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SCIENCE FOR SOCIETY Rising global temperatures will increase water in the atmosphere and diminish
terrestrial water resources. Understanding changes in stored terrestrial water in surface or underground
reservoirs is crucial for ecosystem and human sustainability. For example, modern agriculture often de-
pends on groundwater and reservoirs, and water storage changes affect crop yield. Climate change will
alter howmuchwater is stored terrestrially; therefore, predicting these changes is crucial for adapting crops
and other human water needs to changing water resources. Our findings reveal that warmer temperatures
and shifting precipitation patterns can increase plant water consumption and evapotranspiration and
reduce stored water. Stored water also depends on land use. For example, converting natural wetlands
into urban areas reduces groundwater. The implications of warmer climates on water storage are region
dependent, potentially exacerbating competition for water between human and natural ecosystems.
SUMMARY
Global water scarcity threatens agriculture, food security, and human sustainability. Hence, understanding
changes in terrestrial water storage (WS) is crucial. By utilizing climate models, reanalysis, and satellite data,
we demonstrate the effectiveness of the multivariate bias correction technique in facilitating precise WS rep-
resentation while ensuring robust water budget closure. Historical data indicate seasonal changes, where
forested basins exhibit a WS surplus in the December-January-February season, with a reversal in the June-
July-August-September season.Non-forestedbasinsdisplayvariedpatterns influencedbygeographical loca-
tion and land use type. Future projections indicate increased June-July-August-September deficits in most
Southern Hemisphere basins under the middle-road (SSP 245) scenario and wetter December-January-
February conditions under the regional rivalry (SSP 370) scenario. Weather and climate systems governing
WS vary by season and basin, resulting in inconsistent moisture intake into basins. These findings underscore
the intricate interplay betweenmoisture transport, land characteristics, and the resulting WS, highlighting the
need to understand these complex interactions for effective regionalwater resourcemanagement strategies in
changing climates.
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INTRODUCTION

Terrestrial water storage, hereafter called water storage (WS), is

the ability of the environment to maintain an efficient water

resource system through the interception, infiltration, and stor-

ageof precipitation through the canopy, litter, soil, and lake reser-

voir water bodies in space and time.1,2 WS boosts base flow in

the dry season, normalizes the uneven temporal distribution of

runoff, and reduces peak flooding in flood season.3 Thismultifac-

eted process ensures the availability of water resources critical

for sustaining agricultural activities, securing food availability,

and supporting various ecosystems. This has profound implica-

tions for both human and environmental systems. Beyond its

ecological impact, WS plays a pivotal role in human livelihoods,

influencing water supply sustainability and public well-being. A

WSdeficit—i.e., the shortfall between the amount ofwater stored

in various terrestrial reservoirs (such as groundwater, soil mois-

ture, and surface water) and the expected levels for a given

area or time frame—often occurs when there is an imbalance in

the water cycle due to factors like prolonged drought, reduced

precipitation, increased evaporation, or excessive water extrac-

tion. This may result in severe water shortages, food insecurity,

habitat degradation, species extinction, unsustainable water

supply sources, and heightened public tension.4,5

Climate change significantly alters the global hydrological cycle

and its various WS components. The anticipated shifts in precip-

itation patterns, intensities, and temperature regimes due to

climate change are expected to profoundly impactWSdynamics.

Because climate change modifies the global hydrological cycle,

the distribution, amount, and timing of WS components such as

runoff, precipitation, and evapotranspiration will likely undergo

significant changes.6–8 For example, increased evapotranspira-

tion leads to a decrease in soil moisture in summer and more

snowfall accumulation in wetter winters that melts early in warm

springs, thereby altering the runoff regime.9,10 Thesemeteorolog-

ical factors, combinedwith landuse landcover (LULC)dynamics,6

ecology factors, soil attributes, and topography, contribute to the

complexities ofWS dynamics, especially across space, time, and

various domains.11 Such alterations directly affect human sys-

tems, influencing water availability for agriculture, industry, and

domestic use.Moreover, shifts inWScan impactextremeweather

events, contributing to challenges such as floods or droughts that

can disrupt communities and economies. Nevertheless, the effi-

cacy of proactive planning and adaptation strategies to mitigate

potential WS risks to human and environmental systems critically

relies on precise investigations and WS projections in a changing

climate.

Long-term datasets are imperative for understanding the

overarching patterns of WS dynamics, encompassing seasonal

variations andpotential shifts over the years.While direct observa-

tions provide a substantial amount of valuable information, the

availability of such data is often restricted due to various factors,

including limited accessibility, inadequate monitoring infrastruc-

ture, and financial constraints. To cushion some constraints,

satellite data, particularly from the Gravity Recovery and Climate

Experiment (GRACE) mission,12 pioneered the measurement of

large-scale changes in WS after 2002. Underpinned by model-

derived outputs, assessing WS components using GRACE data

on a basin/regional to continental scale is now feasible.13–15
GRACE data have been widely used in WS assessments such as

floodanddroughtmonitoring, global freshwater availability, ocean

dynamics, and water budget closure analysis.16–18 Despite these

applications, the temporal coverage of the data (2002–present) re-

mains a notable limitation inWS impact assessment. This duration

is insufficient for comprehensive monitoring of long-term changes

inWS patterns, particularly when assessing changes attributed to

climate variationoverextendedperiods—typically over30-year in-

tervals. Consequently, the constraints associated with observa-

tional and satellite data hinder the accurate monitoring and evalu-

ation of long-term shifts in WS dynamics.

WS dynamics have been widely monitored using the water

budget model to understand long-term changes in WS, particu-

larly at a basin scale.Awater budgetmodel is a conceptual frame-

work that accounts for WS within a defined system. The main

components of the water budget model include precipitation,

evapotranspiration, runoff, and changes in storage. Precipitation

represents water input into the system, while evapotranspiration

accounts for the water returned to the atmosphere through pro-

cesses suchasplant transpirationandsoil andwater evaporation.

Runoff encompasses the water that flows over the land surface,

eventually contributing to rivers and lakes. Changes in storage

consider alterations in soil moisture, groundwater levels, and

other reservoirs within the system. In essence, WS is one of the

critical components of the hydrological cycle, often derived

from thewater budgetmodel that describes the balance between

precipitation, evapotranspiration, and runoff. The spatiotemporal

evolution of WS can also be inferred from the summation of soil

moisture, snow cover, and groundwater.19

Several studies20–22 have described the hydro-climatic varia-

tions in river basins by evaluating various components of the

hydrological cycle,9,20,23–25 demonstrating that precipitation

plays a crucial role in driving WS in tropical, hot semi-arid, and

temperate climates with dry winters.2,26 In specific locations in

the mid and high latitudes without dry seasons, evapotranspira-

tion becomes a primary driver of WS changes. In contrast, tem-

perature dominates in cold-arid regions with dry summers.2

However, it is crucial to note that individual water budget compo-

nents interact and influence WS dynamics differently across

various scales.1,8,9,23,27 For example, hydro-climatic factors are

not the sole mechanisms driving WS behavior; climate change-

induced glacial retreat and human activities, includingwater con-

sumption and changes in LULC, have also been identified as sig-

nificant driving forces behind WS changes.28 Evidence indicates

that an increase in forest cover is associated with a decrease in

river discharge.27,29 Increased deforestation and urbanization

have also been associated with high land surface temperature

and thermal stress6,30,31 and unpredictable river discharge

peak dynamics.27 Increased WS losses are also directly attrib-

uted to human activities, particularly unsustainable groundwater

abstraction in global drylands and warming-induced glacier loss

in humid regions.28,32 Because of the intricate interplay among

various hydro-climatic factors, comprehending the fundamental

hydro-meteorological processes influenced by large-scale at-

mospheric processes, LULC, and their complex feedback inter-

actions presents considerable challenges. Furthermore, the intri-

cate nature of WS, coupled with uncertainties and the nonlinear

hydro-meteorological processes involved in assessing individual

water budget components, restricts the practical application of
One Earth 7, 72–87, January 19, 2024 73
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the water budget approach in impact assessment due to the

water budget closure problem.

