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ABSTRACT

Plagiarism is a widespread problem in computer science education,
exacerbated by the impracticability of manual inspection in large
courses. Even worse, tools based on large language models like
ChatGPT have made it easier than ever to obfuscate plagiarized so-
lutions. Additionally, most plagiarism detectors only apply to code,
and only a few approaches exist for modeling assignments, which
lack broad resilience to obfuscation attacks. This paper presents
a novel approach for automated plagiarism detection in model-
ing assignments that combines automated analysis with human
inspection. We evaluate our approach with real-world assignments
and plagiarism obfuscated by ChatGPT. Our results show that we
achieve a significantly higher detection rate for Al-generated at-
tacks and a broader resilience than the state-of-the-art.
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1 INTRODUCTION

Plagiarism is a widespread phenomenon in today’s computer sci-
ence education [7, 15, 31, 35] as digital assignments can be easily
duplicated and altered. Students still engage in plagiarism despite
the threat of consequences [58]. Moreover, students are creative
in obfuscating their plagiarism to conceal the relation to the orig-
inal. In the case of code submissions, students commonly utilize
techniques such as renaming, re-ordering, or restructuring [27, 50].
This is particularly common when assignments are mandatory, e.g.,
in beginners’ courses [42]. As computer science courses are often
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large [13], manual inspection is impractical [19], and the individ-
ual risk of detection is low [64]. In the past, obfuscating software
plagiarism was considered more challenging than completing the
assignment, as manual obfuscation was considered tedious and com-
plicated [19]. However, with the rise of plagiarism generators [19],
plagiarizing has become easier than ever. Al-powered tools can gen-
erate or alter source code and modeling artifacts [16, 18] with little
manual effort and technical knowledge, making plagiarism obfusca-
tion more accessible [29]. ChatGPT [39] combines the capabilities
of large language models (LLMs) with the accessible interface of a
chatbot, thus further exacerbating the problem [20].

Automated plagiarism detection was proposed over two decades
ago [40, 43], but most state-of-the-art plagiarism detectors only
apply to code [1, 8, 32, 37, 43, 44, 47]. However, computer science as-
signments and exams often include modeling assignments [14, 50],
for example, UML assignments regarding class, use case, sequence,
and activity models. Furthermore, modeling assignments become
more common with the increasing adoption [10, 24] of model-driven
techniques. These assignments are prone to plagiarism due to their
complexity and their requirement of domain understanding and
problem-solving skills [34]. While there is research on model differ-
encing and model clone detection, these techniques alone are insuf-
ficient for plagiarism detection, as they are not resilient against ob-
fuscation attempts [34, 49, 62]. There are two plagiarism detection
approaches specifically targeting modeling assignments [34, 49].
However, both approaches are prone to obfuscation attacks [47],
which try to conceal the relation between plagiarism and source.
Martinez et al. [34] propose an approach based on linear similarity
hashing (LSH). However, their approach is prone to obfuscation
techniques such as renaming and insertion. In previous work [49],
we introduced token-based plagiarism detection for metamodels.
However, our initial approach is prone to re-ordering attacks [50]
and has limited applicability as it can only be used for metamod-
els. Furthermore, it is unclear how well both approaches perform
against the rising threat of Al-based plagiarism.

In this paper, we thus present a plagiarism detection approach
for modeling assignments that outperforms previous approaches
[34, 49], particularly regarding Al-obfuscated plagiarism. Our ap-
proach leverages the concept of token-based plagiarism detection
but hardens obfuscation resilience by introducing a novel normal-
ization technique for the token sequence. Furthermore, it applies
to any EMF-based modeling artifact and can be generalized to any
other MOF-conforming [38] artifacts with a tree-like structure. Our
approach combines automated analysis with human judgment, thus
ensuring an ethical process. It further scales well, thus allowing
plagiarism detection even in large courses. We evaluate our ap-
proach using real-world data sets based on a modeling assignment.
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Figure 1: Overview of our modeling plagiarism detection approach and its steps, as detailed in sections 3.2, 3.3, 3.4, 3.5, and 3.6.

We cover three plagiarism types: Al-obfuscated plagiarism using
ChatGPT, manual human plagiarism, and artificial plagiarism based
on singular attack types. Our results demonstrate broad resilience
against obfuscation attacks, particularly against the most preva-
lent [50] attacks based on re-ordering and renaming. Moreover, our
approach reliably identifies Al-obfuscated plagiarism and signifi-
cantly outperforms the state-of-the-art. Our contributions are:

C1 A token-based plagiarism detection approach! for models,
metamodels, and other modeling artifacts. It is obfuscation-
resilient and significantly outperforms the state-of-the-art.

C2 An examination of how well ChatGPT, with its natural lan-
guage abilities, user-friendly interface, and wide popularity
among students, can be exploited for modeling plagiarism.

C3 A comprehensive three-stage evaluation using a real-world
data set with both human and AlI-obfuscated plagiarism.

In the following, Section 2 covers the status quo, Section 3 presents
our detection approach (C1), Section 4 examines exploiting Chat-
GPT for plagiarism (C2), Section 5 provides the evaluation (C3),
Section 6 discusses related work, and Section 7 concludes the paper.

2 STATE OF THE ART
Plagiarism detection for code is widely-researched [8, 37]. How-
ever, there is little work on modeling plagiarism detection. Software
plagiarism detectors have a long history [40, 43]. Most approaches
compare the structure of the code [36, 37], and among them, token-
based approaches like MOSS [1], and JPlag [43], are the most widely
employed in practice [37]. These approaches combine tokenization
with pairwise comparison to identify code matches based on hash-
ing and tiling [1, 44]. MOSS and Dolos [32] use winnowing [51],
JPlag and Sherlock [25] use greedy string tiling with the running
Karp-Rabin matching [60, 61]. Tokenization transforms the code
into a parse tree, extracting a subset of nodes as tokens, thus lineariz-
ing the tree [47]. This abstraction ensures efficiency and resilience
against obfuscation attacks like renaming, retyping, or obscuring
constant values [44], and immunity against lexical [25] attacks.
To our knowledge, only two approaches for modeling plagiarism
detection exist. Martinez et al. [34] use Locality Sensitive Hashing
(LSH) by transforming models into context-aware fragments and
then into integer vectors using minhash. The hamming distance
between their LSH signatures determines the models’ similarity.
This approach combines contextual rather than structural infor-
mation, making it vulnerable to lexical obfuscation attacks. The
LSH signatures are based on names, which enables renaming-based
attacks. The approach also lacks sufficient information on how

