
Detecting Automatic Software Plagiarism
via Token Sequence Normalization

Timur Sağlam, Moritz Brödel, Larissa Schmid, Sebastian Hahner
firstname.lastname@kit.edu

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

ABSTRACT
While software plagiarism detectors have been used for decades,
the assumption that evading detection requires programming
proficiency is challenged by the emergence of automated pla-
giarism generators. These generators enable effortless obfus-
cation attacks, exploiting vulnerabilities in existing detectors
by inserting statements to disrupt the matching of related
programs. Thus, we present a novel, language-independent de-
fense mechanism that leverages program dependence graphs,
rendering such attacks infeasible. We evaluate our approach
with multiple real-world datasets and show that it defeats
plagiarism generators by offering resilience against automated
obfuscation while maintaining a low rate of false positives.

CCS CONCEPTS
• Information systems → Near-duplicate and plagiarism de-
tection; • Software and its engineering → Automated static
analysis; • Social and professional topics → Computer science
education; Software engineering education;

KEYWORDS
Software Plagiarism Detection, Plagiarism Obfuscation, Ob-
fuscation Attacks, Code Normalization, PDG, Tokenization
ACM Reference Format:
Timur Sağlam, Moritz Brödel, Larissa Schmid, Sebastian Hah-
ner. 2024. Detecting Automatic Software Plagiarism via Token
Sequence Normalization. In 2024 IEEE/ACM 46th International
Conference on Software Engineering (ICSE ’24), April 14–20,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597503.3639192

1 INTRODUCTION
Plagiarism is prevalent in computer science education [12, 23,
30], facilitated by the ease of duplicating and modifying dig-
ital assignments. Although students generally acknowledge
plagiarism as academic misconduct, some will engage in it
despite the threat of consequences [47]. They also attempt to
obfuscate their plagiarism to conceal its source, using tech-
niques like renaming, reordering, or inserting code [20, 32, 43].

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0217-4/24/04.
https://doi.org/10.1145/3597503.3639192

Plagiarism is notably prevalent in mandatory assignments,
especially in beginners’ courses [35]. Due to the substantial
size of computer science courses, manual inspection is im-
practical [9, 22], and the individual risk of detection reduces
with rising class sizes [54]. For instance, checking plagiarism
for 500 students necessitates more than 100.000 pairwise
comparisons, which is not feasible to perform manually.

To tackle this problem at scale, software plagiarism de-
tectors have been used for decades [7, 33, 36]. Tools like
MOSS [1] and JPlag [36, 37] are used in universities world-
wide to tackle the problem of academic integrity [3]. Pla-
giarism detectors are effective when defeating them takes
more effort than completing the actual assignment [13]. Thus,
a widespread assumption has always been that if students
could evade detection, they had already acquired the skills
to be taught, considering the tedious and intricate nature of
successful manual obfuscation [16]. However, this assumption
has been broken with the recent rise of plagiarism genera-
tors [6, 13]. While designing such a generator takes time and
programming proficiency, using them requires neither.

Automatic Plagiarism Generators. Recently, Devore-McDonald
and Berger [13] introduced Mossad, a plagiarism generator
inspired by genetic programming that allows generating mul-
tiple obfuscated versions of a single program. While most
software plagiarism detectors exhibit resilience against some
obfuscation attacks [16, 36], Mossad exploits a vulnerability
that is inherent in most structure-based approaches. State-of-
the-art plagiarism detectors operate token-based and compare
the code’s structure [31]. They parse the program and lin-
earize the parse tree by extracting the tokenized program as
a token sequence. Matches between programs are identified
with a subsequence search in these token sequences, and the
similarity is calculated. By omitting certain details such as
names and types, the token sequence serves as an abstraction
layer and is thus resilient against specific obfuscation attacks
such as renaming and retyping.

