 𝜽 .

3.7.2 Design of Experiments for Parameter Precision

To decrease the uncertainties in the model parameters of the selected model candidate and thereby
strengthening the reliability of the analyzed model, DoE for parameter precision is an effective
tool [33]. Here, MBDoE aims at minimizing the covariance matrix of the model parameters, C𝜃
in Equation (3.34), by maximizing the parameter sensitivities on the measured outputs [27]. The
predictive reduction in the uncertainty of a model parameter will ultimately result in a smaller
confidence interval for the estimated model parameter, Section 3.4. As shown in Section 3.5.1,
C𝜃 might be derived from the FIM and the limiting case of the Cramér-Rao inequality, Equation
Equation (3.34). For the MBDoE the FIM has to be predicted, as the data to build the likelihood
in Equation (3.37) is not yet available, i.e., the expected FIM has to be used, Equation (3.38). If
the measurement covariance matrix is diagonal with equal magnitude for all its entries, it can be
dropped in Equation (3.38). An effective information matrix can then be postulated:

IM(𝝃 |𝜽) =
𝑁T∑︁
𝑖=1

SM𝑖 (𝝃 |𝜽)⊤SM𝑖 (𝝃; 𝜽), (3.63)

with 𝑁T the number of experimental runs or samples, that is a sum over the already collected
samples 𝑁0 plus the samples from the DoE 𝑁DoE that have not yet been collected, i.e., 𝑁T =

𝑁0 + 𝑁DoE. Several criteria for DoE that are based on the FIM are available in literature [27].
The D-optimal criterion minimizes the volume of the parameter covariance matrix; i.e., the
determinant of the FIM. It is a widely used criterion as it considers parameter correlations and is
invariant against re-parameterizations of the model [204]:

JDopt (𝝃) = det IM(𝝃 |𝜽). (3.64)

Note that a minimization of the determinant of the parameter covariance matrix is equal to a
maximization of the determinant of the FIM.
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3.8 Mathematical Optimization

The objective functions for the parameter estimation problem, Equation (3.39), the DoE for model
selection, Equations (3.61) and (3.62), and the DoE for parameter precision, Equation (3.64), are
embedded into a mathematical optimization problem. As a generalized problem to parameter
estimation with respect to the type of optimization, DoE frequently leads to an optimal control
problem of the form

min
𝒙(𝑡 ) ,𝒖 (𝑡 ) ,𝜽

J (𝒙(𝑡f))

s.t. process model: Equations (3.5a) & (3.5b),

𝒈eq (𝒙(𝑡), 𝒖(𝑡), 𝜽) = 0,

𝒈ineq (𝒙(𝑡), 𝒖(𝑡), 𝜽) ≤ 0,

(3.65)

with J the scalar objective function, 𝑡 ∈ [𝑡0, 𝑡f] the "time" parameter, 𝒈eq : R𝑛𝑥×𝑛𝑢×𝑛𝜃 → R𝑛eq

and 𝒈ineq : R𝑛𝑥×𝑛𝑢×𝑛𝜃 → R𝑛ineq the equality constraints and the inequality constraints, respectively
[205].

For solving the optimization problem in Equation (3.65), different methods are available [206]. A
short summary is given in the Appendix B.5. The optimization problems in the following Chapters
are solved with local gradient-based methods [207] using either the free and open source solver
Ipopt [208] or a quasi-Newton solver [209]. Moreover, in particular for the parameter estimation
runs, a multi-start approach is followed to escape local minima and obtain better insight of the
design space [28]. For the implementations, Julia is used [210].

Having laid out in this Chapter the fundamentals about first how to build a process model for
(bio)chemical processes and second how to mathematically and reliably identify such a process
model, the following three Chapters make use of the presented methods. That is, in Chapters 4
and 5, the building and identification of a process model for the artemisinin semi-synthesis; and
in Chapter 6, the combination of the outlined methods with the differential flatness concept for a
(bio)chemical reaction network.
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In this Chapter, the first step of the semi-synthesis to artemisinin, the photooxygenation of
dihydroartemisinic acid to the intermediate hydroperoxide, is investigated. First, the reaction
network and the process model are derived. Second, the results are presented, that include a
qualitative analysis of the experimental results followed by a model-based analysis of the system
characteristics.

Contents of this chapter including Tables and Figures have been published in [108] as a shared
co-first authorship between Susann Triemer and Moritz Schulze. Individually contributed parts
by Susann Triemer, that are necessary for understanding, are summarized or reproduced with
appropriate annotations.

4.1 Reaction Network of the Photooxygenation of
Dihydroartemisinic Acid

In this Section, a summary is given about the reactions occurring during the photooxygenation
of dihydroartemisinic acid (DHAA), that has been written by Susann Triemer in [108]. The
photooxygenation of DHAA to hydroperoxides proceeds via two main reaction steps (Figure 4.1):

1. photosensitized formation of singlet oxygen and

2. ene-type reaction to an hydroperoxide.

The corresponding simplified reaction network is given in Figure 4.1. The photosensitizer,
here 9,10-dicyanoanthracene (DCA), is excited to a singlet state by absorbing light in the blue
wavelength region (400 to 500 nm) and is subsequently quenched following one of many possible
quenching routes [211, 212]. In the major pathway, triplet oxygen quenches singlet state DCA
to one singlet oxygen molecule leaving DCA in its triplet state. This triplet state DCA can form
another singlet oxygen molecule thereby reducing DCA to its ground state. Thus the overall
quantum yield can be as high as 2, while its actual value strongly depends on the solvent, the
dissolved oxygen concentration and further present quenchers [212]. In benzene, a maximum
quantum yield of singlet oxygen extrapolated to indefinite oxygen concentration is reported to lie
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Figure 4.1: Simplified reaction network of the photooxygenation of dihydroartemisinic acid (DHAA) to the targeted hy-
droperoxide PO1 – a precursor in the artemisinin semi-synthesis. The photosensitizer 9,10-Dicyanoanthracene
(DCA) enables the in situ formation of singlet oxygen. Figure is reprinted from [108].

in the range of 1.56 to 1.71 [212–214]. A thorough derivation of the reaction network that leads
to singlet oxygen, and that is used in this work, is given in Susann Triemer’s dissertation [61].

The formed singlet oxygen can either react with DHAA or be quenched to its triplet state. The
reaction with DHAA follows a 1,5-sigmatropic H-shift matching an ene-type reaction referred to
as Schenk-reaction [215]. Three different hydroperoxides can be formed from this mechanism,
with the tertiary hydroperoxide PO1 being the major product. At the same time, PO1 is the
intermediate to artemisinin (ART) and therefore the targeted product of the photooxygenation.
All of the hydroperoxides are only semi-stable decomposing within several weeks following
diverse rearrangement and degradation reactions [216]. Main byproduct of the photooxygenation
is arteannuin H, that originates from the secondary allylic hydroperoxide [217, 218] and is lumped
into the byproduct POx in the kinetic model at a later stage, Section 4.2.1.

4.2 Process Model for the Photooxygenation of
Dihydroartemisinic Acid

The difficulty in obtaining reliable reaction kinetics for the photooxygenation of DHAA lies
in the interaction of the chemical reaction network with photon and mass transfer processes.
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4.2 Process Model for the Photooxygenation of Dihydroartemisinic Acid

Both phenomena are complex to describe and depend strongly on the reactor system applied.
Accordingly, the identified process model is assembled from two main parts, a kinetic and
a reactor model. The kinetic model describes the (photo-induced) chemical reactions and is
independent of the process setup. The reactor model, instead, reproduces the fluid dynamics of
the two-phase flow, including the interfacial transfer equations, and is dependent on the photo-
flow reactor system used. Both components of the process model, that integrates the kinetics into
the reactor model, are introduced in the following subsections. In the end, a short background
on how model-based design of experiments (MBDoE) is used to identify the process model and
how the model parameters are estimated and assessed is outlined.

The kinetic and the reactor model have been developed in close collaboration with Susann Triemer
[108], with her master thesis [219] serving as a starting point.

4.2.1 Kinetic Rate Equations for the Photooxygenation

The reaction scheme of the kinetic model is shown in Figure 4.1. The tertiary hydroperoxide
PO1 is the species of interest, that is, it is further converted to artemisinin. The two secondary
hydroperoxides PO2 and PO3 are lumped together to the byproduct species POy. In the con-
ducted photooxygenation experiments, the recovery of the measured products PO1 and POy make
up around 95 % of the total amount of reacted DHAA. The missing 5 % are attributed to re-
arrangement and degradation products formed between sampling and measurement. To cover
these additional and presently chemically unidentified products and the respective reactions, an
additional species POx is introduced, which is produced from PO1 and POy. Identical reaction
rate constants are assumed. This approach is motivated by the lack of data on species and re-
actions, as it allows to lump the unknown and unquantifiable reactions and side products. This
approach may be replaced by a more detailed mechanism once that more is known on the side
reactions. Alternatively, separate loss reactions might lead to additional complications during
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the identification of their reaction constants and would therefore make a physical interpretation
difficult. Hence, the chemical reaction network is

DHAA + 1O2
𝑘PO1

PO1,

DHAA + 1O2
𝑘POy

POy,

1O2
1/𝜏Δ 3O2,

PO1
𝑘POx

POx,

POy
𝑘POx

POx,

(4.1)

with kinetic rate constants 𝑘𝑖 , 𝑖 ∈ {PO1, POy, POx}, and the lifetime of singlet oxygen 𝜏Δ. The
corresponding reaction rates are expressed as elementary reactions, Section 3.3.1, resulting in the
following rates of formation derived from Equation (3.15):

𝑟PO1 = 𝑘PO1 [DHAA] [1O2], (4.2a)

𝑟POy = 𝑘POy [DHAA] [1O2], (4.2b)

𝑟POx = 𝑘POx ( [PO1] + [POy]). (4.2c)

Since singlet oxygen is a very reactive and short-lived species, the steady-state assumption [26]
is applied,

d[1O2]
d𝑧

!
� 0 � 𝑟1O2

− (𝑘PO1 + 𝑘POy) [DHAA] [1O2] −
1
𝜏Δ

[1O2], (4.3)

where 𝑟1O2
is the formation rate of singlet oxygen. Combining Equations (4.2) with Equation

(4.3) yields

𝑟PO1 = 𝑟1O2

𝑘̃PO1 [𝐷𝐻𝐴𝐴]
1 + ( 𝑘̃PO1 + 𝑘̃POy) [𝐷𝐻𝐴𝐴]

, (4.4a)

𝑟POy = 𝑟1O2

𝑘̃POy [𝐷𝐻𝐴𝐴]
1 + ( 𝑘̃PO1 + 𝑘̃POy) [𝐷𝐻𝐴𝐴]

, (4.4b)

𝑟POx = 𝑘POx ( [PO1] + [POy]), (4.4c)

with the kinetic constants normalized to the lifetime of singlet oxygen

𝑘̃𝑖 = 𝑘𝑖𝜏Δ, 𝑖 ∈ {PO1, POy}. (4.5)
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4.2 Process Model for the Photooxygenation of Dihydroartemisinic Acid

The life time of singlet oxygen in toluene 𝜏Δ is 33.2 µs at −20 ◦C, extrapolated from available
data in the range from 5 to 90 ◦C [220].

Photosensitized Formation of Singlet Oxygen

In photosensitized processes, expressions for reaction rates are either empirically derived, thus
having limited scope, or mechanistically motivated [221]. The mechanistic justification lies in
the fact that "in a single photon absorption process, the rate of the photosensitizer activation
step (primary event) is proportional to the rate of energy absorbed" [221]. The formation rate of
singlet oxygen might be expressed as

𝑟1O2
= Φ1O2

𝐿a
p, (4.6)

with the local volumetric rate of photon absorption 𝐿a
p and the quantum yield of singlet oxygen

Φ1O2
. The latter is defined as the number of singlet oxygen molecules formed per absorbed

photon.

Different mechanistic networks for the formation of singlet oxygen by DCA in various solvents
have been derived in literature [211, 212]. An in-depth discussion about the networks proposed in
literature can be found in Susann Triemer’s dissertation [61]. Here, implications on the quantum
yield by extraneous species, e.g. solvent quenching, are neglected as they are unknown and would
encompass the unfavorable situation that the quantum yield does not tend to zero with vanishing
oxygen concentration [211, 212, 222]. The quantum yield of singlet oxygen can then be stated as

Φ1O2
=

[O2]
𝑘 l1 [O2] + 𝑘 l2

, (4.7)

where 𝑘 l1 and 𝑘 l2 are lumped kinetic parameters that combine diverse rate constants [212]. The
concentration of triplet oxygen concentration in Equation (4.7) is replaced by the concentration
of dissolved oxygen as singlet oxygen occurs merely in trace quantities [102, 222].

Connecting the Reaction Kinetics to the Rate of Photon Absorption

The interaction between radiative transfer from the light source via the reaction medium to the
place of reaction and reaction kinetics is visualized in Figure 4.2. The reaction rates in Equations
(4.4) and (4.6) depend on the local volumetric rate of photon absorption 𝐿a

p that results from the
radiative transfer equation. The 𝐿a

p, in turn, depends on the concentrations of the chemical species
c. A common assumption is that photons are predominantly absorbed by the photosensitizer,
i.e., c = (𝑐DCA), leading to the substantial simplification that the radiative transfer equation and
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Emission
source

radiative transfer
through medium

(attenuation)

reaction kinetics,
rates 𝑟𝑖 = 𝑟𝑖 (𝐿a

p , 𝒄 )

𝐿p

𝐿a
p 𝒄

Figure 4.2: Interaction between radiative transfer and reaction kinetics; 𝐿p: local volumetric incident photon flux, 𝐿a
p:

local volumetric rate of photon absorption, 𝒄: vector holding concentrations of present species.

the chemical kinetics are decoupled and can therefore be solved independently. However, the
𝐿a

p remains a complex function of position and time, that is highly dependent on the individual
reactor geometry, the physical properties of the participating media and the flow conditions [223].

If nontransient light intensity is assumed, an averaged 𝐿a
p is derived from the Beer-Lambert law

[224],
⟨𝐿a

p⟩ = 𝐿p (1 − exp [−𝜅𝑐DCA𝑙opt]), (4.8)

with the local volumetric incident photon flux 𝐿p, the napierian absorption coefficient of the
absorbing species 𝜅, the photosensitizer concentration 𝑐DCA, and the optical path length 𝑙opt. The
concentration of DCA was assumed to be constant throughout the whole reactor. Please note that
Equation (4.8) does not explicitly include the irradiation from two sides as the here used reactor
setup would suggest. Due to the symmetric configuration of the capillary reactor, however, the
superposition of the light emission from two sides is implicitly alleviated in 𝐿p. In addition, an
error resulting from this simplified description is balanced by considering the optical path length
as one of the parameters to be estimated, Equation (5.7).

The local volumetric incident photon flux 𝐿p is defined as the absolute incident photon flux 𝑞0

related to the irradiated volume of the reaction solution 𝑉l:

𝐿p =
𝑞0

𝑉l
. (4.9)

In complex reactor geometries, the local rate of photon absorption might differ significantly
within the reactor volume altering the local reaction rates. In this study, 𝐿a

p was assumed to
be constant. The assumption of homogeneous illumination is commonly made in microreactor
modeling, resulting in good model-data fits [225]. This includes that the effect of a decreasing
gas holdup due to reaction progress on the average path length [226] is neglected. The reaction
kinetics are therefore related to the averaged 𝐿a

p, which is constant over the whole reactor length.
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4.2 Process Model for the Photooxygenation of Dihydroartemisinic Acid

Accordingly, the actinometric measurements used to characterize the irradiation conditions in the
reactor provide an average value of the incident photon flux over the reactor length, Section 4.3.2.

4.2.2 Reactor Model

The reactor model connects the intrinsic reaction rates with the physical phenomena occurring
within the reaction line, namely the specific flow conditions and mass transfer. The key assump-
tions for the description of the reactor behavior are stated in Table 4.1. For the sake of process
characterization and process design, the gas and liquid phase as well as the mass transfer between
them need to be quantified. In the following, the balance equations are derived for each phase
separately based on the two-fluid model, Section 3.3.2, and subsequently the interfacial mass
transfer between the gas and the liquid phase is described.

Description of Fluid Dynamics with the Two-Fluid Model

Resulting from the simplifications in Table 4.1, the material balance of a species 𝑖 in the liquid
phase in terms of concentration 𝑐𝑖 along the reactor coordinate 𝑧 from Equation (3.22) becomes

d𝑐𝑖
d𝑧

=
1
𝑢l
(𝑟𝑖 + 𝛿𝑖 𝑗O2), 𝛿𝑖 =

{
1, 𝑖 = O2

0, else
, (4.10)

where 𝑢l is the liquid phase velocity, 𝑟𝑖 is the net rate of reaction and 𝑗O2 is the transfer of oxygen
from the gas to the liquid phase. The species 𝑖 is in the set {DHAA, PO1, POy, POx,O2}. The
delta function 𝛿𝑖 ensures that the oxygen transfer is solely active in the balance for dissolved
oxygen.

For the gas phase, a material balance over oxygen and the total gas flow ¤𝑉g is considered. The
former in terms of molar fraction xO2, Equation (3.27), is

dxO2

d𝑧
= − 𝑅𝑇

𝑝 ¤𝑉g
(1 − 𝛼)𝐴 𝑗O2 (1 − xO2), (4.11)

and the material balance over the total gas flow, Equation (3.28), reads

d ¤𝑉g

d𝑧
= −𝑅𝑇

𝑝
(1 − 𝛼)𝐴 𝑗O2. (4.12)

In Equations (4.11) and (4.12), 𝑅 is the universal gas constant, 𝑇 the temperature, 𝑝 the total
pressure, and 𝐴 the known cross-sectional area of the channel.
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4 Step 1: Photooxygenation

To solve the material balances in Equations (4.10), (4.11) and (4.12), the unknown gas fraction
𝛼 =

𝐴g
𝐴

, Equation (3.18), must be determined. To this end, an established simplification of the
two-fluid model – the drift flux model – is used [227, 228]; for further details see SI of [108].
The drift flux model reduces the momentum and energy balance to one mixture equation in each
case at the cost of losing some key characteristics of two-phase flow [128]. It may be applied to
flows where the motion of the two phases are closely coupled. On the other hand, if they are only
weakly locally coupled, the drift flux model can be used as well, provided that there is enough
interaction time along the reactor line [128]. Its constitutive equation relates 𝛼 to the known gas
holdup 𝛽,

𝛼 =
1
𝐶0
𝛽, (4.13)

with

𝛽 =
¤𝑉g
¤𝑉

=
¤𝑉g

¤𝑉g + ¤𝑉l
. (4.14)

The distribution factor 𝐶0 might be taken from literature or experimentally determined. In this
study, 𝐶0 is estimated by measurement of the residence time after tracer injection.

Interfacial Oxygen Transfer

Mass transfer of oxygen from the gas into the liquid phase is modeled according to

𝑗O2 = 𝑘 l𝑎( [O2]∞ − [O2]), (4.15)

where [O2]∞ is the saturation concentration of oxygen in the liquid phase and 𝑘 l𝑎 is the volumetric
transfer coefficient based on the specific gas-liquid interfacial surface area 𝑎. The saturation
concentration is calculated by Henry’s law (see SI of [108]) and is taken from literature [229].
The mass transfer coefficient 𝑘 l𝑎 in Equation (4.15) is affected by several reactor-dependent
and fluid properties, that are summarized in a contribution from the Taylor bubble caps and a
contribution from the liquid film between reactor wall and Taylor bubble [230]. The contribution
by the film was observed to be dominant [230], leading to 𝑘 l𝑎 ∝

√︁
𝐷O2𝑢

s
g/𝐿UC/𝑑 with the

diffusion coefficient of oxygen 𝐷O2 and the length of a unit cell 𝐿UC consisting of the gas bubble
and the liquid slug [231]. Since no information about the geometry of the unit cell is readily
available, a simple dependence of the mass transfer coefficient on the superficial gas velocity is
considered:

𝑘 l𝑎 = 𝑘̃ l𝑎
√︃
𝑢s

g, (4.16)

introducing a constant 𝑘̃ l𝑎.

50



4.2 Process Model for the Photooxygenation of Dihydroartemisinic Acid

Table 4.1: Summary of key assumptions applied to describe the reactor behavior.

The relative pressure drop over the reactor is small (0.1 to 0.5 bar at 7 bar
operating pressure). Consequently, the momentum balance is neglected
[131].
Due to the isothermal operation of the reactor, there are no internal tem-
perature gradients. Thus, energy balances are not considered.
The flow is one-dimensional (𝑧 axis). Hence, ideal mixing in radial direc-
tion is assumed [129, 232].
Diffusion is not considered.
The operation of the setup is in steady-state.
The liquid phase is incompressible. The density is calculated by a simple
mixture density of the solvent plus the excess volume caused by the addition
of DHAA.
Material exchange between the phases is based on the linear approach to
mass transfer.
The gas phase can be described by an ideal gas mixture, i.e., the Taylor
bubbles are well mixed.
The dissolved oxygen concentration is derived from Henry’s law.

4.2.3 The Process Model: Combining the Kinetics with the
Reactor Model

The integration of the chemical kinetics, Equations (4.4), and the mass transfer relation, Equation
(4.15), into the material balances (4.10), (4.11) and (4.12) provides the governing equations of
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4 Step 1: Photooxygenation

the process model for both the liquid and the gas phase, yielding the state-space representation
(3.5a):

d[DHAA]
d𝑧

=

(
1 − 𝛽

𝐶0

)
𝐴

¤𝑉l

(
− [O2]
𝑘 l1 [O2] + 𝑘 l2

( 𝑘̃PO1 + 𝑘̃POy) [𝐷𝐻𝐴𝐴]
1 + ( 𝑘̃PO1 + 𝑘̃POy) [𝐷𝐻𝐴𝐴]

·

𝐿p (1 − exp [−𝜅𝑐DCA𝑙opt])
)
,

d[PO1]
d𝑧

=

(
1 − 𝛽

𝐶0

)
𝐴

¤𝑉l

(
[O2]

𝑘 l1 [O2] + 𝑘 l2

𝑘̃PO1 [𝐷𝐻𝐴𝐴]
1 + ( 𝑘̃PO1 + 𝑘̃POy) [𝐷𝐻𝐴𝐴]

·

𝐿p (1 − exp [−𝜅𝑐DCA𝑙opt]) − 𝑘POx [PO1]
)
,

d[POy]
d𝑧

=

(
1 − 𝛽

𝐶0

)
𝐴

¤𝑉l

(
[O2]

𝑘 l1 [O2] + 𝑘 l2

𝑘̃POy [𝐷𝐻𝐴𝐴]
1 + ( 𝑘̃PO1 + 𝑘̃POy) [𝐷𝐻𝐴𝐴]

·

𝐿p (1 − exp [−𝜅𝑐DCA𝑙opt]) − 𝑘POx [POy]
)
,

d[POx]
d𝑧

=

(
1 − 𝛽

𝐶0

)
𝐴

¤𝑉l
𝑘POx ( [PO1] + [POy]),

d[O2]
d𝑧

=

(
1 − 𝛽

𝐶0

)
𝐴

¤𝑉l

(
− [O2]
𝑘 l1 [O2] + 𝑘 l2

( 𝑘̃PO1 + 𝑘̃POy) [𝐷𝐻𝐴𝐴]
1 + ( 𝑘̃PO1 + 𝑘̃POy) [𝐷𝐻𝐴𝐴]

·

𝐿p (1 − exp [−𝜅𝑐DCA𝑙opt]) + 𝑘̃ l𝑎
√︃
𝑢s

g ( [O2]∞ − [O2])
)
,

dxO2

d𝑧
=

𝑇

𝑝 ¤𝑉g

(
−𝑅 𝛽

𝐶0
𝐴𝑘̃ l𝑎

√︃
𝑢s

g ( [O2]∞ − [O2]) −
𝑝

𝑇
xO2

d ¤𝑉g

d𝑧

)
,

d ¤𝑉g

d𝑧
= −𝑇

𝑝
𝑅
𝛽

𝐶0
𝐴𝑘̃ l𝑎

√︃
𝑢s

g ( [O2]∞ − [O2]),

(4.17)

with initial conditions

( [DHAA], [PO1], [POy], [POx], [O2], [xO2], [ ¤𝑉g]) (0)
= ( [DHAA]0, 0, 0, 0, [O2]∞, xO2,0,

¤𝑉g,0).
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4.3 Results and Discussion

The vector of unknown model parameters of the process model, that needed to be identified, is

𝜽 = ( 𝑘̃ l𝑎, 𝑘 l1, 𝑘 l2, 𝑘̃PO1, 𝑘̃POy, 𝑘POx, 𝑙opt). (4.18)

Note that the time variable 𝑡 in the state equation (3.5a) is replaced by the reactor coordinate 𝑧.

4.3 Results and Discussion

In the following, the experimental results for the distribution factor in the drift-flux model,
the absorption coefficient of the photosensitizer and the incident volumetric photon flux are
shortly summarized. Subsequently, the reaction behavior of the photooxygenation is analyzed
qualitatively on the basis of the experimental data. In the last part, the experimental data
is used to identify the kinetic model parameters and assess the suitability of the previously
made assumptions. The parameterized model is then applied to understand and identify the
rate-determining effects in dependence on the reaction conditions. Finally, the developed process
model is used to determine the most influential parameters on key quantities by a global sensitivity
analysis.

4.3.1 Experimental Identification of Model Parameters

The distribution coefficient 𝐶0 and the absorption coefficient 𝜅 of DCA at irradiation wavelength
are two essential model parameters. Both were determined prior to the photooxygenation exper-
iments and were then fixed in the model identification. The parameters have been determined by
Susann Triemer at the MPI Magdeburg, and the results are solely reported in the following. For
a thorough derivation and the measurement technology used, please see [108].

The determined value for the distribution factor is

𝐶0 = 1.02 ± 0.025 (95% confidence interval). (4.19)

The value is close to the special case of 𝐶0 = 1, that results in equal flow velocities of the liquid
and the gas phase. Thus,𝐶0=1.02 means that only a very thin liquid film forms around the moving
gas bubbles; compare with Figure 2.4.

The obtained Napierian absorption coefficient 𝜅 of 9,10-Dicyanoanthracene in Toluene is

𝜅 = 12 841.98 l/(mol cm). (4.20)
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4 Step 1: Photooxygenation

4.3.2 Quantification of the Incident Volumetric Photon Flux 𝐿p

The relations between the incident volumetric photon flux 𝐿p and both the set LED power 𝑃LED

and the unknown optical path length 𝑙opt have been established by Susann Triemer at the MPI
Magdeburg. Detailed information is given in [108] and summarized in the following.

To connect the volumetric incident photon flux with the LED-power, an LED-typical linear
relation is used:

𝐿p = 𝐿̃p · 𝑃LED, (4.21)

with proportionality factor 𝐿̃p.

The optical path length 𝑙opt strongly influences the unknown incident photon flux 𝐿p from the
actinometric measurements, but was found to be insensitive in the performed experiments. On the
other hand, the complex irradiation geometry of the applied reactor, Figure 2.3, makes it difficult
to determine 𝑙opt from theoretical considerations, namely wide emission angles of the LEDs,
illumination from two sides, reflection within the reactor casing and Taylor flow conditions. As
an alternative, the optical path length is set as an additional model parameter to be estimated from
experimental data sampled during the photooxygenation of DHAA. In turn, the proportionality
factor 𝐿̃p is derived from the Beer-Lambert law and actinometric measurements in the applied
continuous reactor setup using ferrioxalate and with a dependence on 𝑙opt:

𝐿̃p =
8.893 × 10−5 mol/(l s LED−%)

1 − exp−23.935/cm·𝑙opt
. (4.22)

The parameterized relation from Equations (4.21) and (4.22) is used in the model, Equations
(4.17), to link the knowledge from the actinometric measurements to the photooxygenation
experiments.

4.3.3 Qualitative Assessment of the Reaction Behavior of the
Photooxygenation

Susann Triemer assessed the collected experimental data to infer qualitative trends of the reaction
behavior on the basis of Figure 4.3 [61, 108]. The main findings are of vital importance for the
interpretation of the developed process model and are therefore summarized in the following.

The concentration-time-profiles follow a mixed zero and first reaction order as proposed in the
model. The decreasing recovery towards full conversion is probably attributed to rearrangement
and degradation reactions of the formed hydroperoxides as observed in mechanistic studies by
Brown et al. [216–218], and taken care of in the additional species POx, Section 4.2.1.
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Figure 4.3: Behavior of the photooxygenation of dihydroartemisinic acid to the desired hydroperoxide PO1 at varied
reaction conditions (incl. initial concentration of DHAA): a) Concentration of DHAA, the formed hydroper-
oxides and the observed reactant recovery in dependence on the superficial residence time b) Dependence
of PO1 formation on provided light intensity c) Effect of varied photosensitizer concentration and gas phase
composition at the inlet at constant superficial residence time. Figure is reproduced from [108].
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Increasing the light intensity accelerates the reaction without impacting the final yields, Figure
4.3b. This aligns with the proposed reaction network, where the incident photon flux only affects
the formation of singlet oxygen. The constant recovery with respect to light intensity suggests that
the consecutive rearrangement and degradation of PO1 and POx are not dependent on radiative
transfer.

According to the model structure, the reaction rate is expected to increase linearly with the
incident photon flux. However, doubling the LED power from 50 LED−% to 100 LED−% only
leads to a 1.5-fold increase in the effective initial rate of PO1 formation, Figure 4.3b. This means
that the proposed linearity is not observed in the experimental data at high irradiation intensities.
This effect may be due to oxygen mass transfer, which is too slow to provide oxygen for the fast
reactions under strong irradiation.

Figure 4.3c shows that varying the photosensitizer concentration and gas phase composition while
keeping the superficial residence time constant only affects the reaction rate, not the total recovery.
Increasing the catalyst concentration by 3-fold results in a 2-fold increase in PO1 concentration
formed. This is not in complete agreement with the Beer-Lambert law for an optical path
length equal to the channel diameter of 0.8 mm: An approximate 3-fold rise in light absorption
would cause the same increase in the reaction rate. However, the lower increase observed in the
experiments suggests that the light passes through the reactor on a longer path length, resulting
in higher absorption and thus lower sensitivity on the catalyst concentration. Decreasing the O2
content in the gas phase leads to an approximate 20 % lower yield of PO1 under otherwise similar
reaction conditions. Based on this data, it is unclear whether the significant decrease is due to a
lower singlet oxygen quantum yield or slower mass transfer. A quantitative analysis based on a
parameterized and validated model of the photooxygenation is required to draw a final conclusion.

4.3.4 Choice of Parameter Subset

The process model developed to describe the photooxygenation behavior contains seven unknown
parameters to be identified with experimental data, Equation (4.18). Two of the parameters, the
mass transfer coefficient 𝑘̃ l𝑎 and the optical path length 𝑙opt, are related to the applied reactor setup.
The other five parameters are kinetic rate constants, which are independent of the measurement
setup.

Originally, all of the seven model parameters given in Equation (4.18) were supposed to be
estimated. However, two issues led to the omission of estimating the singlet oxygen parameters
𝑘 l1 and 𝑘 l2. First, it is well known that the mathematical structure of the quantum yield relation,
Equation (4.7), impedes the practical identifiability of its parameters; despite the fact that they
are both theoretically identifiable [233]. Accordingly, parameter estimation runs showed that
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physically reasonable values of the quantum yield of singlet oxygen, i.e., values below 2, could
not be retrieved.