'We include the implementation of our approach in the supplementary material [48].
It is also integrated into the open-source software plagiarism detector JPlag [26].

similarities are calculated, making manual inspection difficult. In
previous work [49], we presented token-based plagiarism detec-
tion for metamodels using JPlag. While it is inherently immune
to renaming attacks, it lacks broad resilience and is susceptible
to re-ordering-based obfuscation. Despite demonstrating the fea-
sibility of token-based plagiarism detection for metamodels, our
initial approach has limited usability due to its restriction to meta-
models. Both approaches are vulnerable to common [50] attack
types, and how they handle Al-based plagiarism is unclear. In con-
trast, our approach combines the benefits of token-based plagiarism
detection with a novel normalization approach, providing broad
resilience against obfuscation attacks. It shows matching sections
of the assignments, allowing auditability of the results. Last, we also
consider usability aspects such as post-processing and visualization.

3 MODELING PLAGIARISM DETECTION

This section presents our first contribution (C1), a general approach
for automated plagiarism detection for modeling assignments. The
similarity between models and code can be leveraged for token-
based approaches for modeling artifacts [49]. These approaches
typically extract tokens from parse tree nodes, primarily focusing
on the code’s structure. In contrast, for modeling plagiarism, the
focus must be on modeling patterns, structure, and relationships. A
key challenge is the higher abstraction than code, where the lack
of details impedes plagiarism detection. Furthermore, resilience
against re-ordering-based obfuscation attacks is challenging. Re-
ordering-based attacks are more common [50] as they are consid-
erably easier for most models than for code, where the sequence
of statements determines the code’s behavior. In our approach,
modeling assignment solutions undergo a comprehensive pairwise
comparison process. To facilitate this comparison, an abstraction
layer is extracted from each solution, on which the structures of
these artifacts are compared. Ultimately, our approach produces a
list of suspicious solutions, which are the subject of the instructor’s
final evaluation. Our five-step approach is illustrated in Figure 1:

(1) Tokenization: We extract the token sequence by
linearizing the model, abstracting from superfluous detail.

(2) Normalization: We achieve resilience against element
re-ordering by normalizing the token sequence.

(3) Pairwise Matching: We efficiently compare pairs of token
sequences to find all matching subsequences.

(4) Similarity Calculation: We rank the pairs by leveraging
different similarity metrics for the matches of a pair.

(5) Visualization: We help humans to assess the results and
decide what constitutes plagiarism effectively.

Our approach’s novelty lies in steps 1, 2, and 5, while steps 3 and 4
are established techniques from token-based plagiarism detection.
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3.1 Running Example
As a minimal running example, we consider a typical [14] under-
graduate course where students are instructed in the elementary
principles of modeling. In order to satisfy the course requirements,
they need to complete an assignment that entails modeling a man-
agement system for bookstores, requiring the creation of an appro-
priate metamodel. The domain is described as follows:
Bookstore can have multiple locations that sell different books. Books are
classified into different genres and have a unique identifier called an ISBN.
Books have an author who may use a stage name. Stores have one owner.

This example is intentionally small to illustrate our approach and
provide clarity for the reader; most modeling assignments are usu-
ally more comprehensive. Two potential solutions for this assign-
ment are depicted in Figure 2. Although they exhibit some similari-
ties, several features are modeled differently. While this is a small
task, it is hard for a human to determine how similar these models
are even for these two solutions. However, in a course, there may
be 30 to 300 students [14]. Thus, manual checking for plagiarism
becomes impractical.

3.2 Tokenization

Modeling assignments include diverse artifacts like metamodels,
models, and model transformations [14], all vital in the modeling
process. Most of these artifacts are typically systematized in a tree-
like structure. Throughout this section, we will mainly refer to
models and their elements. However, our approach applies to other
tree-based modeling artifacts, such as metamodels, transformation
rules, et cetera. Our approach transforms the modeling artifacts
into an abstraction layer on which pairwise comparison can be
performed. By omitting some details while including others, mainly
structural information, this abstraction layer is resilient against
certain obfuscation attacks such as renaming and re-typing. For
example, we omit the names of elements and the exact types of

(a) First example metamodel:

#Person

H Person g Store
=firstName : EString [0.%] =name : EString
=lastName : EString owner =location : EString
—isStageName : EBoolean

(1.7 author Ar

£ Book £ BookStore
—title : EString [0.1]
=isbn : Elnt books
—category : EString

(b) Second example metamodel:

f##Person #i#Store
E Person E BookStore
= firstName : EString [0..1] = name : EString
= lastName : EString owner = location : EString
= Genre
ey g Ibooks
~BIOGRAPHY [0."]
ElAuthor —~TEXTBOOK H Book
= isStageName : EBoolean|||[1..1] = name : EString
author = isbn : Elnt
= genre : Genre

Figure 2: Two similar but not identical example metamodels
modeling a bookstore.
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attributes, as they are usually the first to be changed for obfuscation
purposes [49, 50]. In our approach, we tokenize as follows:

(1) We iterate in a depth-first order over the tree structure of the
model’s containment references, starting from its root element.

(2) For each element, we decide what tokens may be extracted. The
extraction strategy can either be generic or domain-specific.

(3) Token sequences from multiple files or artifacts are concate-
nated into one token sequence but separated via a pivot token.

Figure 3 illustrates this tokenization for EMF metamodels using
our running example. The token tree (Figure 3a) is linearized into a
token sequence (Figure 3b). Each token represents information from
the metamodel’s structure and is thus an abstract representation of
the metamodel.

We discuss two kinds of strategies for selecting tokens: The first
kind is generic strategies, where a token is extracted for each model
element, and the identity of the token is the type of the element,
e.g., the metaclass or meta-metaclass, respectively. Additionally, for
elements that may contain additional child elements, a context end
token is extracted after child elements, representing the context
of the containment reference. However, the generic strategy has
certain limitations. Some model elements are irrelevant and should
not be extracted as tokens, as they increase the noise in the token
sequence and can be used to obfuscate plagiarism. Additionally, the
properties of elements are not represented in the token sequence at
all. If these properties are semantically relevant, this leads to a lack
of representation in the token sequence. As an example, for EMF
metamodels, classes, and interfaces are differentiated by a property
of the class. While this kind of strategy applies to any modeling
assignment artifacts, it may perform worse for a distinct domain
than a strategy specifically tailored to one domain. However, a
generic strategy may perform well enough for many applications.