Mossad repeatedly inserts statements into the plagiarized
program to break up these subsequences until the plagia-
rism is no longer recognized. To that end, sets of pre-defined
statements called entropy and existing statements from the
original program are used. The insertion is stopped when the
plagiarized instance falls below a certain similarity threshold
compared to the original. The authors claim that this cannot
be detected by human inspection, as the inserted lines are
not suspicious at first glance [13]. While Mossad is only
one example of a plagiarism generator, we must accept the
possibility of others to exist [6], and among them, reordering

https://orcid.org/0001-5983-4032
https://doi.org/10.1145/3597503.3639192
https://doi.org/10.1145/3597503.3639192

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Timur Sağlam, Moritz Brödel, Larissa Schmid, Sebastian Hahner

is one such potential obfuscation technique. How exactly an
unknown plagiarism generator might alter code is unclear.
However, due to the nature of token-based detectors, the
token sequence is the only aspect impacting detection quality.
Although there are graph-based approaches that are poten-
tially less vulnerable to such attacks, they are not feasible in
practice [24] due to the NP nature of determining subgraph
isomorphism [25, 29, 45].

Contribution. This paper presents a novel defense mecha-
nism called token sequence normalization to achieve resilience
against such automatic obfuscation attacks. We combine the
effectiveness of graph-based approaches with the scalability
of token-based approaches in a best-of-both-worlds approach.
We leverage program dependence graphs (PDG) [14] to nor-
malize programs. However, for real-world applicability, any
approach must be language-independent and operate at an
abstract level [24, 31, 37]. Furthermore, it must support ex-
plainability via traceability, enabling visualization based on
the original, unaltered code. From both ethical and admin-
istrative standpoints [23, 46], only the original, unaltered
code should inform human decision-making in academic mis-
conduct investigations. Moreover, the unaltered code often
contains idiosyncrasies [32] due to obfuscation. They are used
for both initial decision-making and misconduct investiga-
tions. Hence, PDGs are inapplicable.

To meet these criteria, we introduce the concept of a token
normalization graph (TNG), which operates on the token se-
quence, thus providing a language-independent and ethically
sound approach that aligns with academic misconduct ad-
ministrative procedures. This TNG is then used to normalize
the token sequence by effectively reverting the insertion and
reordering of statements. Our defense mechanism can thus
effectively de-obfuscate plagiarism instances.

We implement the defense mechanism based on the state-
of-the-art plagiarism detector JPlag [36, 37], as it is widely
used, open-source, GDPR-compliant, and easy to extend1.
This gives us the benefit of reusing the existing capabilities,
good scalability, and broad language support. However, our
defense mechanism can be implemented for other token-based
detectors, such as MOSS [1] or Dolos [27]. Based on our work,
we ask the following research questions:

RQ1 Can our defense mechanism effectively detect Mossad-
style plagiarism instances?
RQ2 Can it provide resilience against general insertion-based,
reordering-based, and combined obfuscation attacks?
RQ3 How does our defense mechanism impact the false posi-
tive rate of the plagiarism detector?
RQ4 How does our defense mechanism impact the perfor-
mance of the plagiarism detector?

1We provide our implementation of the defense mechanism as part of
the supplementary material [42]. Furthermore, it is integrated into the
open-source repository of JPlag [17].

1 void printSquares() { void printSquares() {
2 int i = 1; int i = 1;
3 (+) boolean debug = false;
4 while (i <= 10) { while (i <= 10) {
5 int square = i * i; int square = i * i;
6 println(square); (~) i++;
7 i++; (~) println(square);
8 } }
9 } }

Listing 1: Original code (left) and modified variant (right) after
inserting one statement (+) and reordering two (∼).

