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Abstract
Focused ion beam scanning electron microscopy (FIB-SEM) tomography is a
serial sectioning technique where an FIB mills off slices from the material sam-
ple that is being analysed. After every slicing, an SEM image is taken showing
the newly exposed layer of the sample. By combining all slices in a stack, a 3D
image of the material is generated. However, specific artefacts caused by the
imaging technique distort the images, hampering the morphological analysis of
the structure. Typical quality problems inmicroscopy imaging are noise and lack
of contrast or focus. Moreover, specific artefacts are caused by the FIB milling,
namely, curtaining and charging artefacts. We propose quality indices for the
evaluation of the quality of FIB-SEM data sets. The indices are validated on real
and experimental data of different structures and materials.
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1 INTRODUCTION

Focused ion beam scanning electron microscopy (FIB-
SEM) tomography is an imaging technique widely used
in the analysis and evaluation of materials’ structures and
morphology at the nano scale.1–6 Combined with the pre-
cise FIB slicing, the high lateral resolution and depth of
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field of the stacked SEM images yield highly resolved
3D structural information. Quantitative analysis, however,
usually requires a segmentation step. That is, components
or objects of interest have to be identified in the image.
Typically, pixels are assigned to a particular component,
for example, to pore space or solid component in a porous
medium, based on their grey values or those in their close
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vicinity. Clearly, a certain image quality is a prerequisite
for correct segmentation. This general fact gains particu-
lar importance in the case of FIB-SEM images of highly
porous media. In these, material from deeper layers is
visible through the pore phase (shine-through-artefacts)
which additionally hampers correct segmentation into
pore space and solid component. Various algorithms have
been developed to reconstruct such porous structures.7–13
However, their successful application depends even more
critically on the image quality.
Resolution and brightness of the images depend on the

electron beam acceleration voltage.14 Increasing the elec-
tron beam size can blur the SEM images.15 Increasing the
dwelling time, that is, the amount of time that the elec-
tron beam illuminates a single pixel, decreases the noise.
In practice, there are many more degrees of freedom and
the material and the electron beam interact in a complex
way. FIB-SEM imaging parameters are chosen by experi-
ence and optimized by trial-and-error to yield images as
good as needed at reasonable effort. As the imaging process
is time-consuming and might be destructive, insufficient
image quality should be detected early. Objective quality
indices, applicable on a few slices in the beginning of the
imaging process, can help to decide whether the imaging
should be continued.
There are plenty of objective assessment methods for

natural images, where natural images refers to images pro-
jected onto the retina by light reflected from objects in
typical visual environments.16–18 In contrast, methods for
evaluating the quality of microscopic images are limited
and, to the best of our knowledge, there are no dedicated
methods for FIB-SEM image stacks. An index frequently
used for SEM images is the signal-to-noise-ratio.19,20 How-
ever, its estimation from an SEM signal is very difficult
because it depends on the characteristics of specimens as
well as on the SEM operating conditions.21 There is no
standard that could be transferred betweenmeasurements
of different samples. Moreover, the fact that there are sev-
eral definitions of the signal-to-noise-ratio may lead to
confusion.22–25
For individual SEM images, recent no-reference

methods26,27 evaluate blurring combining gradients and
grey value statistics. Also, Wang et al.28 employ a neural
network trained on 650 high- and low-quality SEM images
of ants, metal, stamens, colloids and minerals (details
described in Li et al.29) to classify SEM images into ‘good’
and ‘bad’ quality. Their focus is on rich texture images of
separate objects which is in contrast to the homogeneous
material samples studied here. Finally, Koho et al.30 sort
microscopic images according to quality based on image
statistics, in both, spatial and frequency domains.
When evaluating image quality, multiple criteria should

be considered separately. Clearly, images should be noise-
free and feature sharp edges and a good grey value contrast

between the components. FIB-SEM-specific artefacts are
curtaining and charging. Curtaining artefacts are caused
by the ion beammilling through phaseswith different den-
sities and appear as vertical, thin, uneven bands on one
or a few consecutive slices. (see Figure 1C,E) Charging is
a commonly known problem in SEM imaging of electri-
cally insulating samples.31 High-energy electrons hit the
non-conductive sample, charge builds up rapidly on the
material’s surface and in deeper layers and finally causes
artefacts such as the bright regions in Figure 1(F). Even
worse, charging disturbs both, the electron and the ion
beam. As a consequence, the signal deteriorates visibly, for
example, in the low contrast in Figure 1(I) and the FIB can-
not mill off the material completely, leaving lamellae of
material that block the view on subsequent slices.32
Often, quality evaluation is based on comparing the

input image with a given high-quality reference image. In
contrast, no-referencemethods do not require such a refer-
ence image such that they aremore suitable for our setting.
To evaluate the quality of FIB-SEM images, we adapt state
of the art no-reference methods for evaluating contrast,
noise and blurring.33–35 For measuring the severity of cur-
taining and charging artefacts, we introduce dedicated
novel quality indices. We test the five indices extensively
on simulated and experimental FIB-SEM data sets with
varying characteristics. The indices allow for quick and
efficient evaluation of FIB-SEM images and coincide well
with visual impression, which in turn is strongly corre-
lated with the chances to obtain a good segmentation of
the spatial structure. Finally, we suggestways to correct the
detected flaws and show how the success of the correction
can, again, be judged based on the indices.
This paper is organized as follows: In Section 2, we

describe the synthetic and real FIB-SEM image data
used, define our indices for image quality evaluation, and
suggest quick remedies for flaws reported by them. In Sec-
tion 3, we apply the indices and remedies where needed.
Finally, conclusions are drawn in Section 4.

2 MATERIALS ANDMETHODS

In Section 2.1, we first describe the experimental (Sec-
tion 2.1.1) and the simulated (Section 2.1.2) image data
used. The subsequent Section 2.2 provides the five image
quality indices. Section 2.3 summarizes methods for
improving image quality with respect to each of the
five indices.

2.1 Image data

In the following two sections, we describe the FIB-
SEM stacks used throughout this paper. Obviously, it is
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100 ROLDÁN et al.