To confirm this observation, a global sensitivity analysis of the model parameters on the parameter
estimation objective is conducted. The results are shown in Figure 4.4. On the left side, it is clearly
visible that the majority of the sensitivities is due to second-order effects, i.e., the parameters show
significant interactions – a situation commonly encountered in parameter estimation. At the same
time, no higher order effects above two are present as first order and second order indices add up to
1; see the summation bars in Figure 4.4a and compare with Equation (3.59). From the plot on the
right side, the corresponding parameter interactions can be extracted. The parameters 𝑘 l1 and 𝑘 l2

of the quantum yield relation for singlet oxygen have overall the strongest parameter interactions,
in particular among themselves, with the optical path length 𝑙opt, and the kinetic parameter of the
chemical reaction forming the intermediate hydroperoxide PO1, 𝑘̃PO1. A potential reduction of the
interactions by MBDoE did not predict to significantly disentangle the strong connection between
the parameters. Thus, it becomes impractical to uniquely determine the involved parameters
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Figure 4.4: Influence of the primarily considered model parameters to be estimated on the parameter estimation objective,
Equation 3.39, by using uniform distributions between −10 and 10 % of the nominal values. Both graphs
reveal identifiability issues due to parameter interactions. The left plot suggests that higher order Sobol’
indices do not play a role as first and second order indices add up to 1.

with the measurement information at hand. As discussed before, the quantum yield parameters
lack the addressed practical identifiability and lead to estimated parameters that cause quantum
yields larger than the maximum physical limit of 2. Consequentially, the unknown quantum yield
parameters are set to literature values, taken from [212] for DCA in benzene: 𝑘 l1 = 0.641 and
𝑘 l2 = 0.0119 mol/l. The fixing of the quantum yield parameters results in an estimation of the
other model parameters with satisfying confidence.
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Figure 4.5: Singular value decomposition of the sensitivity matrix is used for parameter identifiability, where singular
values close to zero indicate non-identifiability. The typical gap between singular values pointing towards
identifiability issues cannot be observed (Section 3.5.1).

4.3.5 Identifiability of the Process Model Parameters

Five parameters to be estimated are left after fixing the kinetic parameters 𝑘 l1 and 𝑘 l2 in the
quantum yield relation: The mass transfer coefficient 𝑘̃ l𝑎, the three chemical kinetic constants
𝑘̃PO1, 𝑘̃POy and 𝑘POx, and the optical path length 𝑙opt. The results from the multistart approach
with 60 initial points from a Latin hypercube sampling [234] suggests that the problem has only
a single minimum within the investigated parameter space, as all the runs ended having the same
objective value. More specifically, the estimated parameters in all runs have the same magnitude,
indicating that all parameters are practically identifiable. To confirm this conjecture, inspecting
the singular value decomposition of the sensitivity matrix, Section (3.5.1), and afterwards the
profile likelihoods of the individual parameters gives insights. The logarithmic plot of the singular
values does neither show a clear gap [159], nor is any of the singular values close enough to
zero to consider it a zero singular value, Figure 4.5. The profile likelihoods (PLLs) confirm both
the structural and the practical identifiability of all estimated model parameters as all PLLs have
regular likelihood shapes and cross the 95 % confidence intervals, Figure 4.6. The magnitudes of
the estimated parameters can therefore be reliably and physically interpreted, assuming that the
model structure simulates the real process.

4.3.6 Assessment of the Estimated Model Parameters

The results of the parameter estimation and of the subsequent quantitative assessment of the
derived model parameters and the model-data fit are summarized in Table 4.2. The measurement
error variance estimated from regression statistics, Equation (3.40), is 𝜎̂2 = 2.73× 10−4 mol2/l2.
Correspondingly, the relative deviation between the predicted and measured concentration of the
key intermediate PO1 is 7.32 %. The good model-data fit is visualized in the parity plots in
Figure 4.7 which show a good match between experimental results and simulated data over the
whole range of investigated superficial residence times. Exemplarily, the data points appearing
in Figures 4.3a are marked in Figures 4.7a, 4.7b and 4.7c accordingly. In contrast to DHAA and
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Table 4.2: Goodness of fit and estimated parameter values and spreads, Equation (5.7), for the developed process model,
Equations (4.17). The confidence intervals are based on the profile likelihood.

model-data fit

Symbol unit value description

RSS mol2/l2 0.1799 residual sum of squares
𝜎̂2 mol2/l2 2.73 × 10−4 measurement error variance

% 7.32 averaged relative deviation of PO1
†

estimated parameters

Symbol unit value COD CI−95 CI+95

𝑘̃ l𝑎
√︁

1/cm min 1.094 0.093 1.046 1.148
𝑘̃PO1 l/mol 7.130 0.173 6.555 7.790
𝑘̃POy l/mol 0.644 0.306 0.550 0.747
𝑘POx 1/min 0.0249 0.369 0.0204 0.0296
𝑙opt cm 0.178 0.107 0.169 0.188

fixed parameters (quantum yield, Equation 4.7)

Symbol unit value reference

𝑘 l1 − 0.641 DCA in benzene [212]
𝑘 l2 mol/l 0.0119 DCA in benzene [212]
𝜅 l/(mol cm) 12841.98 Section 4.3.1
𝐶0 − 1.02 Section 4.3.1

†:
(∑𝑛PO1

𝑖

��( 𝑦̃PO1,𝑖 − 𝑦PO1,𝑖 )
�� /𝑦PO1,𝑖

)
/𝑛PO1

COD: coefficient of dispersion, COD = (CI+95 − CI−95 )/𝜃 , 𝜃 : estimated value

CI+/−95 : ±95 % confidence interval
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PO1, the key chemical species on the route towards artemisinin, the data of POy is less matched
because for two reasons. On the one hand, the optimizer tends to favor higher concentrations
per definition of the objective function, i.e., the likelihood function. On the other hand, the POy
concentrations are closer to zero, where the signal-to-noise ratio is increased.

To further assess the quality of the identified model, relative deviations of PO1 over four important
process parameters, namely, the initial DHAA concentration, the LED light power, the photo-
sensitizer concentration, and the molar fraction of oxygen, are investigated, Figure 4.8. Each
parameter is min-max normalized and for each quarter summary statistics are determined for the
relative deviation of PO1, shown as boxes and whiskers in Figure 4.8. A reliable model should
show no clear trends in the summary statistics of the PO1 deviation, no matter of the considered
location in the design space. Otherwise, observations could point to design space regions, where
the model should be used with care or needs improvement. Noticeably, the available experimental
data accumulates at the parameters bounds, as specified by the widths of the boxes. Generally
speaking, the boxes and whiskers in Figure 4.8 are symmetrical around the zero line with similar
box and whiskers heights. Thus, it can be concluded that the existent deviations are mainly caused
by measurement noise and errors that inherently occur during the measurement procedure but not
by systematic model discrepancy.

Coefficient of dispersions (CODs) and the 95 % confidence intervals (CIs) for the estimated
parameters are stated in Table 4.2. It can be noted that the chemical kinetic constants have larger
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Figure 4.6: Profile likelihoods of estimated model parameters. Dashed lines mark the 95 % confidence intervals. None
of the parameters shows parameter identifiability issues.
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Figure 4.7: Match of experimental data with simulated results based on the parameterized process model for all quantities
measured at the reactor outlet. The grey scale illustrates the superficial residence time in the photoreactor of
each data point. Triangle, diamond and square markers represent data from Figure 4.3a. The dashed lines
mark 20 % deviations.
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𝜏s min Theoretical residence time 0.439 5.931
[DHAA]0 mol/l Initial concentration of DHAA 0.231 0.491
𝑃LED LED−% LED light power 50 100
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Figure 4.8: Relative deviation between experiment and simulation ( 𝑦̃ − 𝑦)/𝑦 for PO1, depicted over the investigated
range of process parameter values. The widths of the boxes reflect the number of samples in each of the four
sections. (The whiskers are based on 1.5 times the interquartile range. Outliers are not shown.)
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CODs and are, loosely spoken, more uncertain in their estimates than the mass transfer coefficient
and the optical path length. On the whole, each of the parameters shows an acceptable spread
suggesting that their expected values can be reliably used for further model-based investigation.

The rate constants for the formation of the desired hydroperoxide PO1 and the byproducts were
normed, Equation (4.5), to ease the parameter estimation process. Based on the known life time
of singlet oxygen in toluene (33.2 µs at −20 ◦C [220]) the absolute rate constants of the reactions
of DHAA with 1O2 to the hydroperoxides, Equation (4.2), can be obtained:

𝑘PO1 = 2.15 × 105 l/(mol s),
𝑘POy = 0.19 × 105 l/(mol s).

Both values are in the same order of magnitude as rate constants published for other investigated
ene-type reactions [102, 136, 235]. The reaction to the desired hydroperoxide is about 10-fold
faster than the reaction to the byproducts. This matches with the favored selectivity of PO1
observed in the photooxygenation experiments.

For Taylor flow fluid dynamics and mass transfer in microchannels, there are various relations for
the mass transfer coefficient available that vary substantially among each other [236]. In the study
case at hand, initial superficial velocities between 120 cm/min and 350 cm/min appear, resulting
in volumetric mass transfer coefficients of approximately 12/min to 20/min. These values lie
within the range of 𝑘 l𝑎 values predicted from correlations available in the literature [236].

Intuitively, the length of the optical path 𝑙opt = 0.178 cm seems to be large at first sight as it
is greater than twice the tube diameter of 0.08 cm. In a single circular tube geometry with
perpendicular irradiation, the optical path length can be assumed to be between channel diameter
𝑑 as upper boundary and the ratio 𝐴/𝑑 as lower boundary depending on the collimation of the
incident light [237]. Both boundaries, however, are based on the hypothesis that light enters the
tubing from one side and is lost after leaving it. In the considered photoreactor instead, two light
sources are installed in a closed box of stainless steel, resulting in reflection of the light beam
back to the reactor. Furthermore, as the reactor itself is symmetric (compare with Figure 2.3),
leaving light beams on one side can re-enter the reactor tubing on the other side. In particular
in the tube convolutions around the poles in the reactor box, optical path lengths significantly
exceeding twice the tube diameter are very plausible.

Concluding, the model parameters were estimated with both acceptable uncertainty and physically
meaningful magnitudes. This is for a considerable part attributed to the model-based design of
experiments, that has been applied and is explained in the following Section.
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4 Step 1: Photooxygenation

4.3.7 Model-Based Design of Experiments for Improving
Parameter Precision

For estimating the model parameters with low uncertainty, i.e., with narrow confidence intervals,
a model-based design of experiments is performed in a last step of the iterative strategy for the
identification of the process model. In this vein, the precision in the estimated model parameters
from previous experiments is intended to be enhanced. The DoE optimization problem, Equation
(3.65), with the objective function from Equation (3.64) is stated as:

max
𝝃1 ,...,𝝃𝑛DoE

det (IM(𝝃1, . . . , 𝝃𝑛DoE ; 𝜽))

s.t. Eq. (3.5a)

Eq. (3.5b)

𝒈ineq (𝝃𝑖), 𝑖 ∈ {1, . . . , 𝑛DoE}
𝝃min ≤ 𝝃𝑖 ≤ 𝝃max, 𝑖 ∈ {1, . . . , 𝑛DoE}

, (4.23)

with 𝝃𝑖 the design variable of the 𝑖th experiment. In total for one day of operation, 12 different
experiments were planned, that led to the identified process model. Besides bounds for the
optimization variables as specified in the last line of Equation (4.23), the experiments were
additionally constrained by practical circumstances. During the one day lasting experiment, 4
different oxygen molar fractions could be set. For each fraction, 3 different DCA concentrations
were managed. Additional constraints ensured that each of the molar fractions and each of the
DCA concentrations fell in distinct ranges, that were equally spaced over the experimental design
space. These constraints are considered in the functions 𝒈ineq in Equation (4.23). Hence, together
with the liquid volumetric flow, the initial concentration of DHAA, and the LED power, Equation
(5.4), there were 15 variables to optimize. For the remaining design variable, the length of the
reactor, each of the possible reactor lengths was run in a separate optimization. The following
bounds on the design variables were applied:
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Figure 4.9: Comparison of normed parametric uncertainty for non-optimized (random) and optimized (DoE) experiments.
The predicted values were calculated by Equation (3.38), the others by Equation (3.37). The non-optimized
experiments are randomly drawn from the existent experiments, where the corresponding bars show the
mean of 20 repeated random samples. As gas measurements were introduced later during the course of the
identification procedure, two mean values are given: The first is based on all existent experiments (predicted
random), whereas the second solely takes the existent experiments with gas measurements into consideration
(predicted random gas).

The optimized experimental conditions, resulting from solving Equation (4.23), were

𝐿r = 400 cm,
¤𝑉l = 0.2 ml/min,

𝑐DCA = {0.62, 0.73, 0.85} mmol/l,

[DHAA]0 = 0.5 mol/l,

xO2,0 = {0.40, 0.43, 0.45, 0.50},
𝑃LED = 100 LED−%.

(4.25)

In Figure 4.9, the DoE design, Equation (4.25), is compared with possible non-optimized designs
(random). It shows the normalized determinant of the FIM and indicates a considerable difference
between the non-optimized and the DoE scenario, confirming the benefit of MBDoE. After the
re-estimation of the model parameters, an almost 14-fold increase in the determinant could
be achieved, whereas for an unplanned experiment at most a 3-fold increase would have been
possible, Figure 4.9. The reduced parametric uncertainty is mostly owed to the mass transfer
coefficient 𝑘̃ l𝑎, Table 4.3. On the contrary, the uncertainty in the other parameters has not
significantly changed. Note that part of the predicted uncertainty reduction, Figure 4.9 predicted
DoE versus post DoE, is counteracted by an increase of the measurement variance Σ, Table
4.3, that affects the parameter covariance matrix C𝜃 , Equation (3.34). This fact partly explains
why the uncertainties of the parameters 𝑘̃PO1, 𝑘POx and 𝑙opt have increased, even though only
marginally, if the COD is considered. However, it must be pointed out, that we intentionally
have forced the design to lie within gas composition ratios where available experiments had not
previously been operated, see the initial molar fraction of oxygen xO2,0 in Equation (5.4). In
addition to the newly exploited operational region, the process model could fit the experimental
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Table 4.3: Comparison of parameter estimation before and after DoE, including 95 % asymptotic confidence intervals.

model-data fit

prior DoE post DoE

Symbol unit value value

RSS mol2/l2 0.1195 0.1799
𝜎̂2 mol2/l2 2.14 × 10−4 2.73 × 10−4

estimated parameters

prior DoE post DoE

Symbol unit value COD value COD

𝑘̃ l𝑎
√︁

1/cm min 1.811 ± 0.171 0.188 1.094 ± 0.0359 0.066
𝑘̃PO1 l/mol 6.422 ± 0.193 0.060 7.130 ± 0.252 0.071
𝑘̃POy l/mol 0.570 ± 0.0648 0.228 0.644 ± 0.0691 0.215
𝑘POx 1/min 0.0287 ± 0.00376 0.262 0.0249 ± 0.00350 0.281
𝑙opt cm 0.171 ± 0.00370 0.043 0.178 ± 0.00457 0.051

COD: coefficient of dispersion, COD = (CI+95 − CI−95 )/𝜃

CI+/−95 : ±95 % confidence interval

data sufficiently well. This supports the chosen first principles approach and the derived model
structure, that make the process model to have a good accuracy of the real process behavior
not only within the experimentally exploited region, but also beyond. To sum up, the MBDoE
approach has performed considerably better than a random design, and significantly decreased
the uncertainty in the model parameters, where the major reduction is owed to the effective mass
transfer coefficient 𝑘̃ l𝑎.

4.3.8 Remarks about the Identified Process Model

In conclusion, the model developed to describe the photooxygenation of DHAA provides a good
fit with the experimental data. All model parameters are identifiable and their estimates are in
plausible ranges. The required simplification on fluid dynamics and photon transfer, namely the
application of the two-fluid model and the neglect of absorption rate distribution, offers a good
description of the observed process behavior.
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Albeit, it must be emphasized that for a reliable utilization and interpretation of the identified
process model the following aspects need to be taken into account. Neglecting the distribution
of the local volumetric rate of photon absorption is a strong simplification affecting the reaction
system on various levels. In particular, a gradient in the absorbed photon flux will cause a
non-uniform distribution of the rate of singlet oxygen production within the liquid slug, resulting
in a potential diffusion limitation of the overall reaction rate. The absorbed photon flux itself is
influenced by the gas holdup and photosensitizer concentration. Both quantities decrease with
reaction time due to oxygen consumption and photobleaching and therefore affect the absorbed
photon flux. A reliable description of the two-phase flow is essential likewise. A global sensitivity
analysis of important model parameters (Section 4.3.10) shows, that the distribution parameter
𝐶0, that links the relative motion of the different phases, Equation (4.13), is highly sensitive. A
variation of 𝐶0 in the model induces a considerable change in the simulated PO1 concentration.
Lastly, the identified model and all parameters are only valid for a temperature of−20 ◦C. Studying
the complex influence of temperature on the reaction system including the mass transfer and flow
conditions is beyond the scope of this study and a task for future studies.

4.3.9 Exploitation of the Process Model to Analyze Different
Operating Regimes

The identified and fully-parameterized model can now be used to understand the process behavior
and identify optimal operating windows. In the following, three characteristic operating situa-
tions are illustrated that differ in the cause that limits or partially limits the process dynamics:
light irradiance, substrate DHAA or mass transfer. The possible fourth operating regime – the
kinetically controlled domain without any other limitation – does not occur under the investigated
conditions [222].

In Figures 4.10 and 4.11, the dynamic behavior of the system’s key quantities, product con-
centrations, gas flow rate and gas phase composition are drawn over the reactor length. The
thin vertical line marks the exit of the photoreactor and thus the end of light irradiance. The
discontinuities in the curves at the reactor exit are induced by a temperature jump from reactor to
ambient temperature. Experimental data are plotted at the sampling position downstream to the
photoreactor exit.

In the first case example, the gas phase consists solely of oxygen, as can be observed in Figure
4.10b. The volumetric gas flow decreases along the reaction line in the photoreactor since oxygen
is consumed in the liquid phase due to the chemical reactions and continuously supplied from
the gas phase, Figure 4.10. The negative slope of the PO1 concentration curve after reaching its
maximum concentration, Figure 4.10a, is owed to the consecutive loss reactions, Equations (4.1),
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Figure 4.10: Propagation of concentrations, oxygen molar fraction and gas flow along the reactor coordinate show-
ing no mass transfer limitations (conditions: [DHAA]0 = 0.23 mol/l, [DCA] = 0.85 mmol/l, 𝑃LED =

100 LED−%, xO2,0= 1). The thin vertical line marks the reactor outlet. The thin dashed horizontal line in
the left graph is the inflection line specifying the transition from the light-limiting to the substrate-limiting
regime at a DHAA concentration of 0.14 mol/l.

that also continue to go on downstream of the reactor in contrast to the photo-induced reactions.
The further discontinuity downstream leading to an even higher negative slope is caused by a slow
down of the reaction medium due to a diameter jump of the tubing. Noteworthy is the behavior
of the dissolved oxygen in Figure 4.10b. The dissolved oxygen is rapidly consumed at the inlet
of the photoreactor as reaction rates are large in the beginning, see Figure 4.10a, but is recovered
with decreasing reaction rate values. Obviously, mass transfer does not substantially hinder the
process dynamics. In contrast, both the light-limiting and the substrate-limiting regime can be
observed in Figure 4.10a. Here, a pseudo-inflection point might be determined that describes the
transition between the two regimes that are often observed in photoredox catalysis [222]. At the
inflection point, the reaction switches from a pseudo-zero-order reaction with the reaction rate
at its maximum to a first-order reaction. Mathematically, the inflection point is defined as the
half-maximum kinetic reaction rate. Accordingly, with 1

2
!
= (𝑟PO1 + 𝑟POy)/𝑟1O2

(Equation (4.4)),
the light-limiting regime is controlled by

( 𝑘̃PO1 + 𝑘̃POy) [DHAA] ≫ 1 : 𝑟PO = Φ1O2
𝐿a

p = 𝑟max
PO , (4.26)

and the substrate-limited regime by

( 𝑘̃PO1 + 𝑘̃POy) [DHAA] ≪ 1 : 𝑟PO = Φ1O2
𝐿a

p ( 𝑘̃PO1 + 𝑘̃POy) [DHAA] . (4.27)

In this study, the inflection point is therefore at [DHAA] ≈ 0.14 mol/l. In the DHAA graph in
Figure 4.10a, this inflection point is passed shortly beyond the intersection between the DHAA
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(b) Oxygen mass transfer.

Figure 4.11: Propagation of concentrations, oxygen molar fraction and gas flow along the reactor coordinate showing mass
transfer limitations (conditions: [DHAA]0 = 0.48 mol/l, [DCA] = 0.60 mmol/l, 𝑃LED = 100 LED−%,
xO2,0= 0.51). The thin vertical line marks the reactor outlet.

and the PO1 curve, see the dashed horizontal line. To the left of it, it follows zero-order kinetics,
and to the right of the inflection point, it approaches first order kinetics.

A complementary process characteristic is shown in Figure 4.11. In this case, the gas phase
consists of both oxygen and nitrogen; see the molar concentration of oxygen in Figure 4.11b.
From the curve of dissolved oxygen in Figure 4.11b, it readily can be observed that the system
quickly runs into mass transfer limitations. The level of dissolved oxygen settles down to an
equilibrium stage that continuously decreases as the molar fraction of oxygen in the gas phase
drops and therefore correspondingly the solubility limit of oxygen that is determined by Henry’s
law. Note that the dissolved oxygen does not reach again the initial dissolved oxygen concentration
because of the decreased molar fraction of oxygen in the gas phase and the elevated temperature
beyond the photoreactor. Along the whole reactor line, the process runs above the inflection point,
i.e. above [DHAA] ≈ 0.14 mol/l, see Figure 4.11a. This implicates that the DHAA curve in the
same Figure follows pseudo-zero-order kinetics. The additional bending of the actual straight
line is caused by the low availability of oxygen in the liquid phase that affects the quantum yield
of singlet oxygen, Equation (4.7), and reduces the maximum reaction rate, Equation (4.26). Thus,
here, the process is partially limited by mass transfer, i.e. the mass transfer rate is approximately
equal to the rate of the bulk kinetics, preventing a more efficient conversion of DHAA.

Further insight of the system behavior is inferred with the help of a sensitivity study in the
following Section, that reveals important parameters on the performed experiments and key
quantities of the process.
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Figure 4.12: Convergence plot to determine the number of samples in the computational runs of the global sensitivity
analysis. The 95 % confidence intervals were determined by bootstrapping with 1000 samples [238].
Convergence graphs for the parameters 𝑘l𝑎, 𝑘̃PO1, and 𝑙opt are not shown for better clarity. They exhibit the
same qualitative trend as the plotted graphs.

4.3.10 Global Sensitivity Study of the Process Model

Sensitivities of Model Parameters on the Performed Experiments

In the following, the influence of the estimated model parameters on all the conducted experiments
is studied by applying a global sensitivity analysis (GSA), Section 3.6.2. The parameter distribu-
tions are assumed to be Gaussian, where the mean and the standard deviation are determined by
their estimated values from Equation (4.19) and Table 4.2 (units are omitted):

𝐶0 ∼ N(1.02, 1.276 × 10−2),
𝑘̃ l𝑎 ∼ N(1.094, 2.60 × 10−2),
𝑘̃PO1 ∼ N(7.13, 0.315),
𝑘̃POy ∼ N(0.644, 5.026 × 10−2),

𝑘POx ∼ N(0.0249, 2.347 × 10−3),
𝑙opt ∼ N(0.178, 4.847 × 10−3).

(4.28)

Prior to the GSA, a convergence study was performed to back the choice of the number of samples
drawn from the parameter distributions in Equation (4.28). From the graphs in Figure 4.12 a
sample size of 8000 was chosen. The results for first and total order indices on the concentrations
of the hydroperoxide PO1 and the oxygen concentration in the liquid phase O2,l are given in
Figure 4.13. In general, all parameters show significant sensitivities, which once more backs the
already established fact that the model parameters are identifiable as both hydroperoxide and gas
phase measurements have been performed. Remarkably for both concentrations, the distribution
factor 𝐶0, that determines the velocity difference of the two phases, has the largest influence – in
the case of PO1 by a considerable margin. This emphasizes the need for a reliable measurement
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Figure 4.13: Averaged influence of estimated parameters over all performed experiments and the reactor length on a)
main hydroperoxide and b) liquid oxygen concentration. Left bars are the first order Sobol’ indices, Equation
(3.57), and right bars are the total order Sobol’ indices, Equation (3.60). The whiskers mark the standard
deviation of the total order indices.

method to determine 𝐶0, Section 4.3.1. The kinetic constant related parameters 𝑘̃PO1, 𝑘̃POy and
𝑘POx have a decreasing effect as corresponding products are formed in decreasing magnitude. The
zero influence of 𝑘POx on O2,l is consequential as its concentration is not influenced by the loss
reaction. A bit surprising is the low influence of 𝑘̃ l𝑎 on PO1, in particular in comparison with its
influence on O2,l. The major reason might be that the conducted experiments do not primarily take
place in mass-transfer limited regimes, which is confirmed later in Section 4.3.11 (see also the
grey rectangle in Figure 4.19). In general, variations in the indices within different experiments
are considerable, which is shown in Figure 4.14. Indeed, sensitivities of the single parameters can
exhibit significant varying magnitudes between experiments. Noticeably, the optical path length
𝑙opt shows clear sensitivities for the higher indexed experiments only, starting around experiment
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Figure 4.14: Averaged influence of estimated parameters over the reactor length on main hydroperoxide and liquid oxygen
concentration for the conducted experiments. The experiments chosen to show characteristic behavior of
the process, Figs. 4.10 and 4.11, are the first and last experiment, that are also colored in blue.
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Figure 4.15: Uncertainty and corresponding sensitivity analyses of model parameters along reactor coordinate on impor-
tant liquid concentrations of the experiment in Fig. 4.10, i.e., without experiencing mass transfer limitations.

number 70 in Figure 4.14b. These experiments have been designed by MBDoEs, see Section
4.3.7 for the finally performed MBDoE. Determining a parameter value for the optical path length
without the data collected from the MBDoEs would have been a non-trivial task.

In the following, a closer look at the sensitivities of the two experiments, that have already been
considered previously to show characteristic process behavior, Figures 4.10 and 4.11, is taken.
In general, it can be noted that the uncertainties of the considered concentrations are fairly low,
Figures 4.15a and 4.16a, suggesting that reducing uncertainties in the most important inputs will
not have a large absolute effect on the uncertainties of the concentrations – at least not for these
two experiments. In Figure 4.15b, it is clearly visible that we are not operating in the mass-
transfer limited regime as 𝑘̃ l𝑎 shows no effect, i.e., the sensitivity effects are solely dependent on
the kinetic parameters and 𝐶0, where the sensitivity of 𝐶0 becomes almost zero at around 600 cm
when the PO1 concentration reaches its plateau. For the O2,l concentration, Figure 4.15c, only
𝑘̃PO1 among the kinetic parameters has an influence, but that is also lost downstream of the photo
reactor. This is very plausible, because the oxygen concentration has been fully restored to its
equilibrium before leaving the photo reactor. Thus observing an effect of the kinetic parameters
on the liquid oxygen concentration downstream of the photo reactor is simply not possible. For
a determination of the kinetic parameters, it would be more beneficial to measure an extensive
quantity, e.g, the gas volumetric flow. Alternatively, the experimental setup could be run in
the mass transfer limited regime, as in Figure 4.16. Here, 𝑘̃PO1 shows an influence on the O2
concentration also beyond the photo reactor for two reasons. First, in contrast to the scenario
discussed before, the O2 concentration is not in equilibrium at the photo reactor exit. Second, even
if it was, we would still observe an effect as the gas phase was blended with nitrogen, that causes
a drop in the equilibrium concentration because of a reduced oxygen partial pressure according
to Henry’s law, see Figure 4.16a. The operation in mass transfer-limited regime can be detected
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4.3 Results and Discussion

in the sensitivity effects on the PO1 concentration in Figure 4.16b. Contrarily to Figure 4.15b,
𝑘̃ l𝑎 very quickly does exhibit an influence on the PO1 concentration. Additionally, the kinetics
cannot unfold their full potential as shown in Figure 4.15b.

Sensitivities of Model Parameters and Initial Concentrations on the Process
Behavior

In the following, the GSA is detached from the performed experiments, and instead key process
attributes are considered within the presumably valid operational space of the process model.
Uncertainties are now not only assigned to the model parameters, Equation 4.28, but also to
process parameters. The assigned uncertainties of the model parameters are extended therefore
with:

¤𝑉l ∼ U(0.1, 0.4),
xO2,0 ∼ U(0, 1),

[DCA]0 ∼ U(0, 0.85 × 10−3),
[DHAA]0 ∼ U(0, 0.5),

[𝑃LED] ∼ U(0, 100).

(4.29)

U is the uniform distribution, where units have been dropped as before. Note that the length of
the reactor is fixed to 400 cm. First, the PO1 and O2 concentration over the reactor coordinate are
considered, before an in-depth investigation of the PO1 concentration at the photo reactor outlet,
that determines the PO1 yield of the process, is performed. The model parameters, that have been
estimated in this Chapter, do not have significant influence on the considered concentrations with
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tant liquid concentrations of the experiment in Figures 4.11, i.e., with occurring mass transfer limitations.
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Figure 4.17: Global sensitivity analysis (GSA) of process parameters on selected liquid concentrations along photo
reactor coordinate. Please note that, in contrast to the GSAs of the experimental runs, Figures 4.15 and
4.16, we do not consider additional tubing downstream of the photo reactor. Sensitivites below 1 × 10−3

are not shown in the plots, i.e., the sensitivities of parameters 𝑘l𝑎, 𝑘̃PO1, 𝑘̃POy, 𝑘POx and 𝑙opt.

𝐶0 having the most, yet still very little effect, Figure 4.17. In contrast, the process parameters in
Equation (4.29) accumulate all the effect on the PO1 and the liquid O2 concentration. Interestingly,
the liquid volumetric flow ¤𝑉l, that determines the residence time, has the least influence when
compared with the other process parameters. For the PO1 concentration, all the considered
process parameters have a significant effect, Fig. 4.17a. On the contrary for the O2 concentration,
xO2,0 has by far the largest influence. Significant higher order effects can be postulated for the
PO1 concentration. These higher order effects are further analyzed for the PO1 concentration
at the photo reactor outlet, Figure 4.18. One fourth of the variance of the PO1 concentration at
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Figure 4.18: Global sensitivity analysis (GSA) of most important process parameters on the PO1 concentration at the
photo reactor outlet. Please note that, in contrast to the GSAs of the experimental runs, Figures 4.15 and
4.16, we do not consider additional tubing downstream of the photo reactor. Sensitivites below 1 × 10−3

are not shown in the plots, i.e., the sensitivities of parameters 𝑘l𝑎, 𝑘̃PO1, 𝑘̃POy, 𝑘POx and 𝑙opt.
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4.3 Results and Discussion

the photo reactor outlet is assigned to second order indices with the rest being first order effects,
Figure 4.18a, right ordinate. The largest interactions are found between the initial molar fraction
of oxygen, the initial DHAA concentration and the light power, Figure 4.18b. They are followed
by the DCA concentration, where ¤𝑉 is only little coupled to other process parameters, that is of
course mainly owed to its low total effect.