Numerical and climate models have been developed to

overcome these complexities and to enhance our understanding

of the Earth’s complex, nonlinear hydro-meteorological pro-

cesses. These models also help address the emerging water

budget closure problem arising from using different sources of

datasets to balance the water budget.16 Climate models provide

efficient synopses in exploring water budget components (i.e.,

precipitation, runoff, evapotranspiration, andWS changes), which

are challenging to monitor thoroughly on a global scale. However,

general circulation models are unsuitable for impact research due

to their poor resolution (inability to capture fine-scale details effec-

tively) and their inadequate depiction of microphysical pro-

cesses33–36 due to oversimplification of real-world features, which

jointlymagnify the inherentbiases inglobal circulationmodels.33,34

Therefore, correcting these biases and investigating how well

various correction strategies can mimic the signs of climate

change33,37 are crucial. While bias correction (BC) methods have

been widely employed to correct global circulation models mete-

orological variables, there remains uncertainty regarding their per-

formance incorrectingWSandhowtheyaddress thewaterbudget

closure problem. Furthermore, the uncertainties linked to individ-

ual water budget components while estimatingWSwith the water

budget approach limit their applicability in impact assessment. For

example, evapotranspiration, a water budget component calcu-

latedusing thewater budgetequation, accordswellwithestimates

from remote sensing regarding the seasonal cycle but demon-

strates more inter-annual variability and more significant magni-

tudes.24,25,38,39 In essence, inferring WS as a residual of other

water components, without proper evaluation, could produce

erroneous results due to inherent uncertainties associated with

each component, lack of closure in the water budget model, and

other drivers of WS change (e.g., LULC). Hence, the need to pro-

vide a critical understanding of the projected changes inWS char-

acteristics and the rolesof large-scale atmosphericprocessesand

LULC using a synergy of climate model outputs, reanalysis data-

set, and remote sensing observations is imperative and requires

further attention in the context of a changing climate. Also, ad-

dressing theuncertainties andbiases fromdifferent drivingWSda-

tasets is required toachieve accuratewater budget closure.16,40,41

Here,we investigate changes inWSbyevaluating twoBC tech-

niques that aim to improve the representation of WS changes

while reducing uncertainties in the water budget closure within

the Coupled Model Intercomparison Project Phase 6 (CMIP6)

global climate models (GCMs), reanalysis dataset and remote

sensing observations. The improved representation of WS has

significant implications for water resourcemanagement, ecolog-

ical conservation, and climate change adaptation strategies. We

observe that the multivariate BC approach improves WS repre-

sentation and closes thewater budget reasonably. This improve-

ment offers a more precise representation of global terrestrial

water changes within the CMIP6 GCMs for historical data and

future projections. Hence, we utilize the information from multi-

variate BC outputs to achieve the following:

(1) assess global WS changes to enhance our understanding

of WS trends, projections, and seasonal characteristics

under different climate change scenarios, including the
74 One Earth 7, 72–87, January 19, 2024
middle of the road (SSP 245), regional rivalry (SSP 370),

and fossil-fueled development (SSP 585) scenarios and

(2) explore the potential influences of LULC, global wind sys-

tems, and water vapor transport on WS changes.

By investigating the intricate relationships among various fac-

tors, we establish that land use and land cover patterns, along-

side moisture transport into and out of basins—regulated by

global wind and pressure systems—exert significant influence

on global terrestrial water changes.

RESULTS AND DISCUSSION

Method summary
We investigate long-term WS dynamics derived from the water

budget equation and GRACE data. However, using univariate

and multivariate BC approaches, we aimed to improve WS rep-

resentation while reducing uncertainties in water budget closure

within CMIP6GCMs, reanalysis dataset, and remote sensing ob-

servations. The univariate quantile mapping BC strategy maps

the source distribution quantiles to target distribution quantiles.

In contrast, the multivariate BC techniques33,42–44 consider the

whole multivariate dependency structures between several

dependent and independent climate variables.33,42,45 The multi-

variate dependency structure shows the connections between

each independent variable (e.g., precipitation and runoff) and

each dependent variable (e.g., WS). Thus, the multivariate

approach consistently corrects biases across multiple vari-

ables,33,42–44 while the univariate method corrects each variable

(e.g., evapotranspiration) independently. We conduct a compre-

hensive assessment of the accuracy of each GCM and BC

method, employing various performance statistics. Our investi-

gation includes estimating trends and examining the joint depen-

dency structures among water budget variables. We employ

self-organizing maps31,46 and Gaussian mixture models31 to

enhance our understanding of classifying WS into surpluses

and deficits. Additionally, we analyze the dynamics and trends

of WS, considering the influence of different LULCs, large-scale

climate events, and climate change scenarios.

Performance of BC methods and GCMs
Assessing the long-term average state of CMIP6WS from 1959 to

2014 using the spatial root-mean-square error (RMSE) reveals dis-

crepancies in the performance of different GCMs across various

regions. For example, in the Amazon basin, the CMCC (Centro

Euro-Mediterraneo sui Cambiamenti Climatici Earth System

Model 2) model exhibits an RMSE ranging from 10 to over

140mm,while the UKESM (United KingdomEarth SystemModel-

ling project (LowResolution))model ranges from0 to 100mm (Fig-

ures S1A–S1J). The higher RMSE observed in the CMCC model,

surpassing 140 mm in many tropical regions and highland areas

like the Himalayas, indicates substantial deviations from the refer-

ence data. These deviationsmay be attributed to variations in land

surface schemes,misrepresentation of vegetation and orography,

unrealistic large-scale variability, and divergent internal variability

between climatemodels and observations.33–35,47 Figure S1K val-

idates the uncertainty from using varied water budget component

datasets for estimatingWS.16,40 The uncertainties range from 0 to

120mmRMSE, especially in the tropics andmid-latitudes. Higher
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Figure 1. Performance of BC methods and global climate models for WS

The error matrix evaluates the performance of MBCN-corrected CMIP6 models in estimating derived WS across different time scales and regions:(A) monthly,

(B) annual, (C) June-July-August-September (JJAS), and (D) December-January-February (DJF). Regions are denoted by AFR for Africa, AS for Asia, NA for North

America, SA for South America, EU for Europe, and OC for Oceania. The graphical representation includes various triangular markers: green triangles at the top

depict median absolute error (MedAE), blue triangles at the bottom represent relative absolute error (RAE), purple triangles on the left indicate root-mean-square

error (RMSE), and red triangles on the right signify the RMSE-observations standard deviation ratio (RSR). For instance, theMPILRmodel exhibits higher RSR and

RAE values (lighter colors) globally than other models on amonthly scale (A), suggesting its relatively lower accuracy in simulating derivedWSmonthly. WB refers

to changes in WS derived from the water balance equation using reference water budget variables. In comparison with uncorrected or QDM-corrected GCMs