F IGURE 1 Scanning electron microscopy (SEM) slices from exemplary focused ion beam (FIB)-SEM data sets of porous and non-porous
materials used throughout this paper.

impossible to represent the full range of materials,
structures and SEM imaging modes even approximately.
Instead, we chose a portfolio that is both practically rele-
vant and instructive. Synthetic FIB-SEM stacks are used to
illustrate how the quality indices work.

2.1.1 FIB-SEM

Real data, selected to represent the diversity in terms of
quality and structures, is presented in the next sections.
Concerning the quality, characteristics as contrast, noise,
blurring and image artefacts vary along the data sets. Fur-

thermore, data sets contain several structures including
highly porous and non-porousmaterials. The selected data
were provided by the following institutions: Institute of
Nanotechnology and Karlsruhe Nano Micro Facility at
Karlsruhe Institute of Technology (KIT), Fraunhofer Insti-
tute for Ceramic Technologies and Systems (IKTS), Max
Planck Institute for Polymer Research (MPIP) and Chair
of Functional Materials at Saarland University (CFMSU).
Figure 1(A) shows an image of sintered polystyrene balls

acquired byMPIPusing anFEIHeliosNanoLab 660micro-
scope. A protective Pt layer of thickness 1 m and area
12 × 8 m2 was deposited on the sample. A volume of 12 ×
8 × 6 m3 was imaged with cubic voxels of size 35 nm.
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ROLDÁN et al. 101

F IGURE 2 Simulated scanning electron microscopy (SEM) images of a Boolean model with varying dwell times.

Figure 1(B,C,H,I) features infiltrated silica balls at two dif-
ferent dwelling times, an infiltrated silica monolith and a
silica monolith. They were obtained by KIT using an FEI
Strata 400S Dual Beam at 5 kV, with cubic voxels of size
20 nm. An FEI Helios NanoLab 600 microscope was used
by CFMSU for acquiring the images of the porous carbon
structure in Figure 1(D), the AlSi alloy in Figure 1(E) and
the etched aluminium foil in Figure 1(G) with cuboidal
voxels of 83 × 106 × 250 nm3 and cubic voxels of 10 and
20 nm, respectively. Finally, the ZrO2 in Figure 1(F) was
imaged at IKTS using a crossbeam NVision 40 Field Emis-
sion Scanning Electron Microscope by Carl Zeiss at 1.5 kV
with a voxel size of 3 × 3 × 6 nm3. All images shown in the
following are secondary electron signal SEM images.

2.1.2 Synthetic images

Besides the real images, we use synthetic FIB-SEM data
obtained using the simulation tool described by Prill and
Schladitz.36 The microstructure is generated as a realiza-
tion of a Boolean model,37–39 which is a random closed set
model given by the union of grains centred at the points
of a homogeneous Poisson point process. Here, the grains
are spherical and have a constant radius of 9 voxels and the
Boolean model has a porosity of 65%.
For the simulation of the FIB-SEM imaging, we assume

that the balls are made from carbonwhile the complement
of the ball system is air. FIB-SEM images are generated
by simulating electron diffusion through the microstruc-
ture. Electron paths are simulated using the Monte Carlo
method of MONSEL II by Lowney.40 Various accelera-
tion methods introduced by Prill and Schladitz36 allow
for a simulation of physically sound FIB-SEM stacks in
reasonable time. These synthetic data enable objective
comparison of processing methods as well as training of
machine learning methods (see Salzer et al.,8 Fend et al.13
andRoldán et al.41). Depending on the imaging parameters
used in the simulation, the synthetic images also feature
variations in contrast, blur and noise, as visible in Figure 2.

2.2 Image quality indices

Due to the sequential imaging and the FIB sectioning in
between, image quality in a 3D stack can differ consid-
erably from slice to slice. Hence, we assess image quality
separately for each slice and therefore introduce quality
indices for 2D images in the following.
By a 2D image, we understand a function 𝑓 ∶ (ℤ+)

2
∩

𝑊 ⟶ℝ, where 𝑊 ⊂ ℝ2 is a compact rectangular win-
dow and such that for a point (𝑥, 𝑦) ∈ (ℤ+)

2
∩𝑊 the

image grey value at that point is given by 𝑓(𝑥, 𝑦). A pixel is
defined by the triple (𝑥, 𝑦, 𝑓(𝑥, 𝑦)), and for simplicity, we
will only write 𝑓(𝑥, 𝑦) below. If 0 ≤ 𝑥 < 𝑚 and 0 ≤ 𝑦 < 𝑛,
we say that the image 𝑓 has size𝑚 × 𝑛.
In the following, we introduce indices indicating noise,

blur, missing grey value contrast, curtaining and charging.
All five indices are constructed to have range [0,1]. The
value 1 is reached by a perfect image only, whereas values
close to 0 are a sign of serious flaws.

2.2.1 Noise index

Empirical studies concerning the type of noise in
SEM images suggest that the noise follows a Gaussian
distribution.42 Hence, the key to characterization of the
noise level as well as noise removal is the estimation of
the parameters, in particular the variance, of the noise
distribution.34,43,44 Liu et al.34 classify estimation methods
as filter-based, patch-based and statistical. Filter-based
approaches remove the contribution of the original
image by suitable filters and estimate the noise from the
resulting image representing the noise component.43,45–47
Patch-based approaches decompose the image into
image patches and estimate the noise level from selected
patches.34,48 Zoran and Weiss’s49 statistical approach
estimates noise variance by modelling the change of
kurtosis values due to adding noise to the image. For a
summary of further methods, we refer to the reviews of
Pyatykh et al.48 and Liu et al.34
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102 ROLDÁN et al.