4.3.11 Identification of Mass Transfer Limited Regimes for the
Photooxygenation of Dihydroartemisinic Acid

The analysis for the process behavior so far was linked to the applied reactor setup. The identified
kinetic constants for the photooxygenation can also be used to predict suitable operation regimes
for other process settings to prevent that mass transfer of oxygen limits the overall reaction rate.
Such a classification can be stated with the Hatta number. Based on the two-film theory, the Hatta
number relates the rate of chemical reaction in the liquid phase to the diffusion rate across the
phase boundary [239]. The higher the Hatta number, the faster is the reaction in comparison to
diffusion, which causes the chemical reaction to take place only at the phase boundary. Critical
Hatta values are

Ha ≥ 3, strong mass transfer limitation,

Ha ≤ 0.3, kinetic regime, no limitation by mass transfer.

In the study case at hand, the Hatta number [100] is defined as (SI of [108])

Ha =
1
𝑘 l

√√
𝐷O2𝐿

a
p

1
𝑘 l1 [O2] + 𝑘 l2

( 𝑘̃PO1 + 𝑘̃POy) [DHAA]
1 + ( 𝑘̃PO1 + 𝑘̃POy) [DHAA]

. (4.30)

The diffusion coefficient of oxygen in toluene may be taken from [240] and has a value of
2.4860 × 10−9 m2/s at −20 ◦C. The limits of the Hatta regimes are drawn as contours in Figure
4.19.

Generally speaking, with decreasing DHAA concentrations all contour lines move towards the
ordinate. The conducted experiments, visualized as the grey rectangle, lie around the lower
Hatta limit This matches the observations in the previous Section 4.3.9, where behaviors from
dynamics partially limited by mass transfer to dynamics not limited by mass transfer have been
investigated.
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5 Step 2: Acid-Catalyzed Sequence

In this Chapter, a mathematical model describing the chemical reactions in the acid-catalyzed
sequence is identified from a set of different model candidates. To this end, the developed
process model from the previous Chapter is utilized for the continuous experimental setup.
Supportingly, data from batch experiments in a stirred tank reactor are exploited to decipher
the reaction kinetics. Starting with reaction network insights from literature, an exploratory
data analysis prepares the building of the reaction network candidates that exhibit different
characteristics. Subsequently, the results of the model selection procedure are discussed, including
the identifiability of the occurring model parameters. Here, the postulation and evaluation
of the different model candidates happened in close collaboration with Susann Triemer [61].
The chosen final model candidate is used to investigate the behavior of the chemical reaction
network of the acid-catalyzed sequence. Lastly, the overall identified process model, spanning
the photooxygenation and the acid-catalyzed sequence, is applied in a process optimization
study targeting the artemisinin yield and space-time yield. The study considers both a nominal
setting and a robust one against parametric uncertainties, that are quantified during the model
identification procedure.

5.1 Proposed reaction mechanism

In contrast to the photooxygenation step, the acid-catalyzed sequence to form ART from the
hydroperoxide PO1 is substantially more complex and therefore only partially understood so far.
Additional complexity is introduced by the different reaction conditions, at which the reaction
mechanism has been studied in literature, that might cause different intermediates, products
and reaction paths. Susann Triemer has extensively researched the different postulated reaction
networks for the acid-catalyzed sequence [61]; and a summary is given in this Section.

Several research groups have investigated the acid-catalyzed sequence reactions, starting with
Acton and Roth [83] in 1992. Further insights have been added by Haynes and Vonwiller et al.
[241–243], by Brown and Sy et al. [87, 216–218], and by Arman, Varela and Yoshimoto [244,
245]. The here proposed reaction mechanism, that includes the considered main steps and that is
used for the model identification of the acid-catalyzed sequence, is shown in Figure 5.1. Along
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Figure 5.1: Proposed reaction mechanism for the acid-catalyzed sequence forming ART from PO1 [216].
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5.2 Exploratory data analysis

the reaction path to ART, PO1 is converted, including a Hock-cleavage, to a seven-membered
hemiacetal, that has not been identified in experiments though [216, 242]. Interestingly, Acton and
Roth [83] reported that a trace quantity of water is needed to start this reaction. Amara et al. [246]
confirmed this observation, where measurements from experiments run in dried tetrahydrofuran
did not sense any ART, but solely byproducts. An acid-catalyzed loss reaction of PO1 forms
dihydro-epi-deoxyarteannuin B, which is in the model referred to as BP3. The hemiacetal is
cleaved to an enol with semi-stability, that was managed to be isolated and analyzed at less
than −20 ◦C [216, 242, 243]. Adding triplet oxygen, the enol reacts further to a hydroperoxyl
aldehyde, that is rearranged to a peroxy-hemiacetal. Both intermediates have been isolated when
a DHAA ester was used as starting material [216, 241, 242]. The main byproduct BP4, a lactone,
is formed from the enol via a seco-cadinane intermediate [216, 242]. The peroxy-hemiacetal
converts to ART in a series of irreversible reactions and under the influence of a strong Brønstedt
acid [241]. Only in a heavily acidic environment ART degrades over several hours [247]. The
proposed reaction mechanism along the hemiacetal and the enol is backed by experiments with
labeled compounds [83, 244, 245]. The main products of the semi-synthesis from DHAA to
ART are the target ART itself, and the following byproducts: arteannuin H, included in POx,
see Section 4.1, dihydro-epi-deoxyarteannuin B (BP3), and the lactone BP4. Up to 80 % of used
DHAA has been recovered in literature [63, 83]. Many other reaction species have been identified
or postulated [216], but a complete picture of the whole reaction mechanism is unknown as in
all studies (substantial) amounts of converted DHAA have not been uncovered. Considering
polar solvents, it can be observed that the reaction to artemisinin is considerably sped up when
a Lewis acid is used instead of a Brønstedt acid. Nonpolar solvents as toluene, dichloromethane
or hexane, on the other hand, result in better yields in general [63, 246, 248], and despite the
complex mechanism high yields up to 71 % for the partial synthesis can be achieved, see Table
A.2 in the Appendix. Besides the potential to improve the complex photooxygenation step, the
knowledge gaps regarding the reaction mechanism for the acid-catalyzed sequence, involving in
particular the role of the solvent, the acidic catalyst, and the participating water make the search
for an optimal process and corresponding equipment a major field of research [81, 82].

5.2 Exploratory data analysis

The available experimental data of both the continuous and the batch setup are analyzed in the
following to provide assistance for the subsequent model building process. Please note that the
continuous data was collected from experiments in the whole reaction line, that includes the
photoreactor and the synthesis reactor in series, to form the hydroperoxide PO1 prior to the acid-
catalyzed sequence. To be able to examine the acid-catalyzed sequence in an isolated manner
irrespective of this, the photoreactor was set up to reach full DHAA conversion, and the acid
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5 Step 2: Acid-Catalyzed Sequence

was fed right before the inlet to the synthesis reactor to initiate the acid-catalyzed reactions not
upstream to the synthesis reactor.

A scatter matrix including histograms of important quantities is provided in Figures 5.2 and 5.4,
that are accompanied by Pearson correlations in Figures 5.3 and 5.5. The scatter plots in the
scatter matrices are numbered in gray inside each plot to guide the following discussion.

Next to the supply or non-supply of oxygen, major differences between the two data sets are the
amount of dosed TFA, that is one magnitude greater for the continuous data, and the residence
time. The latter is considerably larger for the batch data, i.e., up to 150 min compared to a
theoretical residence time of up to roughly 16 min in the continuous case, see the first columns
in Figures 5.2 and 5.4. The shown data in the scatter plots are colored according to the TFA
concentration; see the bottom rows of the same Figures.

First, the continuous data visualized in Figures 5.2 and 5.3 is analyzed. As seen in the second
column in Figure 5.2, high DHAA conversions of larger than 94 % are indeed achieved for all the
continuous experiments. ART yields reach 54 % and 47 % within 16 min theoretical residence
time for 0.125 M and 0.25 M TFA, respectively, see plot 16. Interestingly, in experiments where
TFA was added before entering the photo reactor (data not shown here), the maximum ART
yield is 20 % higher, i.e., 66 %, with a theoretical residence time of 22 min and 0.125 M TFA
[61]. The significant difference in ART yields emphasizes the formation of potentially unknown
byproducts before the acid is added. Recoveries in plot 2, on the other hand, only reach around
60 % for situations where ART has clearly reached a steady state, that is, the experiments with
higher TFA concentrations, plot 16. Consequently, more than 40 % of the introduced DHAA
are not identified during the applied measurement procedure, and are therefore not known. This
suggests the existence of not only non-quantified byproducts, but also of at least one non-detected
intermediate between the reaction path from PO1 to ART, as the recovery significantly drops
below 40 % for low residence times, plot 2 and compare with Figure 5.1. From the 1H-NMR
and FT-IR measurement spectra, none of the other previously reported species could be inferred,
that is mainly owed to the fact that the detection of many structurally different species is limited
with the used technologies [61]. Please note that the formation of the measured arteannuin
H, one of the major byproducts in the semi-synthesis [61], is not considered in detail, as it is
a loss product of a hydroperoxide during the photooxygenation, Chapter 4, and therefore not
relevant to the conversion of PO1 to ART. Generally speaking, BP3 is formed in one magnitude
greater than BP4 in the continuous experiments, plots 7 and 11, respectively. More specifically,
BP4 only appears in trace quantities, causing the BP4 data to suffer from a high signal-to-noise
ratio. Patterns including BP4 are therefore difficult to detect, with the exception of the series
performed with the lowest TFA concentration, that suggests a linear correlation between the BP4
and the ART yield, plot 21. Contrarily in the case of BP3, a clear linear dependence on the TFA
concentration is observed, plot 26. This observation is confirmed by a high Person correlation of
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Figure 5.2: Scatter matrix and histograms of the available data for the acid-catalyzed sequence obtained with the con-
tinuous setup. Please note that the photoreactor was connected upstream of the synthesis reactor to form
the hydroperoxide PO1. The data points are colored according to their acid concentration, see bottom row.
The conversion X is the conversion of DHAA and yields Y are based on the converted DHAA concentration.
The recovery considers all recovered species. Note the following differences in this Figure and in Figure 5.4:
(i) the units in the initial TFA concentration, i.e., mol/l versus mmol/l; and (ii) the time variables, i.e., the
superficial residence time 𝜏s of the synthesis reactor versus the actual sample time 𝑡 .
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Figure 5.3: Pearson correlations [249] for continuous experimental data in Figure 5.2.

97 %, Figure 5.3. The same dependence, although not necessarily linear, can be seen for ART,
plot 28. The corresponding Pearson correlation is 83 %, Figure 5.3. Remarkably, BP3 and ART
seem to be correlated likewise, plot 20, with a Pearson correlation of 84 %. From plot 7 it might
be concluded that the formation of BP3 happens very fast, as the BP3 yields lie around a horizontal
line for higher TFA concentrations after a very sharp rise at low residence times. This indicates
an instantaneous appearance of BP3, i.e., the reaction path towards BP3 must exhibit very fast
kinetics.

The complementary batch results were run six times at four different TFA concentrations, see
bottom row in Figure 5.4. Please note that the reactor was flooded with nitrogen hindering the
buildup of ART, that only forms in the presence of oxygen, Figure 5.1. A comparison of the
batch with the continuous results yields similar concentrations for PO1 and BP3 at similar acid
concentrations and initial conditions suggesting that results from the two setups are comparable
[61]. At the same time, measurement results of the batch experiments obtained at equal TFA
amounts do show discrepancies, that make drawing conclusions more difficult, see for example
the BP3 yield in plot 4 for the two similar TFA concentrations around 25 mmol/l in plot 11. The
measurement uncertainties might be attributed to deviations in the addition of the acid and an
initial temperature rise due to the exothermic nature of the reaction [61]. The complete decay
of PO1 takes more than 90 min at the considered TFA concentrations, plot 2. Similar to the
continuous data, recoveries can significantly drop with the decay of PO1, plot 3, below 60 %, plot
1, and start rising again as BP4 is increasingly formed when time advances, plot 7. This again
suggests that non-identified intermediates during the route towards ART appear. Contrary to the
continuous case, the main byproduct is BP4, whose concentrations are one magnitude larger than
those of BP3. Additionally, the buildup of BP4 is delayed and not finished within the considered
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Figure 5.4: Scatter matrix and histograms of the available data for the acid-catalyzed sequence obtained with the batch
setup. The data points are colored according to their acid concentration, see bottom row. Note the following
differences in this Figure and in Figure 5.2: (i) the units in the initial TFA concentration, i.e., mmol/l versus
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Figure 5.5: Pearson correlations [249] for batch experimental data in Figure 5.4.
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5 Step 2: Acid-Catalyzed Sequence

reaction times, plot 7. Additionally, a strong linear dependence of BP4 on the residence time is
observed, plot 7, with a Pearson correlation of 86 %, Figure 5.5. A dependence of PO1 and BP4
on TFA can be observed as well, plot 13 and 15, respectively. On the other hand and in contrast
to the continuous data, a dependence of BP3 on the acid concentration cannot be concluded with
certainty, plot 14. Interestingly, a distinct non-linear dependence between PO1 and BP4 yields
can be observed, plot 9 with a Pearson correlation of −79 %, that might be even independent on
the acid concentration.

Summing up, the key findings of the exploratory data analysis are:

• The batch and the continuous experiments yield similar results at similar TFA concentration
and similar initial conditions.

• Residence times for the batch data are in the range of hours, and for the continuous data
in the range of minutes, mainly caused by a difference of one magnitude in the TFA
concentration.

• For continuous experiments reaching a steady state, around 40 % of the added DHAA
cannot be recovered. This is attributed to non-identified byproducts and also at least one
non-identified intermediate on the reaction path from PO1 to ART.

• The main byproduct is BP3 and BP4 in the continuous and in the batch data, respectively.
In both cases, the more abundant species concentration is one magnitude larger than the
concentration of the other byproduct.

• TFA shows a great influence on the PO1, BP3 and ART concentrations in the continuous
data, and on the PO1 and BP4 concentrations in the batch data, although less pronounced.

5.3 Building of Model Candidates

Challenges associated with the development of a complete first principles model for the acid-
catalyzed sequence are multi-dimensional. One, the reaction network is of complex nature,
having unknown intermediates and byproducts that take part in the process. Two, a thorough
search of relevant literature yielded no established simulation model. And three, measurement
information is limited, i.e., there is a relatively low number of measured species, and at the
same time the measurements of the continuous setup are of steady state type with samples drawn
at the very end of the reaction line only. Thus, the building of different model candidates is
for the most part based on the available information about the mechanisms in literature, expert
knowledge from within and outside of the participating research groups, experiences gained from
the conducted experiments, and an iterative and systematic procedure for model identification
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Figure 5.6: Scheme of base model candidate, i.e., model candidate 1, for the reaction network of the acid-catalyzed
sequence.

according to Figure 3.3. Hence, starting from a base reaction network, several amendments and
variants have been added and investigated along the course of identifying a kinetic description
of the reaction network in the acid-catalyzed sequence. In the following, selected kinetic model
candidates with distinct characteristics will be discussed. All tested networks are based on the
following assumptions:

• The formation of ART, BP3, BP4 and BP5 is irreversible. They are chemically stable under
the conditions applied and do not compose.

• During the reaction to BP3, hydrogen peroxide is formed, that does not influence the
reaction kinetics and is therefore not considered.

• Each species is protonated only once. If not specified otherwise, the acid catalyst reaction
order is unity, that is the rate of reaction 𝑟 is proportional to the proton concentration.

• Only TFA contributes to the acidity of the reaction solution, i.e., the carboxyl group of PO1
does not interfere.

The base model candidate is shown in Figure 5.6, and solely involves irreversible steps. PO1
conversion has two competing paths: It either reacts to the byproduct BP3 or to the intermediate
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5 Step 2: Acid-Catalyzed Sequence

IM2, with both reactions being acid-catalyzed. The series of formed species is summarized in the
lumped species IM2, that represents the central enol intermediate; compare with Figure 5.1. IM2
is the starting point for the reactions towards both ART, BP4, and BP5, where the latter species
is introduced to compensate the low recoveries. BP4 is formed in an acid-catalyzed reaction
step with the ejection of a water molecule. The ART formation is mapped in two steps. First,
IM2 reacts with oxygen to the intermediate IM3, that physically represents an intermediate after
the oxidation, Figure 5.1. IM3 is then further converted to ART in an acid-catalyzed reaction
under the ejection of a water molecule. In the base network, the formed water does not affect the
reaction kinetics, and the proton concentration, that is set to the initial TFA concentration, stays
constant over the course of the reaction.

The first variants target the dissociation equilibrium of TFA in toluene. Despite being a very strong
acid in water, dissociation of TFA in the nonpolar toluene is hampered. Additionally, protonated
species such as PO1 might interfere with the dissociation equilibrium. To account for the reduced
dissociation, three different options, with the equations listed in Table 5.1, are proposed. All
of them hypothesize that the dissociation equilibrates significantly faster than the reactions with
PO1. Variant A assumes complete dissociation, variant B considers a dissociation equilibrium
introducing the dissociation constant 𝐾 , and variant C assumes that all species evolving from and
including DHAA intervene in the dissociation equilibrium. The adjustment of the dissociation

Table 5.1: Different calculation methods for the dissociation equilibrium of trifluoroacetic acid (TFA) on mass action
law basis. Model A assumes full dissociation. Models B and C account for an incomplete dissociation due
to the nonpolarity of the solvent toluene and protonable species, introducing a dissociation constant 𝐾 . The
main assumption is that the dissociation equilibrates fast compared with the decay of PO1, i.e., the equilibrium
is in place before the actual reactions occur. Model B considers a simple equilibrium, where in model C it
is assumed that all species evolving from and including DHAA, summarized in species S, intervene with the
equilibration.

Diss. Calculation of H+

A HTFA TFA– + H+

[H+] = [TFA]0

B HTFA TFA– + H+

[H+] = −𝐾2 +
√︃
𝐾2

4 + 𝐾 [TFA]0

C HTFA + S TFA– + SH+

[S] = [DHAA]0, [SH+] = [H+]

[H+] = −𝐾 [DHAA]0
2 +

√︃
𝐾2 [DHAA]2

0
4 + 𝐾 [TFA]0 [DHAA]0

equilibrium is a consequence of the importance of a precise description of the acid-catalyzed
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5.3 Building of Model Candidates

conversion of PO1 to yield accurate predictions for the products ART in the continuous and BP4
in the batch experiments. To account for this importance, the reaction orders regarding proton
concentration from PO1 to IM2 and from PO1 to BP3 are added to the set of model parameters
considered during parameter estimation. Thus, the rate of reactions, Equation (3.7), from the
reaction scheme in Figure 5.6 are expressed as:

𝑟PO1·IM2 = 𝑘PO1·IM2 [H
+]𝑚IM2 [PO1]

𝑟PO1·BP3 = 𝑘PO1·BP3 [H
+]𝑚BP3 [PO1]

𝑟PO1·POx = 𝑘PO1·POx [PO1]
𝑟IM2·IM3 = 𝑘IM2·IM3 [IM2] [O2,l]

𝑟IM2·BP4 = 𝑘IM2·BP4 [H
+] [IM2]

𝑟IM2·BP5 = 𝑘IM2·BP5 [H
+] [IM2]

𝑟IM3·ART = 𝑘IM3·ART [H+] [IM3]

, (5.1)

with reaction orders 𝑚BP3 and 𝑚IM2, and [H+] is given by the equations in Table 5.1. In certain
model candidates, the reaction orders are assumed to differ by unity, i.e., 𝑚BP3 = 𝑚IM2 + 1.

Apart from a modified dissociation mechanism and variable reaction orders, the base network was
extended and altered to yield different model candidates, that comprehend reasonable reaction
networks, with the goal of improving the model data fit. A super structure of the developed model
candidates is shown in Figure 5.7, and a corresponding table containing a first set of different
model candidates in Table 5.2. In the base network, the initial protonation is considered to be
rate-determining for the decay of PO1. Alternatively, the rearrangement following the protonation
might be rate-determining [250]. Here, the educt is first reversibly protonated, and following
further converted to the product in a non-reversible acid-catalyzed step; see for example the path
from PO1 to IM2 passing PO1H+ in Figure 5.7. The role of water, that can influence the acidity
of the solution or change the reactivity of involved species by hydration, is taken into account in
the species IM hyd. Here, free water is trapped, where the equilibrium between IM2 or IM3 and
IM hyd shifts towards IM hyd with increasing reaction progress, since more water becomes
available. The equilibrium shifts cause the slow down of both the BP4 and the ART formation.
In a further variant, the IM3 species may not be present, that is, ART is directly formed from IM2.
The byproduct BP5 can be derived either from IM2 or from IM3. Moreover, two byproducts, BP5
and BP6, can be formed from the two intermediates.
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5 Step 2: Acid-Catalyzed Sequence

Table 5.2: Core set of proposed model candidates for the acid-catalyzed reaction network, corresponding to the super
structure in Figure 5.7. The font colors of the table headers match the colors of the network characteristics in
the super structure Figure. The dissociation types, column ’Diss.’, are given in Table 5.1. ’#𝑥’ is the number
of species (states) and ’#𝜃’ is the number of model parameter to be estimated, i.e., the sum of kinetic constants
and variable reaction orders. The column ’Reaction orders’ refers to the reaction orders regarding TFA from
PO1 to IM2 and BP3, respectively. All other reaction orders are unity. A check in the column ’IM3’ implies
that IM2 is participating and the orange direct route in Figure 5.7 is inactive. If there is a check in any of the
columns ’IM2 prot.’, ’BP3 prot.’ or ’BP4 eq.’, the corresponding colored route in Figure 5.7 replaces the black
route. In the columns ’Hydrat. position’ and ’BP5/6’ the starting point for the corresponding reaction is given.

Model #𝑥 #𝜃 Diss.
Reaction IM2 BP3 BP4 Hydrat. BP5/6 IM3orders prot. prot. eq. position position

1 9 7 A 1, 1 - - - - IM2 ✓

2 9 8 B 1, 1 - - - - IM2 ✓

3 9 8 C 1, 1 - - - - IM2 ✓

4 10 8 A 1, 1 ✓ - - - IM2 -
5 11 9 A 1, 1 ✓ - - - IM2 ✓

6 10 9 A 1, 1 - - ✓ - IM2 ✓

7 12 11 A 1, 1 ✓ ✓ - - IM2 ✓

8 10 9 A 1, 1 - - - IM2 IM2 ✓

9 11 A 1, 1 - - ✓ IM2 IM2 ✓

10 13 13 A 1, 1 ✓ ✓ - IM2 IM2 ✓

11 13 13 A 1, 1 ✓ ✓ ✓ - IM2 ✓

12 13 15 A 1, 1 ✓ ✓ ✓ IM2 IM2 ✓

13 9 7 A 1, 2 - - - - IM2 ✓

14 9 8 A 𝑚IM2, 1 - - - - IM2 ✓

15 9 8 A 𝑚IM2, 𝑚IM2 + 1 - - - - IM2 ✓

16 9 8 A 𝑚IM2, 𝑚IM2 + 1 - - - - IM3 ✓

17 9 9 B 𝑚IM2, 𝑚IM2 + 1 - - - - IM3 ✓

18 9 9 C 𝑚IM2, 𝑚IM2 + 1 - - - - IM3 ✓

19 11 10 A 𝑚IM2, 𝑚IM2 + 1 ✓ - - - IM2 ✓

20 10 10 A 𝑚IM2, 𝑚IM2 + 1 - - ✓ - IM2 ✓

21 10 10 A 𝑚IM2, 𝑚IM2 + 1 - - - IM2 IM2 ✓

22 10 10 A 𝑚IM2, 𝑚IM2 + 1 - - - IM3 IM2 ✓

23 10 10 A 𝑚IM2, 𝑚IM2 + 1 - - - IM3 IM3 ✓

24 10 9 A 𝑚IM2, 𝑚IM2 + 1 - - - - IM2/3 ✓

25 9 9 A 𝑚IM2, 𝑚BP3 - - - - IM2 ✓

26 9 9 A 𝑚IM2, 𝑚BP3 - - - - IM3 ✓

27 10 11 A 𝑚IM2, 𝑚BP3 - - - IM2 IM2 ✓

28 10 11 A 𝑚IM2, 𝑚BP3 - - ✓ - IM2 ✓

29 11 13 A 𝑚IM2, 𝑚BP3 - - ✓ IM2 IM2 ✓

30 11 13 A 𝑚IM2, 𝑚BP3 - - ✓ IM2 IM3 ✓
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Figure 5.7: Simplified super structure for the acid-catalyzed sequence producing artemisinin from the hydroperoxide
PO1. The base network, i.e., model candidate 1, Figure 5.6, is drawn in black. Alternative routes are colored.

5.4 Methodological Procedures

5.4.1 Parameter Estimation

The continuous and batch data are both utilized during parameter estimation. As PO1 is first
converted from DHAA in the photo reactor, the ordinary least squares (OLS) approach is extended
to simultaneously estimate next to the model parameters the PO1 initial conditions of the batch
experiments, referred to as extended ordinary least squares (eOLS). Furthermore, the BP3 initial
conditions are included in the eOLS method since trace quantities of BP3 can be observed in
the collected data. Thus, starting from the OLS objective function in Equation (3.39), the eOLS
objective function becomes:

JeOLS (𝜽) =
𝑛𝑦 (𝑡𝑘 )∑︁
𝑗=1

𝑛𝑡∑︁
𝑘=1

(
𝑦̃ 𝑗 (𝑡𝑘) − 𝑦 𝑗 (𝑡𝑘 , 𝜽)

)2 +
∑︁

𝑗∈{PO1,BP3}

(
𝑥 𝑗 (𝑡 = 0) − 𝑥 𝑗 (𝑡 = 0)

)2
. (5.2)
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5 Step 2: Acid-Catalyzed Sequence

In general, the estimations were run in parallel from 25 to 60 initial starting points that were
selected using Latin hypercube sampling. Typical parameter ranges during optimization had
lower bounds at zero and upper bounds at 10 for the effective mass transfer coefficient 𝑘̃ l𝑎syn, 5
for the kinetic constant 𝑘POx of the hydroperoxide loss reactions, and 5000 for the other kinetic
constants. The reaction orders were typically constrained between 0.1 and 5.0.

5.4.2 Process Optimization

Two key performance indicators of a drug production are the yield, and the space-time yield.
Ideally during manufacturing, both yields are as high as possible. To obtain such optimal operating
conditions, mathematical optimization can be used. Analogous to the design of experiments
problem for model selection, Section 3.7, a nominal and a robust objective function are formulated,
that are transformed into an optimization problem, Equation (3.65). The objective function for
the robust version, that uses the same penalization scheme as in the model selection setting in
Equation (3.62), is

JrSTY = 𝜆E[STYART (𝝃)] + (1 − 𝜆)V[STYART (𝝃)], (5.3)

with 𝝃 the design vector, that holds a different number of elements according to the scenario
applied. Different scenarios are considered to see the impact of reactor design and special dosing
on the optimal reactor. The first scenario considers fixed lengths of the reaction line that is made
up of a photooxygenation and a synthesis section, with 𝑙photo = 400 cm and 𝑙syn = 620 cm, the
most common reactor lengths used in the continuous experiments. The second scenario considers
the lengths of both sections as additional design variables. In a third scenario, TFA can be fed at
the photo reactor inlet, instead of dosed into the flow at the inlet of the synthesis reactor. Please
bear in mind for the third scenario, that the kinetic parameters of the synthesis reactions are
estimated at a 40 ◦C difference from the photo reactor temperature. The design vector consists
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then of the following quantities and corresponding design space boundaries, where the maxima
cover the design space of the performed experiments:
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Based on the general formulations for yield, Equation 3.11, and space-time yield, Equation (3.13),
the ART-related terms in the objective functions are calculated from

YART (𝝃) =
[ART] (𝝃, 𝑧 = 𝑧end)

[DHAA]0

STYART (𝝃) =
[ART] (𝝃, 𝑧 = 𝑧end) ¤𝑉l (𝑧 = 𝑧end)

𝑉

with 𝑧end = 𝑙photo+ 𝑙syn the reactor coordinate endpoint at the synthesis reactor outlet,𝑉 the reactor
volume and the final ART concentration calculated using the identified overall process model.

For the robust setting, the space-time yield is considered, as it is crucial during production of
artemisinin. TFA is considered to be dosed as the model and its parameters were identified for
the same situation. The uncertain model parameters are in the same manner quantified as in the
GSA, Section 5.5.7. The multi-start approach was again used for the process optimization runs,
and the uncertainties were propagated with the PEM5 method, Section 3.6.1.

5.5 Results

In the following, the results for the model selection problem in the acid-catalyzed sequence, the
investigation of the system behavior with the identified model, and the process optimization study
are sequentially presented. For the identification of the chemical reaction network describing the
acid-catalyzed sequence, the results are first analyzed for the base model, second for the previously
introduced set of model candidates, and third for an extended set of model candidates. For the
selection of the final model for the chemical reaction network, identifiability of the occurring
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model parameters is examined and utilized for a terminal tuning of the model. The identified
model is in the last part of this Chapter utilized for an analysis of the process model’s behavior,
and for a process optimization study targeting at the artemisinin yield and its space-time yield.

5.5.1 Performance of the Base Model

Before looking at the performance of the whole set of the different model candidates from Table
5.2, the focus is on the base model, i.e., model candidate 1, in the following. A summary of the
parameter estimation is given in Table 5.3. The model-data fit is significantly worse than for the
identified model of the photooxygenation, Chapter 4. The measurement error variance in the batch
case is lower than in the continuous case, i.e., the continuous data is better predicted in a relative
sense. The averaged relative deviation of artemisinin almost reaches 78 % – offering space for
improvement. From the estimated kinetic parameter 𝑘IM2·BP5 = 0 l/(mol min), it follows that the
byproduct reaction yielding BP5 is not present. Satisfying parameter estimates are given for the
remaining parameters with the exception of 𝑘POx and in particular 𝑘IM2·IM3, that have considerable
confidence interval widths attached. The high value for 𝑘IM2·IM3 = 205 l/(mol min) suggests that
IM2 is converted almost instantly to IM3 in the presence of oxygen. Corresponding parity plots for
the base model are shown in Figure 5.8. In the PO1 parity plot and for the continuous data, Figure
5.8a, the model predicts considerable amounts of PO1 where the data is close to zero; see the data
points on or very close to the abscissa. At the same time, ART concentrations are predicted too
slow, Figure 5.8b. For the batch data, an opposite trend is visible: The base model does predict
zero or trace quantities of PO1, but the data shows significantly higher concentrations. Thus,
the PO1 depletion is predicted significantly too fast. For ART in Figure 5.8b, a distinct pattern
is shown in its parity plot, that is, the points follow a curve. This indicates a systematic gap in
the base model structure. Furthermore, the BP3 data, Figure 5.8c, show very poor predictive
capabilities of the base model over almost the entire concentration range, which clearly suggests
missing characteristics of the simulated chemical reaction network. Hence, the base model is
not able to predict any of the measured species in acceptable tolerances within the considered
concentrations, making extensions and variants of the base model necessary.