(Figures S2 and S3), the MBCN BC technique notably minimizes biases in GCMs, maintains the interdependency among water budget variables (e.g., precip-

itation, evapotranspiration, and runoff), and achieves satisfactory closure in the water budget. Refer to Table S1 for the complete names of global climate models

(GCMs). CNRM6, Centre National de Recherches Météorologiques CM6-1; IPSL, Institut Pierre Simon Laplace–Coupled Model version 6A–low resolution;

MIROC6, Model for Interdisciplinary Research on Climate version 6; MPI-HR, Max Planck Institute Earth System Model for the High-Resolution Model Inter-

comparison Project (high resolution); MPI-LR, Max Planck Institute Earth SystemModel for the High-Resolution Model Intercomparison Project (low resolution);

ENS, multi-model ensemble mean of the previous nine models.
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RMSEs in Greenland can be attributed to the water budget equa-

tion’s inaccurate representation of frozen WS.48 Generally, for

cold, snow-prone, and some polar regions, permafrost storage

contributes to large RMSE.48

The identified uncertainties were effectively addressed to

ensure a comprehensive closure of the water budget. Addition-

ally, a performance evaluation of the bias-corrected GCMs using

the N-dimensional probability density function transformmethod

(MBCN; Figure 1) reveals a significant reduction in biases

compared with the uncorrected GCMs (Figure S2) across

various time scales, including monthly, seasonal, and annual.

Notably, the MBCN-corrected GCMs demonstrate monthly per-

formance scores ranging from 0.0 to 2.1 for the RMSE between

the reference and model output and the reference standard de-

viation (RSR). The RMSE varies from 0.0 to 27.0 mm, the median

absolute error (MedAE) ranges from 0.0 to 17.0, and the relative

absolute error (RAE) varies from 0.0 to 2.5. We observe similar

tendencies in the quantile delta mapping (QDM)-corrected

CMIP6 models (Figure S3). Conversely, the uncorrected CMIP6

models exhibit monthly RSR ranging from 1.1 to 5.0, RMSE
ranging from 7.0 to 42.0 mm, MedAE ranging from 5.0 to 36.0,

and RAE ranging from 1.18 to 5.5.

Following the BC, themodels with the poorest performance on

a global scale are MPILR (monthly), MRI (Meteorological

Research Institute Earth System Model Version 2.0) and MPILR

(June-July-August-September [JJAS]), and MPILR (December-

January-February [DJF]). It is worth noting that the BC methods

effectively reduced uncertainties in the water budget and

improved the alignment between the bias-corrected WS derived

from thewater budget equation (bias-correctedWS [BCWS]) and

the WS data reconstructed from the GRACE mission across all

temporal scales (Figures 1 and S3). This is consistent with Xiong

et al.,49 who demonstrated improved accuracy of downscaled

and bias-corrected climate model simulations relative to

GRACE reference data over the Yangtze River Basin.

Furthermore, there is compelling evidence of comparable sta-

tistical properties between the monthly GRACE data and the

MBCN-BCWS (Figure 2) that validate the reduction in uncertainty

at the basin scale. The breadth of each density curve corresponds

to the estimated frequency of data points within an area.50
One Earth 7, 72–87, January 19, 2024 75
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Figure 2. Basin-scale performance of monthly GRACE and the MBCN-bias-corrected WS
The width of each density curve represents the estimated frequency of water storage (WS) change data points within a specific area. We can gauge similarities or

differences in the data series by comparing the peaks, troughs, and tails of these density curves. The blue density curves representWS from the Gravity Recovery

and Climate Experiment (GRACE), while the green density curves depict MBCN-bias-correctedWS (BCWS) obtained from the water budget equation. Significant

changes in themean, calculated using a t test, are shown on the horizontal line between the two plots for each basin. The p value represents the threshold at which

the null hypothesis (no difference between themean values of monthly GRACE andMBCN bias-correctedWS) is rejected. The figure presents strong evidence of

similar statistical properties between the data sources, confirming reduced uncertainty at the basin scale.
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Comparing the peaks, troughs, and tails of these density curves

allows us to assess similarities or discrepancies in the data se-

ries.50 A broad density curve suggests a high frequency of values

within a particular range, while a narrow density curve indicates a

lower occurrence of values in that range.50 We observe notable

similarities in the properties of the density curves and no signifi-

cant alterations in the mean values across all basins (p > 0.05).

This lack of significant mean changes between the GRACE data

and the BCWS underscores the effectiveness of the BC method

in accurately addressing water budget errors arising from utilizing

water budget variables from diverse sources. In general, multivar-

iate BC can effectively enhance the consistency, precision, and

dependability of climatemodel simulations4,33,35,42 while reducing

the uncertainties arising from water budget closure. Furthermore,

the Student’s t test statistic at a 95% confidence level is used to

evaluate GRACE and MBCN-BCWS data, and the analysis indi-

cates no statistically significant difference in the annual WS for

most models across various regions (Figure S4). Consequently,

the CMIP6 multimodel ensemble mean (Figure S4C) and INM

(Institute for Numerical Mathematics CM5) (Figure S4D) demon-

strate the overall best performances. Even though single-model,

initial-condition, large ensembles quantify uncertainty from the

model’s internal variability,51 that single model may be an inade-

quate approximation of reality. In contrast, multimodel ensembles

generate climate simulations with identical forcing acrossmultiple

models to quantify epistemic uncertainties. Therefore, conducting
76 One Earth 7, 72–87, January 19, 2024
thorough model evaluation and implementing BC is crucial when

utilizing either of the two ensemble approaches for impact

assessment.4,37,42,47,51 Therefore, we use the CMIP6 multimodel

ensemble mean (ENS) (Multi-model ensemble mean of the previ-

ous ninemodels) in the subsequent sections after establishing the

overall robustness in the previous analyses.

Joint dependency structure and partial correlation
Ensuring that the ENS and BC methods can accurately capture

and preserve the dependency structures among water budget

variables, such as precipitation, actual evapotranspiration, and

runoff, is crucial. However, the QDM-corrected ENS fails to pre-

serve the dependencybetweenWSand actual evapotranspiration

for all continents (Figure S5A). In contrast, the MBCN-corrected

ENS maintains this dependency, with values close to zero

observed for every continent (Figure S5B). On the other hand,

the uncorrected ENS cannot retain the dependency structure be-

tweenWSand other variables (FigureS5C). A higherRMSEgener-

ally indicates a more remarkable inability of the model to preserve

the joint dependency structure among the variables.

Wealsoshowthat thebias-correctedENSeffectivelypreserves

the partial correlation between WS and precipitation (Figure S6).

However, the uncorrected ENS fails to replicate this relationship,

particularly in Asia and North America, potentially leading to

mischaracterizing basins such as the Volga, Ob, Lena, and Mis-

sissippi (Figure S6C). Generally, the reference dataset and the
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MBCN bias-corrected ENS have a positive partial correlation be-

tween WS and precipitation across all basins (Figures S6B and

S6D). This positive correlation between WS and precipitation,

along with the predominantly negative correlation with actual

evapotranspiration, canbe influencedbychanges in temperature.

As the temperature rises, moremoisture is introduced into the at-

mosphere through evapotranspiration, propelling a precipitation

event via moisture convergence at lower altitudes and resulting

in heavier precipitation.23,52,53 Therefore, more water is available

because of the high intensity and flow of the recent precipitation

event;23 hence, the positive correlation between WS and precip-

itation and the majorly negative correlation with evapotranspira-

tion54 in the reference and MBCN bias-corrected ENS.