Pyatykh et al.48 introduced a patch-based approach
based on a principal component analysis. When evaluated
on two benchmark data sets, their algorithm resulted in
the highest accuracy and was observed to be much faster
than competing methods with similar accuracy. Here, we
use Liu et al.’s34 adaption of the method which is similarly
accurate but further reduces the run time. In the follow-
ing, we briefly sketch the method. Liu et al.34 provide a
MATLAB implementation.
We assume that the observed image 𝑓 = 𝑔 + 𝜀 is an addi-

tive decomposition of a noise-free image 𝑔 and Gaussian
white noise 𝜀 with mean 0 and variance 𝜎2 that is inde-
pendent of 𝑔. For estimating the noise variance, square
image patches of size 𝑠 × 𝑠 are defined. We follow the rec-
ommendation of Liu et al.34 by setting 𝑠 = 7. Sliding the
patch centre over the image, an input image of size 𝑛 ×
𝑚 will generate a sample of 𝑀 = (𝑛 − 𝑠 + 1) ⋅ (𝑚 − 𝑠 + 1)

patches. In vectorized form, we get

𝐟𝑖 = 𝐠𝑖 + 𝛆𝑖, 𝑖 = 1, … ,𝑀

with 𝛆𝑖 ∼  (0, 𝜎2𝐼) and independent 𝐠𝑖 and 𝛆𝑖 . For sim-
plicity, the patches are assumed to be uncorrelated, even
though this is not the case for overlapping patches. Esti-
mation of the noise variance is now based on the following
idea: Assume that a 𝑑-dimensional random vector 𝐲 can be
decomposed into

𝐲 = 𝐱 + 𝐧

such that 𝐱 and 𝐧 are independent and 𝐧 ∼  (0, 𝜎2𝐼).
Denoting the covariance matrix of a vector 𝐱 by Σ𝐱, we get

Σ𝐲 = Σ𝐱 + 𝜎2𝐼. (1)

Let 𝐮 ∈ ℝ𝑑 be a unit vector. We project the data 𝐲 onto the
axis spanned by 𝐮 and compute the variance of the result.
Due to the independence of 𝐱 and 𝐧, we get

var(𝐮𝑇𝐲) = var(𝐮𝑇𝐱) + 𝜎2.

This implies that the direction 𝐮min of minimal variance is
identical for 𝐱 and 𝐲. The direction 𝐮min is obtained as the
eigenvector associated to the minimal eigenvalue 𝜆min(Σ𝐲)
of Σ𝐲 . Thus,

𝜆min(Σ𝐲) = 𝜆min(Σ𝐱) + 𝜎2𝐼.

While 𝜆min(Σ𝐲) can be estimated from the empirical
covariance matrix of a noisy image, estimation of 𝜆min(Σ𝐱)
is not possible. However, if we can assume that the data
𝐱 are contained in a subspace of ℝ𝑑 of dimension smaller

than 𝑑, we get 𝜆min(Σ𝐱) = 0 such that

�̂�2 = �̂�min(Σ𝐲).

For image patches, this assumption is fulfilled if the
images do not contain too fine texture details (see Liu
et al.34). The microscopy images considered here are
expected to fulfil this condition.
In case of doubt, fine texture patches can be detected

and removed from the sample. To do so, Liu et al.34 use
the trace of the gradient covariance matrix of the image
patch as ameasure of texture strength. A patch is discarded
if its texture strength is higher than a texture strength
threshold. This threshold is chosen as the 1 − 𝛼-quantile
(𝛼 = 1𝑒 − 6) of a gamma distribution whose parameters
can be estimated from the image. In particular, the scale
parameter depends on the noise level 𝜎2. Strongly textured
patches influence the noise level estimate �̂�2 and, hence,
the threshold. To remove this influence, an iterative proce-
dure is chosen: Noise level estimation, threshold selection
and deletion of patches are successively repeated until the
estimated noise level �̂�2 does not change any more.
To define a noise index with values between 0 and 1, we

consider an upper bound 𝜏 for the noise standard devia-
tion, such that the noise index of images with 𝜎 > 𝜏 is set
to 0. That is, we define the noise index as

𝑖𝑛 = max
(
1 −

�̂�

𝜏
, 0

)
. (2)

Our threshold selection is based on the 3𝜎 rule for the
Gaussian distribution which states that more than 99% of
the distribution mass is contained within three standard
deviations of the mean. We consider a grey value range of
[0,1]. A Gaussian kernel with standard deviation 𝜎 cen-
tred in the central grey value 0.5 will fit in the interval
[0,1] if 3𝜎 ≤ 0.5, hence, 𝜎 ≤ 0.167. For larger 𝜎, a signifi-
cant amount of noisy grey values will exit the allowed grey
value range of [0,1]. This motivates our choice of 𝜏 = 0.16.
See Figure 3 for a toy example illustrating the noise index.

2.2.2 Blur index

Gradient, variance and frequency domain-based metrics
to measure the blur have been proposed by Crété-Roffet
et al.,35 Windisch and Kozlovszky50,51 and Erasmus and
Smith.52 For microscopic images, dedicated methods have
been suggested.53–58 Recent no-referencemethods for blur-
ring evaluation in SEM images are proposed by Wang
et al.26 and Li et al.27 Wang et al.26 present an elabo-
rated algorithm for blurring measurement decomposing
the original image in two images: a cartoon part and a
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ROLDÁN et al. 103

F IGURE 3 Toy example image with added Gaussian noise with mean zero and varying variance and corresponding noise indices.

texture part. The blurring ismeasured by quantifying spec-
tral and gradient image information from the decomposed
images. Compared to the images in Wang et al.,26 the FIB-
SEM images shownhere show relatively few texture details
such that a decomposition does not seem necessary.
In Li et al.’s27 method, initially a grey scale erosion of

the image is computed. Edges are then detected by a Sobel
filter followed by noise filtering, such that the structural
edges are preserved. Finally, themaximumand the average
gradient are computed and combined into a blurring index.
Due to the low degree of texture details of our images,

we decided to adapt the simple gradient approach of Crété-
Roffet et al.35 comparing the gradients in the original image
𝑓 and a blurred version 𝐵(𝑓). If 𝑓 is sharp, then the gradi-
ents of 𝑓 and 𝐵(𝑓) differ more strongly than if 𝑓 is blurred.
Crété-Roffet et al.35 blur by horizontal and vertical linear
mean filters to detect directed motion blur. As this is not
expected in microscopy images, we replace these by just a
square mean. Figure 4 shows an example.
Formally, the approach is defined as follows: Starting

from an input image 𝑓, a blurred version 𝐵(𝑓) is obtained
by applying a mean filter with mask size 9 × 9 pixels. Next,
we consider the absolute values of the gradient images
of 𝑓 and 𝐵(𝑓) denoted by 𝐺𝑓 and 𝐺𝐵(𝑓), respectively. For
comparing the gradient images, we set

𝐷 = max(0, 𝐺𝑓 − 𝐺𝐵(𝑓))

and sum over all pixel values to obtain

𝑠𝐷 =

𝑚,𝑛∑
𝑖,𝑗=1

𝐷(𝑖, 𝑗) and 𝑠𝑓 =

𝑚,𝑛∑
𝑖,𝑗=1

𝐺𝑓(𝑖, 𝑗).