The second kind is domain-specific strategies, where the selection
of tokens is designed for a single domain, metamodel, or transforma-
tion language. They allow more fine-tuning for selecting relevant
tokens. For that, several rules apply. Two elements of a different
type that can be used interchangeably without changing the seman-
tics of the modeling artifact should map to a token with the same
identity. Figure 3 illustrates such a domain-specific token selection.
As seen in Figure 3b, attributes are extracted via the same token,
independent of the attribute’s data type. In contrast, elements of
the same type that, through their properties, have different seman-
tics should be mapped to different tokens. Furthermore, the use
of end-of-context tokens can provide additional information for
the detection of plagiarism. As seen in Figure 3b, attributes and
identifier attributes are extracted as different tokens, even though
they are the same metaclass. Similarly, this is done for references
and containment references. Furthermore, properties themselves
may lead to the extraction of tokens, e.g., for supertype references
or similar (see Figure 3b).

In conclusion, selecting tokens for the abstraction layer in token-
based plagiarism detection techniques requires careful considera-
tion of the relevant elements and properties in the software artifacts.
A domain-specific strategy allows for a more fine-tuned token se-
lection and is thus generally preferred. The generic strategy is a
good baseline for domains without a domain-specific strategy.
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Ea store @ Package
E St @C\ass
ore @ Multi-Value Reference
5= owner : Person (@) Attribute
= name : EString (@) Attribute
= location : EString % Class End
Class
H Bookstore -> Store @ Multi-Value Containment
5= books : Book (T) Class End
E Book @C\ass
o title : EString @ ribuce
. @Identiﬁer
= isbn : Eint ® Multi-Value Reference
5= author : Person (@) Attribute
= category : EString (@) Class end
E Person %a”
Attribute
= firstName : EString @ Attribute
= lastName : EString (@) Attribute
= isStageName : EBoolean (T) Class End
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(a) first example metamodel  (b) extracted token sequence

Figure 3: Tokenization of metamodels to extract a linear
token sequence as an abstraction layer for the comparison.

3.3 Normalization
While the token sequence is resilient against obfuscation attacks
such as renaming or re-typing, it is prone to attacks based on mov-
ing and swapping elements [49] because most models allow varia-
tions in the order of containment references. Therefore, we normal-
ize the order of containment references and, thus, the model tree
while extracting tokens to ensure that the same patterns are repre-
sented identically across different modeling assignments. However,
normalization of the token sequence is a non-trivial task. The prop-
erties used for normalization must be selected carefully to avoid
introducing new attack vectors, and the process must minimize
changes to the token sequence to avoid false positives. For example,
if the normalization properties are names, identifiers, or aggregated
properties like the number of contained elements, they can be easily
changed with renaming or insertion attacks to affect the normal-
ization and, thus, the token sequence. Normalization properties
shall be stable, invariant, and meaningful to ensure accurate and ef-
fective plagiarism detection. Simple normalization approaches like
sorting elements by their type or the lexical order of their children’s
types are insufficient and vulnerable. The normalization is either
too ineffective or can be affected via specific obfuscation attacks.
To address this, we propose a novel approach to normalize the
order of the token sequence. We sort the elements in each contain-
ment reference first based on their token type and then based on
the distribution of the tokens in their subtree of direct and indirect
children. The normalization algorithm is depicted in Algorithm 1.
We generate tokens for each element’s subtree and create a token
type vector, showing how often each type occurs. For the class
Book in Figure 3, this vector is [2,1, 1,0, ..., 0], as it contains two at-
tributes, one identifier attribute, and one reference. To compare two
of these vectors, we calculate the Euclidean norm ||v||z = /S, ©?
for each (to scale their length to 1) and interpret the resulting vec-
tors as points in a multi-dimensional coordinate space, where each
token type represents a dimension. We can calculate the nearest
neighbor path between all points to compare, starting from the
element’s point with the most tokens in the subtree. To measure

Figure 4: Token sequence normalization via element re-
ordering of a containment reference.

Algorithm 1 Normalize Token Sequence

Require: List of model elements E with length n
1: V « empty list of vectors

2: fore; € Edo

3 v; « calculate token type vectors for subtree of e;
4: v; « euclidean norm ||v;||2

5: end for

6: D « empty distance matrix with size n X n

7: for v;,v; € V do

8 d; j « euclidean distance dg (v;, v;)

9: end for
10: OUpax « vector in V of element with largest subtree
11: P « nearest neighbor path for D starting from 0,45
12: S « sort E by token type, if equal by position in P
13: return S

the distance between two n-dimensional points, p and q, we use
the Euclidean distance metric di (p, q) = VX2, (gi — pi)?. If, during
the nearest neighbor path calculation, two or more points have the
same distance to the last point in the path, we use the original order
of the elements to ensure that normalization is stable. To normalize
the order of the elements in a containment reference, we sort first
based on their token type. If equal, we sort based on the order in the
calculated path. Figure 4 shows the re-ordering of tokens for three
elements of the same containment reference. The normed subtree
vectors are used to calculate the elements’ distances, sorting the
elements according to the computed nearest neighbor path.

For our approach, we use the nearest neighbor path instead of the
shortest path because modifying the subtrees affects the nearest
neighbor path less. For the path, we chose the element with the
most token in its subtree, as the resulting paths resulted in the most
resilient normalization in our pre-study. Overall, our approach pro-
vides an effective solution to the normalization problem in modeling
plagiarism detection.