Moreover, both the QDM-corrected and uncorrected ENS

demonstrate inadequateperformance inevaluating the correlation

between WS and runoff (Figures S6A and S6C). This inadequacy

stems from inherent biaseswithin the uncorrectedCMIP6models,

compounded by the limitations of QDM in rectifying biases

sequentially across all variables.33 Hence, the association among

the variables is missing during QDM corrections.33,42,43,55

Conversely, MBCN preserves the multivariate dependence struc-

ture reasonably well.33,43 Generally, small precipitation amounts

and high evaporative demand can result in low WS. Likewise,

high precipitation and low evaporative demand can cause low

evapotranspiration and high WS, aiding rapid soil recharge. Also,

ahighvolumetricwatercontent threshold is required for runoff acti-

vation in deeper tropical soil layers.56 Increased precipitation over

tropical soils with high drainable porosities keeps the volumetric

water content at saturation.When the saturation threshold at lower

soil depths is exceeded, the extra water flows to the upper levels,

satisfying the field capacity, and runoff begins.56 On the other

hand, drainable porosity declines with depth in temperate soils

due to increases in bulk density,57 triggering a quick rise in thewa-

ter table andaccelerating shallow lateral subsurfaceflow;57hence,

the positive partial correlation between runoff and WS.

Historical WS trends and future projections
The analysis of the WS annual trend (Figure S7) reveals notable

differences between the uncorrected ENS and the reference da-

taset. In the historical period, the uncorrected ENS overesti-

mates the trends in most basins. For instance, the reference da-

taset indicates predominantly negative trends ranging between

�25 and 0 mm/decade in basins such as the Amazon, Chad,

and Colorado (Figure S7A). However, the uncorrected ENS clas-

sifies these trends as ranging between �5 and 15 mm/decade

(Figure S7B). In contrast, theMBCN-corrected ENS satisfactorily

replicates these observed trends (Figure S7C). These trends are

consistent with past studies, including over China,32 where

similar negative trends have been reported. The significance of

the observed trends varies across basins, with the corrected

ENS consistently detecting more accurate and significant trends

than the uncorrected ENS. Therefore, the MBCN-corrected ENS

proves reliable for effectively illustrating future trends in WS. Un-

der the shared socioeconomic path (SSP) 245 scenario, signifi-

cant negative trends are observed in some parts of the Amazon,

Paraná, Nile, and Volta basins (Figure S7D). These negative

trends are further intensified under the SSP 370 and 585 climate

change scenarios. The trends for different seasonal classifica-

tions (JJAS and DJF) are also evaluated and are consistent
with the reference data, demonstrating the accuracy of MBCN-

corrected ENS.

Furthermore, analyzing multiple-period trends for selected ba-

sin averages (Figure 3) reveals magnitude and trend significance

variations during the JJAS season. Specifically, the YangtzeRiver

basin exhibits mixed trends in the historical period, as seen in the

JJAS single-period trend (Figure S8). However, the negative

trends observed in the multiple-period analysis are statistically

significant (Figure 3A I). For instance, the Yangtze River basin

manifests a positive but non-significant trend of 7 mm/decade

from1959 to the later 30-year period (along the y axis). In contrast,

the 56-year period indicates a non-significant �2 mm/decade

trend. Additionally, future projections from 2057 to 2070, under

the SSP 245 scenario, exhibit predominantly positive trends (Fig-

ure3B I).However, underSSP585, although significant trendsare

absent, we observed a greater number of positive trends than the

SSP 245 scenario (Figure 3D I).

On the other hand, the Amazon basin exhibits significant nega-

tive trends for all years under all future SSPs (Figures 3B–3D, ii).

Notably, there are some positive trends during drought episodes

(in the 1970s) in the Lake Chad basin (Figure 3A, iii). This can be

attributed to the rising groundwater table despite prolonged

droughts, aphenomenonpopularly called theSahelianparadox.58

This also enhances vegetation recovery during that period.59 In

addition, the warming of the northern Atlantic Ocean and the

Mediterranean Sea positively impacts the Lake Chad basin by

boosting the meridional convergence of external moisture at low

levels.27,60 As a result, the region experiences increased precipi-

tation and a partial rebound of rainfall after drought episodes.23

Similarly, positive WS trends can be attributed to increased soil

moisture content due to increasing rainfall intensity from the inten-

sificationof the low-level jet in thearea.61However, the localmois-

ture recycling rate, regulated by planetary flow patterns coupled

with the ElNiño-SouthernOscillation, significantly impacts annual

precipitation fluctuations in the basin.23,62 FigureS9 illustrates the

single-period trend for theDJFseason, notingconsistent negative

trends in the Amazon, Paraná, and Nile basins for the historical

and all future scenarios.

WS and LULC classification
Following the initialization, competition, collaboration, self-orga-

nization, and clustering adaptation mechanisms of the WS self-

organizing maps (SOMs),31 we classified the WS into 11 units

(Figure 4). In the historical JJAS, basins such as the Amur and

Volta witness an extreme WS surplus. Moreover, LULC type is

also an important factor in WS representation. For example, ba-

sins with a high proportion of forest cover (Amazon, Congo, and

Volga; Figure 5) are generally linked with aWS deficit in the JJAS

period. This can be attributed to less precipitation reaching the

ground due to tree canopies and increased evapotranspiration

due to active tree transpiration and higher leaf area.27,63 Hence,

the recharge appears to be slower. Also, lower temperatures,

limited water availability from frozen soil or reduced precipita-

tion, snowfall interception, and decreased leaf area index can

prevent high evapotranspiration rates,64 thereby maintaining

WS in DJF. It is important to note that the WS deficit in forested

basins varies depending on forest type. For example, broadleaf

forests facilitate more WS deficit than other vegetation types (cf.

Figures 4A and 5). Additionally, the type of vegetation, its height,
One Earth 7, 72–87, January 19, 2024 77
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Figure 3. Changes in WS trends (mm/decade) during historical and future projections for the JJAS season

Shown are 30-year multiple-periodWS trends (mm/decade) in the (i) Yangtze, (ii) Amazon, and (iii) Chad basins for the (A) historical period, (B) future period under

SSP 245, (C) future period under SSP 370, and (D) future period under SSP 585. The y axis shows the duration of each period and its corresponding starting points

on the x axis. The time series are based on the spatial mean aggregation of the basins. The results are visually presented on a grid, with the x and y axes

representing the starting point and length of each period, respectively. The color scale indicates the strength of observed trends, with black outlines highlighting

periods demonstrating significant trends at the 99% confidence level. This displays trends across various timescales, considering start and endpoint variations.