Evaluation. In our two-stage evaluation, we evaluate our de-
fense mechanism with the publicly available dataset PROG-
pedia [34] and two datasets of our own introductory program-
ming course. We evaluate our mechanism against insertion-
based, reordering-based, and combined attacks. The results
demonstrate the effectiveness of our approach, as obfuscation
attacks based on insertion and reordering are rendered inef-
fective. We increase similarity scores of plagiarized solutions
from 10-30% to a minimum of 95%. Remarkably, the similar-
ity of unrelated solutions remains virtually unaltered, with an
average similarity increase of less than 1%, effectively avoid-
ing an increase in false positives. Our defense mechanism
comes with a negligible runtime overhead of mere seconds
for large real-world datasets, thus showing its practicality.

This paper’s structure is as follows: In Section 2, we intro-
duce the running example. Section 3 discusses the basics of
software plagiarism detection. In Section 4, we establish a
threat model. In Section 5, we present our defense mechanism,
whereas Section 6 shows its evaluation. Finally, we discuss
related research in Section 7 and conclude in Section 8.

2 RUNNING EXAMPLE
As a running example, we examine the programs shown in
Listing 1. Both programs print the squared values of the
numbers from 1 to 10. The right program is a modified
variant based on two changes that alter its structure. Thus,
the program still behaves the same upon execution. In detail,
line 3 was inserted in the modified variant, and lines 6 and 7
were swapped. While the relationship between the programs
is evident in this simple example, this is not true for larger
programs that undergo extensive modifications to obfuscate
the relation between the variant and the original. Thus, these
modifications can be used to conceal plagiarism. Additionally,
manual comparison becomes infeasible when dealing with
numerous student submissions, even for smaller programs.
However, for plagiarism detectors, structural obfuscation
attacks like these diminish the detection quality [13].

3 STATE OF THE ART
Software plagiarism detectors enable educators to tackle the
problem of scale by helping to seek out plagiarism. The
detector analyzes pairs of programs to find similar sections
and calculates a similarity score for each pair. However, the

Detecting Automatic Software Plagiarism via Token Sequence Normalization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Submissions Tokenization

T
T

T
Parse Tree

Tokens
Token

Selection

JPlag Language Module

T
T

T
Language-

independent
Tokens

Pairwise
Comparison

Results

Figure 1: Token-based plagiarism detection process of JPlag.

final decision of identifying plagiarism is left to instructors,
given the inherent complexity and ethical considerations
involved in this task. Most software plagiarism detection
approaches compare the structure of the code [31, 32], and
among them, token-based approaches, such as MOSS [1], and
JPlag [36], are the most popular tools employed in practice.
They combine tokenization with pairwise comparison to iden-
tify code matches based on hashing and tiling [1, 37]. As
their comparison algorithms, MOSS and Dolos [27] are using
winnowing [44], while JPlag and Sherlock [16] use greedy
string tiling with the running Karp-Rabin matching [51, 52].

The tokenization step transforms the program’s code into
a parse tree. A subset of the tree nodes is then extracted
as tokens, thus linearizing the tree and further abstracting
from the underlying code. Figure 1 outlines this process for
JPlag, which is comparable to other approaches. According
to Prechelt et al. [37], the extracted token sequence “char-
acterizes the essence of a program’s structure”. To illustrate
this, Table 1 shows the token sequences of the two programs
in Listing 1. While the structural information concerning
method context, loop context, declarations, and assignments
remains intact, specific details such as names, types, or com-
ments are excluded. The token sequences are then used to
find matching subsequences between pairs of submissions. As
matching single tokens may lead to false positives, a minimal
match length hyperparameter [41] is employed, below which
subsequences are no longer considered matches. As the tokens
abstract from the code, the comparison is inherently resilient
against particular obfuscation attacks, such as renaming, re-
typing, or obscuring constant values [37]. This particularly
includes immunity against all lexical [16] attacks. However,
these detectors are not resilient against insertion-based and
reordering-based attacks [13].