The blur metric is defined as:

𝑖𝑏 =
𝑠𝐷
𝑠𝑓
. (3)

This index has values between 0 and 1, where 0means poor
and 1 excellent.

2.2.3 Contrast index

Differences in intensity create image contrast, allowing
individual features and structural details to become visible.
Inmicroscopy, the contrast depends on several factors such
as the chemical composition and microstructure geome-
try of the material to be imaged, the spatial resolution and
microscope characteristics.
Several contrast metrics for images have been proposed,

see, for example, the summary in Olsen et al.33 Basically,
one can distinguish global contrast metrics that charac-
terize contrast in the whole image and local metrics that
evaluate contrast in the neighbourhood of each pixel. The
latter is of interest for natural images which may show
an object of interest in front of a rather homogeneous
background. Here, we are interested in images of spatially
homogeneous microstructures. Hence, we restrict atten-
tion to global contrast metrics which measure to which
extent the available grey value range has been exploited but
do not consider the spatial distribution of contrast in the
image. One suchmeasure is theMichelson contrast, which
is defined as the ratio between the difference and the sum
of the maximum and minimum grey values. A drawback
of this measure is that it can be easily biased even by single
noisy pixels.
A metric that is more robust with respect to changes

of single pixels is root mean squared (RMS), that is, the
standard deviation of the grey values of the image

𝑅𝑀𝑆(𝑓) =

√√√√√ 1

𝑚𝑛

𝑚−1∑
𝑥=0

𝑛−1∑
𝑦=0

(𝑓(𝑥, 𝑦) − 𝑓)
2
, (4)

where 𝑓 is the mean grey value. To obtain a standardized
measure, we assume that the grey value range has been
scaled to the interval [0,1]. The RMS is widely used as an
image summary statistic.59–62 It is experimentally proven
to be in accordance with the human perception.63,64
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104 ROLDÁN et al.

F IGURE 4 Toy example images and gradients. Top: Original image with sharp edges and two mean filtered versions. Filter mask size
3 × 3 and 5 × 5 pixels for (B) and (C), respectively. Bottom: gradient images.

The RMS has positive values between 0 (constant
image) and 0.5 (image with grey values 0 and 1 in equal
proportion).65 The maximum RMS value observed on all
image data available in this study is approximately 0.3
which roughly coincides with the value expected for a uni-
form distribution of grey values. Setting this value as an
upper limit, we define a contrast index with range [0,1] by

𝑖𝑐 = min(𝑅𝑀𝑆(𝑓)∕0.3, 1).

A value of 𝑖𝑐 close to 0 represents almost constant grey val-
ues, hence poor contrast, while for high contrast imageswe
will get 𝑖𝑐 ≈ 1. See Figure 5 for some examples.

2.2.4 Curtaining index

Curtaining artefacts appear in the 𝑦-axis direction, and
their shape varies from thin and deep stripes to thick and
shallow bands. In the literature, the focus is on removal
of stripe artefacts rather than their quantification. See Sec-
tion 2.3.4 for details. One strategy for stripe removal is
filtering in frequency space using the fast Fourier trans-
form (FFT).66–68 We adopt ideas of Münch et al.68 to derive
an index quantifying curtaining.

Vertical stripe artefacts in an image 𝑓 produce fre-
quency components in the horizontal direction �̂� in the
Fourier transform 𝑓 of 𝑓. Curtaining information can
be emphasized by computing the directional gradient
along the 𝑥-direction prior to the Fourier transform.
Figure 6(A,B) shows an image with curtaining artefacts
and its 𝑥-gradient. The stripe information is condensed to
the abscissa in Figure 6(C).
Frequency decurtaining methods perform well on fre-

quencies near the origin. The stripes caused by curtaining
are parallel to the 𝑦-axis. Thus, in frequency space, we
have to look for peaks along the 𝑥-axis. Therefore, to
quantify the degree of the curtaining, we use a window
elongated in 𝑥-direction. From our experience, a region of
width 120 pixels and height 30 pixels is sufficient to col-
lect the frequencies of interest and observe the curtaining
induced peaks.
For this region, we define a binary image 𝑏 of the same

size as the box as follows. For each column of 𝑓 the max-
imal grey value within the box is detected. Its location is
marked by a white pixel (value 1) in 𝑏. The remaining pix-
els of 𝑏 are set to black (value 0). Examples are shown in
the top of Figure 7. In the next step, the row sums of 𝑏 are
computed and normalized by thewidth of the box to obtain
a resultant vector 𝐶.
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ROLDÁN et al. 105

F IGURE 5 Toy example image from Figure 3, here with varied grey value range. Grey value histograms and contrast indices. Versions
(A) and (B) are restricted to low and high grey values, respectively. Version (C) uses the full 8bit range of grey values.

F IGURE 6 Scanning electron microscopy (SEM) image with curtaining artefacts, gradient and Fourier transform.