The uppermost left corner represents the longest duration of the time series, while the lowermost right corner indicates the most recent period. As exemplified in

this figure, it is evident that the robustness and statistical significance of estimated trends are contingent on the specific time frame under examination. Therefore,

the multiple-period trend analysis is a more robust alternative to single-period trend fitting.50 For instance, in the Yangtze basin, a 30-year period starting in 1959

shows a positive WS trend of about 7 mm/decade. However, with the entire 56-year time series, the trend becomes slightly negative. This highlights how series

length impacts trend calculations and illustrates regional variations inWS trends. Specifically, we observed reductions inWS for the Yangtze and Amazon basins,

while amarginal decrease is noted for the Lake Chad basin. Climate projections indicate severe and statistically significant decreases inWS for the Amazon basin

in the future, while slight increases are projected for the Yangtze and Lake Chad basins.
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and its density are key factors that significantly influence the

accumulation and interception of snow and precipitation.65

On the other hand, basins with a high proportion of combined

grassland, shrubland, and barren land are linked with JJAS WS

surplus (e.g., Volta and Ob). However, shrublands in the polar

basins (e.g., Yukon, Kolyma) aid more WS deficit in the JJAS

season. In general, leaf area increases precipitation and snow

interception, but tall shrubs promote snow trapping.65 Further-

more, the WS classification is reversed for many basins during

the DJF season (Figures 4B and 5). This suggests that the WS

modifications are not based solely on LULC type but also on sea-

sonal differences in climate dynamics.

In the future JJAS under SSP 245, most basins in the Southern

Hemisphere will experience more intense WS deficits. At the

sametime,NorthAfricawill reverse fromaslightsurplus (Figure4A)

toa severeWSdeficit (Figure4C). It isworthnoting that, underSSP

370 JJAS, several basins, like the Kolyma, that previously experi-

enced WS deficits during the historical period show a shift in sig-

nals during the future period. Therefore, further investigation is

needed tounderstand theunderlyingmechanismbehind thesedy-
78 One Earth 7, 72–87, January 19, 2024
namic patterns. On the other hand, most tropical basins show a

northward shift of the WS surplus under SSP 585. Notably, most

basins in the Southern Hemisphere get drier, while basins just

above the equator get wetter, confirming the ‘‘dry gets drier and

wet getswetter’’ paradigm.41 For future DJF seasons, theWSsur-

plus recovers in the tropics, shifting farther north under SSP 585,

while the extreme WS deficit is more pronounced under SSP

245.Most SouthernHemisphere basins witness wetter conditions

under SSP 370 comparedwith SSP 245 and 585. Because CMIP6

model projections incorporate future LULC dynamics, changes in

future LULC could be essential in WS future classifications.

WS and climate dynamics
Given the established WS feedback from LULC, a critical

emphasis lies in comprehending the impact of climate dynamics

on WS. Figure 6 shows the seasonal, long-term average state of

wind fields, WS, and geopotential height in the lower and mid-

troposphere from 1959 to 2014. Investigating the Northern-

Hemispheric tropical African expanse reveals a strong lower

tropospheric southwesterly monsoon wind from the Atlantic
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Figure 4. WS classification

Seasonal WS classifications are based on the self-organizing maps and GMM for (A) the JJAS historical period, (B) the DJF historical period, (C) JJAS future

projection under SSP 245, (D) DJF future projection under SSP 245, (E) JJAS future projection under SSP 370, (F) DJF future projection under SSP 370, (G) JJAS

future projection under SSP 585, and (H) DJF future projection under SSP585. The black polygons represent the river basins. EWD, extreme WS deficit; VSWD,

very strong WS deficit; SWD, strong WS deficit; MWD, moderate WS deficit; SLWD, slight WS deficit; NOM, normal condition; SLWS, slight WS surplus; MWS,

moderate WS surplus; SWS, strong WS surplus; VSWS, very strong WS surplus; EWS, extreme WS surplus. In the future JJAS season under SSP 245, most

basins in the Southern Hemisphere are projected to experience intensified WS deficits compared with the historical period. Tropical basins are expected to

witness a northward shift inWS surplus under SSP 585, indicating drier conditions in the SouthernHemisphere and increasedmoisture slightly above the equator.

During future DJF seasons, tropical regions exhibit a further northward shift in WS surplus under SSP 585, while SSP 245 portrays extreme WS deficits. Most

Southern Hemisphere basins showcase wetter conditions under SSP 370 compared with SSP 245 and 585. These findings highlight significant shifts in water

availability across basins, signaling an impending increase in aridity for many Southern Hemisphere areas and a trend toward wetter conditions near the equator

during JJAS. This emphasizes the critical need for targeted and region-specific approaches in managing water resources amid changing climate dynamics. See

Figure 5 for basin names.
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Ocean during JJAS (Figure 6A), carrying moisture inland. This is

accompanied by a monsoon trough centered on the Sahel, a

weak ridge across the Mediterranean Sea, and southward mois-

ture transport (Figure 7A). This favors the wetting of this region,

thereby stimulating WS surplus in JJAS (Figure 4A).

Furthermore, the southwestern monsoon pushes moisture up to

around18�N66 (Figure6A),whilesouthwardmoisture transport from

the Mediterranean Sea dominates the larger expanse of the Sahel

(Figure 7A). In the mid-troposphere, there is a Saharan high to the

west, favoring the intensificationof theAfricaneasterly jet (AEJ) (Fig-

ure 6C).67 This increases the magnitude of the southwardmoisture

transport westward from the Mediterranean Sea by around 80 kg/

m2/s (Figure 7A). On the other hand, moisture transport from the

Atlantic Ocean, orchestrated by the southwesterlies, is limited to

the lower troposphere68 (Figure 6A). As a result, the lower tropo-

spheric southwestern monsoon governs WS dynamics in the

southern Volta, southern Chad, and southern Nile basins.

In contrast, the weak ridge in the lower troposphere, AEJ,69

and the Saharan high in the middle troposphere regulate mois-

ture intake in the northern Chad and northern Nile basins. The
Nile basin has substantial moisture influx from the northern,

eastern, and southern boundaries, while the western boundary

is the export channel (Figure 7A). The intensity of the northward

moisture fluxes at the southern boundary is greater than that of

the inward moisture fluxes at the northern boundary or the out-

ward moisture fluxes at the western boundary.66 This suggests

that the leading cause of the high water vapor content during

JJAS is the northwardmoisture flux linked to the Indianmonsoon

(Figures 6A and 7A). This demonstrates that the Indian Ocean is

one of the most crucial sources of moisture for the rising mois-

ture content in this basin. The cutoff highs and the tropical cy-

clones around Madagascar (Figure 6A) and low-level jet70 in

the lower troposphere redirect substantial moisture from the In-

dian Ocean away from Madagascar and East Africa toward the

Nile basin (Figure 7A). Nevertheless, this phenomenon triggers

the displacement and intensification of the low-level jets in

DJF, notably toward the southern regions of Madagascar (Fig-

ure 6B). This displacement results in abundant moisture inflow,

closely associated with atmospheric rivers from the Indian

Ocean into the southern Congo basin in DJF (Figure 7B). While
One Earth 7, 72–87, January 19, 2024 79
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Figure 5. Land use and land cover classes

We reclassified the International Geosphere-Biosphere Program (IGBP) type 1 scheme global land use and land cover (LULC) dataset identifying 11 natural

vegetation classes, three developed and mosaicked land classes, and three non-vegetated land classes into 12 distinct categories based on their similarity

intervals to enhance interpretability. The black polygons represent river basins. LULC type is a crucial factor influencing WS changes. Basins with more forest

cover (e.g., Amazon and Congo) consistently display a WS deficit during the historical JJAS period (Figure 4). The WS deficit within forested basins varies based

on the specific forest type. Broadleaf forests exhibit higher WS deficits than other vegetation types (refer to Figure 4A for a detailed comparison). Basins

dominated by grassland, shrubland, and barren land (e.g., Volta and Ob) consistently show a WS surplus during JJAS (Figure 4). These findings highlight the

intricate relationship between LULC characteristics and WS patterns, highlighting the need for region-specific WS management strategies.
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more moisture is available from atmospheric rivers, this does not

always translate to surplusWS due to different LULC classes, at-

mospheric river characteristics, and landfall zones.71 Generally,

the increased greenhouse warming from abundant moisture in-

creases temperature.72 As a feedback, waterbodies lose more

water due to higher evaporation, thereby increasing atmospheric

moisture content.