3.4 Pairwise Matching

In this step, all n % (n — 1)/2 token sequence pairs are compared,
and matching subsequences are detected. Several highly efficient
algorithms exist for this task, allowing thousands of comparisons in
seconds. We thus use an adapted form of Greedy String Tiling [60].
We thus scan the token sequences iteratively, identifying the longest
common subsequence between two token sequences. The found
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@ Package ® Package
(T) Class (7) Class
@ Multi-Value Reference (@ Multi-value Reference
(@) Attribute (@) Attribute
(@) Attribute (T) Attribute
(T) Class End (@) Multi-value Containment
(@ class r () Class End
@ Multi-value Containment (7) Class
(7) Class End (@) Attribute
(7) Class (@) Identifier
@ Attribute @ Multi-Value Reference
(T) \dentifier (@) Attribute
@ Multi-Value Reference (T) Class End
(@) Attribute ~ @ Package End
(7) Class End @ Package
() Class (@) class
(@) Attribute @ Attribute
(@) Attribute (T) Class End
(@ Attribute () Class
(T) Class End (T) Attribute
@ Package End () Attribute
(T) Class End
@Package End

Figure 5: Subsequence matches for two token sequences of
our running example with a minimal token match of three.

subsequence is marked as a match, and we then move on to the next
smaller subsequence and repeat until no more matches can be found.
We employ a rolling hash function for the subsequence search
for improved performance, as detailed in [60] and [43]. Finally,
to regulate the algorithms’ match sensitivity and to avoid false
positives, we use a hyperparameter called minimal token match
(MTM), which denotes the minimal length of matches, whereby
shorter matches are ignored. Lowering the MTM value increases
the sensitivity for plagiarism while also increasing the number of
false positives. Our approach allows configuring the minimal token
match to tweak the plagiarism detection to the datasets at hand. In
Figure 5, the subsequence matches for our example are shown. The
MTM value is three. Thus, subsequences of lengths below are not
considered matches. These matches can be utilized for visualization
purposes, aiding human inspection.

3.5 Similarity Calculation

The similarity of each modeling assignment pair can be calcu-
lated based on the subsequence matches. For an assignment pair
(a,b) with the number of matched tokens m(a, b) and the total
number of tokens I, and [}, the similarity can be calculated with
sim(a, b) = Z‘gfj;b) For pairs of assignments of different sizes, the
maximum similarity maxsim(a, b) = max(sim(a, b), sim(b, a)) can
be used. It is less resilient against false positives but better suited if
many elements were inserted to obfuscate the plagiarism. We then
use both metrics to rank pairs regarding their similarity. For our
example in Figure 5, the similarities are calculated to be sim = 68.3%
and maxsim = 71.4%, respectively. Using these metrics, we apply
three kinds of post-processing to enhance the results for human
inspection.

(1) Ranked Lists of Pairs: A list showing the assignment pairs in de-
scending order by their similarity. This provides a prioritization
in which order human inspection can be conducted.

Similarity Distribution: A histogram showing what similarities
are common for most comparisons (probable true negatives)
and if outliers exist (probable true positives).

Clustering of Assignments: We cluster assignments using hier-
archical agglomerative and spectral clustering to detect group
plagiarism. The clustering is configured via hyperparameters.

—
)
~

—
SY)
=
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class Store {
ref Person[*] owner;

class BookStore {
ref Person[*] owner;

attr String name; / attr String name;
attr String location; attr String location;
} val Book[*] books;

= }

class BookStore extends Store { _
val Book[*] books; class Book {

} attr String name;

class Book { / id attr int isbn;

attr String title; ref Author[+] author;
id attr int isbn; attr Genre genre;

ref Person[+] author; L}
attr String category;
} u class Author extends Person {
9 attr boolean isStageName;
class Person { }

attr String firstName;
attr String lastName;

[ class Person {
attr boolean isStageName; attr String firstName;

} attr String lastName;
3

Figure 6: Linear representation of the matched metamodels
of our running example via the Emfatic textual syntax [17].

3.6 Visualization

An essential benefit of token-based approaches is the explainability
of the calculated similarities. Moss [1] and JPlag [43], for example, al-
low inspecting pairs of programs in a side-by-side code view, where
the matched sections are highlighted. This facilitates the human
assessment of the results and effective decision-making regarding
what constitutes plagiarism. Providing this feature is crucial for the
practical usage of plagiarism detectors [31]. For modeling artifacts,
a graphical syntax or custom editors are commonly used to view
them. However, a textual syntax has the benefit of a linear structure
that allows visualizing matches just as for code. Nevertheless, a
linear graphical syntax like a tree view also brings these benefits.
We propose a side-by-side view based on textual syntaxes, thus
effectively linearizing the modeling artifact. The choice of textual
syntax has to be domain-specific. For example, for EMF metamod-
els, Emfatic [17] allows depicting them in a side-by-side view. We
generate a simple tree-view-like view for domains without textual
syntax based on the model elements and their containment struc-
ture. Figure 6 illustrates such a match visualization for the running
example. Emfatic is used to visualize the similarities between the
metamodels. During human inspection, it is comprehensible how
the similarity scores were calculated, and which parts are similar.

4 MODELING PLAGIARISM WITH CHATGPT
As our second contribution (C2), we investigate whether ChatGPT
can be effectively exploited for plagiarism. Unlike other plagiarism
generators [19] and LLMs that have been less accessible, ChatGPT
is widely available, easy to use, and popular among students [20].
We show the feasibility of leveraging it for modeling plagiarism,
requiring only a minimal understanding of modeling concepts. Be-
sides natural language capabilities, ChatGPT can “understand” and
generate programming languages and other technical artifacts, such
as XMI [18]. Thus, it can reason about EMF modeling artifacts and
generate them. This can then be exploited for plagiarizing modeling
assignments. There are generally two ways of using ChatGPT to
cheat for modeling assignments:

(1) Full-generation: The plagiarizer uses the assignment’s de-
scription to generate a complete solution using ChatGPT

(2) Obfuscation: The plagiarizer provides a pre-existing solution
and asks ChatGPT to generate an obfuscated version.
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Whether the first technique constitutes plagiarism is still a subject
of debate [2], while the latter closely aligns with human plagia-
rism practices [37]. To determine how viable these approaches are,
we explored both options? for a typical [14] metamodeling assign-
ment [49]. It tasks students with creating an EMF metamodel for
designing component-based system architectures.

4.1 Fully-Generating a Solution

We tasked ChatGPT to generate a solution from scratch by pro-
viding the full assignment description. For prompt engineering,
we approached ChatGPT with the mind of a novice student mod-
eler [50]. We systematically tested multiple prompts where the
most expedient was directly asking for an EMF metamodel that
satisfies the description and is provided as syntactically correct
XML. Further inquiries, e.g., suggestions for improvement or cor-
rection, did not enhance the result quality®. Using this prompt,
we conducted twenty sessions using two separate accounts. After
each solution, we regenerated the next most likely response. We re-
quested a single re-generation per session if it produced incoherent
output, i.e., invalid XMI code. Although we were able to generate
36 EMF-compatible solutions using ChatGPT, none fulfilled the
assignment. First, most of them contained a plethora of syntactical
issues, including incorrect assignments of primitive types to at-
tributes, improper assignment of reference types, duplicate names
of structural features in types and super types, invalid lower bound
cardinalities (e.g., -1), missing instance type names for enumera-
tions, and packages lacking namespace URI and prefix. Second, all
solutions were semantically insufficient, missing some essential
elements. Incorrect modeling of relations between concepts and im-
proper use of enumerations were common themes. Comparatively,
the generated solutions contain about half as many classifiers and
references as human solutions.