A predominant peak in the centre of the resultant signal
suggests an imagewith curtaining artefacts, whereas resul-
tant signals without a predominant peak suggest images
without these artefacts as shown in Figure 7(B). We pro-
pose a curtaining index as the global maximum of the
resultant signal global max(𝐶) plus the values obtained at
the left and right of this maximum denoted as 𝐶+ and
𝐶−. These neighbours are included as they allow to report

curtaining artefacts that slightly deviate from ideal stripe
shape. The initial curtaining index is defined as

𝑖𝑖𝑛𝑖𝑡𝑐𝑢 = 1 − (global max(𝐶) + 𝐶+ + 𝐶−).

For images with ideal stripes, the index obtains the min-
imum value of 0. In this case, the maximum locations of
𝑓 are in the centre of the image, and the resultant binary
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106 ROLDÁN et al.

F IGURE 7 Binary boxes (top) and normalized frequencies (bottom) of images with and without curtaining artefacts. Binary boxes of
affected images feature horizontal line patterns and a dominant peak at the centre of the resultant signal (A) whereas those of curtaining free
images contain scattered points and no dominant peak (B). In the plots of the normalized frequencies, the global maximum with the left and
right neighbours are highlighted. The aluminium foil (C) features vertical edges leading to overestimated curtaining. Rotation such that the
edges are perfectly vertical (D) further emphasizes this effect.

image 𝑏 consists of a horizontal line in the middle. For
clean images, we assume that the maximum locations are
uniformly distributed. Thus, the binary image consists of
scatteredwhite pixels with an expected number of four pix-
els per row. As we consider the sum of three normalized
entries of 𝐶, the maximum value is given 1 − 12∕120 =

0.9. Therefore, to exploit the full index range [0,1], we

rescale the index by setting 𝑖𝑐𝑢 = 𝑖𝑖𝑛𝑖𝑡𝑐𝑢 ∕0.9. With this set-
ting, 𝑖𝑐𝑢 = 0 means strong curtaining and 𝑖𝑐𝑢 = 1 means
free of artefacts. For instance, the toy example images
(Figure 5) show two straight vertical stripes resembling
strong curtaining artefacts. Thus, the frequency domain
exhibits horizontal frequencies corresponding the stripes.
Curtaining values in these cases are close to zero. The
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ROLDÁN et al. 107

F IGURE 8 Scanning electron microscopy
(SEM) images featuring varying degrees of charging
along with grey value histograms and 𝑆 functions.
Charging indices are 0.08 and 0.86 for (A) and (C),
respectively.

values are 0.05, 0.10 and 0.06, for Figures 5(A), 5(B) and
5(C), respectively.

2.2.5 Charging index

Charging artefacts develop when a material cannot ade-
quately conduct the charges generated by the interaction of
thematerial with the electron beam during SEM scanning.
The ratio between electrons absorbed from the sample
to electrons emitted as secondary electrons, backscattered
electrons and Auger electrons determines the charges that
are building up on the sample surface. These can both
be positive and negative. An electrical potential on the
sample surface generates bright or dark spots and causes
image distortions as electron production is artificially
changed (see Figure 1C,D,F). Note that the low contrast in
Figure 1(I) is caused by charging, too, as the electrons are
deflected. This is however reported by the contrast index
defined above.
We extract information from the image histogram as the

histogram of an image with charging has typically a signif-
icant amount of pixels in the upper region. Thus, our index
is based on grey values exceeding the 90th percentile 𝑝90 of
the image grey value distribution (see Figure 8). We define
the function

𝑆(𝑠) =

{
0 if 𝑠 < 𝑝90

ℎ(𝑠) if 𝑠 ≥ 𝑝90,

whereℎ(𝑠) is the absolute histogramcount at the grey value
𝑠 for an image grey value range of [0,1]. Original images
are 8-bit, and thus there are 256 different possible grey val-
ues. Here, we consider a histogram discretization to the
range [0, 1] by using the MATLAB function 𝑖𝑚2𝑑𝑜𝑢𝑏𝑙𝑒.69
We consider a normalized version of 𝑆 by dividing the func-
tion by the total number of pixels of 𝑆 with grey values
above 𝑝90. We denote this normalized version as 𝑆∗. We
propose the charging index by considering the mean of 𝑆∗
in the upper half interval [0.5, 1] as grey values for charging
are expected in this interval. As a last step, we transform
the obtained mean value by scaling the interval [0.5, 1] to
the interval [0,1]. Then, the charging index is given by

𝑖𝑐ℎ = 2 ∗

(
1 −

∑
𝑠∈[0.5,1]

𝑠𝑆∗(𝑠)

)
,

where 0 is bad and 1 excellent.

2.3 Remedies

This section summarizes options for dealing with qual-
ity flaws detected by the suggested indices. It is neither
intended to be a comprehensive review of all available
methods nor a strict guideline.We rather collect practically
helpful information on severity of the problem, abundance
and costs of remedies. Whenever possible, optimization of
the imaging set-up to avoid distortions should be preferred
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108 ROLDÁN et al.

to later trying to enhance the acquired stack by image
processing techniques.
We restrict to 2D processing methods as our quality

indices operate slice-wise. Moreover, successful applica-
tion of 3D algorithms to FIB-SEM stacks typically demands
pre-processing of the whole stack, in particular align-
ment and correction of grey value fluctuations. Processing
the whole stack contradicts however our intention of
providing tools for early intervention.

2.3.1 Denoising

Noise can be reduced experimentally by increasing the
dwell time, the beam current or the acceleration voltage
as well as by using other detection schemes. However,
increasing the dwell time or the beam current will poten-
tially lead to increased charging and an increase in acceler-
ation voltage will reduce the surface sensitivity potentially
increasing blurring. Alternatively, if the sample is exhibit-
ing limited conductivity, it can be beneficial to change
the scan strategy by averaging multiple scans from the
same area.
In image processing, denoising is probably themain goal

of classical image filtering. In general, denoising reduces
high-frequency image components like edges, textures and
noise and thus degrades the image. Obtaining a denoised
image without degradation is a challenging open task.70
Linear filters like the mean filter remove noise, but blur
the image at the same time. Non-linear filters, such as
the median, a weighted median71 or more general rank
value filters as, for example, described by Heygster72 pre-
serve details of the original image better. They substitute
each pixel’s grey value with the respective quantile or
trimmed (or truncated) quantile of grey values within the
filter mask. González-Ruiz et al.47 propose a dedicated
method for denoising FIB-SEM images of biological struc-
tures which employs local filtering to preserve the original
structure within the image. We suggest a simple 3 × 3 or
5 × 5 median filter which is usually sufficient for noise
removal and preserves structural details quite well. Vari-
ational methods that denoise by minimizing a suitably
defined energy function are harder to implement but allow
to incorporate knowledge on image content and imaging
method (see, e.g. Teuber et al.73).