5.5.2 Performance of the Core Model Candidates

For the set of model candidates from Table 5.2, a summary of the corresponding parameter
estimation runs is given in Table 5.4. The corresponding estimated parameter values and initial
conditions are given in Tables C.3, C.4 and C.5 in the Appendix. Changing the dissociation of
TFA, Table 5.1, does not improve the model-data fit: The RSS or AICc values for the model
candidate sets {1, 2, 3} and {16, 17, 18} are identical. As a first group, the extensions of the
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Table 5.3: Goodness of fit and estimated parameter values and spreads for the continuous and batch process models
describing the acid-catalyzed sequence with the base model, i.e., model candidate 1.

model-data fit

Symbol unit value description

RSS mol2/l2 0.5135 residual sum of squares
RSSconti mol2/l2 0.3017
RSSbatch mol2/l2 0.2117
𝜎̂2 mol2/l2 8.54 × 10−4 measurement error variance
𝜎̂2

conti mol2/l2 7.54 × 10−4

𝜎̂2
batch mol2/l2 10.53 × 10−4

% 77.20 averaged relative deviation of ART†

mmol/l 32.33 (28.94) averaged absolute deviation of ART†

estimated parameters

Symbol unit value COD CI−95 CI+95

𝑘POx 1/min 6.14 × 10−4 3.888 0.0 23.86 × 10−4

𝑘PO1·BP3 l/(mol min) 0.349 0.393 0.282 0.419
𝑘PO1·IM2 l/(mol min) 3.17 0.148 2.945 3.415
𝑘IM2·BP4 l/(mol min) 0.441 0.353 0.368 0.524
𝑘IM2·BP5 l/(mol min) 0.0 - - -
𝑘IM2·IM3 l/(mol min) 205.0 6.509 95.63 1429.74
𝑘IM3·ART l/(mol min) 0.598 0.214 0.538 0.666

fixed parameters

Symbol unit value reference

𝑘̃ l𝑎syn
√︁

1/cm min 1.094 fixed to estimated value in photoreactor

†:
(∑𝑛PO1

𝑖

���(𝑦data
PO1,𝑖

− 𝑦PO1,𝑖 )
��� /𝑦PO1,𝑖

)
/𝑛PO1 (relative),

(∑𝑛PO1
𝑖

���(𝑦data
PO1,𝑖

− 𝑦PO1,𝑖 )
���) /𝑛PO1 (absolute)

Note that the relative measure is without considering the simulation points close to zero, i.e., points smaller than 0.01 mol/l.

For the absolute measure the figure for all data points is given in brackets.

COD: coefficient of dispersion, COD = (CI+95 − CI−95 )/𝜃 , 𝜃 : estimated value

CI+/−95 : ±95 % confidence interval
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Table 5.4: Summary of best results of parameter estimation runs for proposed core set of model candidates, Table 5.2.
The number of model parameters is the number of non-zero estimated model parameters, with the original
number of model parameters in brackets. Note that the rows correspond to the best estimation run in the sense
of the objective function from the multi-start approach. The corresponding estimated parameter values and
initial conditions are given in Tables C.3, C.4 and C.5 in the Appendix.

ID #𝜃 RSS RSSconti RSSbatch 𝜎̂2 AICc

1 5 (7) 0.51 0.302 0.212 8.54 × 10−4 −4230
2 6 (8) 0.51 0.302 0.212 8.54 × 10−4 −4228
3 6 (8) 0.51 0.302 0.212 8.54 × 10−4 −4228

4 6 (8) 0.35 0.156 0.198 5.89 × 10−4 −4426
5 6 (9) 0.35 0.146 0.203 5.82 × 10−4 −4457
6 7 (9) 0.49 0.282 0.213 8.23 × 10−4 −4223
7 11 (11) 0.31 0.131 0.175 6.51 × 10−4 −4509
8 6 (9) 0.45 0.224 0.224 7.46 × 10−4 −4308
9 (11) 0.58 0.223 0.357 9.65 × 10−4 −4123
10 11 (13) 0.20 0.123 0.076 3.30 × 10−4 −4789
11 12 (13) 0.29 0.188 0.097 4.74 × 10−4 −4571
12 14 (15) 0.20 0.124 0.078 3.36 × 10−4 −4748

13 5 (7) 0.45 0.254 0.198 7.52 × 10−4 −4307
14 6 (8) 0.32 0.232 0.087 5.30 × 10−4 −4515
15 6 (8) 0.21 0.121 0.086 3.45 × 10−4 −4773
16 7 (8) 0.17 0.081 0.088 2.81 × 10−4 −4895
17 8 (9) 0.17 0.081 0.087 2.80 × 10−4 −4896
18 8 (9) 0.17 0.081 0.088 2.81 × 10−4 −4893
19 9 (10) 0.22 0.122 0.096 3.63 × 10−4 −4738
20 8 (10) 0.21 0.121 0.086 3.45 × 10−4 −4769
21 8 (10) 0.21 0.121 0.086 3.45 × 10−4 −4769
22 8 (10) 0.17 0.080 0.088 2.79 × 10−4 −4895
23 9 (10) 0.17 0.078 0.089 2.78 × 10−4 −4899
24 7 (9) 0.17 0.081 0.088 2.81 × 10−4 −4893

25 7 (9) 0.21 0.121 0.086 3.45 × 10−4 −4771
26 8 (9) 0.17 0.080 0.089 2.80 × 10−4 −4895
27 10 (11) 0.21 0.121 0.086 3.45 × 10−4 −4741
28 9 (11) 0.21 0.121 0.086 3.45 × 10−4 −4767
29 12 (13) 0.25 0.121 0.132 4.20 × 10−4 −4618
30 12 (13) 0.17 0.080 0.089 2.80 × 10−4 −4887
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Figure 5.8: Match of experimental data with simulated results based on the parametrized process models with the base
model (model candidate 1) for all quantities measured: a) PO1, b) ART, c) BP3, d) BP4. The green circles
correspond to the continuous and the blue squares to the batch experiments, respectively. The data of the
continuous experiments was sampled at the reactor outlet, whereas the data of the batch experiments was
collected in a time-resolved manner. The dashed lines mark 20 % deviations.

model candidates 4 to 12 are evaluated. They have in common that they do not consider proton
reaction orders different from unity. Further, they include different schemes for protonation,
equilibrium, hydration and byproducts (see colors in Figure 5.7), that are not part of the base
model. Extending the base model by any or a combination of these adjustments did not necessarily
lead to an improvement of the model-data fit; see for example the RSS values in Table 5.4. More
specifically, model candidates 6 and 9, that have the BP4 extension in common, perform worse
than the base model. The largest improvement is achieved by the protonation extension of the
hydroperoxide PO1, model candidates 5, 7, and 10 to 12, emphasizing the important influence of
TFA on the reaction kinetics. If additionally, the BP3 protonation is introduced, model candidate
7, the model-data fit worsens, i.e., an RSS of 0.39 mol2/l2 compared to 0.35 mol2/l2 for model
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candidate 5. The main reason for the difference is the discrepancy between the accumulation
of another species between PO1 and BP3 on the one hand, and the extremely fast formation of
BP3 on the other hand, as can be seen for example in the corresponding scatter plot in Figure
5.2. Interestingly, integrating the hydration extension on top, model candidate 10, yields the
best performing model within this group having an RSS as low as 0.20 mol2/l2. As observed
before, the addition of the BP4 equilibrium extension, model candidate 12 showed a negative
effect on the predictive capability. Clearly, the key aspects beneficial for the improved model-
data fit in model 10 are the variability in the acid concentration over the course of the reaction,
and the possibility of a resting state by the hydration extension. As a result, model candidate
10 predicts an almost complete temporary TFA depletion in the batch experiments, and, since
initial concentrations are much higher, TFA depletions of only more than half in the continuous
experiments. Consequently, further model refinement was targeted at the acidic activity on the
reaction kinetics, i.e., the alteration of the TFA reaction orders for the depletion of PO1 towards
both BP3 and IM2, model candidates 13 to 30. For all model candidates within this category,
significant improvements are achieved, where most of them reach an RSS of 0.21 mol2/l2 or
below. The orders in the model candidates 25 to 30 suggested a difference of less than 1 as set
in model candidates 15 to 24, but in both cases the reaction orders of TFA lie between 2 and 3
for 𝑚IM2 and 3 to 4 for 𝑚BP3. Thus, the TFA reaction orders considerably exceed 1. Such high
values might be a consequence of a sequence of rate-limiting acid-catalyzed steps, i.e., multiple
protonations lumped together in the simplified model candidates. Alternatively, the high reaction
orders compensate physical or chemical phenomena, that are not covered by the structures of the
model candidates. In many model candidates in Table 5.4, the formation of IM3 was estimated
to be very fast. That is, IM3 is accumulated as the main intermediate and IM2 is only formed in
trace quantities in the presence of oxygen. Therefore, the byproduct formation starting from IM3
obtains better model-data fits than the byproduct formation from IM2, see model candidate pairs
15/16 and 25/26. This suggests the existence of an additional byproduct on the reaction path
from IM2 to ART apart from BP4.

5.5.3 Expanding the Set of the Core Model Candidates

In further steps, the set of different model candidates from Table 5.2 was iteratively extended
with the goal of improving the model-data fit. Two directions were followed. One, further
structural extensions were integrated, that describe new conceivable system characteristics and
might provide new insights into the system behavior. And two, starting from limitations and
shortcomings of the already developed model candidates, refinements of the existent model
structures were introduced, that, in the end, led to the final model candidate.
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Figure 5.9: Score plot for the parameter estimation runs of all considered model candidates. The points are grouped
into the first considered model candidates (core) from Table 5.2, model candidates with additional extensions
(extend), Tables C.6 and C.7 in the Appendix, and model candidates with structural refinements (refine).
Note that the points are jittered for a better view in dense regions.

The introduced extensions are not discussed in detail here as none of them is able to improve the
results that are achieved in Section 5.5.2. An overview of them is given in the Appendix, Tables
C.6 and C.7. Including the already established core set, the total number of model candidates
then added up to almost 65. A selection of the additionally tested characteristics is given in the
following:

• The position of the reaction towards BP4 was varied along the reaction path from PO1 to
ART.

• The reaction rates of certain reactions was set to be independent on the acid concentration.

• Estimation of reaction orders on the path towards BP4 and for the final step to ART was
made possible.

• A further species IM5 was added and formed an equilibrium with one of the other interme-
diates.

For a full description of the extended set, the interested reader is pointed to the Section C.3 in the
Appendix.

As a summary for all model candidates, a score plot of all their parameter estimation runs is
given in Figure 5.9. Despite a multitude of new variants and extensions, named as extend group
in Figure 5.9, significant reductions in RSS and AICc values could not be achieved. This suggests
that either the uncertainty in the relatively complex experimental procedure including setting up,
running the experiment, taking samples, quenching, and measuring hinders further improvements;
or, the set of model candidates in combination with the applied process model does not cover
all physical and chemical effects that are present in the real system. The former is supported
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by for example the scatter plots given in the exploratory data analysis for the batch experiments,
Figure 5.4, where considerable deviations are observed for experiments with similar conditions,
i.e., with similar TFA concentrations. On the other hand, traces of patterns in the parity plots
of the selected model candidate, that are shown in a following Section, Figure 5.14, support the
latter reason of missing physical features.

For the refinement direction, a model candidate was selected from the comprehensive set of pos-
tulated candidates. The refinements steps yielded the final model candidate that was subsequently
used for a global sensitivity analysis and an overall process optimization in conjunction with the
photooxygenation part to improve artemisinin yields. To this end, the AICc is a very good heuris-
tic to support the decision. From Table 5.4, a small choice of model candidates reaches an AICc of
almost −5000, with very subtle differences among the candidates. It is known that the AIC tends
to overfitting, i.e., selects model candidates with a greater number of model parameters than for
example the BIC [148]. Keeping the complexity of the final model candidate as low as possible, a
lower number of model parameters was given more weight. Moreover, the model structure of the
candidate was evaluated based on expert knowledge about the reaction mechanism. In the end,
model candidate 16, having both a small number of parameters, namely 7, a good model-data fit
and a low AICc, is considered the optimum. Here, PO1 converts to BP3 and IM2 with non-unity
TFA reaction orders, where the difference between the reaction orders is set to 1, see the black
arrows leaving PO1 in Figure 5.7, and Table 5.2. IM2 is either oxygenated to IM3, or converted to
the byproduct BP4. At IM3, either a further byproduct BP5 or the final product ART is formed.
Model candidate 16 was then refined as explained in the following Section.

5.5.4 Refining the Selected Model Structure

Three refinements to the mechanistic structure of model candidate 16 have been performed, where
the reasons for the refinements were not exclusively observed in the selected model candidate, but
found in other model candidates likewise. The first refinement was inferred from interpreting the
model-data fit while considering the semi-synthesis mechanism. And the two other refinements
were established on the basis of identifiability problems of the present model parameters.

Considering the continuous and the batch data of the BP4 species, Figures 5.2 and 5.4, BP4
is almost exclusively formed in the batch experiments, with trace quantities in the continuous
experiments only. On the other hand, the model candidates were generally overestimating the
amount of BP4 formed in the continuous experiments, slightly visible in the bottom left corner
of Figure 5.8d, and underestimating the BP4 formation in the batch experiments. In the batch
experiments, the reaction path from IM2 towards ART is blocked for no oxygen is present.
Contrarily, in the continuous experiments, BP4 can and is formed, even in situations where the
model candidates predicted that IM2 has a short occurrence. Hence, the results from the model
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Figure 5.10: Singular value decomposition (SVD) of the sensitivity matrix for model candidate 16 after its first refinement.
The last singular value indicates non-identifiability, and the corresponding right vector points to the causing
parameter 𝑘IM2c·IM3, Section 3.5.1.

selection revealed that the differing formation rates of BP4 in the continuous and batch experiment
could not be sufficiently explained by a joint model. A remedy would be to set the kinetic constant
𝑘IM2·IM3 to a very high value, that is, to increase the upper limit of 𝑘IM2·IM3 during parameter
estimation. However, that would result in the prediction of an instant liquid oxygen depletion, that
is physically not plausible. Alternatively, two different intermediates for IM2 in the continuous and
batch case, namely IM2c and IM2b, were introduced, that improved the model-data fit and eased
the numerical simulations as the near-instant formation of IM3 in the continuous experiments
was eliminated. The introduction of two different intermediates for the same physical system is
the trade-off one must accept for approximating the real system behavior by a simplified reaction
scheme. Note however that the differences in the model-data fit between the original and the
refined model are subtle. Hence, the original model might also be used for predictions in between
the conditions applied in the batch and the continuous experiments, i.e., between short residence
times, high TFA concentrations and an oxygen-only gas phase in the continuous experiments and
long residence times, low TFA concentrations and absence of oxygen in the batch experiments.
The refinement emphasizes the situation at hand that experimental conditions for the different
set-ups were different likewise. Depending on the composition of the gas phase, either xO2 = 1
(continuous experiments) or xO2 = 0 (batch experiments), the accumulating intermediates in the
reaction path towards ART differ.

The two remaining refinements compensate for two detected parameter identifiability issues, that
all of the model candidates shared and that are explained by looking at the selected and refined
model candidate 16 in the following. The plots for the singular value decomposition (SVD)
approach are shown in Figure 5.10. The singular value plot on the left, Figure 5.10a, shows a
clear gap between the eights and the ninth singular value indicating a non-identifiability. One
might point to a second gap between the fifth and the sixth singular value. However, the previously
identified gap is significantly greater, and the magnitude of the sixth singular value can still be
considered non-zero (𝜎6 ≈ 6×10−4) [159]. Looking at the components of the sixth right singular
vector, Figure 5.10b, it is revealed that the non-identifiability is linked to the kinetic constant
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𝑘IM2c·IM3. This identifiability issue is confirmed in the profile likelihood plot of the same kinetic
constant, Figure 5.11b. Interestingly, continuously increasing the magnitude of 𝑘IM2c·IM3 results
in infinitesimal improvements of the likelihood, as can be spotted in its profile likelihood, Figure
5.11b. This observation backs the previous introduction of separate IM2 intermediates for the
batch and the continuous experiments, as it suggests that the predicted IM2 in the continuous case
should at best not occur at all.

The optimization results from the multi-start approach and the profile likelihoods of the other
parameters revealed a further non-identifiability that the SVD algorithm did not readily show.
The second non-identifiability is attributed to the efficient mass transfer coefficient 𝑘̃ l𝑎syn, that
can be observed in its profile likelihood graph in Figure 5.11a. For a more in-depth analysis of
the non-identifiabilities and potential dependencies among the parameters, a global sensitivity
analysis (GSA) on the objective function was conducted. In Figure 5.12, the results from the
GSA on the objective function with its underlying eOLS approach, are shown. Please note that
the effects of the initial conditions of the batch experiments, that were equally estimated in the
extended ordinary least squares approach, are not shown in the graphs. In none of the parameter
estimation runs for any model candidate, identifiability issues considering the initial conditions
were observed. Strikingly, the sensitivity on the objective function is almost exclusively caused
by the reaction order 𝑚IM2, Figure 5.12a, i.e., the acid-dependence of the production of the
first intermediate is the by far most sensitive parameter on the objective function. However, a
zoomed graph, Figure 5.12b, reveals that further parameters are sensitive likewise, although for
a large part based on second-order effects. Two parameters show no effect at all on the objective
function, namely 𝑘̃ l𝑎syn, and 𝑘IM2c·IM3, suggesting that the parameters are non-identifiable as
concluded before from the SVD and the profile likelihood approach. The matrix plot in Figure
5.12c gives additional insight into which parameters interact with other and cause the second-
order effects. Thus, the second-order effects of the reaction order 𝑚IM2 and the reaction constant
𝑘PO1·IM2 are mainly caused by an interaction among those two parameters. This is expectable as
both determine the rate of IM2 production from PO1. Apart from the kinetic constant 𝑘POx, that
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Figure 5.11: Profile likelihoods of the two non-identifiable parameters in the selected, but not refined model candidate
16.
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Figure 5.12: Influence of model parameters on the parameter estimation objective, Equation 3.39, by using uniform
distributions between −10 and 10 % of the nominal values. Both graphs reveal identifiability issues for both
𝑘l𝑎syn and 𝑘IM2c·IM3. Note that the initial conditions in the batch experiments, that have been estimated as
well, are not shown here.

is part of the photooxygenation reaction network and therefore shows interaction only with the
parameters involved in the main reaction pathway depleting PO1, all kinetic parameters in the
acid-catalyzed network are cross-interacting with each other. The only exception is the kinetic
constant 𝑘PO1·BP3, that solely shows interaction effects with the dominant reaction order 𝑚IM2.

The non-identifiabilities attributed to 𝑘̃ l𝑎syn and 𝑘IM2c·IM3 led to two further adjustments of the
selected model candidate 16. In case of the mass transfer coefficient, two reasons are responsible
for not being able to determine its magnitude. First, no gas phase samples were measured for
the synthesis experiments in contrast to the photooxygenation experiments, Chapter 4. More
importantly, the collected liquid samples are in general collected when the oxygen concentration
in the liquid is equilibrated. Hence, even if the gas phase is measured, it would not be able to see
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Figure 5.13: Selected reaction network for the acid-catalyzed sequence producing artemisinin from the hydroperoxide
PO1. The network consists of two sub-networks. The green sub-network is active when the gas phase
consists of oxygen (xO2 = 1, continuous experiments). The blue sub-network is active when no oxygen is
present (xO2 = 0, batch experiments).

the mass transfer dynamics. The coefficient was therefore set to its estimated counterpart in the
photo reactor, i.e., 𝑘̃ l𝑎syn = 𝑘̃ l𝑎 = 1.094

√︁
1/cm min. Note that also the mass transfer coefficients

in the other model candidates have been adjusted accordingly for comparison reasons.

The non-identifiability of the second parameter 𝑘IM2c·IM3 suggests that only one intermediate is
accumulated in non-trace quantities. This leads to the omission of IM3 and shortens therefore
the species number of the pathway to ART by one. In contrast to 𝑘̃ l𝑎, omitting IM3 in the other
model candidates is not necessary. The reason is that a possible estimate of 𝑘IM2·IM3 at its upper
limit of 5000 already gives a behavior that is close to the situation when IM3 is omitted; see the
weak increase of the profile likelihood right of 5000 min in Figure 5.11b. The omission of IM3
also solves the problem of an unrealistic extremely rapid depletion of liquid oxygen, that occurs
as a result of very high magnitudes for 𝑘IM2c·IM3, as the oxygenation was assumed to happen from
IM2 to IM3, Figure 5.7.

5.5.5 Selected Model Candidate for the Acid-catalyzed
Sequence

Following the refinement considerations in the previous Section, the selected reaction network
is depicted in Figure 5.13. Key characteristic of the network is that different sub-networks are
active depending on the gas phase composition. If the gas phase contains oxygen (xO2=1, green
sub-network in Figure 5.13), the accumulating intermediate is IM2c, and ART and byproduct BP5

102



5.5 Results

are formed, but no BP4. On the other hand, if oxygen is absent (xO2=0, blue sub-network in Figure
5.13), the accumulating intermediate is IM2b, and BP4 and BP6 are the only products formed. The
kinetic model corresponding to the reaction network for the acid-catalyzed sequence in Figure
5.13 using mass action kinetics, Section 3.3.1, reads

PO1 POx, 𝑟PO1·POx = 𝑘PO1·POx [PO1]

PO1
TFA

BP3, 𝑟PO1·BP3 = 𝑘PO1·BP3 [TFA]𝑚TFA+1 [PO1]

PO1
TFA

IM2c/2b, 𝑟PO1·IM2 = 𝑘PO1·IM2 [TFA]𝑚TFA [PO1]

IM2c
xO2=1,TFA

BP5, 𝑟IM2c·BP5 = 𝑘IM2c·BP5 [TFA] [IM2c]

IM2b
xO2=0,TFA

BP6, 𝑟IM2b·BP5 = 𝑘IM2b·BP5 [TFA] [IM2b]

IM2b
xO2=0,TFA

BP4 + H2O, 𝑟IM2b·BP4 = 𝑘IM2b·BP4 [TFA] [IM2b]

IM2c + 3O2
TFA

ART + H2O, 𝑟IM2c·ART = 𝑘IM2c·ART [TFA] [IM2c] [O2,l]

(5.5)

Note that in the presence of oxygen (xO2=1, continuous case) IM2b and in the absence of oxygen
(xO2=0, batch case) IM2c is inactive.

Although the kinetic constant 𝑘POx describing the loss of hydroperoxides has been already es-
timated in the photooxygenation step, Section 4.3.6, it is re-estimated during the calibration of
the acid-catalyzed sequence. This is necessary, since, originally, the loss of hydroperoxides in
the photooxygenation considered the loss of hydroperoxides on its way from sampling to mea-
suring. However, for the acid-catalyzed sequence, the hydroperoxide losses are not anymore as
pronounced since the main hydroperoxide PO1 immediately reacts when acid is present. Hence,
connecting the kinetic model for the acid-catalyzed sequence, Equations (5.5), with the developed
process model for the photooxygenation, Section 4.2.3, yields the governing differential equations
for the overall process model of the semi-synthesis of artemisinin from DHAA in the continuous
setup. The material balance equations for the liquid and gas phase in the whole reaction line are

d[DHAA]
d𝑧

=

(
1 − 𝛽

𝐶0

)
𝐴

¤𝑉l

(
− [O2]
𝑘 l1 [O2] + 𝑘 l2

( 𝑘̃PO1 + 𝑘̃POy) [𝐷𝐻𝐴𝐴]
1 + ( 𝑘̃PO1 + 𝑘̃POy) [𝐷𝐻𝐴𝐴]

𝐿p (1 − exp [−𝜅𝑐DCA𝑙opt])
)
,
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d[PO1]
d𝑧

=

(
1 − 𝛽

𝐶0

)
𝐴

¤𝑉l

(
[O2]

𝑘 l1 [O2] + 𝑘 l2

𝑘̃PO1 [𝐷𝐻𝐴𝐴]
1 + ( 𝑘̃PO1 + 𝑘̃POy) [𝐷𝐻𝐴𝐴]

𝐿p (1 − exp [−𝜅𝑐DCA𝑙opt]) − 𝑟PO1·POx

− 𝑟PO1·BP3 − 𝑟PO1·IM2

)
,

d[POy]
d𝑧

=

(
1 − 𝛽

𝐶0

)
𝐴

¤𝑉l

(
[O2]

𝑘 l1 [O2] + 𝑘 l2

𝑘̃POy [𝐷𝐻𝐴𝐴]
1 + ( 𝑘̃PO1 + 𝑘̃POy) [𝐷𝐻𝐴𝐴]

𝐿p (1 − exp [−𝜅𝑐DCA𝑙opt]) − 𝑟PO1·POx

)
,

d[POx]
d𝑧

=

(
1 − 𝛽

𝐶0

)
𝐴

¤𝑉l
𝑘POx ( [PO1] + [POy]),

d[IM2c]
d𝑧

=

(
1 − 𝛽

𝐶0

)
𝐴

¤𝑉l

(
𝑟PO1·IM2 − 𝑟IM2c·ART − 𝑟IM2c·BP5

)
,

d[BP3]
d𝑧

=

(
1 − 𝛽

𝐶0

)
𝐴

¤𝑉l
𝑟PO1·BP3,

d[BP5]
d𝑧

=

(
1 − 𝛽

𝐶0

)
𝐴

¤𝑉l
𝑟IM2c·BP5,

d[ART]
d𝑧

=

(
1 − 𝛽

𝐶0

)
𝐴

¤𝑉l
𝑟IM2c·ART,

d[O2]
d𝑧

=

(
1 − 𝛽

𝐶0

)
𝐴

¤𝑉l

(
− [O2]
𝑘 l1 [O2] + 𝑘 l2

( 𝑘̃PO1 + 𝑘̃POy) [𝐷𝐻𝐴𝐴]
1 + ( 𝑘̃PO1 + 𝑘̃POy) [𝐷𝐻𝐴𝐴]

𝐿p (1 − exp [−𝜅𝑐DCA𝑙opt]) + 𝑘̃ l𝑎
√︃
𝑢s

g ( [O2]∞ − [O2])

− 𝑟IM2c·ART

)
,

dxO2

d𝑧
=

𝑇

𝑝 ¤𝑉g

(
−𝑅 𝛽

𝐶0
𝐴𝑘̃ l𝑎

√︃
𝑢s

g ( [O2]∞ − [O2]) −
𝑝

𝑇
xO2

d ¤𝑉g

d𝑧

)
,

d ¤𝑉g

d𝑧
= −𝑇

𝑝
𝑅
𝛽

𝐶0
𝐴𝑘̃ l𝑎

√︃
𝑢s

g ( [O2]∞ − [O2]). (5.6)
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The corresponding initial conditions are

( [DHAA], [PO1], [POy], [POx], [IM2c], [BP5], [ART], [O2], [xO2], [ ¤𝑉g])⊤ (0)
= ( [DHAA]0, 0, 0, 0, 0, 0, 0, [O2]∞, xO2,0,

¤𝑉g,0)⊤.

Please note that the initial conditions apply at the inlet of the photo reactor. The governing
equations of the process model for the batch experiments are given in the Appendix, Section
C.1. Hence, the vector of unknown model parameters of the process models for the batch and
continuous setups, Equations (5.6) and (C.20), that needs to be identified, is

(𝑘POx, 𝑚IM2, 𝑘PO1·BP3, 𝑘PO1·IM2, 𝑘IM2b·BP4, 𝑘IM2c·BP5, 𝑘IM2b·BP6, 𝑘IM2c·ART)⊤. (5.7)

Simultaneously, both the model parameters and the initial conditions of PO1 and BP3 for all six
experiments in batch operation, Equation (C.21) in the Appendix, are estimated. Thus, in total 8
model parameters and 12 initial conditions are estimated in the extended ordinary least squares
approach.

A quantitative summary of the results is given in Table 5.5. A drastic improvement of the
model-data fit is observed compared to the results of the base model candidate, Table 5.3, where
the RSS decreased from 0.5135 mol2/l2 to 0.16 mol2/l2. The continuous data is slightly better
predicted, as the estimated measurement error variance is lower than the batch counterpart,
which could be observed for all model candidates given in Table 5.2. The averaged relative
deviation of ART is 13.97 %, where points smaller than simulated values of 0.01 mol/l are not
considered because they would distort the calculation of the relative measure that is based on
the simulated ART concentration, i.e., the simulated concentration is the denominator, Table 5.5.
The parity plots of the measured versus simulated data are shown in Figure 5.14. In general the
model-data fit is satisfactory considering the complexity of the considered reaction network and
process characteristics, in particular for the most interesting concentration of ART, Figure 5.14b.
However, some weak spots in the parity plots must be noted.

Predictions of the batch data (blue squares) are for certain data points quite poor, e.g., deviations
of more than 20 % in the PO1 concentration range up to 0.25 mol/l in Figure 5.14a. Batch
data points for BP4 also show improvements for predictions, Figure 5.14d. This is for a great
part attributed to the variability of measurement results for batch experiments running on same
conditions, i.e., low reproducibility, that can be seen in the Figure 5.4 used for the data analysis,
and in further experimental data not shown in this work [61]. For the continuous data, at low
TFA concentrations, the model predicts the depletion of PO1 too slow. This can be seen in the
ART points that lie on the ordinate in Figure 5.14b. They correspond to the points of the PO1
concentration in Figure 5.14a below the diagonal line at around 𝑦≈0.3 mmol/l and the points of
the BP3 concentration in Figure 5.14c at 𝑦≈0 mol/l. Thus, BP3 and ART are not formed fast
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Table 5.5: Goodness of fit and estimated parameter values and spreads for the developed process model and selected and
refined model candidate 16 describing the synthesis reaction network. The confidence intervals are based on
the profile likelihood.

model-data fit

Symbol unit value description

RSS mol2/l2 0.1600 residual sum of squares
RSSconti mol2/l2 0.0748 RSS for conti experiments
RSSbatch mol2/l2 0.0853 RSS for batch experiments
𝜎̂2 mol2/l2 2.66 × 10−4 measurement error variance
𝜎̂2

conti mol2/l2 1.87 × 10−4 𝜎̂2 for conti experiments
𝜎̂2

batch mol2/l2 4.24 × 10−4 𝜎̂2 for batch experiments
% 13.97 averaged relative deviation of ART†

mmol/l 10.14 (11.87) averaged absolute deviation of ART†

estimated parameters

Symbol unit value COD CI−95 CI+95

𝑘POx 1/min 0.0105 0.161 0.0096 0.0113
𝑚IM2 - 2.646 0.013 2.629 2.664
𝑘PO1·BP3 (l/mol)𝑚IM2+1/min 424.2 0.245 373.0 477.1
𝑘PO1·IM2 (l/mol)𝑚IM2/min 880.3 0.112 833.2 931.6
𝑘IM2b·BP6 l/(mol min) 0.0 - - -
𝑘IM2c·BP5 l/(mol min) 0.682 0.206 0.614 0.755
𝑘IM2b·BP4 l/(mol min) 0.887 0.290 0.770 1.026
𝑘IM2c·ART (l/mol)2/min 30.07 0.138 28.07 32.24

fixed parameters

Symbol unit value reference

𝑘̃ l𝑎syn
√︁

1/cm min 1.094 fixed to estimated value
in the photoreactor

†:
(∑𝑛PO1

𝑖

��( 𝑦̃PO1,𝑖 − 𝑦PO1,𝑖 )
�� /𝑦PO1,𝑖

)
/𝑛PO1 (relative),

(∑𝑛PO1
𝑖

��( 𝑦̃PO1,𝑖 − 𝑦PO1,𝑖 )
��) /𝑛PO1 (absolute)

Note that the relative measure is without considering the simulation points close to zero, compare with Figure 5.14b.

For the absolute measure the figure for all data points is given in brackets.