To evaluate the solutions regarding completeness and originality,
we randomly selected a subset consisting of 7 ChatGPT-generated
and 3 human solutions and asked the course instructor to review
them. The instructor was unaware that some of the metamodels
were generated. We asked the instructor to review the metamodels
regarding their originality and whether they would accept the meta-
models as valid solutions. We employed the Think Aloud method
for the review, asking the instructor to verbalize their thoughts and
actions. This process is similar to the experiment setup described
in [50], where we conducted a similar experiment on human plagia-
rism. We asked a course instructor to check metamodels regarding
their originality and validity as a solution. The instructor reviewed
the solutions individually and arranged them side by side. They
initially examined the overall structure and package partitioning.
Within packages, they specifically checked for the presence of ele-
ments described in the task. They accepted only the three human
solutions, as the other solutions contained errors and missed crucial
concepts of the assignment. They noted that the generated solu-
tions appeared similar, with small sizes and minimal structuring
into packages.

The similarity can be attributed to the generated solutions’ re-
curring patterns in correctly modeled concepts and the occurring
syntactical and semantical issues. ChatGPT exhibits some degree

2We use version 3.5 for the full generation, and version 3.0 and 3.5 for the obfuscation.
3We provide the method and all raw results as part of the supplementary material.

Timur Saglam, Sebastian Hahner, Larissa Schmid, Erik Burger

Table 1: Similarity of unrelated human originals compared
to the similarity of the solutions generated with ChatGPT.

Type Median  Mean Q1 Q3 Maximum

Human 18.25 19.75  12.21  25.35 58.15
ChatGPT 35.37 36.97  26.23  47.60 86.84

of determinism in its outputs. To further examine this, we used our
approach (C1) on both to compare the similarity of generated and
human solutions. The results are shown in Table 1. The values indi-
cate that, despite their small size and issues, generated solutions are
notably more similar than unrelated human solutions. This shows
that our approach can effectively detect many of these generated
solutions. In summary, fully generating solutions works for small
assignments, but the results are inadequate and easily detectable.

4.2 Obfuscating a Pre-Existing Solution

To obfuscate a pre-existing solution, we provide ChatGPT only
with a solution in XMI form and instruct it to alter the structure
of the solution to conceal the plagiarism while retaining semantics
to fulfill the assignment. We applied this approach to solutions
from the modeling course: a monolithic one with all elements in a
single file and a fragmented one with elements distributed across
five files in various packages. We generally observed a stronger
obfuscation for the fragmented solution, which may relate to the
semantic cohesion of the concepts modeled in the same package.
We applied twelve different prompts in independent sessions for
each solution, thus generating twelve plagiarized metamodels. The
following is an example of such a prompt: Change the following
EMF metamodel in XMI format to look like a different one that models
the same concepts. Show changed lines, including a description and
the line number.

ChatGPT employs various modifications to alter the solution,
detailing what part of the XMI code changed. These modifications
included inserting single classes, attributes, and references, deleting
elements and their contained elements, re-ordering elements in con-
tainment references, and moving attributes or references to newly
inserted superclasses. ChatGPT also moved classes and datatypes
to different packages and renamed elements by abbreviating or
removing abbreviations, using synonyms, or adding prefixes and
suffixes based on the domain. Moreover, it changed the properties
of existing elements, such as multiplicities, and added references to
classes that referred to either existing or new classes. Vice versa,
it added new classes containing multiple attributes and meaning-
ful references to new and existing classes. It often made complex
changes by adding sizable structures that had semantic relevance
to the solution’s domain. One example that arose multiple times
included adding a new class named Node with a one-to-many rela-
tionship to the existing class Links and a many-to-one relationship
to Container. Additionally, ChatGPT modified the Links class to
depict a directed link between two nodes. It included two references,
source and target to represent the endpoints. In one example,
ChatGPT inserted a new subclass SystemComponent of an existing
class Component and added a reference partOf which referenced
an existing class System. In another one, a new abstract class called
NamedElement with an attribute called name was inserted. Then, it
introduced this class as a supertype for several existing classes that
removed their name attribute, effectively duplicating the attributes.
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Most of these changes are not immediately apparent, as they fit the
assignment’s domain. Even if modeling issues occurred, they were
insignificant enough to be considered plausible human mistakes.
Only rarely were the changes immediately conspicuous, and for
those instances, it was due to chosen element names lacking logical
coherence (such as renaming from Deployment to DeploymentNew).
We found that ChatGPT occasionally generated minor syntactical
issues, but for the most part, it produced correct metamodels that
were well-obfuscated according to our instructions. In contrast
to the technique of fully generating, ChatGPT seems to thrive
on the given metamodel, thus avoiding most issues discussed in
Subsection 4.1 by replicating what already exists.

4.3 Assessment

In summary, while ChatGPT can fully generate solutions for mod-
eling assignments, they are inadequate, stand out to the human
eye, and are likely to get flagged during tool-based inspection. Re-
cent studies reached the same conclusion [16]. However, given a
pre-existing solution, the usefulness of ChatGPT increases. It can
“comprehend” the modeled domain and reason about the structure
and concepts. Moreover, ChatGPT can perform complex changes,
providing high flexibility in generating obfuscated models. While
fully generating solutions might become feasible in the future, cheat-
ing via plagiarism by obfuscation currently seems the most feasible
strategy, as it requires little modeling knowledge and produces
well-obfuscated plagiarism that is inconspicuous for humans.

5 THREE-STAGE EVALUATION

This section evaluates our approach and compares it to the state-of-
the-art. We show that our normalization technique achieves broad
resilience against different plagiarism obfuscation attacks. Next,
we demonstrate our approach’s effectiveness in detecting Al-based
and human plagiarism (C3). The evaluation artifacts are available
in the supplementary material [48]. We evaluate in three stages:
S$1 Evaluation for isolated attack types.

$2 Evaluation for manual plagiarism by novice modelers.

S$3 Evaluation for Al-obfuscated plagiarism by ChatGPT.

To measure the extent of the detection, we compare the differences
between the plagiarism similarities and the similarities of unrelated
originals (true negatives).