The Amazon basin primarily receives inflow from its north-

eastern boundary during the JJAS period. In contrast, the other

boundaries predominantly experience strong outflows (Fig-

ure 7A). Interestingly, the substantial outflows from the Amazon’s

southern boundary, which result in a WS deficit in the Amazon

basin, play a pivotal role as inflow for the Paraná basin, thereby

leading to a WS surplus in Paraná (Figures 4 and 6). This robust

outflow from the Amazon subsequently continues toward the

southern boundary of the Paraná basin. The South America

coastal jet73 (Figure 6C) dominates the moisture inflow and

outflow (Figure 7A), while the low tropospheric anti-cyclonic vor-

tex (Figure 6A) regulates the direction of flow over these basins.

During DJF, the easterly crosses northern Australia, causing

rapidmoisture inflow from thewestern PacificOcean (Figure 7B).

However, the low tropospheric low-pressure center (Figure 6B)

and mid-tropospheric high-pressure center (Figure 6D) associ-

ated with this region during this period converge the moisture in
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northern Australia, paving the way for a robust westward outflow

toward northwestern Australia (Figures 6B and 7B).

The dominant northward moisture inflow into the Yangtze and

Amur basins in JJAS (Figure 7A) is from the South China Sea,74

aided by the low-level ridge and strong monsoon wind (Fig-

ure 6A). However, the Bay of Bengal, a low-level trough, and a

mid-level jet (Figures 6B and 6D) are prominent in the northward

moisture influx into the Yangtze and the moisture cutoff to the

Amur in DJF (Figure 7B). Additionally, the Asian westerly jet

(Figure 6D) and low-level high-pressure center in central Asia

(Figure 6B) strengthen the transport of the northward-flowing

moisture from the Arabian, Mediterranean, and Red Seas toward

the Volga and Ob during DJF (Figure 7B), thereby enhancing the

WS surplus in these months (Figure 4B).

We note higher moisture transport values over subtropical conti-

nents in both hemispheres.71 However, we observe a maximum

landfalling atmospheric river on the western coast of the Atlantic,

where high sea surface temperatures support a faster evaporation

rate, supplying moisture to the atmosphere and promoting its sub-

sequent transit tootherplaces.71 Thisarea isacrucialmoisturepool

for North AtlanticOceanatmospheric rivers landfalling on thewest-

ern European coast, northeastern American coast, Iceland, and

Greenland.71 It is important to note that large atmospheric rivers

are not synonymous with high precipitation extremes, as many



Figure 6. WS and climate dynamics

Shown are the long-term average states from 1959 to 2014 of WS (mm) (background), wind fields (m/s) (green vectors), and geopotential height (m) (purple

contours and black labels) in the lower troposphere (925 hPa) for (A) JJAS and (B) DJF and in the mid-troposphere (700 hPa) for (C) JJAS and (D) DJF. The black

polygons represent river basins. See Figure 5 for basin names. Changes in WS dynamics are significantly shaped by monsoonal winds, atmospheric pressure,

and high-altitude winds (jets). This interplay is crucial in various basins where distinct atmospheric phenomena notably influenceWS dynamics. For instance, WS

dynamics are steered primarily by the effects of the lower tropospheric southwestern monsoon in basins like the southern Volta, southern Chad, and southern

Nile. In the northern Chad and northern Nile basins, factors like the weak ridge in the lower troposphere, the AEJ, and the Saharan high in the middle troposphere

regulate moisture intake. These unique atmospheric conditions underscore the distinct and intricate influences affecting WS dynamics across different regions.

This highlights the importance of comprehending localized atmospheric mechanisms governing WS in specific basins.
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non–atmospheric river events have been associated with more

extreme precipitation occurrence.75 More importantly, enhanced

moisturedrives the fastwarmingof thenear-surface temperature,61

thus accelerating evaporation, which could potentially lead tomore

WSsurplus.Moreover, this alsodependsonotherdynamic factors,

like the origin of the transport and the area of landfall.

Conclusion
We investigate global WS using bias-corrected CMIP6 GCMs.

Our findings demonstrate that the MBCN BC technique effec-

tively reduces biases in GCMs, preserves the dependency struc-

ture of WS variables (e.g., precipitation, evapotranspiration, and

runoff), and achieves satisfactory water budget closure, offering

a versatile methodology for the climate and hydrology research

community. However, it is worth noting that the complexity of

the MBCN method makes it time consuming and computation-

ally demanding.33,35,42,43 Nevertheless, it is essential to conduct

robust evaluations to ensure that the various WS properties

are preserved while solving the water budget problem. This is

crucial for maintaining accuracy in WS representativeness. For

instance, QDM-corrected WS successfully maintains the quan-

tity of WS but cannot preserve its dependency structure with

other water budget variables. In general, multi-variate BC can

effectively enhance the consistency, precision, and depend-

ability of climate model simulations4,33,35,42 while reducing the

uncertainties arising from water budget closure.
Additionally, we establish that WS dynamics are influenced

by geographical area, LULC type, and climate dynamics that

affect moisture movement in and out of basins. It is important

to note that additional moisture intake into basins does not al-

ways lead to surplus WS due to various local-scale impacts,

different LULC classes, atmospheric river characteristics, and

landfall zones. Furthermore, we observe varied trends in WS

across different basins, with the corrected model revealing

more significant and accurate trends than the uncorrected

CMIP6 multimodel ensemble mean. Under SSP 245, the future

JJAS season exhibits more severe deficits in most basins in the

Southern Hemisphere, while basins in North Africa experience

a notable shift from a slight WS surplus to a severe WS deficit

compared with the historical period. In contrast, under SSP

585, there is a northward shift in WS surplus in most tropical

basins. Notably, basins in the Southern Hemisphere experience

drier conditions under SSP 245, while African basins just above

the equator become wetter across all climate scenarios

compared with the historical period. For the future DJF season,

the WS surplus in the tropics recovers and shifts farther north

under SSP 585, while a severe WS deficit remains evident un-

der SSP 245. Under SSP 370, most basins in the Southern

Hemisphere exhibit wetter conditions compared with the his-

torical period.

These findings offer insight into how ecological and human

systems dependent on these WS dynamics could be affected.
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Figure 7. WS and vapor transport

Shown are long-term average states from 1959 to

2014 of WS changes (mm) (background) and inte-

grated vapor transport (IVT; kg/m/s) in vectors during

the historical (A) JJASand (B)DJF seasons. Negative

IVT means southward moisture transport, while

positive IVT means northward moisture transport.