COD: coefficient of dispersion, COD = (CI+95 − CI−95 )/𝜃 , 𝜃 : estimated value

CI+/−95 : ±95 % confidence interval
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Figure 5.14: Match of experimental data with simulated results for all quantities measured. Simulations are based on the
parameterized final model, Equations (5.6) (continuous) and Equations C.1 (batch) in the Appendix. The
dashed lines mark 20 % deviations.

enough, whereas PO1 is still present in too high concentrations. For very high ART and BP3
concentrations, the simulations predict constant concentrations, where the experimental data do
not show steady state behavior; see the arrangement of parity points in a vertical manner in Figure
5.14b at 𝑦≈0.2 mmol/l, and in Figure 5.14c at 𝑦≈55 mmol/l. This is again attributed for a great
part to uncertain measurements, that can be well identified in the scatter plots in Figure 5.2. Here,
the data points for the highest TFA concentration in the plots of yield over theoretical residence
time for BP3 and ART (green points in plots 7 and 16), cluster and do not form curves as in the
cases for lower TFA concentrations in the same plots. The same phenomenon is as well visible
for lower BP3 concentrations in Figure 5.14c, for example at 𝑦≈20 mmol/l. Once more one root
cause lies in the experimental data, where measurement uncertainties for BP3 over time seem
to be considerable as shown in the BP3 yield over theoretical residence time plot in Figure 5.2,
plot 7. Hence, the observed differences between simulated and experimental data in the parity
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Figure 5.15: Profile likelihoods of estimated model parameters for the selected and refined model candidate 16. Dashed
lines mark the 95 % confidence intervals. All PLLs cross the confidence interval line, and are therefore
identifiable.

plots can be explained mostly by existent measurement uncertainty. Against this background,
the overall predictive power of the process model, in particular for the ART concentration, is
satisfactory. Before a deeper model-based analysis and process optimization are performed, the
parameter values and their confidence intervals are assessed.

The profile likelihoods of the model parameters in Table 5.5 are shown in Figure 5.15. With the
refinements of the original model structure and parameters, none of the model parameters shows
identifiability issues. On the contrary, all parameters form well-shaped and narrow likelihood
curves crossing the 95 % confidence interval lines. Note that the kinetic constant describing the
loss reaction to byproduct BP6 is not shown as it was estimated to be zero. The best coefficient of
dispersion is obtained for the TFA reaction order, where its magnitude is considerably larger than
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(a) Reaction species, TFA 0.011 mol/l.
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(b) Reaction species, TFA 0.023 mol/l.

Figure 5.16: Time profiles of concentrations for batch experiments at different TFA concentrations. Lines are simulations,
circles are experimental data points.

1, i.e., in the reaction from PO1 to BP3 it is 3.646 with explanations given previously in Section
5.5.2.

In the following three Sections, the identified process model is used for first, a model-based
inspection of the experiments for both the continuous and the batch setup; second, a global sen-
sitivity analysis of the overall process model on key concentrations along the reactor coordinate;
and third, a process optimization focusing on the yield and the space-time yield of artemisinin.

5.5.6 Model-Based Analysis of Continuous and Batch
Experiments

The process behavior is investigated in a two-step model-based analysis. First, the time-resolved
trends of the species in the acid-catalyzed reaction network are analyzed on the basis of both
batch and continuous data. Second, key concentrations of the continuous process are examined
along the reactor coordinate.

For the operation in batch mode, time profiles of two experiments are shown for two different
TFA concentrations in Figure 5.16. Predictions agree in general very well with the experimental
data. A minor exception is observed for the PO1 depletion, where predictions tend to be too fast
with proceeding time. This can be observed in all batch experiments.

For the continuous experiments, results from simulations and experimental data having a TFA
concentration of 0.25 mol/l are given in Figure 5.17. Overall, the match between simulated and
experimental data is good. In particular, PO1 conversion proceeds very fast according to the data,
that is well matched by the model. This hinders the POx lumped species to form, that is in contrast
to the photooxygenation experiments, where higher extents of POx are obtained. IM2c, the major
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5 Step 2: Acid-Catalyzed Sequence

intermediate, is very rapidly built up, and slightly less rapidly converted to ART. Despite the
high rate of ART formation mass transfer limitations are not detected in Figure 5.17b, where
the liquid oxygen concentration O2,l does not drop significantly. Figure 5.17a suggests that the
model slightly underestimates the ART formation in the beginning. The same underestimation is
observed for the byproduct BP3, that has been as well observed in the previous Section, Figure
5.14.

Please note that without the introduction of a separate intermediate in the batch case (IM2b) and
the refinement resulting in the omission of IM3, BP4 was significantly overestimated in previously
developed model candidates despite the short occurrence of IM2. This observation is the major
reason why two separate intermediate species in the network are required to reproduce both the
continuous and the batch experimental data. In the continuous experiments on the other hand,
dropping IM3 would result in an enhanced formation of BP4 in the continuous experiments that
is not covered by the experimental data. Therefore, the different byproduct BP5 is introduced
that forms in parallel to ART capturing the non-measured and unknown species in the reaction
network.

The process behavior in the continuous reactor at a low and a high TFA concentration is shown
in Figure 5.18. The gray vertical lines in the Figures mark the photo reactor outlet and the
synthesis reactor inlet. Note that a temperature jump from −20 ◦C to room temperature occurs
at the photo reactor outlet (first gray vertical line), causing a rise in the gas flow and the liquid
oxygen concentration. At the synthesis reactor inlet (second gray vertical line) TFA is added, that
results in concentration drops of the reaction species in the liquid phase. The consequences of the
different TFA concentrations are clearly visible in the graphs. PO1 continuously converts at the
low TFA concentration, Figure 5.18a, but immediately disappears at the high TFA concentration,
Figure 5.18b. Accordingly, IM2c does not fully convert in the former case, but is totally consumed
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Figure 5.17: Time profiles of concentrations for continuous experiments at TFA = 0.25 mol/l. The simulations (square)
and data (circle) are points at the synthesis reactor outlet. Hence, the time-resolved graphs origin from
different experiments. The actual residence times were calculated from the simulations.
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(d) Oxygen mass transfer (high TFA).
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(e) Byproducts in the synthesis reactor (low TFA).
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Figure 5.18: Propagation of concentrations, oxygen molar fraction and gas flow along the reactor coordinate at low (left)
and high (right) TFA concentration. Conditions: (low) [TFA]0=0.033 mol/l, [DHAA]0=0.44 mol/l,
[DCA]=0.85 mmol/l, 𝑃LED=97 %LED, xO2,0=1; (high) [TFA]0=0.25 mol/l, [DHAA]0=0.26 mol/l,
[DCA]=0.85 mmol/l, 𝑃LED=100 %LED, xO2,0=1. The first thin vertical line marks the photoreactor
outlet. The second thin vertical line marks the synthesis reactor inlet. Experimental data points are plotted
as circles.
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in the latter case, resulting in a phase with constant concentration before leaving the reaction line.
The volumetric gas flow very slowly decreases at the low TFA concentration, Figure 5.18c. The
liquid oxygen concentration does therefore not show any sign of supply problems or mass transfer
limitations. Even at high TFA concentrations, Figure 5.18d, the dissolved oxygen does not come
close to issues related to limiting mass transfer from the gas to the liquid phase.

In total, the process behavior predicted by the developed model agrees well with the experimental
data, for both low and high TFA concentrations. In contrast to the photooxygenation, the model
does not show mass transfer limitations despite a fast formation of ART. In a last step of the
model-based analysis of the process behavior, a global sensitivity study of all operational and
uncertain model parameters is performed for fixed lengths of the photo and synthesis reactor in
the following Section.

5.5.7 Global Sensitivity Analysis of the Overall Process
Model

A GSA on the key concentrations PO1, O2 and ART is performed to analyze the influence of
the most important process parameters and their interactions. Since the model parameters are
as well uncertain, they are also considered in the GSA as previously done in the GSA for the
photooxygenation, Section 4.3.10. The uniform distributions for the process parameters, whose
limits cover the design space of the performed experiments, are

¤𝑉l ∼ U(0.1, 0.4),
[TFA]0 ∼ U(0.0, 0.4),

[DHAA]0 ∼ U(0.0, 0.5),
xO2 ∼ U(0.0, 1.0),

[DCA] ∼ U(0.0, 0.85 × 10−3),
𝑃LED ∼ U(0.0, 100.0).

(5.8)

The Normal distributions of the uncertain model parameters follow from the estimated parameter
values, and are listed in Equation (C.22) in the Appendix. The photoreactor and the synthesis
reactor are directly connected in series, and their corresponding lengths are 400 cm and 620 cm,
respectively, the most common dimensions used in the performed experiments.

The sensitivities over the full reactor system are shown in Figure 5.19. The following discussion
focuses on the sensitivities in the synthesis reactor, i.e., after 400 cm. For a discussion about sen-
sitivities during the photooxygenation, see the corresponding GSA in Section 4.3.10. Analogous
to the results from the GSA of the photo reactor, the model parameters have only a low impact.
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Figure 5.19: Global sensitivity analysis (GSA) of process parameters on selected liquid concentrations along the reactor
coordinate. The interface between photo and synthesis reactor is at 400 cm. Thus the results from the photo
reactor are quantitatively equal to the GSA of the photo reactor, Figure 4.17. Sensitivities below 1 × 10−3

are not shown in the plots.

Among the model parameters, 𝐶0 has the most influence, but is barely visible in the graphs in
Figure 5.19. The largest sensitivities are therefore rooted in the process parameters, Equation
(5.8).

The sensitivities on the dissolved O2 concentration, Figure 5.19b, are almost exclusively dom-
inated by xO2, which also causes the sum of total indices to be around unity. In contrast, the
total effects on the PO1 and ART concentration considerably exceed 1, rather approximately 1.5,
suggesting that higher order effects are present. For the PO1 concentration, Figure 5.19a, the TFA
concentration is by far the most sensitive parameter. The reason is the significant importance of
the acid concentration on the depletion of PO1 that also resulted in a high reaction order during the
parameter estimation. The least influential parameter on the PO1 concentration is the volumetric
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Figure 5.20: Global sensitivity analysis of most important process parameters on the ART concentration at the synthesis
reaction line outlet, i.e., the sensitivities correspond to the final reactor coordinate point on the right side of
Figure 5.19c. Sensitivities below 1 × 10−3 are not shown in the plots.

flow, that is linked to the fact, that all of the parameters do not change their influence along the
synthesis reactor coordinate, since the depletion of PO1 is extremely fast and happens therefore
mainly at the synthesis reactor inlet. For the ART concentration the picture changes. The most
influential parameter is the initial molar oxygen fraction xO2,0, that emphasizes the double oxygen
dependence of the ART formation from DHAA to ART, see the mechanism in Figure 5.1. The
relative influence of TFA decreases over the reactor coordinate because the by TFA most affected
reaction, the PO1 depletion, is most pronounced at the inlet of the synthesis reactor.

To inspect the higher order effects, sensitivities on the ART concentration at the synthesis reactor
outlet are shown in Figure 5.20. In general, all of the operational parameters have higher order
effects around the same magnitude as their first order ones, Figure 5.20a. Remarkably, there must
be at least third order effects present, because the sum of the first and second order effects does
not add up to unity, but rather to approximately 0.8. This means, there are considerable effects on
the ART concentration, that are caused by the interplay between at least three process parameters.
In Figure 5.20b, it can be noted that O2 and DHAA show the largest interactions.

For an operation of the continuous reactor, the GSA shows that the main factors are the added
TFA catalyst and the initial molar fraction of oxygen in the gas phase. The former significantly
influences the PO1 concentration, and the latter almost exclusively dominates the dissolved oxygen
and for a great part the formed ART. Notably, the process is complex to steer as almost 40 % of
the spread in the ART concentration at the reactor outlet is caused by higher order effects with a
significant contribution by interactions between at least three process parameters. Considering the
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same parameters and distributions as for the GSA in this Section, Equations (5.8) and (C.22), the
identified process model will be applied to a model-based optimization study targeting artemisinin
yields under uncertainty in the next Section.

5.5.8 Optimizing the Artemisinin Production

First, the results for the nominal settings of the process optimization, i.e., without the consideration
of parametric uncertainties, in Table 5.6 are analyzed. The corresponding optimized process

Table 5.6: Results of different nominal settings for process optimization. An ’x’ in the ’TFA feed’ column indicates that
TFA is used as feed to the photo reactor instead of being dosed at the synthesis reactor inlet. If ’Reac. design’
is marked with ’x’, the lengths of both the photooxygenation and the synthesis section are added to the vector
of design variables. The initial DHAA concentration in the fourth column refers to its lower bound during
optimization. The green font coloring specifies the target of the objective function, either the yield or the
space-time yield.

#
TFA Reac. > [DHAA]0 Y STY Normed Normed 𝜏

feed design / mol/l / % / mol/(l d) E[STY] V[STY] / min

1 0.0001 53.7 0.00 0.00 0.00 23.9
2 0.2 53.5 1.64 0.07 0.00 26.9
3 x 0.0001 55.4 0.00 0.00 0.00 58.9
4 x 0.05 55.2 0.19 0.01 0.00 51.6
5 x 0.2 54.7 0.97 0.04 0.00 47.0
6 x 0.4 54.1 2.61 0.12 0.00 46.4
7 x 0.0001 61.0 0.00 0.00 0.00 31.2
8 x 0.05 60.8 0.25 0.01 0.00 38.8
9 x x 0.0001 62.1 0.00 0.00 0.00 61.1
10 x x 0.05 61.9 0.17 0.01 0.00 60.4
11 x x 0.2 61.3 0.91 0.04 0.00 53.2
12 0.0001 43.3 8.61 0.39 0.13 13.8
13 x 0.0001 33.8 22.31 1.00 1.00 3.8
14 x 0.0001 47.5 8.50 0.38 0.13 14.4
15 x x 0.0001 35.6 27.40 1.23 1.80 3.1

parameters are given in Table C.9 in the Appendix. Three different options are investigated, see
Section 5.4.2: i) TFA is added at the synthesis reactor inlet with fixed reactor lengths (default);
ii) the reactor lengths of the photo reactor and the synthesis reactor can be varied; iii) TFA is
dosed to the feed of the photo reactor instead of added at the synthesis reactor inlet. Please note

115



5 Step 2: Acid-Catalyzed Sequence

that the rows 1 to 11 are optimizations with respect to the yield, and the trailing rows with respect
to the space-time yield (compare with green background color).

The results clearly show that an optimization of the yield gives a very poor space-time yield,
and is therefore of little relevance for an industrial realization. Constraining the lower bound on
the initial DHAA concentration results in some increase in space-time yields, but corresponding
values do not exceed 3 mol/(l d). For the default case in row 1, the ART yield is approximately
54 %. Interestingly, an increase in the lower bound of the initial DHAA concentration does not
significantly decrease the yield. This can be observed for all other yield optimizations likewise.
The largest improvement is achieved when the TFA mode is switched to TFA feeding, that is, TFA
is fed together with the other material at the photoreactor inlet. Yields then reach around 62 %,
see rows 7 to 11. This is in accordance with experiments that have been performed with TFA
feeding [61], and with literature values reported [63]. On the other hand, the effect of optimizing
reactor lengths is negligible, which is once more a consequence of optimizing with respect to the
yield.

For the optimizations with respect to space-time yield, designing the reactor drastically increases
the space-time yields from around 9 mol/(l d) to approximately 22 mol/(l d) when TFA is fed at
the synthesis reactor inlet. At the same time, the ART yield drops by almost 10 percentage points
to circa 34 %. Residence times are significantly lower by contrast with the optimizations targeting
the ART yield. Converted to mass, 6.3 g/(ml d) ART (𝑀ART = 282.34 g/mol) can be produced
at a residence time of 3.8 min. Compared with the reported value of 3.5 g/(ml d) in a similar
setup [63], this is almost a 2-fold increase. A further significant increase in space-time yield is
achieved when TFA is added to the feed stream of the photo reactor and the reactor lengths are
designed, resulting in an STY of more than 27 mol/(l d) (7.7 g/(ml d)) while maintaining a yield
of 35.6 %. Hence, the option to add TFA to the feed of the photo reactor and to design the reactor
lengths offers the best conditions for production operation. The corresponding optimized process
parameters of case 15 rounded to two decimal places are

¤𝑉l = 0.4 ml/min,

[DCA]0 = 0.85 mmol/l,

𝑃LED = 100 %,

xO2,0 = 1.0

[DHAA]0 = 0.5 mol/l,

[TFA]0 = 0.4 mol/l,

𝑙photo = 7.45 m,

𝑙syn = 0.0 m.

(5.9)
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Figure 5.21: Pareto optimal points of the space time yield for the robust settings (circles: space-time yield, squares:
yield). Variance and expectation of the space-time yield are normalized to the optimal deterministic case,
see Table 5.6. The different points are a consequence of changing 𝜆 in Equation (5.3) in the range from
1 × 10−5 to 0.1.

All process parameters apart from the reactor lengths are at their upper limits considered during
optimization, and the synthesis reactor is obsolete.

To compare with the robust optimization setting, optimization case 13 is considered, because the
developed process model in this Chapter has been identified from experimental runs that added
TFA at the synthesis reactor inlet. The optimized process parameters of the optimization case
13 are equal to the optimized parameters in Equation (5.9) with the exceptions of the optimized
reactor lengths: 𝑙photo=4.88 m and 𝑙syn=1.19 m. Uncertainty quantifications for the space-time
yields of the nominal settings are given in the last two columns in Table 5.6, where the expected
value and the variance are normalized to the reference case 13. The standard deviation of the
variance of the space-time yield for the reference case is approximately 0.87 mol/(l d), that is
quite narrow for a space-time yield of around 22 mmol/(l d). Once more, this underlines the
robustness of the identified process model.

The results for the robust setting, i.e., the optimization under parametric uncertainty for the
parameter distributions in Equation (C.22) in the Appendix, are shown in Figure 5.21. The
reference case from the nominal setting can be relocated for a normed variance of unity on the
abscissa, yielding a normed expected value of 1 (green point) and an ART yield of 33.8 %,
compare with row 13 in the Table 5.6. Yields and space-time yields have monotonous, but
opposite trends. An increase in the space-time yield, i.e., following the green points in increasing
direction, comes at the cost of a reduced ART yield (blue squared) and of a larger variance
(increasing abscissa values), a trend that can be observed in the Table 5.6 likewise. Naturally, the
space-time yield in the robust optimization cannot exceed its counterpart in the nominal setting,
that is, a normalized expectation of the space-time yield above 1 is not possible as shown in
the Figure 5.21. If the variance of the space-time yield is to be reduced by half compared with
the reference case 13, the space-time yield drops by 6 % and the yield increases to 39 %. The
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corresponding experimental settings are again equal to the ones given in Equation (5.9) with
the following deviations: 𝑙photo=5.83 m and 𝑙syn=1.48 m. A further decrease in uncertainty of
the space-time yield results in an increase of the reactor lengths and a lowering of all other
experimental settings apart from the initial molar oxygen fraction that stays constant, see Table
C.10 in the Appendix.

5.6 Conclusion

The reaction network of the acid-catalyzed sequence is based on several simplifications, and was
developed for purified dihydroartemisinic acid in toluene catalyzed by 9,10-dicyanoanthracene
and trifluoroacetic acid. The identified kinetic constants are valid only at the investigated tem-
perature of 20 ◦C. To increase the predictive power of the identified process model, a more
thorough understanding of the reaction mechanisms in the acid-catalyzed sequence is required.
As the developed model and the model-based analysis have shown, the influence of the acidic
environment plays a crucial part. The model assumes that the acid completely dissolves in the
solvent, keeping a constant concentration over the course of the reactions. However, interactions
that alter the acid activity are possible, and probably likely. The formation of water might on
the one hand influence reaction kinetics and on the other hand bind H+ ions, thereby removing
them from the organic to a separate aqueous phase. The dissolution equilibrium of H+ in toluene
will provide valuable insight into the acid activity of TFA in the solvent. The interference of
other present species with H+ was modeled by simple approaches, and despite having shown no
improvements in the model-data fit, a more mechanistic approach in this dimension might also
be beneficial. The extension to other temperature areas will not solely give additional insight, but
might be helpful for the identification of the occurring kinetics and the associated model param-
eters. In contrast to the photooxygenation experiments, nitrogen has not been present in the gas
phase. Conclusions drawn from the developed model for different gas phase compositions must
be handled with care. Experiments with varying gas phase compositions are therefore necessary,
in particular runs with pure nitrogen should be targeted to suppress part of the reaction network,
similar as happened in the batch experiments. Gas phase measurements are a further add-on, in
particular if the volumetric gas flow is measured in dynamic mode.

To facilitate process design and optimization, a reliable process model is a valuable tool. For
the semi-synthesis of artemisinin from dihydroartemisinic acid, a process model was identified,
that explains the major physical interactions with good predictive power as a result of the applied
systematic model identification strategy. In the photooxygenation step, deviations between the
experimental data and the model predictions for the main hydroperoxide PO1 were 7.3 % on
average, where a wide range of critical process parameters was investigated. The assumptions
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incorporated in the developed process model can explain the main process characteristics. How-
ever, one must be aware of its strong simplifications: (i) the application of the drift flux model
neglecting local effects at the two-phase interface, (ii) the omission of both a momentum and an
energy balance, and (iii) assuming a spatially independent rate of photon absorption, that resulted
in a large value for the optical path length. The developed model was used for the identification
of different operating regimes, limited by either absorbed photon flux, substrate concentration, or
mass transfer.

In the acid-catalyzed sequence, different model candidates for the reaction network were proposed,
where between 24 to 76 % of the reaction products formed could be identified in the experiments.
Major finding from the model selection problem was that the acid concentration plays a key
role. Model candidates including either high H+ reaction orders or intermediate steps with H+

consumption could satisfactorily reproduce the experimental data. The selected final model
has high H+ reaction orders exceeding 2 and different intermediates for an oxygen-rich and an
oxygen-absent atmosphere. Relative deviation for artemisinin is 14 % on average. A sensitivity
analysis confirmed the importance of the role of the acid catalyst, and indicated that the initial
molar fraction of oxygen is another very important process factor. Process optimizations resulted
in ART yields around 55 % and in an ART space-time yield of 22 mmol/(l min) (6.3 g/(ml d))
in the applied reactor setup.
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Identification

Established methods for model identification reveal limitations when confronted with high non-
linearities, significant uncertainties, or the automatic identification of a model from a set of
candidates. In particular, the widely used comparison of measurement data with predicted model
outcomes by integration of the underlying system of differential equations works well in many
application cases, see Chapters 4 and 5, but might lead to sub-optimal or misleading results
in identification tasks. Based on these experiences, novel approaches to model identification
are an active research field. In this Chapter, a promising alternative for model identification
is proposed, that is based on an inverse modeling approach utilizing the concept of differential
flatness. The problem of selecting a model from a set of different model candidates for a
pharma-related biocatalytic reaction network is considered. After an introduction about the
current state of research considering enhanced methods for model identification, the mathematical
fundamentals for inverse modelling and differential flatness are presented. Following, the study
case is introduced and the differential flatness strategy for the model selection problem is put into
action. Here, a nominal situation is compared to a setting under parametric uncertainty – with
and without model-based design of experiments.

Contents of this chapter including Tables and Figures have been published in [110].

6.1 Introduction

The model-based design of experiments (MBDoE) approach frequently aims for optimal control
actions, Section 3.7, where commonly used numerical methods give rise to nonlinear program-
ming problems that need substantial amounts of computational time and efficient solvers [251].
Moreover, robustification against model parameter uncertainties further complicates the problem,
as statistical quantities must be considered when solving the underlying optimization problem. In
addition to the actual MBDoE optimization framework and data acquisition, recent studies have
shown that a well-posed parameter identification and model selection problem is equally impor-
tant [45, 169, 252]. In this context, the consideration of input residuals in parameter estimation
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beyond the classical approach of output residuals has drawn attention in the literature [45, 169,
253–255]. The idea of assigning errors to all variables, i.e., including the independent variables,
dates back to the 1940s [256], where the term total least squares for linear systems was coined
in 1979 [257, 258]. In many engineering problems as in pharmaceutical synthesis, independent
variables in general exhibit randomness, that should therefore be taken care of during parameter
estimation [253]. Moreover, it can be shown that the existence of errors in model inputs can cause
a biased least squares estimator [256].

Several of the developed strategies have in common that they release themselves from integrating
the model dynamics, but propose functional relations for the model predictions or controls and
constrain these relations by the model dynamics. Reasons are manifold, e.g., parallel parameter
estimation and data reconciliation [256], avoidance of numerical integration [254], or conversion
to optimization formulations that can be solved by efficient algorithms [206]. A well-established
representative is collocation within the framework of dynamic optimization, where the original
problem is transferred to a large non-linear programming (NLP) problem that can be efficiently
solved with available large-scale NLP solvers [45, 47]. McAuley and co-workers have proposed
the use of B-splines in an extended version of principal differential analysis (PDA) to fit B-
spline curves to the observed data, called iteratively refined PDA (iPDA) [46]. Currently, neural
networks are gaining attention, where the model predictions are replaced by neural networks
resulting in physics-informed neural networks (PINNs) [44]. In contrast to collocation, iPDA,
and PINNs, the application of an inverse model inherently considers the model dynamics, that
makes it able to precisely back-calculate the inputs of the model for a given system trajectory.

For an effective solution to the robust model selection problem, an inverse modeling technique
by using the differential flatness concept [259] is implemented in this Chapter. In systems theory,
differential flatness implies that analytical expressions of the system’s states and controls exist that
are functions of so-called flat outputs and their derivatives. Hence, by implementing a differential
flatness strategy to solve an MBDoE problem, solving differential and sensitivity equations nu-
merically is avoided as required by standard control vector parameterization strategies for model
selection. Moreover, differential flatness enables straightforward feed-forward control, and eases
optimization problems by smoothing objective functions and providing analytic gradient and
hessian functions [49, 50]. Please also note that while optimizing the flat output trajectory, the
number of continuous optimization variables is reduced to the number of flat outputs, i.e., an
additional reduction of computational costs as compared to standard nonlinear programming tech-
niques with control and state variable discretization [205]. Methods based on differential flatness
have been heavily used in research and industry – primarily in the design of open-loop controllers
and the planning of state trajectories in (electro)mechanical systems [260]. In the case of the
MBDoE technique, strategies exploiting differential flatness have barely been considered [253,
254, 261, 262], and, following a thorough search of the relevant literature, have not been applied
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to model selection problems under uncertainty before, Figure 6.1. Thus, this study addresses two
open research challenges: (i) to apply the flatness concept to multi-model problems, and (ii) to
integrate parameter uncertainties into the flatness-based optimization problem for robust model
selection. In detail, the aim is to discard inappropriate model candidates from a set of competing
model hypotheses. To this end, it first must be shown that the considered model candidates satisfy
the differential flatness condition, and second an optimization problem under uncertainty has
to be solved that makes use of the flatness property. For the sake of illustration, a biocatalytic
process from a carboligation reaction system is considered that forms an essential precursor in
the synthesis of natural products and pharmaceuticals [263]. Please note that carbon-carbon
bond-forming reactions are the backbone of numerous high-value molecules in industrial organic
synthesis. However, biocatalytic production of the related bulk and fine chemicals and active
pharmaceutical ingredients is insufficiently explored today. Therefore, the application of enzymes
in organic synthesis is currently an important research topic to exploit the significant potential
of improving manufacturing processes in the chemical and pharmaceutical industry under the
agenda of green chemistry [264, 265]. An essential problem with all mathematical models and
model-based design concepts, including MBDoE, is the uncertainty in model parameters. To
ensure reliable inferences, parametric uncertainty should be taken into account in the MBDoE
approach [29, 168–170]. In general, probability-based concepts have attracted considerable at-
tention in robust optimization. In the literature, between classical and Bayesian settings for
handling model predictive errors as a potential consequence of uncertain model parameters can
be distinguished. In the former, the strategies have in common that the model output differences
in the objective function are weighted by an error covariance matrix of the model prediction to
avoid experimental regions where model predictions are poor [121, 266–268]. One drawback of
these strategies is that the prediction error covariance matrix is calculated from local sensitivi-
ties, where designs of experiments for local sensitivities might provide misleading information
compared to designs based on global sensitivities [166], see Sections 3.5.1 and 3.6. On the other
hand, Bayesian model selection with consideration of parametric uncertainties requires the de-
termination of computationally expensive integrals [148, 172], Section 3.6.1. In this context, an
efficient and effective rule to determine statistical moments circumventing a local approximation,
namely the point estimate method (PEM), is proposed, that diminishes this computational burden.
The PEM has been introduced in Section 3.6.1.

6.2 Inverse Modeling

As opposed to solving the ODE system (Equation (3.5a)) in a forward manner to conventionally
exploit the outputs 𝒚 given the inputs 𝒖, inverse modeling aims at reconstructing the inputs 𝒖 for
given outputs 𝒚 [27, 269]. Please note that the process of inverse simulation is not to be confused
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Figure 6.1: Possible applications for the application of differential flatness strategies. The vast majority of differential
flatness approaches has been used for process control and trajectory planning. To our knowledge, the in this
thesis developed model-based design of experiments strategy, that exploits differential flatness, (blue colored
route), has not been applied before in literature.

with inverse problems, where in the latter the goal is to estimate unknown model parameters 𝜽

[27]. The different principles of forward simulation, inverse modeling, and the inverse problem
of parameter identification are visualized in Figure 6.2.

In addition to numerical inversion approaches as model inversion- or inverse simulation-based
techniques [270], algebraic methods have been proposed for inverse modeling [50], among which
strategies based on differential flatness are important representatives.

6.2.1 Differential Flatness

In systems theory, within the context of algebraic model inversion techniques and aiming at
feedforward control problems, differential flatness was introduced by Fliess et al. [259] in 1992.

M(𝜽)𝒖 𝒚

(a) Forward modeling

M−1 (𝜽)𝒖 𝒚

(b) Inverse modeling

M(𝜽)𝒖 𝒚

𝜽

(c) Inverse problem

Figure 6.2: Illustration of the different principles of a standard process simulation configuration (a), the inverse modeling
setting to reconstruct system inputs (b), and the inverse problem for parameter identification (c).
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A (non-)linear process model (Equations (3.5a) and (3.5c)) is called differentially flat or shortly
flat if there exists an output vector

𝜸 = 𝒉flat (𝒙, 𝒖, ¤𝒖, . . . , 𝒖 (𝑠) , 𝜽), (6.1)

with a finite value 𝑠 ∈ N and the smooth mapping function 𝒉flat : R𝑛𝑥 × (R𝑛𝑢 )𝑠+1 × R𝑛𝜃 −→ R𝑞 ,
referred to as a flat output which fulfills the following conditions:

1. The states and the controls can be described as a function of the flat output and its derivatives:

𝒙 = 𝚿𝑥 (𝜸, ¤𝜸, . . . , 𝜸 (𝑟 ) , 𝜽), (6.2)

𝒖 = 𝚿𝑢 (𝜸, ¤𝜸, . . . , 𝜸 (𝑟+1) , 𝜽), (6.3)

with the smooth mapping functions𝚿𝑥 : (R𝑛𝑢 )𝑟+1×R𝑛𝜃 −→ R𝑛𝑥 and𝚿𝑢 : (R𝑛𝑢 )𝑟+2×R𝑛𝜃 −→
R𝑛𝑢 .

2. The dimensions of the control and the flat output vector are equal:

dim 𝜸 = dim 𝒖. (6.4)

Here, 𝑟 ∈ N specifies the number of occurring derivatives. Generally speaking, 𝑟 is not known
beforehand, apart from single-input single-output (SISO) systems, where 𝑟 = 𝑛 − 1 [271]. There
is an infinite number of flat output candidates, and often, they are a function of the states only
[271]—similar to the fact that the real output function of a dynamic system is, in many cases,
exclusively a function of the states.