5.1 Dataset and Evaluation Design

We evaluate our approach on real student solutions and compare
it to our previous token-based approach [49] and the LSH-based
approach by Martinez et al. [34]. Note that our previous approach
does not use our normalization technique. We implemented our
approach based on JPlag [43]. For all compared approaches, we use
the recommended hyperparameter. We did not conduct parameter
tuning with the evaluation dataset for any of the three approaches
to ensure a fair comparison. We also used the adapted version [49]
of the implementation of Martinez et al. [34] that supports multi-file
metamodels.

Data Set. We base our evaluation on a real dataset from previ-
ous work [49], which contains 210 real submission pairs from a
typical [14] modeling assignment. The submissions stem from a
model-driven software development practical course. It is a mas-
ter’s level elective course. Students in groups between two and five
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Table 2: Obfuscation attack types and their corresponding
level [27] and type [3]. Adapted from [49].

& 3 ' &
& e & & QédQ
Attack RAAEECIS I S Level Type
Insert v v v v v L25/13,14 B,C
Delete - v - v v VY - B
Re-Order v V v v - L2.5,L3 B,C
Rename v v - v v - 12,125 C

were tasked to create metamodels for designing component-based
system architectures. The metamodel allows the creation of models
similar to UML component diagrams but also involves the aspect of
software-to-hardware allocation. This assignment is loosely based
on the Palladio component model (PCM) [4, 45]. This dataset is,
to the best of our knowledge, free of plagiarism itself. On average,
the metamodels contain five packages, 39 classifiers, 45 references,
ten attributes, and one operation. While most metamodels were de-
signed in a single file, some students fragmented them into several
files. The dataset serves as a set of original solutions for all three
stages of our evaluation. We then employ different kinds of pla-
giarism in each stage. The pairwise comparison of 21 submissions
yields 210 pairs, i.e., (}) = 210, which are false positives when
detected as plagiarism.

Metrics. To measure the detection rate for a plagiarism detector,
we must compare the plagiarisms’ similarities to their sources and
unrelated solutions’ similarities. For a human inspection to be feasi-
ble at scale, the plagiarism pairs must protrude from the rest of the
solutions. Thus, for each of these approaches, we measure different
similarity distributions:

(1) Plagiarism-To-Source Pairs: the similarity distribution of the
plagiarisms with their respective source solutions.
(2) Original Pairs: the similarity distribution of the unrelated
original solutions among themselves.
(3) Plagiarism-To-Plagiarism Pairs: the similarity distribution of
the plagiarisms of a single source with each other.
The bigger the distance between plagiarism and non-plagiarism
pairs, the easier it is to detect plagiarism effectively. Thus the simi-
larity of the plagiarism pairs should be high, and the similarity of
the original pairs should be low. If these pairs overlap, it is hardly
possible to distinguish the plagiarisms from the originals. Thus, we
measure whether and to what extent the considered approaches
can find a noticeable difference between these pairs.

5.2 Resilience to Isolated Attack Types

Our first stage demonstrates broad resilience to different types of
obfuscation attacks. We reused the artificially generated plagia-
rism from previous work [49]. There, we applied 20 obfuscation
attacks of a single type based on existing classifications [3, 27]. We
then randomly chose four original metamodels, thus generating 80
plagiarisms. Table 2 shows the complete attack set. We executed
each attack for ten random model elements. For re-ordering-based
attacks, ten random elements are moved or swapped. For the inser-
tion of references, existing classes were referenced. For renames,
we generate pseudo-realistic names based on fragments of existing
elements’ names, which cannot be distinguished from real names
at first glance.
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Figure 7: Results for the attack type evaluation for our cur-
rent approach, our previous one [49] (denoted as Saglam et
al.), and the LSH-based approach by Martinez et al. [34].

5.2.1 Results. Figure 7 shows the results for the different attack
types. For deletion attacks, all three approaches can be affected by
deleting elements and their children. However, this effect is limited
for our current and previous approaches, as only very few plagia-
risms drop below a similarity of 75% to their source metamodels. In
contrast, for the LSH-based approach of Martinez et al. [34], this is
the case for more than half of the plagiarism-to-source pairs. The
median value drops below 75%. In contrast to deletion attacks, all
approaches are only slightly affected by insertion. Our approaches
perform very well, achieving median similarity values above 90%.
The approach of Martinez et al. [34] performs slightly worse but
still maintains a high median value. However, for insertions and
deletions, their approach has some outliers that come close to the
similarity values of the original pairs. For Re-ordering based at-
tacks, our current approach outperforms the others, with the 25th
percentile Q1 being above 90% similarity, showing near-complete
immunity. The approach of Martinez et al. [34] also performs well,
showing next to no effect of the obfuscation attack. Our previous
approach [49], however, can be affected by re-ordering attacks,
showing only little resilience. For renaming-based obfuscation at-
tacks, both our approaches show complete immunity, which is
an inherent trait of token-based approaches. In contrast, the ap-
proach of Martinez et al. [34] is prone to renaming, showing a Q1 at
around 55%, thus having many pairs close the unrelated originals.
This means their approach has next to no resilience to renaming.

5.2.2  Discussion. While deletion-based attacks seem effective on
paper, they are not feasible in practice. Usually, very little can be
removed from an assignment’s artifact without making the solution
incomplete or even plain wrong. In our evaluation, we randomly
removed elements along with their children, which sometimes re-
sulted in removing large subtrees. With that in mind, the effects
of these attacks were relatively mild, and our current approach, as
well as our previous one [49], still allows differentiation between
plagiarism and non-plagiarism. Regarding insertion attacks, our
approach shows resilience, while for re-ordering and renaming,
our approach demonstrates complete immunity. As expected, our
previous approach [49] is prone to re-ordering-based attacks due to
the lack of token sequence normalization. However, it is immune
to renaming. In contrast, the approach from Martinez et al. [34] is
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Figure 8: Results regarding human-generated plagiarism for
our approach, our previous one [49] (denoted as Saglam et
al.), and the LSH-based approach by Martinez et al. [34].

strongly vulnerable to renaming-based attacks. It is worth noting
that renaming and re-ordering are probably the most trivial attacks,
both for humans and computers [50]. Overall, our approach per-
forms well. The approach of Martinez et al. [34] performs the worst
among the compared approaches. While existing approaches are vul-
nerable to at least one attack type, ours demonstrates broad resilience
while maintaining low similarity for pairs of unrelated metamodels.