2.3.2 Sharpening

Experimental approaches to sharpen the images can be to
reduce the beam diameter, either by more accurate focus-
ing and stigmation, which should be part of the routine
microscope adjustment for every new image area, or by

choosing optical conditions of the electron gun and the
condenser system to yield a smaller beam. This second
option is connected to a reduced intensity and thus a
reduced signal-to-noise ratio. Furthermore, reducing the
acceleration voltage can improve the surface sensitivity
and thus help to sharpen surface features in the images.
On the image processing side, non-blind deblurring

methods apply a priori chosen masks for sharpening as,
for example, in Richardson, Lucy andWiener filtering.74–76
Blind deblurring methods use masks, too. However, these
masks are computed from the blurred image.77,78
We suggest the popular non-blind filtering with an

unsharp mask79: First, derive a detail image 𝐼detail con-
sisting of the details that are removed by smoothing the
blurred input image 𝐼 by the Gaussian filter ℎ𝜎. That is,
𝐼detail = 𝐼 − ℎ𝜎(𝐼). The sharpened image is then obtained
as pixelwise weighted sum of the original 𝐼 and the detail
image: 𝐼sharp = 𝐼 + 𝛼𝐼detail where 𝛼 is the weight of the
detail added to the original image.WeuseMATLAB’s func-
tion imsharpenwith default parameters 𝜎 = 1 and 𝛼 = 0.8

as suggested by Mathworks.80 Noise or edge effects can
occur as side effects but can be diminished by selecting a
suitable mask or filtering locally on regions of the image.

2.3.3 Contrast enhancement

The image contrast should always be maximized experi-
mentally prior to acquiring the final image by tuning the
gain and offset of the detector. Care should be taken in
particular when imaging many consecutive slices as the
contrast might change in some of the upcoming slices and
oversaturation or intensity cut-offs need to be prevented.
In image processing, there is a wide variety of contrast-

enhancing methods. Direct methods like those of de
Haan,81 Cheng and Xu82 and Beghdadi and Le Negrate83
enhance images by maximizing some quality measure.
Lacking a generally applicable metric for maximizing con-
trast in SEM images, we choose an indirect approach as
those of Sherrier and Johnson,84 Polesel et al.85 and Arici
et al.86 Indirect methods exploit the dynamic range of the
image’s grey values for enhancing. They either transform
the image’s grey value histogram87–92 or decompose the
image in frequency space and improve the contrast by
modifying certain frequency components.93–96 For a thor-
ough review of contrast correction methods, we direct the
interested reader to Kaplan et al.97
Ordinary histogram equalization has limitations in

images with regions that are significantly brighter or
darker than most of the image. Adaptive histogram equal-
ization (AHE) methods overcome these limitations by
splitting the image into subregions and equalizing the
histogram for each of those. AHE enhances the local
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ROLDÁN et al. 109

F IGURE 9 Representative slices from focused ion beam scanning electron microscopy (FIB-SEM) stacks of infiltrated silica balls
imaged using different dwelling times. Contrast and blur indices decrease as dwelling times are larger. The curtaining index are similar for
the noisy, low-contrast image (A) (also shown in Figure 1C) and image (B), whereas for (C) (same as Figure 1B), it decreases significantly.

contrast and preserves edges, may however empha-
size noise in quasi-constant regions. Contrast Limited
(CL)AHE is a variant reducing this problem. Zuiderveld98
applied CLAHE successfully on FIB-SEM images. We
therefore suggest CLAHE, too. The algorithm is avail-
able as MATLAB function adapthisteq, and is controlled
by the parameters clipLimit and distribution.99 The for-
mer is a contrast factor preventing oversaturation in
homogeneous areas. The latter specifies a distribution fam-
ily (uniform, Rayleigh and exponential) that models the
desired histogram shape.

2.3.4 Decurtaining

In heterogenous samples, it is difficult to completely pre-
vent curtaining during FIB cutting. It can be reduced by
applying a reasonable surface coating to prevent surface
features to add to curtaining effects. Furthermore, it might
be worthwhile changing the sample orientation to perform
FIB cutting such that particularly inhomogeneous regions
are located at the bottom of the volume of interest. If the
microscope is equipped with a rocking stage, this can be
used to continuously tilt the sample while cutting to smear
out and reduce curtaining.
As algorithmic remedy, the first dedicated decurtain-

ing algorithm by Münch et al.68 uses a discrete wavelet
transform to separate the image’s vertical components
on several scales. Subsequently, a filter in Fourier space
removes the stripes. The inverse wavelet transformation,
recursively applied, yields the decurtained image. The user
chooses the wavelet family, the decomposition depth and
the spectral filter. The algorithmworks verywell for stripes
stretching over the image’s complete vertical dimension. It

is available as part of a set of ImageJ plug-ins maintained
by the group for 3D-Microscopy at EMPA.100
Variational methods101–103 minimize a stripe penalizing

cost function via primal dual techniques.We implemented
the algorithm proposed by Liu et al.103 as MATLAB func-
tion. For suggestions on the choice of the parameters, we
refer to Liu et al.103 Overall, the method performs very
well on FIB-SEM data, may however introduce undesired
blurring if the parameters are not chosen optimally. The
algorithms of Münch et al.,68 Liu et al.103 and Fitschen
et al.102 are implemented in ToolIP provided by Fraunhofer
ITWM, Department of Image Processing,104 too.