Flat outputs might have no direct physical meaning, or they might be identical to measurable
quantities; then also referred to as flat inputs [272]. Moreover, between local and global flatness
must be distinguished, where for the local form, the differential flatness is valid only for a restricted
domain bound by occurring singularities [273]. For certain kinds of singularities, a globally flat
system can be designed following a superposition concept. To this end, individual local model
inversion domains are created from different local flat outputs where the union of the local
domains provides a global framework for the flatness-based model inversion [273]. Alternatively,
a transformation approach exists to bypass points of a singularity [274]. In addition to differential
flatness of ODE systems, flatness-based methods are also being used for discrete-time systems
and partial differential equations (PDEs); see [275–277], and references within. Application
scenarios based on differential flatness cover predominantly (electro)mechanical problems, but
also process technologies like heat exchangers [278], crystallizers [279] or (bio)reactors [276,
280], lithium-ion batteries [281], and more.
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In general, the class of dynamic systems, that are differentially flat by their definitions, i.e., their
states and controls can be recovered according to the conditions of differential flatness, is limited.
For example, all controllable linear or state feedback linearizable systems are differentially flat
[282]. An overview of differentially flat and non-flat mechanical systems is given in [282]. In
contrast, industrial chemical processes having many states and few controls are usually not flat
[283]. However, differentially non-flat dynamic systems can be in general made differentially flat
[283]. A straightforward approach is to increase the number of control variables, that is, to add
fictive control variables to the dynamic systems’ real controls. This intuitive strategy exploits the
tendency of a dynamic systems becoming differentially flat with an increasing number of controls
[284]. The drawback of this method is that the fictive control variables have to be forced to vanish
in the considered optimization problem, i.e., additional constraints are introduced. This endeavor
is numerically very challenging and strongly depends on the underlying differential equations of
the dynamic system under study [283].

6.2.2 Flat Output Identification

To implement a flatness-based concept, two key challenges exist: First, determining if a system is
differentially flat, and second, constructing a flat output alternatively. There is no general method
for either of those challenges. However, exceptions exist, and include systems that are linearizable
by static feedback control, which are flat by definition. Considering a linear system, controllability
conditions differential flatness and vice versa [274]. Methods of determining flat outputs and the
mapping function 𝒉flat, respectively, are currently being researched, and the interested reader is
referred to [260, 285, 286] and the references therein. Moreover, the construction of so-called
flat inputs (i.e., reconstructed inputs based on the given output function (Equation (3.5c))) was
shown for SISO systems and a limited set of multi-input and multi-output (MIMO) cases [287].

Alternatively, in systems theory, valuable information about system characterization based on the
interaction of inputs, system states and outputs can also be extracted from graph theory [50, 288,
289]. Typically, observability or controllability measures are derived for (non)linear state-space
models using directed graphs (digraphs) [290–292]. A digraph 𝐷 = [𝑉, 𝐸] with 𝑛𝑥 + 𝑛𝑢 + 𝑛𝑦
vertices 𝑣𝑖 ∈ 𝑉 and edges 𝑒 ∈ 𝐸 can be constructed from adjacency matrices 𝐴𝑢, 𝐴𝑥 , and 𝐴𝑦 of
the process model for the inputs, system states, and outputs, respectively. The 𝑎𝑖, 𝑗 -th element of
𝐴𝑥 or 𝐴𝑢 is set to 1 if derivatives 𝜕 𝑓𝑥,𝑖 (𝒙,𝒖)

𝜕𝑥 𝑗
or 𝜕 𝑓𝑥,𝑖 (𝒙,𝒖)

𝜕𝑢 𝑗
exist, respectively, and to 0 if this is not

the case. If these derivatives exist (i.e., 𝜕 𝑓𝑥,𝑖/𝜕𝑥 𝑗 ≠ 0 or 𝜕 𝑓𝑥,𝑖/𝜕𝑢 𝑗 ≠ 0), then there is an edge
from vertex 𝑣 𝑗 to vertex 𝑣𝑖 . Analogously, the adjacency matrix for the outputs 𝒚 and the output
function 𝒇𝑦 (𝒙, 𝒖) can be defined. Regarding the flatness property, in the paper by Csercsik et
al. [289], an algorithm for flatness analysis of MIMO systems is introduced that uses an explicit
expressibility graph. Please note that from a given digraph, the explicit expressibility graph is
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formed with reversed edge directions, with the outputs replaced by the flat outputs, and with
the self-loop system states dependencies omitted. The following theorem then gives a necessary
condition for differential flatness based on the adjacency matrices 𝐴𝑢, 𝐴𝑥 , and 𝐴𝑦 [289].

Theorem 1 For a prospective set of flat output-input pairs, 𝑚 pairwise disjoint paths must exist
in the explicit expressibility graph, the union of which covers each vertex of the graph.

In summary, existing construction methods are often restrictive and require cumbersome calcu-
lations. In practice, for the identification of flat outputs (Equation (6.1)) a sequential strategy
including an expert guessing for a flat output candidate followed by a subsequent validation step
in terms of Equations (6.2)-(6.4) has proven favorable. This trial-and-error approach is facilitated
by two facts. First, numerous technical systems are indeed flat systems. Second, frequently,
comparable to Lyapunov functions in control theory, informative flat outputs have physical signi-
fication [271]. Once the flat output configuration is identified, the flat output functions 𝑦flat must
be parameterized using for instance spline functions.

6.2.3 Basis Splines

The flat outputs 𝛾 have to be parameterized while limited by the fact that they have to satisfy
solutions of the dynamic system (Equations (3.5a) and (3.5c)). For flat outputs, basis functions
from a large set of possibilities, ranging from simple polynomials to more complex functions,
can be chosen. Basis splines, i.e., piece-wise polynomial functions also known as B-splines,
offer great freedom of action, are flexible and well-studied, and libraries for their usage are
implemented in many different programming languages [293]. The classical application of
splines is the approximation and interpolation of data points.

A flat output based on B-splines is defined by

𝛾(𝑡) =
𝑙∑︁
𝑖=1

𝜃𝑖𝐵𝑖,𝑘 (𝑡), (6.5)

where 𝐵𝑖,𝑘 are B-splines of order 𝑘 on 𝑙 collocation points, and 𝜽 is a coefficient vector, whose
elements are referred to as meta-parameters to distinguish them from model parameters 𝜽 ,
Equation (3.1). Please note that the meta-parameters 𝜃𝑖 constitute the decision variables in the
flatness-based optimal experimental design framework for model selection, which is introduced
in the following Section.
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6.3 Flatness-Based Robust Design of Experiments
for Model Selection

In contrast to the MBDoE problems in Chapter 4, the proposed flatness-based approach for the
MBDoE literally operates in an inverse manner. Optimized flat output trajectories maximize the
difference between the model outputs of the competing model candidates. The related controls
𝒖 and the initial states 𝒙0 are reconstructed from the flat model M−1 and have to be identical
for all model candidates and their optimized flat outputs 𝛾. Using the Euclidean distance as a
discrepancy measure between model outputs and assuming 𝑀 model candidates, the original
optimal control problem given in Equation (3.65) becomes

max
𝜸

𝑡f∫
𝑡0

𝑀−1∑︁
𝑖=1

𝑀∑︁
𝑗=𝑖+1

[
𝒚𝑖 (𝜸𝑖 , ¤𝜸𝑖 , . . . , 𝜸𝑖 (𝑟𝑖 ) )

− 𝒚 𝑗 (𝜸 𝑗 , ¤𝜸 𝑗 , . . . , 𝜸 𝑗 (𝑟 𝑗 ) )
]2

d𝑡

s.t. Δ𝒖(𝜸) = 0,

Δ𝒙0 (𝜸) = 0,

𝒈eq (𝜸) = 0,

𝒈ineq (𝜸) ≤ 0,

(6.6)

with 𝜸 = {𝜸1, . . . , 𝜸𝑀 } the set of all the model candidates’ flat outputs. The inputs, states and out-
puts in the optimization formulation are expressed according to Equations (3.5c), (6.2), and (6.3).
The differences between the recalculated inputs and the initial states for all 𝑀 model candidates
are measured by the delta function Δ(·) that might be the Euclidean distance alike. Since the
flat outputs are of functional form, time-dependent empirical basis functions 𝜸𝑖 = 𝜸𝑖 (𝜽𝑖 , 𝑡) ∀ 𝑖 ∈
{1, ..., 𝑀} with meta-parameters 𝜽𝑖 have to be specified; see also Section 6.2.3. The optimal
control problem stated in Equation (3.65) is readily transformed in an algebraic nonlinear op-
timization problem as the system inputs and outputs are available in closed form, where the
need for integrating the underlying ODE system and the need for control and or state vector
parameterization are dropped.

For the robust formulation of the nominal optimization problem, Equation (6.6), a penalty term as
in Equation 3.62 is introduced. The term penalizes the propagated uncertainty that is quantified
by the variances V of the models’ inputs 𝒖. In this vein, the calculated overlap, Equation (3.43),
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is expected to decrease as the confidence bands of the trajectories tighten. The optimization
problem for a flatness-based robust design of experiments for model selection is then stated as

max
𝜽

𝑇∑︁
𝑘=0

(
𝜆

𝑀−1∑︁
𝑖=1

𝑀∑︁
𝑗=𝑖+1

(
E[𝒚𝑖 (𝜽𝑖 , 𝑡𝑘)] − E[𝒚 𝑗 (𝜽 𝑗 , 𝑡𝑘)]

)2

(1 − 𝜆)
𝑀∑︁
𝑖=1
V[𝒖𝑖 (𝜽𝑖 , 𝑡𝑘)]

)
s.t. ΔE[𝒖(𝜽 , 𝑡𝑘)] = 0,

ΔE[𝒙0 (𝜽 , 𝑡𝑘)] = 0,

𝒈eq (𝜽 , 𝑡𝑘) = 0,

𝒈ineq (𝜽 , 𝑡𝑘) ≤ 0.

(6.7)

Please note that the expectations and variances are taken with respect to the uncertain model
parameters 𝜽 . In contrast, the decision variables of the optimization problem are the meta-
parameters 𝜽 present in the basis functions for the flat outputs, i.e., the control vectors of the
B-spline curves, Equation (6.5). As previously in the nominal optimization problem, Equation
(6.6), the robust formulation is a programming problem for which all occurring functions are
algebraically available. Thus, the nominal version, Equation (6.6), and the robust version,
Equation (6.7), are readily stated as an NLP without any use of parameterization methods.
Furthermore, the possibility of deriving functions for exact gradients is given as opposed to
the application of automatic differentiation or finite differences methods. A flow chart for the
proposed robust MBDoE strategy using differential flatness is given in Figure 6.3.

6.4 Case Study

Biocatalytic reactions appear in numerous syntheses of natural products and active pharmaceu-
tical ingredients. For example, chiral hydroxy ketones are important building blocks in the
pharmaceutical industry and can be produced from aldehydes via enzymatic carboligation [263].
A lack of mechanistic kinetic models for biocatalytic carboligation and simultaneous inactivation
of the benzaldehyde lyase was studied in [294] using MBDoE, where the model quality of the
different model candidates was analyzed using the Akaike information criterion (AIC). Moti-
vated by the biocatalytic carboligation of ketones from aldehydes, in this simulation study, two
models simulating the enzymatic step from benzaldehyde to benzoin are considered [263]. The
enzymatic reaction network follows Michaelis-Menten kinetics with the additional assumption
that the reaction towards the enzyme-substrate complex ES2 is irreversible, Table 6.1. In detail,
enzyme E and substrate S form the enzyme-substrate complex ES2 that reacts in a last step to
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Figure 6.3: Robust MBDoE strategy.

Table 6.1: Reaction schemes of models M1 and M2.

Model M1

2 S + E
𝑘1

ES2
𝑘2

P + E

I + E
𝑘3

EI

Model M2

2 S + E
𝑘1

ES2
𝑘2

P + E
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product P, thereby releasing the bound enzyme again. The two proposed models differ in that
way, that model candidate M1 exemplifies irreversible inhibition of the enzyme E by an inhibitor
I, e.g., a second substrate, a typical situation in enzyme networks [295]. In contrast, model
candidate M2 represents the uninhibited situation. Please note that the occurrence of inhibition
could be straightforwardly verified in experiments if the substrate and the inhibiting substance
can be added separately.

If elementary reactions are assumed, Section 3.3.1, and the inhibitor I is expected to be constant
via proper control actions over the experimental run, the corresponding fed batch models are

M1 =



d[S]
d𝑡 = −2𝑘1 [S]2 [E] + 𝑢S

d[ES2]
d𝑡 = 𝑘1 [S]2 [E] − 𝑘2 [ES2]

d[E]
d𝑡 = −𝑘1 [S]2 [E] + 𝑘2 [ES2] − 𝑘3 [I] [E] + 𝑢E

d[P]
d𝑡 = 𝑘2 [ES2]

,

M2 =



d[S]
d𝑡 = −2𝑘1 [S]2 [E] + 𝑢S

d[ES2]
d𝑡 = 𝑘1 [S]2 [E] − 𝑘2 [ES2]

d[E]
d𝑡 = −𝑘1 [S]2 [E] + 𝑘2 [ES2] + 𝑢E

d[P]
d𝑡 = 𝑘2 [ES2]

.

(6.8)

Here, the states 𝑥𝑖 for 𝑖 ∈ {S,E,ES2, P} are written in concentration notation for better read-
ability. It follows that both the substrate and the enzyme can be dosed over the course of
the experiment, see the model inputs 𝑢S and 𝑢E in the Equation (6.8), respectively. Please
note that in model M1, the differential equations of the inhibitor I, which is assumed to
be constant, and the loss product EI are not specified, as information about their time be-
havior does not influence the other differential equations, and therefore, is not relevant to
the problem at hand. The measured concentrations are the concentrations of the substrate
and the final product; that is, 𝒚 = (𝑥S, 𝑥P)⊤. The kinetic constants, that have been previ-
ously determined from experimental data, have the following expected values: For model M1

(𝑘1, 𝑘2, 𝑘3) = (0.215 L2/(mmol2 min), 91.475 min−1, 0.019 L/(mmol min)), and for model M2

(𝑘1, 𝑘2) = (0.204 L2/(mmol2 min), 103.344 min−1). The variances of the normally distributed
parameters 𝑘1, 𝑘2 and 𝑘3 equal 5 % of their expected values in the absence of parameter depen-
dencies.
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6.5 Results

For the case study given in Section 6.4, the differential flatness property is analyzed, and then,
discriminating input controls based on the proposed MBDoE approach are designed, making use
of the differential flatness concept. The effect of model parameter uncertainties is studied as well,
and the robust MBDoE approach is applied as an appropriate countermeasure.

6.5.1 Differential Flatness Property

The flat outputs for both models are derived following heuristic methods to 1) obtain a flat output
candidate according to Equation (6.1) and 2), with the help of graph theory, to show that the
candidate fulfills the differential flatness conditions given Equations (6.2)–(6.4). Drawing the
directed graphs (digraphs) for model M1 and model M2, we observe that they look alike. The
corresponding adjacency matrices are

𝑨𝑢 =

©­­­­«

𝑢S 𝑢E

𝑥S 1 0
𝑥ES2 0 0
𝑥E 0 1
𝑥P 0 0

ª®®®®¬
, 𝑨𝑥 =

©­­­­«

𝑥S 𝑥ES2 𝑥E 𝑥P

𝑥S 1 0 1 0
𝑥ES2 1 1 1 0
𝑥E 1 1 1 0
𝑥P 0 1 0 0

ª®®®®¬
, 𝑨𝑦 =

( 𝑥S 𝑥ES2 𝑥E 𝑥P

𝑦S 1 0 0 0
𝑦P 0 0 0 1

)
,

and the resulting digraph is shown in Figure 6.4a. The digraph is composed of 8 vertices,
V = {𝑢S, 𝑢E} ∪ {𝑥S, 𝑥ES2, 𝑥E, 𝑥P} ∪ {𝑦S, 𝑦P}, and 13 edges corresponding to the non-zero entries
in the adjacency matrices 𝑨𝑢, 𝑨𝑥 , and 𝑨𝑦 . The self-loops of {𝑥S, 𝑥ES2, 𝑥E} ∈ V are related to
the non-zero diagonal elements of 𝑨𝑥 .

The control vector dimension in both models is 2. Therefore, to comply with condition given in
Equation (6.4), the dimension of the flat output vector must be 2 as well. Inspecting the system
of differential equations in Equation (6.8) one might observe that 𝑥P does not appear on the right
side of any of the differential equations. The corresponding node in the digraph, see Figure 6.4a,
represents a dead end (i.e., no edge from 𝑥P ∈ V to {𝑥S, 𝑥ES2, 𝑥E} ∈ V), and therefore, must be
part of the flat output. Obviously, the second element of the flat output vector should be chosen
from the concentrations left as they have direct physical meaning for the study case at hand. We
consider the flat output candidate

𝜸 =

(
𝛾1

𝛾2

)
=

(
𝑥S

𝑥P

)
(6.9)
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𝑦S 𝑥S 𝑢S

𝑥E 𝑢E

𝑥ES2

𝑥P𝑦P

(a) Digraph for model M1 and M2.

𝛾1 𝑥S 𝑢S

𝑥E 𝑢E

𝑥ES2

𝑥P𝛾2

(b) Explicit expressibility graph.

Figure 6.4: Digraph and explicit expressibility graph to study the differential flatness property.

that evidently satisfies Equation (6.1).

The explicit expressibility graph, which can be readily obtained from the digraph, is shown in
Figure 6.4b. Please note that in comparison to the digraph, Figure 6.4a, the self-loops are omitted,
and the edge directions are reversed. In Figure 6.4b, two disjoint paths are drawn that cover all
vertices related to the inputs, system states, and flat outputs. Therefore, the flat output vector,
Equation (6.9), is supposed to form a differentially flat system which we will confirm using its
definition in the following. From the ODE system, after several reformulations and substitutions,
we obtain the inverse models:

M−1
1 =



𝑥S = 𝛾1

𝑥ES2 =
¤𝛾2
𝑘2

𝑥E =

¥𝛾2
𝑘2

+ ¤𝛾2

𝑘1𝛾
2
1

𝑥P = 𝛾2

𝑢S = ¤𝛾1 + 2𝛾2
1

¥𝛾2
𝑘2

+ ¤𝛾2

𝛾2
1

𝑢E =

𝛾2
𝑘2

+ ¥𝛾2

𝑘1𝛾
2
1
+

¥𝛾2
𝑘2

+ ¤𝛾2

𝑘1𝛾
2
1

(
−2 ¤𝛾1

𝑘1𝛾
3
1
+ 𝑘1𝛾

2
1 + 𝑘3 [𝐼]

)
− 𝑘2

¤𝛾2
𝑘2

(6.10)
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and

M−1
2 =



𝑥S = 𝛾1

𝑥ES2 =
¤𝛾2
𝑘2

𝑥E =

¥𝛾2
𝑘2

+ ¤𝛾2

𝑘1𝛾
2
1

𝑥P = 𝛾2

𝑢S = ¤𝛾1 + 2𝛾2
1

¥𝛾2
𝑘2

+ ¤𝛾2

𝛾2
1

𝑢E =

𝛾2
𝑘2

+ ¥𝛾2

𝑘1𝛾
2
1
+

¥𝛾2
𝑘2

+ ¤𝛾2

𝑘1𝛾
2
1

(
−2 ¤𝛾1

𝑘1𝛾
3
1
+ 𝑘1𝛾

2
1

)
− 𝑘2

¤𝛾2
𝑘2

. (6.11)

The inverse model, Equation (6.10), with its flat output, Equation (6.9), satisfies the set containing
all three conditions for differential flatness, Equations (6.2) to (6.4). Accordingly, the inverse
model of model M2, Equation (6.11), fulfills the conditions for differential flatness. Thus, both
models are differentially flat models. For prescribed trajectories 𝛾∗1 = 𝑥∗S and 𝛾∗2 = 𝑥∗P, the
necessary experimental conditions for the controls are readily available by differentiation; for an
example, see [261].

6.5.2 Non-Optimized Experimental Design

The non-optimized experimental design is considered first, i.e., the initial situation before any
optimization iteration. Please note that batch operation is assumed, and thus, the controls 𝑢S and
𝑢E are zero and not explicitly shown in the following. This represents a simple experiment in
which only the initial concentrations of the substrate and the enzyme are altered. Plots for the
measured states and the measured states with confidence bands are shown in Figure 6.6 on the
left side and on the right side, respectively.

For the nominal case in Figure 6.5a, it is impossible to distinguish the two models from each
other, even if the experimental data were close to one of the models. In Figure 6.5b, it is well
observable that the uncertainties in the measured states given as confidence intervals are low.
To better compare the results with the expected results from the optimization part, the overlap
measure in Equation (3.43) is normalized to the overlap of the non-optimized design in Figure
6.5b; that is, 𝑂𝑉𝐿N = 1.0.
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(b) Confidence intervals due to parameter uncertain-
ties in 𝑘1, 𝑘2 and 𝑘3;𝑂𝑉𝐿N = 1.0.

Figure 6.5: Measured states before applying the MBDoE approach.

6.5.3 Optimized Experimental Design without Uncertainty:
The Nominal Case

Before optimizing, suitable B-spline types must be chosen. In contrast to the classical application
of splines in approximation or interpolation of available data, they are used to express smooth
control and state trajectories along the time axis, and are created from their definition as opposed to
a fitting process. Thus, common problems experienced in spline approximation and interpolation,
like cusps and loops [296], are less likely to occur. From the different methods for splines, we
choose the uniform method where the data points are uniformly distributed over the domain range
[293]. Furthermore, for each element of the flat output vectors, a B-spline curve of order 6 with
12 control points and clamped end conditions was used, resulting in a 48-dimensional decision
space for the optimization problem. In the first optimization step, the classical deterministic
optimization by setting 𝜆 = 1 in the setting is followed, Equation (6.7). In contrast to the the
non-optimized design in Section 6.5.2, the controls 𝑢S and 𝑢E are now considered variable over
time, i.e., a fed batch situation is assumed. The optimization results for the measured states of the
nominal case are shown in Figure 6.6a, again, without uncertainty and with uncertainty vis-à-vis.
The corresponding control curves are displayed in Figure 6.7 on the left side.

In the plot without propagated uncertainties, Figure 6.6a, it is clearly visible that the expected
values of the measured states are significantly driven apart. On the other hand, a look at the plot
on the right reveals that (1) the uncertainties have substantially enlarged compared to the initial
situation, and (2) the confidence bands of both models overlap noticeably. The overlap values are
given in Table 6.2. The overlap has decreased versus the initial situation, i.e., it is 6 percentage
points lower compared to before the optimization. However, in performed simulations ending up
in other local minima, that are not shown here, the optimization results worsened in the sense of
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(b) Confidence intervals due to parameter uncertain-
ties in 𝑘1, 𝑘2 and 𝑘3;𝑂𝑉𝐿N = 0.94.

Figure 6.6: Measured states for the nominal design.

a larger overlap value if the nominal optimization state was compared with the non-optimized. In
this context, the question arises if the overlap can be further decreased and thus the feasibility to
identify the right model be increased by inherently taking care of the parametric uncertainties in
the optimization setting. Therefore, the optimization is robustified in the following by considering
the variances in the objective function as described in Section 3.6.1.

6.5.4 Robust Experimental Design

For the robust MBDoE setting, Equation (6.7), the weight factor is set to 𝜆 = 0.5; that is, the
Euclidean distance of the flat outputs of model M1 and M2 as well as the resulting uncertainties
in the recalculated model inputs are equally weighted. Compared with the nominal optimization,
the computational time to reach satisfying convergence increases multiple times despite the low
number of sampling points that the PEM is using. In particular, when PEM5 is employed, the
computational time increases considerably due to the higher sample number; see Equations (3.54)
and (3.56).

The optimal controls for the substrate and enzyme of both the nominal and the robust setting
are drawn in Figure 6.7. Please note that the realization of the profiles in a laboratory setup is
constrained by the available pump devices. These constraints could be included in the robust
MBDoE framework, Equation (6.7), but the technical realization of these input controls is beyond
the scope of this study. Albeit, the main observations are shortly summarized in the following.
In both settings, the dosing of enzyme is four magnitudes lower than the dosing of the substrate,
and the dosing rates vary in the same ranges for both substrate and enzyme. Furthermore, the
dosing rates of substrate follow similar patterns in the nominal and the robust design.
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(b) Robust design (PEM5).

Figure 6.7: Optimized input controls (𝑢1: y-axis on the left, 𝑢2: y-axis on the right).

The concentration curves for the resulting states of the robust flatness-based design are shown in
Figure 6.8. Interestingly, the trajectories for the expected values in the left subfigure clearly drift
apart, but less strongly than in the nominal optimization case, see Figure 6.6a. Considering 100
equally spaced points, the norms of the model output distances in the robust case are roughly half
as large as in the nominal case. However, the presumption that the overlap has decreased can be
confirmed when looking at the overlap values in Table 6.2. The overlap value has decreased by
19 percentage points and by 13 percentage points when compared with the initial situation and
the nominal optimization, respectively. The propagated uncertainties can be extracted from the
graphs shown in Figure 6.9 for the nominal and robust design where the variances for both outputs
of model 1 are considerably lower when the nominal case on the left is compared with the robust
one on the right. Furthermore, the approximation of the propagated uncertainty using the PEM
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Figure 6.8: Measured states for the robust flatness-based design.
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Table 6.2: Results for the overlap.

Design None Nominal Robust

PEM3 PEM5

𝑂𝑉𝐿N 1.0 0.94 0.81 0.80
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(c) Nominal design, 𝑦2.
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(d) Robust design, 𝑦2.

Figure 6.9: Variances of model outputs for model M1.

is sufficiently good, as the results are in proximity to the Monte Carlo simulations performed
with 104 samples. Thus, the inclusion of the propagated uncertainty as a penalty in the objective
function has delivered the desired outcome. Prospectively, a different choice of 𝜆 or the drawing
of a Pareto front might further decrease the overlap between the two model outcomes.
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6.6 Conclusion

A novel approach to the model-based design of experiments for model selection using the dif-
ferential flatness property of the systems was extended by robustifying the optimization problem
against parametric uncertainty. In comparison with commonly used methods for model discrimi-
nation, the resulting optimal control problem does not require approximation methods for solving
the underlying system of differential equations as both controls and states can be derived analyt-
ically in differentially flat systems without numerical integration. Likewise, parameterization of
the controls and potentially the states is obsolete for we directly arrive at a nonlinear program-
ming problem. Moreover, analytic gradients to the optimization solver can be provided with ease,
even for highly nonlinear systems. The robustification strategy comprised the consideration of
propagated uncertainties; that is, the variances of the reconstructed model inputs were added as
a penalty term in the objective function. The corresponding uncertainty quantification was per-
formed using the point estimate method, a computationally cheap but reasonably accurate method
compared with standard Monte Carlo simulations for uncertainty quantification. The strategy
was applied to a nonlinear enzymatic reaction using B-splines as the parameterization technique
for expressing the flat outputs, and thus, optimal experimental input controls for the subsequent
experiment were obtained. It was shown, that a nominal optimization without the consideration
of parameter uncertainties might result in unreliable optimal controls, i.e., not leading to the pos-
sibility of selecting one model over another after having performed the subsequent experiment.
In contrast, if parametric uncertainties were inherently considered in the optimal experimental
design problem, more reliable MBDoE results were identified. This emphasizes the importance
of including the quantification of uncertainties over classic deterministic optimization where the
differential flatness concept shows promising characteristics for advanced system identification
strategies in terms of precise parameter estimates and reliable model selection.

In general, the application of the developed strategy based on differential flatness would be as
well possible to the developed process model for the artemisinin semi-synthesis from Chapters 4
and 5. However, the process model has an increased number of states (10) and at the same time
no controls, making it differentially non-flat. The transfer to a differentially flat system would
cause the parameter estimation and model selection tasks to be extraordinarily challenging. A
first step could be the consideration of other parameterization techniques for the flat outputs than
B-splines; e.g., neural networks, as they are known to have excellent approximation capabilities
that satisfy the Universal approximation theorem.
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Artemisinin-based combination therapies are key in the fight against malaria. Today, the primary
source of artemisinin (ART) is extraction from the plant Artemisia annua L., resulting in a high
and very volatile ART market price. The semi-synthesis of ART from dihydroartemisinic acid
(DHAA), a late-stage precursor of ART and an extraction byproduct, is a potential option to
increase ART yields obtained from the plant and thereby decrease and stabilize ART market
prices.

In this work, a mathematical process model describing the semi-synthesis of ART from DHAA
in a continuous two-phase flow reactor was developed, that was subsequently used for a model-
based analysis of the system under study. The challenge of identifying the model was impeded
by, first, a complex interplay of flow, mass transfer, radiative and reaction phenomena; second, a
lack of knowledge considering the underlying reaction network; and third, scarce measurement
data. Streamlined with the Quality by design (QbD) initiative in the pharmaceutical industry,
a systematic approach within the framework of Process Systems Engineering (PSE), that in
particular consisted of model-based design of experiments (MBDoE), methods to test parameter
identifiability and sensitivity analyses, was therefore followed. The reactor model was described
by the two-fluid model, which was connected with simplified equations for the mass, photon
transfer, and the chemical kinetics, based on thoroughly discussed assumptions.

For the photooxygenation step of the semi-synthesis, the parameterized model predicted the exper-
imental data for the hydroperoxide of interest, i.e., PO1, with a deviation of 7.3 %. It was shown
that the two parameters describing the quantum yield needed to be fixed to literature values from a
similar reaction system because of very strong parameter interactions. A final parameter estima-
tion step, whose experimental data resulted from a MBDoE, reduced the parameter uncertainties
significantly, and yielded a robust process model with identifiable parameters as confirmed by a
combined sensitivity and uncertainty analysis. One characteristic feature of the process model
is the consideration of the optical path length as a model parameter to be estimated, that yielded
an effective path length and made the application of a simple description of the radiative transfer
possible.

For the acid-catalyzed sequence, the second step in the semi-synthesis of ART from DHAA
starting with the hydroperoxide PO1, a kinetic model for the underlying reaction network was
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identified from a set of different model candidates, that is, a model selection problem was solved.
It could be shown that the dependence of the PO1 conversion on the acid concentration must be
non-linear, which was achieved by altering the reaction orders of the acid in the two corresponding
reactions. Applying the kinetic model candidates to a series of batch experiments revealed that
ART in the continuous experiments and the major byproduct in the batch experiments must
accumulate via different intermediates. This observation might be a consequence of having
run the experiments in different TFA concentration ranges for the batch and the continuous
setups. A lumped byproduct species was introduced that accounted for the non-measured and
unknown species in the reaction network. The best identified model structure from both batch
and continuous experimental data predicted the ART concentration with an averaged relative
deviation of nearly 14 % for simulated ART concentrations above 0.01 mol/l. A greater part of
the deviation, that is twice as large as in the photooxygenation, could be attributed to measurement
uncertainty. In an exploratory data analysis, it could be shown that the experimental data featured
considerable variation. The identification of the best candidate also included the removal and
fixing of non-identifiable parameters, that, in the end, led to an identifiable and robust model
structure as confirmed by a global sensitivity study and a follow-up process optimization. In
the latter task, the developed overall process model was applied in a mathematical optimization
problem to improve ART and ART space time yields in a nominal and a robust setting considering
parametric uncertainty. The yields showed only a slight worsening when the initial DHAA
concentration was increased to 0.4 mol/l, resulting in a yield of roughly 54 %. A considerable
increase to around 62 % was observed when TFA was not dosed at the synthesis reactor inlet, but
fed together with DHAA. Analogously, space time yields of 22.3 mol/(l d) (6.3 g/(ml d)) and
27.4 mol/(l d) (7.7 g/(ml d)) were achieved in the differing cases, where the runs considering
parametric uncertainty showed that variances in the yields are small, emphasizing once more the
robustness of the developed process model.