5.3 Detecting Human-Obfuscated Plagiarism
Our evaluation’s second stage evaluates the capabilities of plagia-
rism by novice modelers. We use the dataset introduced in [50] for
this. It consists of 31 metamodels, thus producing 210 unrelated
pairs, 10 direct and 10 indirect plagiarism pairs. These plagiarisms
were created by novice modelers who were provided with the meta-
modeling assignment outlined in Section 5.1 along with pre-existing
solutions from the corresponding dataset. The participants made
various types of changes, with an average of 43.7 changes per par-
ticipant and a median of 31.5. On average, this corresponds to one
change for every two model elements.

5.3.1 Results. The results of the manually obfuscated plagiarisms
by novice modelers are illustrated in Figure 8. The results demon-
strate that our approach can effectively distinguish the plagiarism-
to-source pairs from the unrelated original pairs, as there is no
overlap. Our previous approach [49] also demonstrates good sep-
aration except for one outlier falling below 50 percent similarity.
However, for the approach of Martinez et al. [34], the plagiarism-to-
source pairs still exhibit increased similarities but overlap with the
unrelated pairs, making detection more challenging. Similar results
are observed for the plagiarism-to-plagiarism pairs. Our approach
exhibits a clear separation between plagiarism pairs and unrelated
pairs. Our previous one [49] also provides a sufficient separation
between them, although there is some overlap with the unrelated
pairs, which drop down to 40 percent similarity. In contrast, for
Martinez et al. [34], the plagiarism-to-plagiarism median similarity
falls below the median of the unrelated pairs, making detection
next to impossible.

5.3.2  Discussion. Some instances were sufficiently well-obfuscated
to yield low similarities for our previous approach [49]. These in-
stances accomplished this by heavily relying on re-ordering model
elements, which is a vulnerability of this approach [50]. This obser-
vation aligns with the results of the first evaluation stage depicted
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Figure 9: Results regarding ChatGPT-obfuscated plagiarism
for our approach, our previous one [49] (denoted as Saglam
et al.), and the LSH-based approach by Martinez et al. [34].

in Figure 7. Our normalization technique is explicitly designed to
address this type of attack. Nevertheless, both our current and pre-
vious approach yield overall high similarities for most plagiarism-
to-source pairs. For these instances of plagiarism, we observed
relatively weak obfuscation, which was not as strong as the ob-
fuscation applied by ChatGPT. Thus, our normalization inherently
has a limited impact on many of the comparisons. However, it
still notably improves the detection of outliers. We can observe
a more noticeable impact of our normalization in plagiarism-to-
plagiarism pairs. Overall, our previous approach [49] exhibits a
lower similarity for the unrelated pairs, which can be attributed to
our normalization technique. The normalization reduces the impact
of certain structural and syntactic variations between the unrelated
pairs, thus slightly increasing their similarity. This effect, however,
does not impact the separability of the original from the plagiarism
pairs. In fact, the distinction between the stronger obfuscated in-
stances and the original pairs is more considerable for our current
approach than for our previous one. In sum, both our current and
previous approaches demonstrate strong performance in detecting
human plagiarism, whereas Martinez et al. [34] perform worse.

5.4 Detecting Al-obfuscated Plagiarism

In our third and main evaluation stage, we show the ability to de-
tect comprehensively Al-obfuscated plagiarism. As discussed in
Section 4, we investigated fully-generating solutions with ChatGPT.
However, since this produced invalid and obviously-suspicious
metamodels due to the currently limited modeling capabilities of
ChatGPT [16], we chose solutions obfuscated by ChatGPT to eval-
uate our approach and compare it with the state-of-the-art. We let
ChatGPT generate obfuscated versions of metamodels from the
base dataset. This method requires little modeling knowledge and
produces plagiarism that is well obfuscated and inconspicuous to
the human eye. While ChatGPT occasionally generated minor syn-
tactical issues, it mainly produced correct metamodels that were
obfuscated according to our instructions. As discussed in Subsec-
tion 4.2, we provided ChatGPT with metamodels from the dataset
and applied twelve different prompts for two metamodels to gener-
ate a total of 24 plagiarisms. This results in 24 Plagiarism-to-Source
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Table 3: Similarity differences between the plagiarisms and
the unrelated originals (higher means better detection) for
the results in Figure 9.

Plagiarism Type Approach AMean A Median AIQR
Plasiarismt Ours 59.77 64.39 4537
s aglansm-to- Saglam et al. 56.87 60.22 4023
ource Martinezetal.  42.16 3927 26.54
L Ours 48.01 50.94 33.80
Plagiarism-to-

- Saglam et al. 39.12 38.56 25.64

Plagiarism .
Martinez et al. 27.43 28.58 9.20

Table 4: Significance of the results in Figure 9 assessed via
one-sided Wilcoxon rank-sum tests (significance level of a =
0.05, alternative hypothesis H1, p-value p, test statistic W,
Cliff’s delta §, sample size n) for Plagiarism-to-Source (P2S),
Plagiarism-to-Plagiarism (P2P), and Original Pairs (OP).

Comparison Pairs H1 P w S n
o Sued P2S  greater  0.042 373 0293 24
“rls todaglam — pop  oreater <0001 13024 0495 132
etal OP less 1.000 232,839 0173 630
Ours to Marti P2S  greater  0.008 405 0406 24
turls OMArNeZ  pop  greater <0.001 13,291 0526 132
etak OP less <0001 131,810 -0.336 630

pairs and 132 Plagiarism-to-plagiarism pairs, which must be distin-
guished from the 210 unrelated original pairs (true negatives).

5.4.1 Results. Figure 9 shows the results for plagiarism generated
by ChatGPT. For the plagiarism-to-source pairs, our current and
previous approaches achieve high median scores of 78% and 74%,
respectively. The approach of Martinez et al. [34] has a significantly
lower median score of 59%. We observe similar results when look-
ing at the distance between the plagiarism-to-source pairs and the
unrelated original pairs as listed in Table 3. Our approach achieves
the highest values for all three difference metrics (A Mean, A Me-
dian, and A IQR). While our previous one [49] follows closely by
between three to five percentage points, Martinez et al. [34] per-
form significantly worse, with 17 to 25 percentage points below our
approach. The differences between the approaches are even more
prominent when looking at the similarity scores of the plagiarism-
to-plagiarism pairs. Our approach achieves the highest median
score with 67%, our previous one achieves 53%, and Martinez et al.
[34] achieve only 43%. Our approach achieves the highest values
for the distances between the plagiarism-to-plagiarism pairs and
the unrelated original pairs listed in Table 3. Our previous one [49]
achieves between eight to twelve percentage points less, Martinez
et al. [34] achieve between less 21 to 25 percentage points less.