The black polygons represent river basins, and the

background is WS changes. See Figure 5 for basin

names. Comprehending the dynamics of moisture

transport is integral for understanding themovement

of moisture into and out of basins. For example,

during JJAS, the increased moisture content in the

Nile basin is supported by the northward moisture

transport from the Indian Ocean. This underscores

the importance of the Indian Ocean as a primary

moisture source for improvingmoisture conditions in

theNile basin.While atmospheric rivers contribute to

increased moisture availability, this does not uni-

formly lead to excess WS due to variations in land

use and land cover, differing features of atmospheric

rivers, and the locations where they land. This

complexity is evident in the southern boundary of the

Amazon, where substantial outflows result in a WS

deficit. However, these outflows are a significant

inflow for the Paraná basin, contributing to the Par-

aná basin WS surplus during JJAS. These observa-

tions highlight the intricate relationship between

moisture transport, land characteristics, and result-

ing WS dynamics in basins. It emphasizes the need

for a thorough understanding of these complex in-

teractions to effectively manage water resources in

different regions.
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Conserved water is crucial in lake and wetland systems, agri-

culture, shallow groundwater recharge, and irrigation. WS dy-

namics greatly influence associated ecological and social

structures, including wetland maintenance, groundwater

replenishment, lake health, irrigation scheduling, and improved

water management in agriculture. The projected deficits or sur-

pluses in WS due to climate change will impact water supply

and may enhance or imperil the efficiency of hydrological and

agricultural systems. Policymakers can consider the effects of

WS dynamics when formulating climate change adaptation or

mitigation strategies for different subsystems. Furthermore,

sustainable land management approaches that promote

ecosystem services and safeguard biodiversity should also be

supported.
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Data and code availability

The CMIP6 data and codes are publicly available through the Earth System

Grid Federation at http://esgf.llnl.gov/.

The CRU reference data are publicly available at https://crudata.uea.ac.uk/

cru/data/hrg/#info.
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The reconstructed GRACE data are publicly available at https://doi.org/10.

6084/m9.figshare.7670849.

The Global Runoff Ensemble (GRUN) reference data are publicly available

via https://doi.org/10.6084/m9.figshare.9228176.

The JRA55 reference data are publicly available at https://rda.ucar.edu/

datasets/ds628.1/.

The Moderate Resolution Imaging Spectroradiometer (MODIS) dataset is

publicly available at https://lpdaac.usgs.gov/tools/usgs-earthexplorer/.

The code used in this manuscript is deposited and freely available at https://

github.com/cyndyfem/One-Earth-Paper.git and publicly available as of the

publication date.

The original and unprocessed climate data used for this study are available

in Adeyeri.76

Upon request, the lead contact will provide any extra data necessary to re-

analyze the data described in this study.

Variables

Our analysis centers on nine CMIP6 models and their ensemble means for the

SSP 245, 370, and 585 scenarios77 for the historical (1959–2014) and future

(2045–2100) periods (Table S1). The monthly reference dataset for precipitation

and temperature isbasedon theClimateResearchUnit (CRU) series.78The refer-

ence runoff isbasedon theGRUN79at 0.5� resolution.The Japanese55-yearRe-
analysis (JRA55)80 monthly fields of specific humidity (q), zonal and meridional

winds (u, v), geopotential height, and actual evapotranspiration at a 1� 3 1�

grid resolution are used to calculate the moisture transport and water budget.

The reconstructed changes in terrestrial WS68 from theGRACE are used to eval-

uate WS from the water budget equation and bias correct the climate models.

Subsequently, themonthly fields are aggregated to seasonalmeans.All datasets

are regridded to a standard 1� 31 � grid to prevent erroneous scale gap ef-

fects.34,81 All conservative variables (precipitation, runoff, specific humidity, geo-

potential height, and actual evapotranspiration) are regridded using the
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conservative remapping technique,while thebilinear remapping technique34,82 is

used for all non-conservative variables (WS, zonal and meridional winds). The

LULC data are derived from MODIS Land Cover Type (MCD12Q1) v.6.31

WS change

Thewater budget equation is initiated with threemeteorological variables: pre-

cipitation, actual evapotranspiration, and runoff. This is given as

dS

dt
= J � ET � Q (Equation 1)

where S is the total WS change over time, J is the precipitation, ET is the actual

evapotranspiration, and Q is the runoff.

Due to the uncertainties related to water budget closure, especially from us-

ing different data sources, the WS generated from the climate models during

the historical period is bias corrected and evaluated against the reconstructed

changes in WS83 of the GRACE mission (GRACE-REC). The GRACE missions

have delivered unparalleled global estimates of monthly WS anomalies. How-

ever, due to their relatively short temporal span (�20 years), GRACE observa-

tional outputs are insufficient for evaluating the long-term trends of WS. As a

result, we use the reconstructed GRACE products,83,84 which employ statisti-

cal models in training GRACE observations to backcast previous climate-

driven changes in WS using daily and monthly meteorological information. In

contrast to conventional hydrological models that individually represent water

reservoirs such as snow and soil moisture, typically yielding a singlemodel run,

GRACE-REC directly reconstructs total WS changes and incorporates

numerous ensemble members, thereby enabling a comprehensive assess-

ment of predictive uncertainty.50 To assess the accuracy of these data-driven

WS estimates, several studies19,41,83,84 have independently evaluated

GRACE-REC and ascertained its accuracy and robustness. GRACE-REC is

provided at a spatial resolution of 0.5� from 1901 to the present.

BC

A quantile-dependent correction function between the model simulation or

water budget WS quantiles and the observations quantiles is used in the uni-

variate quantile mapping (QM) BC technique. With this function, the simulated

data are converted into bias-corrected data. The underlying presumption is

that models can accurately predict the variable’s quantiles, or ordered cate-

gories, for both the past and future periods.33,85–87 To preserve the relative

or absolute quantile changes, QDM multiplies the modeled values by the

observed values at the exact quantiles, subsequently estimating the relative

or absolute quantile changes between the calibration and future periods.

Consequently, multiplying these relative changes by the bias-corrected values

generates the bias-corrected future projections.33,42,43

While preserving the anticipated changes in the simulated quantiles, multi-

variate BC employs the QM technique to adjust the marginal distributions of

the climate model simulations. The multivariate rescaling approach is applied

to modify the joint multivariate dependence structure between different

dependent variables during multivariate BC.55 Themultivariate BCmethod us-

ing the N-dimensional probability density function transform (MBCN) expands

the N-dimensional probability density function transform algorithm with

QDM.33,43 Both QDM and MBCN are used in this study.

The QDM transfer function is given as follows.43

The relative change in quantiles between the calibration and projected pe-

riods (t) for conservative variables is given as

DðtcÞ =
F
½t� 1�
m;p ½εðtÞ�
F� 1
m;c ½εðtÞ�

(Equation 2)

The relative change in quantiles between the calibration and projected pe-

riods (t) for non-conservative variables is given as

DðtncÞ = F ½t� 1�
m;p ½εðtÞ� � F� 1

m;c ½εðtÞ� (Equation 3)

The non-exceedance probability (εÞ associated with variable x at time t is

given as

εðtÞ = FðtÞ
m;p½xm;pðtÞ� (Equation 4)
xm;pðtÞ is the climate model value m within the projection period p, and F
ðtÞ
m;p is

the time-dependent cumulative distribution function (CDF) of the climate

model projection xm;p. Using a 30-year moving window, xm;p is calculated

based on the empirical CDF. F
½t� 1�
m;c is the simulations’ inverse CDF during

the calibration periods.

The model’s ε quantile is bias corrected from observations across the cali-

bration period:

bxðtÞ = F ½t� 1�
o;c ½εðtÞ� (Equation 5)

where bx is the bias-corrected quantile.

The inverse CDF during the calibration period, F
½t� 1�
o;c , is calculated from

observation xo,c.