In summary, the developed process model simulates the continuous partial synthesis of ART from
DHAA in a two-phase tube reactor, while considering the complexity of the occurring phenomena,
ranging from fluid motion, two-phase mass transfer over light irradiation to chemical kinetics,
with good predictive capability. The model balances the phenomenological complexity with a
manageable mathematical complexity, leading to a robust process model that is straightforward
to use and therefore serves as a valuable tool in optimizing the whole process chain for the
production of ART and for process control. Hence, the model is a good starting point for
industrial players to support the generation of valuable process understanding and to optimize
the ART production using the proposed co-strategy, i.e., running the partial synthesis in tandem
with ART extraction. In this vein, the ART market price and its volatility are potentially reduced
and a contribution is made in the important fight against one of the deadliest diseases on earth.
Furthermore, the identification strategy and the straightforward modeling approaches developed
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in this work provide a blueprint for similar complex processes with the availability of only scarce
measurement data, in particular for the growing field of photo flow chemistry.

On the other hand, a successful industrial implementation would benefit from deeper research
in both, system understanding of the process behavior, and the modeling approach and identi-
fication strategy. In the former, the following three major directions crystallize: improving the
understanding of the reaction mechanism, enhancing the measurement capabilities, and coupling
of extraction and partial synthesis with the purification of ART. In the photooxygenation, a more
profound insight into the radiative heat transfer inside the three-dimensional casing and the tubing
will give rise to a more effective design of the photo reactor and a more precise description of
the irradiation phenomena. In the acid-catalyzed sequence, a better understanding of the reaction
mechanisms is crucial to improve the predictability of the kinetic model. An improved picture of
unknown byproducts and intermediates helps to break down the reaction mechanism. Importantly,
the decisive effect of the acidic catalyst on the specific reaction steps during the conversion of PO1
to ART must be uncovered. A first step into this direction is to conduct continuous experiments
in the absence of oxygen to reproduce the conditions in the batch experiments and to exclude the
additional complexity introduced by oxygen. Likewise, additional experiments in the setups with
similar acid concentrations would strengthen the validity of drawn conclusions about the reaction
network. In parallel, precise gas measurements, that are sampled in non-stationary operation,
will similarly increase the process understanding. All actions related to improving the mecha-
nistic understanding come with the cost of intensified and advanced measurement technology.
For example, in-situ measurements would solve multiple problems by providing a time-resolved
tracking of the reaction progress and making sample workup and quenching unnecessary, where
the latter introduced significant uncertainty into the experimental data. In addition, the water
concentration during the synthesis needs to be determined to quantify the effect of water in the
reaction network. Considering other temperatures could lead to a more reliable process model
and the same time increase its applicability. To test the developed process model on different
catalysts and feed stocks, in particular the actual plant extract, would give insights on its general-
izability. Having analyzed the partial synthesis, the reactors can be connected to the extraction
and purification units, and the process be utilized to analyze the coupled process chain.

On the modeling aspect, a comparison of the developed process model with a more complete
description of the two-phase fluid behavior inside the tubing will yield a better estimation of the
model’s validity and its potential shortcomings. This necessitates the implementation of advanced
measurement technology. The availability of a larger set of experimental data will enable the
application of more recent approaches in model selection, focusing on autonomous discovery
of reaction networks using for example neural networks [297] or the SINDy algorithm [298].
Likewise, a more precise and individual consideration of the observed measurement uncertainties
would be a good next step to improve and robustify the developed process model.
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Challenging model selection problems of pharma-related processes with considerable complexity
and non-linearities as the acid-catalyzed sequence of the semi-synthesis to ART frequently appear.
In contrast to the data-intensive possibilities mentioned in the previous paragraph, a promising
alternative to the forward simulation approach followed for the semi-synthesis is the use of
inverse models. To this end, an inverse modeling technique based on differential flatness, a
system property widely used in control theory, was transferred to model selection problems and
applied to a biocatalytic carboligation forming benzoin, a representative for the pharmaceutically
important building block of hydroxy ketones. Contrarily to commonly used methods for model
selection, states and controls of a differentially flat system can be derived analytically without
the need for approximations as in numerical integration or parameterization strategies. That also
enables the provision of analytic gradients to the optimization solver. Analogous to the robust
setting for process optimization of the semi-synthesis, parametric uncertainties were considered
in the model selection problem by applying the point estimate method. The variances of the
reconstructed model inputs were added as a penalty term in the objective function. The nominal
and robust strategies utilizing the differential flatness property were successfully applied to the
enzymatic reaction, where B-splines parameterized the flat outputs, yielding optimal MBDoEs.

The two different strategies revealed that the consideration of parametric uncertainties leads to
more reliable MBDoE results, that is, it is more likely in the nominal case to end up with optimal
controls, that do not necessarily lead to the possibility of selecting one model candidate over
another. The results emphasize the importance of including the quantification of uncertainties
over classic deterministic optimization. The differential flatness concept shows promising char-
acteristics for advanced system identification strategies in terms of precise parameter estimates
and reliable model selection. An interesting new application of differential flatness might be its
use for the calculation of parameter sensitivities, that has not been looked into so far. Ongoing
research efforts consider rules and algorithms to a more automatized detection of the differential
flatness property and the finding of flat outputs. In parallel, a generalizing study about applicabil-
ity and practicality of the use of differential flatness for originally non-differentially flat systems
is recommended. In particular, pharmaceutical syntheses frequently have many states and few
controls and are therefore usually differentially non-flat. Note however that any system can be
transferred into a differentially flat system. This also holds for the developed process model for the
artemisinin semi-synthesis, that is differentially non-flat and that makes this transfer with its 10
states and zero controls extremely challenging. A look at alternative flat output parameterizations
to B-splines would be a good first step into this direction. In particular machine learning models
such as neural networks shall be a good starting point as they provide excellent approximation
capabilities. Positive results would potentially increase the utilization of differentially flat systems
beyond their classical implementations in control theory, where the beneficial characteristics of
differentially flat systems have received great approval and contributed to their success story.
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Appendix

A Background on Malaria and Artemisinin

A.1 Malaria – a Global Threat

Plasmodium parasites, that are transmitted to humans through the bites of infected female Anophe-
les mosquitoes, cause malaria. Its incubation period is around 10 to 15 days. First symptoms
are fever, headache and chills. Because of mild first symptoms, malaria might be difficult to
recognize, but quickly progresses to a severe illness and death within one day if left untreated.
Several Plasmodium parasites can transmit malaria. The most dangerous parasite species, that is
responsible for more than 95 % of the Malaria cases since 2015 is P. falciparum, with P. vivax
being second [51]. In 2020, despite being both preventable and treatable, there were more than
240 million estimated malaria cases on the globe, which make malaria the fourth top cause of
deaths world-wide considering selected infectious and parasitic diseases [299, 300]. Estimated
figures are 409 000 [301] and 558 000 [51] in 2019, and 627 000 fatalities in 2020 [51]. It is
merely surpassed by HIV/AIDS, 675 000 deaths in 2019 [300], tuberculosis, 1 208 000 deaths in
2019 [300], and by the recently appeared COVID-19 disease with 1 800 000 deaths in 2020 [302].
Over the past 20 years malaria incidences and mortality rates have continuously fallen. But their
their decreasing paces slowed down lately, as shown in Figures A.1a and A.1b. Moreover, in
2020, figures have risen again, which at least can partly be explained by the COVID-19 pandemic,
where prevention activities and health services for other diseases have been cut back [303].

Globe-wide, Figure A.1c, malaria is in particular prevalent in low-income countries, and more
specifically in nations of sub-Saharan Africa. The fatalities related to malaria occur by a con-
siderable margin in the WHO African region1 (WHO: World Health Organization), Figure A.1b.
The list of fatalities in 2020 is led by Nigeria, 31.9 %, Democratic Republic of the Congo, 13.2 %,
United Republic of Tanzania, 4.1 %, Mozambique, 3.8 %, and Uganda, 3.5 % [51]. Despite being
mainly determined by climate and ecology, malaria heavily burdens the poorest – those least
able to afford preventative measures and medical treatment – and results in a vicious circle with

1 The WHO African region roughly covers sub-Saharan Africa, excluding Somalia and including Algeria [301].
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Figure A.1: Key figures related to malaria across the globe (pplar: people at risk).

enormous socioeconomic costs [304]. Historically, malaria has also been present in Germany
and other countries in Europe, but disappeared for many reasons including agricultural changes,
socioeconomic improvements and intervention efforts [305]. However, a reappearance of malaria
in Europe in the future is not unlikely, not least due to climatic changes [305]. Alarmingly, 77 %
of the total malaria deaths in 2020 are attributed to children aged under five years, where the
share has decreased from 87 % in 2000 [51]. This makes malaria the top cause of deaths globally
among children aged under five years for selected infectious and parasitic diseases in 2019 [300],
with a recently updated total share of 7.8 % in this vulnerable group in 2020 [51]. Furthermore,
malaria infections during pregnancy do not solely increase risk of death for the fetus, the newborn
and the mother, but can significantly decrease the quality of life of the adolescent human being
as well due to life-long effects of malaria [304].
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A.2 Artemisinin as Key Drug in the Fight against Malaria

Two of the four main goals laid out by the WHO Global technical strategy for malaria 2016-
2030 are the reduction of both the incidence and the mortality rate of malaria by 90 % in 2030
compared to 2015 [307]. To achieve these goals, three pillars and two supporting elements
were defined, where the first pillar is to ensure access to malaria prevention, diagnosis and
treatment, and the first supporting element harnessing innovation and expanding research [307].
In practice, today’s malaria management is a combination of vector control approaches, like
insecticide spraying and the use of insecticide-treated bed nets, and drugs for both treatment and
prevention [304]. The most effective medication against uncomplicated P. falciparum malaria are
artemisinin-based combination therapies (ACTs), that are consequently recommended by WHO
as the first- and second-line treatment for P. falciparum malaria and as well for chloroquine-
resistant P. vivax malaria [308]. ACTs contain two different active ingredients: A fast-acting
artemisinin derivative, that is more bioavailable for humans than artemisinin, and a longer-
acting antimalarial partner drug with a different mode of action, i.e., having a longer half-life to
clear remaining parasites [309]. The WHO currently recommends six different ACTs2 and two
injectable treatments3, that should be followed by an ACT, for severe malaria [310]. In the WHO
African Region, where ACT was launched between 2001 and 2004 [311], the first-line treatments
for P. falciparum malaria include artemether-lumefantrine (AL), artesunate-amodiaquine (AS-
AQ), artesunate-pyronaridine (AS-PY) and dihydroartemisinin-piperaquine (DHA-PPQ) [51].
ACTs have replaced Quinine-based medications chloroquine and mefloquine, that lost efficacy
because of widespread resistancies in Plasmodium strains [311]. The decrease of the malaria-
associated incidence and mortality between 2000 and 2015 by 37 % and 60 %, respectively, was
attributed by the WHO with 21 % to ACTs [304]. The other two interventions were insecticide-
treated bed nets, 69 %, and indoor residual insecticide spraying, 10 % [304].

The success of artemisinin in the fight against malaria facilitated the Nobel Prize in Physiology
or Medicine 2015 that was awarded in half to Tu Youyou "for her discoveries concerning a novel
therapy against Malaria" [312]. Project 523 with Tu Youyou as manager was launched in May
1967 by Mao Zedong at request of North Vietnam’s Ho Chi Minh. The goal of the project was
to find a new drug for chloroquine-resistant malaria in order to reduce casualties among soldiers
in the Vietnam civil war. Tu Youyou turned to traditional Chinese medicine, where the plant
Artemisia annua, quinghao in Chinese, also known as sweet wormwood, was used in several
recipes against fever. In an ancient Chinese book written in 340 AD, she found a method for
extracting artemisinin, in Chinese quinghaosu, meaning the active ingredient in quinghao, without

2 Artesunate-amodiaquine; artesunate-mefloquine; artesunate-pyronaridine; artesunate+sulfadoxine-pyrimethamine;
artemether-lumefantrine; dihydroartemisinin-piperaquine.

3 Artesunate; artemether.
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Figure A.2: Molecular structure of artemisinin (ART).

heating up the plant, and obtained thereby a very potent parasite killer [313, 314]. In the 1990s
early trials of ACTs have been conducted, and in 2001 the WHO recommendation for the usage
of ACTs as first-line treatment was published. Unfortunately, and probably before the widespread
use of ACTs following the WHO recommendation, an artemisinin resistancy by a mutation in
the K13 parasite gene has been showing up. The resistance shows clear evidence in the Greater
Mekong subregion (GMS), and scattered evidence in eastern Africa, in particular in Uganda and
Rwanda [310, 315, 316]. In the GMS, several ACTs lost efficacy, that was accelerated by parallel
resistancies against the artemisinin partner drugs [310, 315]. In Africa on the other hand, only
a few studies have reported ACT treatment failures so far, but their development is likely to be
inevitable [310, 317]. In parallel to the development of medication, the WHO recommendation,
that the first malaria vaccine (RTS,S, trade name: Mosquirix), can be used for the prevention
of P. falciparum malaria in children with moderate to high transmission, gives new hope for
reaching the ambitious WHO goals for malaria until 2030 [51]. Furthermore, another vaccine
(R21) shows efficacies above 75 %, that are significantly higher than the 56 % efficacy over 12
months in African children reported with RTS,S [318]. In the same vein, the company BioNTech,
that has become renown in a short time for the development and success of its COVID-19 vaccine,
is focusing on developing a further vaccine for malaria, that is based on the very same mRNA
technology, and wants to start a clinical study until the end of 2022 [319]. Moreover, new
antimalarial APIs are in the pipelines of pharmaceutical companies [320], and clinical trials with
triple artemisin-based combination therapies (TACTs), incorporating a second partner drug, are
under investigation [321].

A.3 Artemisinin and its Production Routes

Artemisia is a genus of plants among which several species have been found to produce the
secondary metabolite artemisinin [322, 323], a sesquiterpene lactone with a peroxide constituent,
Figure A.2. Its most prominent representative Artemisia annua is native to Asia, probably China,
but can be found today in numerous other countries on all six populated continents [68], Figure
A.3. Today, the Artemisia annua plant is the sole global source of artemisinin [67], that is
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(a) Artemisia annua4. (b) Artemisia annua in blossom4. (c) Dried leaves of Artemisia annua.

Figure A.3: Artemisia annua plant. Picture of dried leaves is reprinted from [61].

obtained by extraction, with main cultivation areas in China, Vietnam and East Africa [68]. The
weight content of ART in wild and cultivated types is low and, depending on climatic conditions
and chemotype, widely ranges from 0.01 to 1.5 % based on dry matter [69–72], with unpublished
reports of 2 % [68]. Most often the leaves of the plant are considered, although ART content in
the flowers might be higher [73].

The low ART weight content in the A. annua plant and the stimuli described in Section 1.2 are
responsible for extensive research in artemisinin and its derivatives [74]. Next to extraction from
its natural source, the production of ART can be categorized into two further approaches: Total
syntheses from readily available and cheap chemical stocks, and semi- or partial syntheses, that
either start with extraction byproducts or with species from heterologous production, Figure A.4.
Research is in particular focused on enhancing production in vivo and in vitro of artemisinin or
artemisinin precursors [71, 325], where between four different strategies might be differentiated:
plant breeding technologies, gene overexpression in the biosynthetic pathway, direct or indirect
upregulation of artemisinin biosynthesis, and heterologous production [325]. Albeit, at the same
time, process-related improvements and technologies have been researched, both for extraction
[326, 327] and for (bio)synthetic routes starting at ART precursors. The different production
routes of artemisinin, i.e., extraction, partial synthesis, and total synthesis, are drawn in Figure
A.4.

A.3.1 Extraction and Purification

The period from planting A. annua to extracting ART spans almost one year, for harvesting
takes 4 to 7 months [326]. Dried leaf yields per hectare vary from 3 to 5 tonnes [326]. After
drying, sequential extraction steps of the dried leaves at 30 to 60 ◦C are applied with, traditionally,

4 Pictures by courtesy of Werner Arnold, © Werner Arnold [324].
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hazardous hydrocarbon solvents like petroleum ether, hexane, or toluene [62]. In large-scale
processes, crude extract efficiencies are within 62 to 70 % [62]. Following extraction, multi-stage
crystallization and normal-phase liquid chromatography are utilized to purify the ART containing
liquor [62]. Overall process yields for direct extraction by most prominent hydrocarbons typically
lie around 60 % [328]. The low yields are owed to the decreased concentration gradient in the
extract mixture when reaching equilibrium, insufficient mixing, decomposition of ART when

5 Image licenses: "Saccharomyces cerevisiae, SEM image" by Mogana Das Murtey and Patchamuthu Ramasamy, used
under CC BY-SA 3.0, original image was clipped. "Scanning electron micrograph of Escherichia coli, grown in
culture and adhered to a cover slip." by National Institute of Allergy and Infectious Diseases (NIAID), used under
CC BY 2.0, original image was clipped.
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extraction temperature is increased, and difficult recovery [328, 329]. The latter is caused by
structurally similar components in the leaves and efficient solubility enhancers in the non-usable
parts of the extract. Nevertheless, direct extraction is the predominant technology to industrially
gain ART from the plant, with percolation and Soxhlet-extraction used less frequently, because
direct extraction has low capital cost, is technically simple, and widely applicable [62, 329].

Research efforts have been undertaken to replace the hazardous solvents with greener solvents,
to improve the extraction process or to change extraction technology. Here, focuses lie on
supercritical fluid extraction, mostly using supercritical CO2, and both ultrasound- and microwave-
assisted extraction [327, 330, 331]. A further promising research project is the use of a counter-
current screw extractor that exhibits high mass transfer and approaches optimal concentration
gradients [104, 109]. For instance, in [332], the authors used Hansen solubility parameters to
extract ART from A. annua and determined an extraction efficiency of 65 % on dried biomass
after a single batch, using the green solvent alternative isopropanol. With supercritical CO2
extraction, corresponding extraction efficiencies might be high, in particular when used with a
co-solvent [333], but they are not necessarily higher than more traditional extraction procedures
with hexane [330]. In [62], a yield of 82 % is mentioned. Yields for artemisinin extraction
reported in literature are listed in Table A.1.

A.4 Partial Synthesis

Today, the Artemisia annua plant is the sole global source of artemisinin [67], that is obtained
by extraction, with main cultivation areas in China, Vietnam and East Africa [68]. The weight
content of ART in wild and cultivated types is low and, depending on climatic conditions and
chemotype, widely ranges from 0.01 to 1.5 % based on dry matter [69–72], with unpublished
reports of 2 % [68]. Most often the leaves of the plant are considered, although ART content in
the flowers might be higher [73].

The low ART weight content in the A. annua plant and the stimuli described in Section 1.2 are
responsible for extensive research in artemisinin and its derivatives [74]. Next to extraction from
its natural source, the production of ART can be categorized into two further approaches: Total
syntheses from readily available and cheap chemical stocks, and semi- or partial syntheses, that
either start with extraction byproducts or with species from heterologous production, see Figure
A.4.

The total synthesis of artemisinin is a very complicated and expensive endeavor due to its
molecular structure with several asymmetric carbon atoms and a relatively unstable endoperoxide
intermediate [79]. A first total synthesis approach was published by Schmid and Hofheinz from
LaRoche in 1983. They obtained ART from iso-pulegol in eleven steps and with a yield of
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Table A.1: Yields of artemisin (ART) for different extraction technologies and total synthesis strategies from selected
references.

Extraction

Reference ART recovery Remarks

(semi-)batch / %1 /
mg/g (leaves)

Lapkin et al. (2010) [328] ≈ 60 − Process yields of industrial extraction by hydrocarbons
(mostly PE, and hexane).

ElSohly et al. (1990) [334] − 1.2 Soxhlet extraction in hexane with reflux, 48 h.
Pilkington, Preston, and
Gomes (2014) [335]

76 13.26 Extraction with PE, optimized by DoE, 45 ◦C for 8 h,
two cycles; ART content 1.37 %.

Laboukhi-Khorsi, Daoud,
and Chemat (2017) [332]

62 6.19 Hansen solubility parameters in isopropanol; ART con-
tent 1 %.

Zhang et al. (2014) [336] − 7.8 UAE, 68 ◦C for 30 min.
Misra et al. (2013) [337] − 7.3 MAE, 120 sec, two cycles.
Martinez-Correa et al.
[330]

5.49 Ethanol extraction at 25 ◦C for 42 h.

Martinez-Correa et al.
[330]

5.47 sCO2 at 40 MPa and 60 ◦C.

Kohler et al. (1997) [338] − 7 sCO2 with methanol as co-solvent for 20 min.
Tzeng et al. (2007) [333] − 11.26 sCO2 with ethanol as co-solvent for 2 h.

Total synthesis

Reference Starting mate-
rial

ART yield / % Remarks

Schmid and Hofheinz
(1983) [80]

iso-pulegol < 5 11 steps.

Zhu and Cook (2012) [79] cyclohexenone 8
Krieger et al. (2018) [339] R-(-)-

citronellene
15

PE: petroleum ether, DoE: design of experiments, UAE: ultrasound-assisted extraction, MB: methylene blue,
MAE: microwave-assisted extraction, sCO2: supercritical carbon dioxide, TFA: trifluoroacetic acid
TPP: tetraphenylporphyrin, THF: tetrahydrofuran
1: based on ART content in dried biomass

less than 5 % [80]. A recent approach aims at diversity-oriented synthesis [340] for the isolated
production of ART isomers from commercially available citronellene that makes the manufacture
of stereospecific ART derivatives possible [339]. Another research group at the Cardiff University
used an analogue of farnesyl diphosphate, an intermediate in the artemisinin biosynthesis towards
amorphadiene (AD), Figure A.4, and converted it in a single step to an DHAA aldehyde, that is
further transformed to ART in a continuous setup [341, 342]. An overview of ART yields from
total synthesis approaches reported in literature is given in Table A.1.

On the other hand, partial syntheses from artemisinin precursors are potential and cost-effective
alternatives [81, 82]. Fundamental studies about the semi-synthetic pathway from AA to ART
were published by Acton and Roth beginning in 1989 [83–85], Figure A.5. In a first step, AA
is hydrogenated to DHAA, where only the (R)-11 epimer has the correct stereochemistry found
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Figure A.5: Simplified semi-synthetic path from artemisinic acid (AA) to artemisin (ART) based on the fundamental
works by Acton and Roth [83–85].

in ART [86]. However, other isomers of artemisinin have been isolated that show biological
activity likewise [322, 339]. Following, DHAA is oxygenated to the dihydroartemisinic acid
hydroperoxide PO1 in a stereoselective ene-type reaction caused by singlet oxygen. In a final
acid-catalyzed sequence with several steps including an in-situ chemical oxidation, the final
molecule ART is formed.

Specifically, Roth and Acton [84] converted in methanol dissolved AA to DHAA in a water bath
cooled vessel in a time frame exceeding 2 h. The DHAA was then photooxygenated at 0 ◦C in
under 30 min using a high-intensity street lamp with acetone as solvent and 0.125 mol/l methylene
blue as photosensitizer. The formed hydroperoxide was dissolved in either petroleum ether or
hexane, dosed with a drop of TFA and converted to ART in air at room temperature within 4 days,
resulting in an ART yield of 30 %.

For the production of ART precursors with a focus on AD and AA [325], researchers have
turned to biotechnology [343]. In 2003, Keasling and co-workers engineered Escherichia coli
bacteria to produce AD [88, 89], a biosynthetic precursor of ART, Figure A.4. Alternatively, in
a major break-through by Keasling and colleagues, AA was produced in engineered S. cerevisiae
yeast [90]. Historically, the former was replaced by the latter simply because of higher AA
concentrations in the yeast cells [75]. AD can be converted to AA or DHAA by enzymatic
oxidation [75] or to DHAA by a chemical process [93, 344], see Figure A.4.

Based on the preparatory work by Acton and Roth and the studies about AA production in yeast,
the semi-synthesis of ART has been attempted to be industrialized by the companies Amyris
and Sanofi [86, 91]. At Amyris, S. cerevisiae was engineered and grown on inexpensive carbon
substrates using extractive fermentation that resulted in an AA yield of 25 g/l [86]. In the
first step of the chemical semi-synthesis, AA was dissolved in toluene and Wilkinson’s catalyst,
i.e., a rhodium complex, was added. The vessel was pressurized to 25 bar with hydrogen after
evacuation. AA is thereby completely converted, and DHAA was gained with a 90 % selectivity
of the epimer of interest. Following, an esterification of DHAA was performed to prevent
DHAA from converting to side products because of the acidic conditions. In the subsequent acid-
catalyzed conversion to ART, the singlet oxygen was chemically produced by a metal-salt induced
disproportionation of concentrated hydrogen peroxide. ART yields for this semi-synthesis were
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between 40 and 45 %, with a final isolation by chromatography that reduced the overall process
yield to 19 % [91]. However, the chemical conversion from AA to ART was not suitable for
scale-up, a prerequisite for a successful industrialization [92]. Amyris is still working on ART
[92], and in 2017, they reported a semi-synthesis starting with AD instead of AA as it is produced
in a 2-fold higher molar yield, obtaining pure ART with a yield of 60 % [93]. To utilize the
cheaper and less advanced intermediate AD, it was also investigated in very recent publications,
where the published processes aim at forming a DHAA aldehyde from AD [94, 95].

Sanofi took up the idea of Amyris, developed from 2008 to 2013 another industrial production
process, and built a plant in Garessio, Italy, that produced 35 t of ART in 2013 and was supposed
to output almost 60 t a year in 2014 [91]. However, it has stopped operating in 2015 mainly due
to low ART market prices [53, 57]. In the hydrogenation step, they exchanged the expensive
and impractical Wilkinson’s catalyst, which, at the same time, resulted in an increased selectivity
of 95 % and a full conversion as in the Amyris process. Similar to the Amyris process, they
used a DHAA derivative, i.e., an anhydride of DHAA, to prevent loss reactions. Contrary to the
Amyris counterpart, Sanofi used a photochemically induced process for the generation of singlet
oxygen, thereby mimicking the biosynthetic pathway. They applied tetraphenylporphyrin (TPP)
as photosensitizer and added trifluoroacetic acid (TFA) in dichloromethane before entering the
photo reactor. In this vein, the final acid-catalyzed cyclizations to ART and the generation of
the DHAA hydroperoxide happened in one reactor. The overall Sanofi process yield is 55 %,
a significant improvement to the Amyris process. After its shutdown in 2015, Sanofi sold the
factory in Garessio to Huvepharma in Hungary, that, according to its CEO, produced 20 t of semi-
synthetic ART in 2017 [92]. In 2016, Burgard et al. [96] from Sanofi published an improvement
to their process. The energy-intensive mercury lamps were replaced by LED modules and the
omission of the derivatization step to the DHAA anhydride was investigated. The replacement
with LED lamps resulted in a yield of 50 % and a total reaction time of 8 h. Additionally,
using DHAA instead of its derivative gave yields between 47 to 59 % for different measurement
campaigns and batches, and a maximum yield of 62 % for diastomeric pure DHAA.

Other biotech companies, that have received grants in the near past, are Manus Bio for engineering
E. coli to produce AA, and Phyton Biotech to research if ART can be directly produced by
fermenting cells from the A. annua plant itself [92].

A.5 Continuous Manufacturing of Artemisinin

Both the Amyris and the Sanofi process are run in batch and semibatch reactors, as it is standard
in the pharmaceutical industry until today. Batch processes are not very well understood on a
micro-scale, have low yields, are difficult to scale-up, and therefore inherently hinder a good
product quality [97]. Continuous processes in turn, as established in the chemical industry, offer
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considerable potential in improving efficiency, safety, material consumption, scale-up, process
understanding, monitoring and control, and in finding new synthetic routes, leading ultimately to
increased product quality and economic benefits, for both development and manufacturing [98].
Relating to the process in this work, the photooxygenation of DHAA to PO1 requires efficient
irradiation of the reactant solution and sufficient supply of oxygen to achieve good yields within
an acceptable time frame. Likewise, sufficient supply of oxygen is needed in the acid-catalyzed
section. Milli-scaled flow reactors in Taylor flow mode offer high surface area between gas and
liquid phase and efficient irradiation of the substrate due to the small channel depths. Flow
microreactors are therefore suitable for the production of artemisinin using the here considered
partial synthesis route, not least as multiple phases and photoreactions are involved. Besides the
manufacturing perspective, the same advantages of continuous flow microreactors are beneficial
for the study of kinetic reactions alike [99–102]. On the other hand, the regulatory Quality-by-
design and Process Analytical Technology initiatives by the U.S. Food and Drug Administration
stimulate innovations such as continuous manufacturing processes [98]; see the work by Mascia
et al. [103] for an end-to-end continuous pharmaceutical process example.

The research groups of Seeberger and Seidel-Morgenstern have been developing a continuous
process for the production of artemisinin and derivatives, starting from extraction, across synthesis
up to purification [60, 63, 65, 104–109]. For the synthesis part, the pathway starting from DHAA
is extensively explored, and led to a significant reduction in residence times to several minutes
for the production of ART because of the use of milliscaled flow reactors. Next to the provision
of DHAA from heterologous production, the authors suggest to utilize the DHAA content of
the plant itself, compare with Figure A.4. Converting DHAA to ART is conducted in a single
flow reactor with three different sections [63]. The first section comprised the photoreactor,
the trailing two sections temperature-controlled regions for the acid-catalyzed synthesis. The
conversion from DHAA to ART proceeds along the pathway that is shown in Figure A.6. DHAA
reacts with singlet oxygen, that is formed photochemically using either Tetraphenylporphyrin
(TPP) [60] or dicyanoanthracene (DCA) [63] as photosensitizer, in an ene-type reaction to the
desired hydroperoxide PO1, besides other hydroperoxides [63]. Next, by terminal protonation
with trifluoroacetic acid (TFA), a Hock cleavage is induced that converts PO1 to the enol. With
the addition of triplet oxygen, the enol reacts to the enol hydroperoxide, that further reacts to the
final product ART under acidic conditions.

In a first attempt with TPP and TFA in dichloromethane and a mercury lamp, a by chromatography
purified ART yield of 39 % was achieved with a total residence time in the reaction lines of
only 4.5 min [60]. Later, the more chemically-stable DCA replaced TPP, toluene replaced
dichloromethane, and an LED module replaced the mercury lamp [63]. The selectivity of the
photooxygenation was increased by setting the reaction temperature to −20 ◦C, and an ART yield
of 65 % was achieved resulting in a space-time yield of 3.5 g/(ml d). Following a temperature
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Figure A.6: Semi-synthetic path from dihydroartemisinic acid (DHAA) to artemisin (ART) [60].

screening of both the photo reactor and the reaction line temperature, a maximum ART yield of
69 % was achieved [63]. In contrast to the utilization of synthetically produced photosensitizers,
Triemer et al. [65] showed that in a similar setup the DHAA-containing crude plant extract can be
directly used to produce artemisinin in similar yields, i.e., 67 %, where the present chlorophylls
act as natural photosensitizers.