To determine the statistical significance of the evaluation results
presented in Figure 9, we conducted one-sided Wilcoxon rank-sum
tests with a significance level of a = 0.05. Ideally, to demonstrate a
significantly better performance than the other approaches, ours
has to show significantly higher scores for the plagiarism pairs (P2S
and P2P) and significantly lower scores for the unrelated original
pairs (OP). The results of the tests are summarized in Table 4. As the
test statistic value (W) depends on the sample size and the sample
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sizes of the pair types differ, we use Cliff’s delta () as a normal-
ized metric for the effect size. In the context of the Plagiarism-to-
Source (P2S) and Plagiarism-to-Plagiarism (P2P) pairs, our approach
achieves significantly higher similarity scores than both other ap-
proaches. While our approach achieves significantly lower scores
for the original pairs (OP) compared to Martinez et al. [34], this is
not the case for our previous approach [49]. However, the effect
size is smaller than the effect sizes for the plagiarism pairs, which
aligns with the similarity score differences in Table 3.

5.4.2 Discussion. Our evaluation found that our approach signifi-
cantly outperforms the state-of-the-art regarding the detection of
ChatGPT-generated metamodels. This is especially apparent when
the obfuscation is strong, which is true for plagiarism-to-plagiarism
pairs. While our previous approach [49] also performs well, it is
less resilient to strong obfuscation attempts. This can be attributed
to it being susceptible to reordering attacks, as shown in Subsec-
tion 5.2. Our current approach, however, is resilient to these attacks
due to our normalization technique. Reordering and renaming are
also likely the first steps a plagiarizer would take after using Chat-
GPT [50]. The difference between our approach and Martinez et al.
[34] is even more considerable, as ChatGPT frequently employs
renaming. The renaming attacks of ChatGPT are particularly ef-
fective, as ChatGPT considers the modeling domain and identifies
suitable synonyms. Interestingly, as ChatGPT is partially determin-
istic, we observed recurring patterns for different prompts, such as
inserting a “Node” and “Edge” class and adding references from spe-
cific existing classes to the inserted one. This shows that even with
systematic prompt engineering and strong obfuscation, plagiarizers
cannot be certain to avoid detection. In sum, plagiarism generated
with ChatGPT currently is predictable enough to be reliably detected
by our approach. Our approach also significantly outperforms the
state-of-the-art, especially for strongly obfuscated plagiarism.

5.5 Threats to Validity

We now discuss how we addressed threats to validity according
to [63] and [46]. Regarding internal validity, a potential threat is
the impact of prompts on the strength of Al-generated plagiarism
using ChatGPT. To mitigate this, we experimented with different
prompts in a pre-study and asked for more changes after each
prompt. The external validity and generalizability are threatened
by the limited availability of datasets. There is only one published
dataset [50] for modeling tasks, as students’ data is sensitive and
rarely published. We addressed this limitation by carefully design-
ing our evaluation of three different plagiarism types using a single
dataset. EMF-based metamodels are widely-used, and metamod-
eling is a typical assignment [14]. Furthermore, the used dataset
is from a real-world modeling assignment. To enhance construct
validity, we closely oriented our evaluation design on existing work
in this field [49]. To enhance reliability, we provide our approach
in the supplementary material [48]. The datasets contain sensitive
data and are only partially included. Finally, the detailed descrip-
tion of our evaluation design allows for re-applying it to other data
sets. One limitation is that detecting plagiarism in small modeling
assignments is challenging, as very little information is available.

Minor similarities can lead to false positives. Additionally, small
modeling tasks often use common patterns, thus challenging pla-

giarism detection. However, this problem is intrinsic and applies to
all approaches.
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6 RELATED WORK

In this section, we review related work that are not applicable
to metamodel plagiarism detection due to their vulnerability to
obfuscation attacks [49] and computational inefficiency for large
courses [34]. Our focus is on MDE modeling artifacts, and image-
based plagiarism detection [23, 41]. We loosely relate to automated
UML grading [5, 6, 9, 22], where also the similarity of models needs
to be computed. However, plagiarism detection tackles obfuscation
attacks and the problem of separating plagiarism from the original.

Model Clone Detection. Clone detection [21, 52] deals with finding
syntactically or semantically identical code fragments in a program.
While the employed techniques are similar to plagiarism detection,
clone detectors do not face the threat of obfuscation attacks. For
clone detection, the size of the modification should be reflected
in the similarity measures. In contrast, for plagiarism detection, it
is even valid that some changes will not reduce the similarity at
all to achieve resilience against obfuscation attacks. We relate to
metamodel clone detection [53, 55-57], like the approach by Babur
et al. [3]. However, these approaches are insufficient for plagiarism
detection as they are prone to typical obfuscation attacks.

Model Differencing. Model Differencing is extensively researched
[28, 54] and is commonly used for model versioning. Various ap-
proaches exist [30, 33, 65]. It is related to plagiarism detection, as
both determine the similarity between models. Nevertheless, model
differencing is vulnerable to obfuscation attacks. The de-facto stan-
dard is EMF Compare [12], which can be customized for specific
matching strategies. EMF Compare’s identifier-based strategy fails
to detect plagiarism, as changing identifiers is an easy obfuscation
attack. Furthermore, its similarity-based strategy is susceptible to
renaming and reordering-based attacks. Wittler et al. [62] demon-
strate this in a different context, yet the same principle holds true.
Since EMF Compare allows custom strategies, our approach could
be implemented as one in order to use the visualization EMF Com-
pare provides. Finally, we could employ related approaches for
change visualization [11, 59].

7 CONCLUSION

This paper presented a novel, token-based approach for automated
plagiarism detection of modeling assignments. Our approach is re-
silient against all common obfuscation attacks by combining model
tokenization with a novel token sequence normalization. Neverthe-
less, our evaluation demonstrates that our approach consistently
identifies Al-obfuscated plagiarism and significantly outperforms
the state of the art. This paper contributes to academic integrity
by providing critical insights into Al-based modeling plagiarism.
Our approach benefits computer science education by providing a
reliable means to check modeling assignments for plagiarism.
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