2.3.5 Dealing with charging

Avoiding charging is probably the most challenging aspect
to handle experimentally when imaging non-conductive
samples, especially as it is not always clear which features
are due to charging and which features are inherent in
the sample. If the region of interest is not too deep, appli-
cation of a conductive coating connected to the ground
can reduce charging. Otherwise, reducing the accelera-
tion voltage and/or the beam current reduces charging,
but also the image intensity and thus the signal-to-noise
ratio. Changing the dwell time and the scan strategy can be
efficient to reduce charging as well as changing the detec-
tion scheme—BSE imaging is less sensitive to charging
compared to SE imaging.
Luckily, when aiming at segmentation (or reconstruc-

tion) of the solid component of a porousmaterial, charging
is not a true concern as it just renders the brighter pix-
els belonging to the solid even brighter. Figure 9 shows
an example.
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110 ROLDÁN et al.

F IGURE 10 Representative slice from the
infiltrated silica balls data set from Figure 1(C) and
Figure 9(A), enhanced as described in Section 3.3,
together with the quality indices for this slice.

Sim et al.31 suggest so-called exponential contrast
stretching transforming the original image’s grey value dis-
tribution into a given distribution as treatment of charging
artefacts in microscopic images. Wan Ismail et al.105 fol-
low Sim et al.,31 but replace the exponential by a Rayleigh
distribution to prevent image oversaturation.

2.4 General procedure

When trying to improve image quality, noise should be
considered first as it is usually rather easy to remove and
other flaws like curtaining can only be detected if the noise
does not deteriorate the stripes too strongly. Image qual-
ity evaluation and enhancement should therefore always
start by noise removal. Subsequently, the image is eval-
uated using the indices revealing additional potential
quality problems.
All enhancement methods can have side effects. Thus,

any image processing needs to be applied with prudence.
From our experience, after noise removal, contrast, blur,
curtaining and charging should be treated in that order.

Contrast enhancementmay emphasize noise and charg-
ing in the image slightly, without however compromising
the overall image quality seriously. Sharpening increases
contrast, too, and helps to detect curtaining artefacts, may
however as well amplify the noise. Decurtaining may blur
the image. Sharpening should therefore be considered to
complement decurtaining.
As a rule of thumb, any enhancement should improve

the overall quality of the image. If a transformation
decreases one or more indices significantly, then either
the method induces collateral effects or it reveals hid-
den artefacts. An example of the former is the trade-
off between noise and blurring. The latter happens for
instance when denoising decreases the curtaining index as
in Figure 10(B).

3 RESULTS

In this section, we apply the indices for objective quality
evaluation of FIB-SEM images first to the synthetic images
from Section 2.1.2, then to the real images presented along
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ROLDÁN et al. 111

TABLE 1 Index values for the synthetic data from Figure 2. Noise index values increase significantly with increasing dwelling time.
Contrast improves. Blurring index values decrease moderately. Charging values decrease significantly due to the increased number of
electrons. There is no curtaining, and the corresponding index does not vary considerably.

Name Image 𝒊𝒏 𝒊𝒃 𝒊𝒄 𝒊𝒄𝒖 𝒊𝒄𝒉

100 ns 0.44 0.87 0.57 0.89 0.93

300 ns 0.63 0.82 0.63 0.91 0.83

1µs 0.77 0.77 0.69 0.81 0.67

5µs 0.90 0.74 0.70 0.86 0.63

this document. Finally, the full enhancement work-flow
as suggested in Section 2.4 is applied using methods from
Section 2.3.

3.1 Sanity check based on synthetic
SEM images

The synthetic FIB-SEM images from Section 2.1.2 mimic
different dwell times and vary from poor to excellent qual-
ity as a function of dwell time as visible in Figure 2. The
low dwell time images are noisy as expected and the noise
index reports this accordingly as shows Table 1. Increasing
the dwell time improves the contrast. The contrast index
reflects this properly. Longer dwell times yield less noise,
which in turn lets the image appear sharper. Thus, the
blur index decreases slightly. The charging index varies
notoriously because of overexposed halos around the solid
phase, which are misinterpreted as charging artefacts. The
curtaining index remains nearly constant. Results are sum-
marized in Table 1. All values reported by the indices agree
well with visual impression.

3.2 Results on experimental data

In this section, we use the indices to evaluate the qual-
ity of the experimental images from Section 2.1.1 featuring
various characteristics and artefacts. We add a few com-
plementary images to demonstrate specific effects. Results
are summarized in Table 2. Values near zero reveal seri-

ous quality problems as strong noise in the infiltrated
silica balls in Figure 9(A). As to be expected, higher dwell
times yield larger noise index values for Figure 9(B,C).
Moreover, contrast, blurring and curtaining indices differ
considerably as dwelling time varies. Contrast and sharp-
ness decrease as consequences of less noise. The curtaining
index works well only for higher dwell time, as curtaining
artefacts are hidden by noise otherwise.
In general, index values close to zero indicate serious

quality concerns while high index values indicate good
quality. For instance, the polystyrene balls, porous carbon
and zirconium dioxide—Figure 1(A,D,F)—are sharp with
minimal noise as the noise index values show. Moreover,
the ZrO2 image features exceptionally high contrast and
consequently the highest contrast index value. This is not
only due to the deep dark pores but also because of strong
charging artefacts.
Rather simple methods as suggested in Section 2.3

can enhance the SEM images considerably. However,
they usually affect more than one of the indices. After
each enhancement, the image should be inspected. Spe-
cial attention is due if an enhancement causes critical
index values near zero. Indices should not be interpreted
separately as they interact closely. Interpretation and com-
parison of the quality indices is easier for images with
similar content, that is, similar structures imaged under
similar conditions in as in the case shown in Figure 9.
Clearly, the indices are limited in several ways, one

being that the index is assigned to the whole image.
Table 2 reports charging in the porous carbon. The bright
regions are however outside of the actual sample. A simple
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112 ROLDÁN et al.

TABLE 2 Quality index values for the experimental data from Figure 1. The polystyrene balls and the infiltrated silica monolith images
are good quality examples and the index values agree with this visual impression. The remaining examples have one or more quality problems
revealed by lower index values. For example, the infiltrated silica balls yield low contrast and suffer from curtaining, whereas for the porous
carbon charging artefacts are the main concern.