Current research directions aim at replacing solvents, catalysts, and photosensitizers with greener
and cheaper materials. For instance, the usually applied nonpolar solvents are often toxic and
highly flammable, but are first choice because polar solvents show worse selectivity for ART
[63]. At the University of Nottingham, they used solid catalysts in a fixed-bed photoreactor
as dual-function catalysts, i.e., the heterogeneous catalysts have an acidic base material and an
immobilized photocatalyst phase. Toluene and liquid CO2 mixed with oxygen, where the high
pressure of 18 MPa enables high O2 solubility, flows through the photoreactor giving a yield of
51 % based on DHAA [246]. A second strategy in the same article uses tetrahydrofuran in water
with a water-soluble ionic photosensitizer and TFA as acid catalyst, that resulted in a yield of
66 % and a space-time yield of 3.4 g/(ml d), but was run in batch mode. Another modification
was the development of a vortex reactor, that is able to efficiently suck in ambient air while the
vortices generate rapid mixing and high mass transfer between the phases [248]. The use of
supercritical CO2 for the production of hydroperoxides in a flow process has been investigated
likewise [345]. A further use of heterogeneous catalysis with immobilized rose bengal can be
found in [346], but strategies based on heterogeneous catalysis are often challenging due to low
irradiation efficiencies caused by the light-hindering solid material [347]. Albeit, Feng et al.
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[348] published a record ART yield of 71 % based on DHAA. They implemented Brønsted acid
sites into metal-organic frameworks (MOFs) enabling high surface areas, where porphyrinic units
and trapped sulfuric acid formed the dual-function recyclable catalyst. The MOF catalyst and
DHAA were dispersed in dichloromethane with bubbling O2 and irradiated by LED lamps over
a period of 6 h in a batch reactor.

From selected literature, an overview of yields for the partial synthesis is given in Table A.2.
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Table A.2: Yields of artemisin (ART) for partial synthesis approaches from selected references. For other production
routes, i.e., extraction and total synthesis, see Table A.1.

Reference ART yields / % (basis) Remarks

(semi-)batch crude process

Roth and Acton (1991) [84] 30 (AA) − Photooxygenation in ice-water cooled acetone solution
incl. MB, using a street lamp; air-oxidation of hydroper-
oxide in PE or hexane with TFA in about one day.

Paddon et al. (2013) [86],
Amyris

40 − 45 (AA),
43 − 483

(DHAA)

19 [91] (AA),
212 (DHAA)

Photooxygenation of DHAA ester via group VI metal
salt-induced disproportionation of concentrated hydro-
gen peroxide; conversion of hydroperoxide to ART with
benzenesulfonic acid and suspended copper(II)/Dowex
resin in methylene chloride and bubbling dry air, cooled
in an ice bath.

Kopetzki, Lévesque, and
Seeberger (2013) [63]

69, 76, 81 (PO1) - Conversion of PO1 to ART; solvents: dichloromethane,
cyclohexane, toluene; TFA, batch with bubbling oxy-
gen.

Turconi et al. (2014) [91],
Sanofi

− 55 (AA), 582

(DHAA)
One-pot photooxygenation of DHAA anhydride and
conversion to ART in dichloromethane with TPP and
TFA using mercury vapor lamps, −10 to −15 ◦C.

Amara et al. (2015) [246] 66 (DHAA) THF in water (60 : 40) with a water-soluble ionic pho-
tosensitizer and TFA as acid catalyst, space-time yield
3.4 g/(ml d) .

Burgard et al. (2016) [96] 62 (DHAA) TFA and TPP in dichloromethane and bubbling air;
LED module with total reaction time 13 h; diastomeric
pure DHAA.

Feng et al. (2019) [348] 71 (DHAA) Dual function recyclable solid catalyst, 6 h irradiation
by LED lamps in dichloromethane with bubbling O2.

continuous

Lévesque and Seeberger
(2012) [60]

46 (PO1), 39
(DHAA)

TFA and TPP in dichloromethane using a mercury lamp
at room temperature, residence time in photo reactor
about 2 min, in reaction line 2.5 min.

Kopetzki, Lévesque, and
Seeberger (2013) [63]

69 (DHAA) Photoreactor temp. at −20 ◦C, reaction line temp. at
20 ◦C; DHAAconv. 99 %, selectivity 69 %, 0.5 M TFA
in toluene, DHAA 0.5 M, DCA 2.5 mM, using LED
lamps. Space-time yield: 3.5 g/(ml d) .

Amara et al. (2015) [246] 51 (DHAA) Dual-function solid catalyst, TPP with Amberlyst-15
support, toluene and liquid CO2 mixed with oxygen
(18 MPa).

Triemer et al. (2018) [65] 67 (DHAA) Photoreactor temp. at −20 ◦C, reaction line temp. at
20 ◦C; crude extract with 0.5 M DHAA, 0.25 M TFA,
chlorophylls, using LED lamps.

PE: petroleum ether, DoE: design of experiments, UAE: ultrasound-assisted extraction, MB: methylene blue,

MAE: microwave-assisted extraction, sCO2: supercritical carbon dioxide, TFA: trifluoroacetic acid

TPP: tetraphenylporphyrin, THF: tetrahydrofuran
2 : back-calculated based on yield and selectivity data given in [91]
3 : assuming 99 % yield of DHAA, compare with yields in [91]
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B.1 Background on Likelihood Theory

In practice, estimators are searched that have zero bias and minimum variance, referred to as
minimum variance unbiased estimators (MVUEs). MVUEs do not always exist and even if
existing, they might not necessarily be found [141]. To assert an MVUE, a lower limit on the
covariance matrix of an unbiased estimator for a parameter vector 𝜽★ can be postulated with the
Cramér-Rao lower bound (CRLB) [141]:

C𝜃 ≥ −
(
E

[
𝜕2 pdf ( 𝒚̃ |𝜽)
𝜕𝜽𝜕𝜽ᵀ

����
𝜽★

] )−1

. (B.1)

The CRLB, Equation (B.1), requires the regularity conditions E
[
𝜕 pdf (𝒚̃ |𝜽 )

𝜕𝜽

]
= 0 ∀𝜽 to hold [141].

Thus, an evaluation of the CRLB boundary case, Equation (B.1), quantifies if an estimator is a
MVUE, or how far it is away from an MVUE. The problems of the potential non-existence of
and the search for an MVUE calls for alternative and practical estimators in the sense that they
can be straightforwardly evaluated and possess beneficial statistical properties. The most popular
alternative is the maximum likelihood estimator (MLE), that is a central part of likelihood theory.
For his pioneering and extensive work in likelihood theory in the beginning of the 20th century,
Ronald A. Fisher is considered its founder [142, 143], although maximum likelihood estimates
have been used prior to his work [142]. The MLE is considered to be asymptotically optimal,
as it is unbiased with an approximate Normal distribution and has minimum variance for large
enough data sets, i.e., it is asymptotically an MVUE [141]. The MLE is attained by maximizing
the likelihood function L, that is underlain by a PDF. For example, based on the Normal PDF
in Equation (3.4), the logarithmic likelihood function for the additive noise model, Figure 3.2a,
with independently distributed Normal error terms and zero means, is:

logL(𝜽 ,𝝈 | 𝒚̃,M) = −1
2

𝑛𝑦 (𝑡𝑘 )∑︁
𝑗=1

𝑛𝑡∑︁
𝑘=1

[
log(2𝜋𝜎2

𝑗 (𝑡𝑘)) +
(
𝑦̃ 𝑗 (𝑡𝑘) − 𝑦 𝑗 (𝑡𝑘 , 𝜽)

𝜎𝑗 (𝑡𝑘)

)2
]
, (B.2)

where it is considered, that different samples at time points 𝑡𝑘 might have different numbers of data
points 𝑛𝑦 (𝑡𝑘). The total number of data points is then 𝑁 =

∑𝑛𝑦 (𝑡𝑘 )
𝑗=1

∑𝑛𝑡
𝑘=1 1. The assumption of

Gaussian errors is justified with the Central limit theorem, stating that summing up independent
random variables, regardless their distributions, yields approximately a Normal distribution.
Thus, for inference about the model parameters 𝜽 and the standard deviations 𝝈, data 𝒚̃ and a
statistical model must be given. To calculate confidence intervals for the model parameters 𝜽

from the MLE, Equation (3.29), we make use of the asymptotic properties of the MLE, i.e., we
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evaluate the CRLB, Equation (B.1), at its limiting case. In honor of Fisher, the expectation on
the right hand side in Equation (B.1) is termed the Fisher information matrix (FIM):

FIM = −E
[
𝜕2 pdf ( 𝒚̃ |𝜽)
𝜕𝜽𝜕𝜽ᵀ

����
𝜽★

]
. (B.3)

The parameter covariance matrix can thus be approximated from the inverse of the FIM:

C𝜃 ≈ FIM−1. (B.4)

The (1 − 𝜙)100% asymptotic confidence interval for a parameter 𝜃𝑖 is then evaluated as follows:

𝜃𝑖 ± z1−𝜙/2
√︁
𝐶𝜃,𝑖𝑖 , (B.5)

with z the 1− 𝜙/2 quantile of Z ∼ N(0, 1). In the case of independent Gaussian errors, Equation
(3.32), the FIM can be calculated as [141]:

FIM N
=

[
𝜕𝒚(𝜽)
𝜕𝜽︸ ︷︷ ︸
SM

����
𝜽★

] ᵀ
𝚺−1 𝜕𝒚(𝜽)

𝜕𝜽

����
𝜽★
, (B.6)

with 𝚺 the measurement covariance matrix, and SM = 𝜕𝒚/𝜕𝜽 the sensitivity matrix of the model
parameters. The FIM in Equation (3.36) generally cannot be evaluated due to lack of knowledge
about the true parameter value 𝜽★. In practice, the FIM is therefore approximated in Equation
(3.35) or Equation (3.36) by utilizing the MLE. In the former case, the FIM follows from the log
likelihood function, Equation (3.32) [141]:

FIM ≈ − 𝜕2 logL(𝜽)
𝜕𝜽𝜕𝜽ᵀ

����
𝜽MLE

. (B.7)

Alternatively, the FIM can be determined from the parameter sensitivities, Equation (3.36):

FIM ≈ [SM |𝜽MLE
]ᵀ𝚺−1SM |𝜽MLE

. (B.8)

Hence, the second alternative is especially helpful if data is not or not yet present. Accordingly,
the FIM in Equation (3.37) is usually termed the observed FIM, and the FIM in Equation (3.38) is
referred to as expected FIM. For a discussion about differences in the expected and the observed
FIM, the interested reader is pointed to [144].
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B.2 Derivation of Akaike Information Criterion

The AIC follows from information and likelihood theory. The Kullback-Leibler information
(KLI) is

𝐼KL ( 𝑓0, 𝑓 ) =
∫

𝑓0 (𝒙) log
(
𝑓0 (𝒙)
𝑓 (𝒙 |𝜽)

)
d𝒙, (B.9)

and denotes the information lost when 𝑓 is used to approximate 𝑓0 [120]. The KLI is heuristically
also interpreted as the distance between two probability density functions 𝑓 and 𝑓0, although it is
not a symmetric measure. Considering 𝑓0 to be the truth representing the physical system to be
modeled, calculation of 𝐼KL for all postulated process model candidates would provide a decision
support for selecting the best model candidate in the sense of Kullback-Leibler information. For
it is not possible to evaluate the truth 𝑓0, a relative distance based on the KLI is introduced by
rewriting Equation (B.9):

𝐼KL ( 𝑓0, 𝑓 ) =
∫

𝑓0 (𝒙) log ( 𝑓0 (𝒙)) d𝒙︸                         ︷︷                         ︸
=𝐶

−
∫

𝑓0 (𝒙) log ( 𝑓 (𝒙 |𝜽)) d𝒙︸                           ︷︷                           ︸
=E 𝑓0 [log( 𝑓 (𝒙 |𝜽 ) ) ]

𝐼KL ( 𝑓0, 𝑓 ) − 𝐶 = −E 𝑓0 [log( 𝑓 (𝒙 |𝜽))],

(B.10)

with 𝐶 a constant, that has the same magnitude across all model candidates. The relative KLI
on the right hand side of the second line in Equation (B.10) is still unknown and estimated
parameters have not been considered so far. Akaike showed that the evaluation of a relative
expected Kullback-Leibler distance is approximately possible from the MLE calling it the Akaike
information criterion (AIC) [120, 349]:

AIC = −2L(𝜽MLE) + 2𝐾, (B.11)

with 𝐾 the number of estimated parameters, that is in general not equal to the number of estimated
process model parameters. The corrected AIC is

AICc = AIC + 2𝐾 (𝐾 + 1)
𝑁 − 𝐾 − 1

, (B.12)

where its use is recommended for 𝑁/𝐾 ratios below 40 [120]. From Equation (3.41), it is obvious
that the AIC inherently considers the bias-variance trade-off, Equation (3.3), by penalizing the
goodness-of-fit measure, i.e., the log likelihood value at the MLE, through the number of estimated
parameters 𝐾 . The quite technical derivation of the AIC can be found in the original article [349]
or in [120]. Note that the AIC is a relative measure and therefore must be interpreted as such,
where AIC values ranging from large negative values to values as high as 304, 000 have been
observed [120].
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B.3 Derivation of Sobol’ Method via Hoeffding
Decomposition

The relation (3.59) can be derived from a decomposition of the original model function 𝑓 ,
Equation (3.1), that was derived by Sobol’ [185], that also forms the basis of his main idea
to calculate the sensitivity indices. From here on it is assumed without loss of generality that
the input domain is a 𝑛𝑢-dimensional unit hypercube with uniformly distributed inputs. The
decomposition, also known as Hoeffding or Hoeffding-Sobol’ decomposition, is

𝑓 (𝑼) = 𝑓0 +
𝑛𝑢∑︁
𝑠=1

𝑛𝑢∑︁
𝑖1<· · ·<𝑖𝑠

𝑓𝑖1 · · ·𝑖𝑠 (𝑈𝑖1 , . . . ,𝑈𝑖𝑠 )

= 𝑓0 +
𝑛𝑢∑︁
𝑖=1

𝑓𝑖 (𝑈𝑖) +
𝑛𝑢∑︁
𝑖=1

𝑛𝑢∑︁
𝑗>𝑖

𝑓𝑖 𝑗 (𝑈𝑖 ,𝑈 𝑗 ) + · · · + 𝑓12· · ·𝑛𝑢 (𝑈1,𝑈2, . . . ,𝑈𝑛𝑢 )
, (B.13)

with 1 ≤ 𝑖1 < · · · < 𝑖𝑠 ≤ 𝑛𝑢 and having 2𝑛𝑢 terms on the right hand side. The Hoeffding
composition becomes unique if the following conditions hold [185]:∫ 1

0
𝑓𝑖1 · · ·𝑖𝑠 (𝑢𝑖1 , . . . , 𝑢𝑖𝑠 ) d𝑢𝑘 = 0 for 𝑘 = 𝑖1, . . . , 𝑖𝑠 . (B.14)

The decomposition (B.13) is then also referred to as ANOVA representation [350]. A direct
consequence is that the terms on the right hand side of Equation (B.13) are pairwise orthogonal:∫

𝑓𝑖1 · · ·𝑖𝑚 𝑓 𝑗1 · · · 𝑗𝑛 d𝒖 = 0, if (𝑖1, . . . , 𝑖𝑚) ≠ ( 𝑗1, . . . , 𝑗𝑛), (B.15)

because at least one index will not be repeated and therefore its interval will be zero, Equation
(B.14). Note that the dependencies are dropped here for the sake of brevity. If assuming that
𝑓 (𝑼) is square integrable, it follows that all the 𝑓𝑖1 · · ·𝑖𝑠 terms are square integrable as well, and
the variance decomposition is obtained:∫

𝑓 2 (𝒖)d𝒖 − 𝑓 2
0 =

𝑛𝑢∑︁
𝑠=1

𝑛𝑢∑︁
𝑖1<· · ·<𝑖𝑠

∫
𝑓 2
𝑖1 · · ·𝑖𝑠 d𝑢𝑖1 · · · d𝑢𝑖𝑠

V[𝑌 ] =
𝑛𝑢∑︁
𝑖

𝑉𝑖 +
𝑛𝑢∑︁
𝑖

𝑛𝑢∑︁
𝑗>𝑖

𝑉𝑖 𝑗 +
𝑛𝑢∑︁
𝑖

𝑛𝑢∑︁
𝑗>𝑖

𝑛𝑢∑︁
𝑘> 𝑗

𝑉𝑖 𝑗𝑘 + · · · +𝑉123...𝑛𝑢 ,

(B.16)
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with partial variances

𝑉𝑖 =

∫ 1

0
𝑓 2
𝑖 d𝑢𝑖 = V[ 𝑓𝑖]

𝑉𝑖 𝑗 =

∫
𝑓 2
𝑖 𝑗 d𝑢𝑖d𝑢 𝑗 = V[ 𝑓𝑖 𝑗 ]

...

. (B.17)

To understand the last equalities, a look at the definition of the variance gives insight:

V[ 𝑓𝑖1 · · ·𝑖𝑠 ] = E[ 𝑓 2
𝑖1 · · ·𝑖𝑠 ] − E[ 𝑓𝑖1 · · ·𝑖𝑠 ]

2

= E[ 𝑓 2
𝑖1 · · ·𝑖𝑠 ] −

∫
𝑓𝑖1 · · ·𝑖𝑠 d𝑢𝑖1 · · · d𝑢𝑖𝑠︸                      ︷︷                      ︸

(B.14)
= 0

= E[ 𝑓 2
𝑖1 · · ·𝑖𝑠 ] =

∫
𝑓 2
𝑖1 · · ·𝑖𝑠 d𝑢𝑖1 · · · d𝑢𝑖𝑠

It is clear that each partial variance measures solely the influence that is caused by the given index
or by the combination of the given indices due to the basic idea of the performed decomposition,
Equation (B.13). Dividing Equation (B.16) by V[𝑌 ] yields the summation relation of the Sobol’
sensitivity indices, Equation (3.59).

B.4 Computation of Sobol’ Indices

For the computation of the Sobol’ indices, Monte Carlo methods with tailored sampling strategies
are used [186, 351]. I the following the estimators for the first and total order indices from [186]
and for the second order indices from [352] are described. All of the estimators have in common
that they start with two independent sample matrices 𝑨 and 𝑩 with sizes 𝑁 × 𝑛𝑢, and 𝑁 the
number of simulations. A third matrix 𝑨(𝑖)

𝑩 for each parameter is created where all columns are
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from 𝑨 apart from the 𝑖th column, that is from 𝑨. Analogously, for the second order indices, a
fourth matrix 𝑩 (𝑖)

𝑨 is required. The sensitivity indices are then calculated as

𝑆𝑖V[𝑌 ] =
1
𝑁

𝑁∑︁
𝑘=1

𝑓 (𝑩)𝑘
(
𝑓 (𝑨(𝑖)

𝑩 )𝑘 − 𝑓 (𝑨)𝑘
)
,

𝑆T𝑖V[𝑌 ] =
1

2𝑁

𝑁∑︁
𝑘=1

(
𝑓 (𝑨)𝑘 − 𝑓 (𝑨(𝑖)

𝑩 )𝑘
)2
,

𝑆𝑖 𝑗V[𝑌 ] =
1
𝑁

𝑁∑︁
𝑘=1

𝑓 (𝑩 (𝑖)
𝑨 )𝑘 𝑓 (𝑨( 𝑗 )

𝑩 )𝑘 − 𝑓 (𝑨)𝑘 𝑓 (𝑩)𝑘

− (𝑆𝑖 + 𝑆 𝑗 )V[𝑌 ] .

(B.18)

with the total variance given by the uncorrected sample variance, Equation (3.50b),

E[𝑌 ] = 1
2𝑁

𝑁∑︁
𝑘=1

𝑓 (𝑨)𝑘 + 𝑓 (𝑩)𝑘

V[𝑌 ] = 1
2𝑁

𝑁∑︁
𝑘=1

( 𝑓 (𝑨)𝑘 − E[𝑌 ])2 + ( 𝑓 (𝑩)𝑘 − E[𝑌 ])2

. (B.19)

The sampling and design of the four matrices, that are quasi-random sequences, is given in [352]
and [186]. For very small sensitivity indices, negative values might appear due to computational
inaccuracies [37]. Khorashadi Zadeh et al. [353] proposed to introduce a dummy parameter, that
does not exist in the model, but is added to the input vector to estimate the occurring inaccuracies.
Indices that do not exceed the index of the dummy parameter should not be considered sensitive.

B.5 Solving Optimal Control Problems

Solving the dynamic optimization problem, Equation (3.65), can be performed following two dif-
ferent discretization strategies of the time-dependent functions in Equation (3.65): Optimize then
Discretize, also called the indirect or variational approach, or Discretize then Optimize, its direct
counterpart. The first strategy focuses on the solution of the first-order optimality conditions for
the OCP, resulting in a boundary value problem (BVP). The difficulties associated with solving
BVPs led to research activities dealing with the conversion of the OCP to constrained, finite-
dimensional problems to exploit state-of-the-art large-scale nonlinear program (NLP) solvers
[205]. Methods applying NLP solvers can be classified further into sequential and simultane-
ous strategies. In the sequential approach referred to as single shooting, the control vector is
parameterized, and the resulting NLP problem is solved using control vector parameterization
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(CVP) methods [354, 355]. In contrast, the simultaneous approach multiple shooting divides the
OCP into smaller subproblems requiring next to CVP initial states in the individual problems and
serves as a bridge to the direct transcription approach, where all variables, i.e., states and con-
trols, are discretized [205]. The discretization of the states and controls is usually realized using
collocation and control parameterization techniques that lead to complex optimization problems
for which efficient solvers and great computational power are needed [251].
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C Step 2: Acid-Catalyzed Sequence

C.1 Governing Equations of Batch Experiments

The reactor used in the batch experiments is modeled as a continuous stirred tank reactor (CSTR)
[26]. Based on the reaction network in Equation (5.5) and under the absence of oxygen, the
governing equations of the batch experiments are

d[PO1]
d𝑡

= −𝑘POx [PO1] − 𝑘PO1·BP3 [PO1] [H+]𝑚IM2+1 − 𝑘PO1·IM2 [PO1] [H+]𝑚IM2 ,

d[IM2b]
d𝑡

= 𝑘PO1·IM2 [PO1] [H+]𝑚IM2 − 𝑘IM2b·BP4 [IM2c] [H+],

d[BP4]
d𝑡

= 𝑘IM2b·BP4 [IM2b] [H+],

d[BP3]
d𝑡

= 𝑘PO1·BP3 [PO1] [H+]𝑚IM2+1,

d[BP6]
d𝑧

= 𝑘IM2b·BP6 [IM2b] [H+] .

(C.20)

The corresponding initial conditions are

( [PO1], [IM2b], [BP4], [BP3], [BP6])⊤ (0)
= ( [PO1]0, 0, 0, [BP3]0, 0)⊤.

(C.21)

C.2 Estimated Model Parameters and Initial Conditions for
the Core Set of Model Candidates

The estimated model parameters and the estimated values of the initial conditions of the core set
of model candidates, Table 5.2, are listed in Tables C.3, C.4 and C.5.

C.3 Model Candidates for Acid-Catalyzed Sequence

The core set of the model candidates for the acid-catalyzed sequence in Table 5.2 was extended
with further combinations of the super structure not investigated so far, or with additional variants
to the super structure, that is shown in Figure 5.7. A summary of the extension set of model
candidates is given in Table C.6. The additional features of the extended model candidates are:
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C Step 2: Acid-Catalyzed Sequence

• An equilibrium step from PO1 to BP3 is possible as an alternative to the protonation step.
The column "BP3 prot." then has an "eq." entry.

• The reaction pathway towards BP4 might also branch off at IM3, instead of IM2, denoted
in the "BP4 pos." column.

• Reactions to byproducts can also be hydration reactions, that is, they are dependent on the
water concentration in first order. This is marked with "(hyd.)" in the BP5/6/7 column.

• There might exist a third byproduct, BP7.

• Reactions can be independent on the TFA concentration, denoted by "(w/o TFA)".

• Reaction orders can additionally be estimated for the reaction to ART (𝑚ART), and to BP4
(𝑚BP4). If BP4 is formed via an equilibrium step, the forward and reverse orders are both
estimated (𝑚f/r

BP4
).

• An additional intermediate can appear, IM5. It acts either as an equilibrium resting state,
whose forward and reverse reactions are acid-catalyzed, or as a further intermediate on the
reaction path way towards ART. The first one is active when in the columns "IM5 pos."
and "ART pos." different species are mentioned. And the second one is active when the
mentioned species in both columns are the same.

• Species IM2 and IM3 can form equilibrium, denoted by "eq." in the "IM3" column. The
reverse reaction, i.e., from IM3 to IM2 might be independent on TFA, specified as "(rev.
w/o TFA)" in the IM3 column.

• The reaction that involves the consumption of oxygen might be moved from starting at IM2
to IM3, denoted by "(O2)".

• If in the reaction forming ART, oxygen in consumed, it is specified in brackets, if the
reaction is TFA dependent, "(TFA)", or not, "(w/o TFA)"

The results for the extension set of model candidates are given in Table C.8.
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Table C.8: Summary of best results of parameter estimation runs for extension set of model candidates, Tables C.6 and
C.7. The number of model parameters is the number of non-zero estimated model parameters, with the
original number of model parameters in brackets. Note that the rows correspond to the best estimation run in
the sense of the objective function from the multi-start approach.

ID #𝜃 RSS RSSconti RSSbatch 𝜎̂2 AICc

31 8 (11) 0.37 0.210 0.162 6.19 × 10−4 −4415
32 9 (10) 0.39 0.070 0.320 6.48 × 10−4 −4390

33 7 (9) 0.17 0.080 0.088 2.80 × 10−4 −4896
34 10 (12) 0.17 0.080 0.088 2.80 × 10−4 −4890

35 7 (8) 0.18 0.097 0.086 3.05 × 10−4 −4847
36 7 (9) 0.18 0.097 0.086 3.05 × 10−4 −4845
37 9 (11) 0.18 0.097 0.086 3.05 × 10−4 −4841
38 9 (11) 0.17 0.078 0.089 2.77 × 10−4 −4897

39 10 (12) 0.32 0.105 0.214 5.31 × 10−4 −4506
40 9 (11) 0.21 0.121 0.086 3.45 × 10−4 −4767

41 10 (13) 0.16 0.072 0.089 2.69 × 10−4 −4912
42 12 (15) 0.16 0.072 0.089 2.69 × 10−4 −4908
44 9 (10) 0.17 0.081 0.088 2.81 × 10−4 −4891
45 10 (11) 0.17 0.081 0.088 2.81 × 10−4 −4889
46 10 (11) 0.16 0.073 0.089 2.71 × 10−4 −4912
47 10 (11) 0.17 0.080 0.089 2.80 × 10−4 −4891
48 11 (12) 0.17 0.080 0.089 2.80 × 10−4 −4889

49 9 (12) 0.17 0.081 0.088 2.82 × 10−4 −4886
50 11 (13) 0.16 0.074 0.086 2.66 × 10−4 −4918
51 11 (14) 0.17 0.081 0.088 2.82 × 10−4 −4882
52 9 (12) 0.16 0.074 0.087 2.68 × 10−4 −4917
53 8 (10) 0.25 0.134 0.115 4.14 × 10−4 −4659
54 8 (10) 0.19 0.090 0.104 3.22 × 10−4 −4810

55 8 (9) 0.46 0.223 0.238 7.67 × 10−4 −4291
56 9 (11) 0.17 0.077 0.095 2.86 × 10−4 −4879
57 8 (9) 0.28 0.136 0.147 4.71 × 10−4 −4584
58 9 (10) 0.28 0.173 0.103 4.59 × 10−4 −4597
59 10 (11) 0.17 0.081 0.093 2.89 × 10−4 −4873
60 8 (10) 0.19 0.086 0.101 3.11 × 10−4 −4831

61 8 (11) 0.22 0.107 0.117 3.72 × 10−4 −4721
62 8 (11) 0.23 0.107 0.121 3.80 × 10−4 −4709

63 6 (9) 0.29 0.182 0.104 4.75 × 10−4 −4578
64 7 (9) 0.19 0.090 0.104 3.22 × 10−4 −4813
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C Step 2: Acid-Catalyzed Sequence

C.4 Global Sensitivity Analysis

For the uncertain model parameters, standard deviations are determined from the confidence
intervals of the parameter estimation, Tables 4.2 and 5.5. The standard deviation of the distribution
coefficient 𝐶0 is given in Equation 4.19:

𝐶0 ∼ N(1.02, 0.013),
𝑘̃ l𝑎 ∼ N(1.094, 0.026),
𝑘̃PO1 ∼ N(7.13, 0.32),
𝑘̃POy ∼ N(0.644, 0.05),

𝑘POx ∼ N(0.0105, 4.34 × 10−4),
𝑙opt ∼ N(0.178, 4.85 × 10−3),

𝑚IM2 ∼ N(2.646, 8.93 × 10−3),
𝑘PO1·BP3 ∼ N(424.2, 26.56),

𝑘PO1·IM2 ∼ N(880.3, 25.10),
𝑘IM2c·BP5 ∼ N(0.682, 0.036),

𝑘IM2b·BP4 ∼ N(0.887, 0.066),
𝑘IM2c·ART ∼ N(30.07, 1.32).

(C.22)

C.5 Process Optimization

The optimized parameters of the process optimization are given in Tables C.9 and C.10.
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Table C.9: Optimized parameters of process optimization for nominal settings. A * indicates that the value has been
fixed during optimization.

#
𝑙photo 𝑙syn ¤𝑉l,0 [DHAA]0 xO2,0 [DCA] 𝑃LED [TFA]
cm cm ml/min mol/l 1 mmol/l % mol/l

1 400* 700* 0.140 0.000 1.0 0.500 64 0.099
2 400* 700* 0.154 0.200 1.0 0.554 73 0.089
3 85 1000 0.071 0.000 1.0 0.850 100 0.071
4 110 1000 0.087 0.050 1.0 0.850 100 0.070
5 173 1000 0.116 0.200 1.0 0.850 100 0.068
6 280 1000 0.162 0.400 1.0 0.850 100 0.065
7 400* 700* 0.091 0.000 1.0 0.428 50 0.067
8 400* 700* 0.094 0.050 1.0 0.440 52 0.066
9 88 1000 0.064 0.000 1.0 0.850 100 0.065
10 116 1000 0.080 0.050 1.0 0.850 100 0.064
11 183 1000 0.108 0.200 1.0 0.850 100 0.061
12 400* 700* 0.400 0.500 1.0 0.850 100 0.137
13 488 119 0.400 0.500 1.0 0.850 100 0.400
14 400* 700* 0.400 0.500 1.0 0.850 100 0.119
15 745 0 0.400 0.500 1.0 0.850 100 0.400
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Table C.10: Optimized parameters of process optimization for robust settings. A * indicates that the value has been fixed
during optimization.

Normed V[STY] 𝑙photo 𝑙syn ¤𝑉l,0 [DHAA]0 xO2,0 [DCA] 𝑃LED [TFA]
1 cm cm ml/min mol/l 1 mmol/l % mol/l

0.08 628 343 0.293 0.467 1.0 0.638 85 0.218
0.28 627 209 0.375 0.496 1.0 0.799 98 0.353
0.34 617 183 0.384 0.498 1.0 0.820 99 0.381
0.43 600 162 0.392 0.499 1.0 0.836 99 0.393
0.48 588 152 0.395 0.499 1.0 0.841 100 0.396
0.50 583 148 0.396 0.499 1.0 0.842 100 0.397
0.55 570 142 0.397 0.500 1.0 0.845 100 0.398
0.77 525 128 0.399 0.500 1.0 0.849 100 0.400
0.87 509 124 0.400 0.500 1.0 0.849 100 0.400
0.91 502 122 0.400 0.500 1.0 0.850 100 0.400
0.97 492 120 0.400 0.500 1.0 0.850 100 0.400
0.98 490 120 0.400 0.500 1.0 0.850 100 0.400
0.99 489 120 0.400 0.500 1.0 0.850 100 0.400
1.00 488 119 0.400 0.500 1.0 0.850 100 0.400
1.00 488 119 0.400 0.500 1.0 0.850 100 0.400
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