The final bias-corrected model projection xc at time t is given as

xcðtÞ = bxðtÞDðtÞ; for conservative variables (Equation 6)

xcðtÞ = bxðtÞ+DðtÞ; for non � conservative variables (Equation 7)

The MBCN method incorporates a QDM approach to enhance the

N-dimensional probability density function transformation method by

leveraging information from the variables Xm;c;Xm;p and Xo;c. These variables

undergo a rotational transformation, and the absolute changes described in

Equations 6 and 7 are applied to each rotatedXm;c;Xm;p, andXo;c variable. Sub-

sequently, the rotated Xm;c; Xm;p, and Xo;c are transformed to X
½t+1�
m;c ; X

½t+1�
m;p ;

and X
½t+1�
o;c . This iterative process continues until X

½t+1�
m;c converges to Xo;c. Addi-

tionally, the ordinal rankings of each column in Xm;p are adjusted to align with

the ordinal rankings of the corresponding elements in each column of X
½t+1�
m;p .

Performance statistics for GCMs

The performance of BC methods and GCMs is based on seasonal, monthly,

and annual timescales and is investigated using the MedAE, RMSE–

observation standard deviation ratio (RSR),20 RAE, and RMSE.

RSR

RSR is the ratio of the RMSE between the reference and model output and the

reference standard deviation.20,88 This is given as

RSR =
RMSE

SDreference

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1

�
Yreference

i � Ymodel
i

�2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1

�
Yreference

i � Ymean
�2s (Equation 8)

RSR ranges from 0, which denotes zero residual variation or RMSE, indi-

cating an accuratemodel simulation, to a significant positive number, suggest-

ing an imperfect model.

MedAE

The MedAE resists outliers.

Given that by is the model output of the ith sample, and yi is the reference,

MedAE estimated over N samples is defined as

MedAEðy; byÞ = medianðjyi � by1j;.; jyn � bynjÞ (Equation 9)

RAE

The RAE normalizes the total absolute error by dividing it by the total absolute

error of the predictor. The resulting RAE index can range from 0 to infinity,

where 0 indicates the ideal scenario:

RAEv =

Pn
u = 1jmodelvu � referenceujPn

u = 1

�����referenceu � 1

n

Pn
u = 1referenceu

�����
(Equation 10)

wheremodelvu is the value predicted by individual model v for record u out of n

records, and referenceu is the reference value for record u.

Trends and dependency structure

WS variables are subjected to the modified Mann-Kendall (MMK) trend

test,31,34,50,89 while Sen’s estimator9,23,33,90 is used to estimate the magnitude

of the trends. Also, a 30-year multiple-period trend50 is used to examine the
One Earth 7, 72–87, January 19, 2024 83
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trends over different timescales. This method depicts trends throughout

various timescales, considering each trend’s unique characteristics from its

inception to its conclusion.50 The joint dependency structures are estimated

from the RMSE of the correlation coefficients between WS and other water

budget variables.33

Self-organizing maps and WS classifications

The SOM, an artificial neural network technique, organizes training data input

space into a two-dimensional discrete grid.31 One neuron in the grid is as-

signed to each chunk of data, and the distance between neurons indicates

how similar the chunks are.46 Based on the distribution of the weight vectors,

the SOMmethod groups the training datasets into a two-dimensional grid rep-

resenting several clusters. After that, SOM partitions into clusters by taking

data samples from each stratum. As a result, the datasets with equal variance

and bias are grouped as one.31,46 We employ the partitioning around medoids

(PAM) algorithm91 to determine the optimal clustering classification in the

reduced feature space, guided by the gap statistics.92,93With the gap statistic,

the total within-cluster variance94 is compared with what would be predicted

by a reference null distribution for various values of k (the number of clusters).

The gap statistics’ maximum value, which indicates that the data have been

well clustered and that the clusters are well separated, is the ideal k. Utilizing

the gap statistics prevents the data from being over- or underfitted.

Additionally, we employ the expectation maximization algorithms of

Gaussian mixture models (GMM)31 with different covariance structures95 for

parameter estimation of the SOM nodes, while the spatially explicit priors96

maintain the spatial heterogeneity to validate the PAM-generated clusters.

This approach facilitates the organization of SOM nodes into distinct groups.

We select the best GMM using the Bayesian Information Criterion (BIC).31

Therefore, we adopt the GMM with the lowest BIC value for clustering the

SOMnodes. Leveraging the SOMandGMM,we generate 11WS classification

units. More information regarding the interface between SOM and GMM can

be found in Adeyeri et al.31

LULC classification

Land Cover Type v.6 of the MODIS (MCD12Q1) categorizes land cover based

on distinct thematic categories.97 The International Geosphere-Biosphere

Program (IGBP) type 1 land cover scheme identifies 17 land cover categories

comprising 11 classes of natural vegetation, three classes of developed and

mosaicked land, and three classes of non-vegetated land. We reclassify the

IGBP land cover classes into 12 distinct classes (Figure 5) based on interval

similarity.31,98 Reclassification through interval similarity entails grouping

data into intervals and assigning a consistent new value to all data points within

each interval. This approach merges comparable land use types during land

use reclassifications, streamlining data analysis, and simplifying interpretation.

Atmospheric river dynamics

We adopt the vertically integrated vapor transport (IVT) to understand the dy-

namics of water vapor movement in or out of a particular domain. IVT is

defined as

IVT =
1

g

Z psurface = 1000hPa

ptop = 300hPa

qV
!
dp (Equation 11)

where g is the gravitational constant, V
!

is the horizontal wind vector, q is the

specific humidity, psurface is the pressure at the surface, and ptop is the pres-

sure at the top of the atmosphere.
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Yiou, P., and Zscheischler, J. (2023). Advancing research on compound

weather and climate events via large ensemble model simulations. Nat.

Commun. 14, 2145.

52. Ahmed, N., L€u, H., Ahmed, S., Adeyeri, O.E., Ali, S., Hussain, R., and Shah,

S. (2023). Transboundary River Water Availability to Ravi Riverfront

under Changing Climate: A Step towards Sustainable Development.

Sustainability 15, 3526.

53. Berg, P., Haerter, J.O., Thejll, P., Piani, C., Hagemann, S., and

Christensen, J.H. (2009). Seasonal characteristics of the relationship be-

tween daily precipitation intensity and surface temperature. J. Geophys.

Res. 114.

54. Liu, Y., Jiang, Q., Wang, Q., Jin, Y., Yue, Q., Yu, J., Zheng, Y., Jiang, W.,

and Yao, X. (2022). The divergence between potential and actual evapo-

transpiration: An insight from climate, water, and vegetation change.

Sci. Total Environ. 807, 150648.

55. Cannon, A.J., Sobie, S.R., and Murdock, T.Q. (2015). Bias Correction of

GCM Precipitation by Quantile Mapping: How Well Do Methods

Preserve Changes in Quantiles and Extremes? J. Clim. 28, 6938–6959.

56. Farrick, K.K., and Branfireun, B.A. (2014). Soil water storage, rainfall and

runoff relationships in a tropical dry forest catchment. Water Resour.

Res. 50, 9236–9250.

57. Penna, D., Tromp-van Meerveld, H.J., Gobbi, A., Borga, M., and Dalla

Fontana, G. (2011). The influence of soil moisture on threshold runoff gen-

eration processes in an alpine headwater catchment. Hydrol. Earth Syst.

Sci. 15, 689–702.

58. Descroix, L., Guichard, F., Grippa, M., Lambert, L., Panthou, G., Mahé, G.,
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