Name Image 𝒊𝒏 𝒊𝒃 𝒊𝒄 𝒊𝒄𝒖 𝒊𝒄𝒉

Polystyrene
balls

0.94 0.65 0.57 0.84 0.71

Infiltrated
silica balls
5 s

0.95 0.59 0.33 0.26 0.83

Infiltrated
Silica balls
300 ns

0.51 0.91 0.43 0.42 0.79

Porous
carbon

0.92 0.63 0.68 0.72 0.25

AlSi alloy 0.97 0.93 0.20 0.02 0.78

ZrO2 0.75 0.81 1.00 0.68 0.08

Aluminium
foil

0.93 0.70 0.53 0.51 0.32

Infiltrated
silica
monolith

0.95 0.64 0.76 0.94 0.86

Silica
monolith

0.96 0.69 0.18 0.84 0.94

enhancement without applying any processing is proper
cropping. Similarly, the curtaining index will mistake thin
vertical structures for imaging artefacts.
In general, the quality of all SEM images within a

3D FIB-SEM stack should stay the same as the imaging
parameters remain unchanged. Thus, the quality indices
have to be calculated for a few slices only to check the
imaging parameters. However, during long FIB-SEMmea-
surements, the sample can run out of focus and the risk
of charging rises as a consequence of continuous exposure
to the electron beam. Curtaining is a local phenomenon

affecting just one or a couple of consecutive SEM slices,
too. Continuous monitoring of the indices could help to
detect deteriorating image quality fast.

3.3 Image processing for quality
enhancement

In this section, we exemplify the quality enhancement
suggested in Section 2.3 for the infiltrated silica balls
data set featured in Figure 9(A). Figure 10 shows a slice
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ROLDÁN et al. 113

F IGURE 11 Reconstruction of the representative slices from Figure 10. Noise and curtaining artefacts effects are visible in
reconstructions (A), (B) and (C). Subimage (D) shows reconstruction after the noise, contrast and decurtaining treatment as suggested in
Section 2.4.

representative for the whole stack. Figure 10(A) is the
unprocessed original, as Figure 9(A). Figure 10(B–D)
are enhanced versions. The original is a bit noisy and
moderately affected by curtaining and charging.
First, we denoise by a 3 × 3 median filter as described

Section 2.3.1. The denoised Figure 10(B) not only yields a
higher noise index but also lower blur, contrast and cur-
taining indices. The contrast enhancement by CLAHE as
described in Section 2.3.3 nearly recovers the contrast of
the original image leaving the curtaining as main problem
of Figure 10(C). Consequently, we remove the curtaining
using Liu et al.’s103 method to obtain the final enhanced
Figure 10(D). Benefits of the quality enhancement reflect
in the reconstruction featured in Figure 11(D). The data set
is reconstructed by simple global thresholding with aman-
ually selected threshold. Tresholding is a valid approach
for the reconstruction of the data set as the grey values of
the solid spheres and the infiltrated material are different.

Note that our focus here is clearly on suggesting a
set of generally applicable quality indices and ensuring
their consistency. As a consequence, the example here is
chosen primarily for being particularly instructive as it fea-
tures several quality problems and the effectiveness of the
suggested remedies can be visually perceived.

4 DISCUSSION AND CONCLUSIONS

We suggest objective indices measuring the quality of
microscopic images with respect to several characteristics,
namely, noise, contrast, blurring, curtaining and charg-
ing. The first three apply generally while the latter two are
dedicated to FIB-SEM images. The indices are indeedmoti-
vated by FIB-SEM imaging where they can help to detect
suboptimal imaging parameters early in the slicing and
imaging process.
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The definitions of our indices involve a couple of rather
empirically found constants. However, they are chosen
based on more than a dozen synthetic and more than 50
real FIB-SEM image stacks of a wide variety of materi-
als and structures imaged at four institutions using four
devices. We prove the indices to capture the intended fea-
tures and rank images correctly. We suggest means to
alleviate quality flaws reported by the indices. For remov-
ing noise, lack of contrast and blur, a wealth of well-known
image processing methods are available. We concentrate
here on simple, easily accessible tools. For decurtaining,
we discuss dedicated algorithms. We show the effects of
these improvements and prove that the indices reflect the
corresponding changes in the images accordingly. A sys-
tematic study on the severity of detected flaws and their
impact on the possibility and the quality of 3D reconstruc-
tions is however beyond the scope of this paper and subject
of further research. Cautionary examples show that the
indices should always be considered as an ensemble as, for
example, a lot of noise can in fact hide artefacts or pretend a
high contrast. Moreover, their interpretation depends criti-
cally on the imaged structure as, for example, no index can
differentiate bright vertical edges from curtaining.
As mentioned, the indices have been tested on a much

wider variety of FIB-SEM images than actually shown
here. They are applicable for FIB-SEM images in general.
In particular, they are not restricted to secondary electron
SEM images but apply to images obtained from any SEM
detector. Clearly, the quality of the images depends on the
chosen detection scheme and different detectors will react
very differently to the various artefacts. The indices report
such variations without any adaption. However, the inter-
pretation of their values might vary. Moreover, we believe
they can be valuable for other imaging methods as well.
Image processing, in particular segmentation or clas-

sification is nowadays dominated by machine and in
particular deep learning (DL) methods. The investiga-
tions presented here have beenmotivated by the challenge
to reconstruct highly porous structures from FIB-SEM
stacks. DL solutions for this semantic segmentation task
have been suggested, too, for example, Fend et al.,13 Sard-
hara et al.106 and Osenberg et al.107 Our quality indices
are not contrasting DL methods. They can contribute to
understanding and improving results of these methods by
offering explanations for unsatisfying results and an easy
and fast way to check whether the training data are really
representative. Of course, ML could be used to evaluate
image quality directly, too. However, this requires suffi-
cient and representative training data which are hard to
gather as humans perceive image quality features individ-
ually. The presented indices are objective and valuable for
quick and reliable quality evaluation based on the first
couple of slices of an FIB-SEM stack.
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