4 THREAT MODEL
Devore-McDonald and Berger [13] introduce Mossad, a soft-
ware plagiarism generator that rapidly produces obfuscated
versions of original programs. Mossad uses techniques in-
spired by genetic programming to evade plagiarism detec-
tion and randomly inserts statements until the similarity
to the input computed by a plagiarism detector falls below
a user-defined threshold. To keep the inserted statements

Table 1: Comparison of the original and obfuscated token se-
quences corresponding to the program statements in Listing 1.

Original Tokens → Variant Tokens
1 method start method start
2 variable variable
3 (+) variable
4 loop start loop start
5 variable variable
6 apply (~) assignment
7 assignment (~) apply
8 loop end loop end
9 method end method end

domain-related and unsuspicious, Mossad uses both existing
statements from the input program and a user-defined pool
of statements called entropy. Mossad generates multiple
variants from a single original, which are not only obfuscated
from the original but also among each other due to its indeter-
ministic nature. To determine program semantic equivalence,
Mossad compares the intermediate representation of pro-
grams after compiling both with high-level optimization. By
repeatedly applying mutations randomly, Mossad can cre-
ate multiple variants that amongst each other are different
enough not to get flagged during plagiarism detection. Its
automatic and efficient nature makes it a potent threat to cur-
rent plagiarism detection practices. Mossad demonstrates its
effectiveness against various plagiarism detectors, including
MOSS [1], Sherlock [16], and JPlag [36, 37]. Their approach
is mainly designed against token-based plagiarism detectors
but has the potential for attacks on other structure-based [31]
software plagiarism detectors. Thus, we propose a generalized
threat model.

4.1 Software Plagiarism Generators
An automatic software plagiarism generator aims to modify
an input program to change its structure and appearance
without altering its semantics. Modifying the structure allows
evading detection by plagiarism detectors, while modifying
the appearance will avoid detection during the manual inspec-
tion. However, the former takes precedence over the latter,
as instructors rely on automatic detectors due to large class
sizes [9, 54]. Possible modifications involve inserting, deleting,
or reordering statements within the code. For any obfuscation
attack to be effective against token-based detectors, it must
alter code in such a way that it affects the token sequence,
meaning inserting, deleting, and reordering tokens. The posi-
tion of the modification in the code can be either random,
systematic, or a combination of both. Different termination
criteria may be employed during the obfuscation process.

Deletion of statements is typically ineffective since few
statements can be removed without affecting semantics. In
the following, we thus mainly discuss attacks based on in-
sertion and reordering, as they are effective [13] and readily
automated. These attack types are also prevalent when hu-
mans engage in plagiarism [20, 32, 43].

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Timur Sağlam, Moritz Brödel, Larissa Schmid, Sebastian Hahner

4.2 Statement Insertion
Inserting one or multiple statements into a plagiarized pro-
gram allows changing the structure and appearance of the
program by breaking up matching code segments with the
source program. For this attack type to be effective, these
statements must not change the semantics of the code, and
the modified program must compile. Usually, the inserted
code is dead code. However, more sophisticated approaches
might try to conceal that. In Listing 1, a dead statement is
inserted in the third line, which does not affect the program’s
semantics. However, inserting i = 0; between lines 4 and
5 would change the program’s behavior, thus altering its
semantics. The quality of the inserted statements is of the
essence, as comments or unnecessary braces do not impact
the token sequence. Instead, the inserted statements must
be (partially) tokenized to affect the internal representation
of the plagiarism detector. Additionally, while humans may
rely on tools for inspection, the inserted code should appear
plausible at first glance to avoid arousing suspicion. Neverthe-
less, this attack type is effective and can be easily automated.
However, inserting an excessive number of lines may raise
suspicion, especially if it significantly exceeds the length of
other students’ solutions.

4.3 Statement Reordering
The reordering of statements also changes the structure and
appearance of a program. However, only independent state-
ments can be reordered to preserve the program’s semantics.
In Listing 1, the statements in lines 6 and 7 are swapped,
as they do not depend on each other. However, additionally
swapping lines 5 and 6 afterward would change the program’s
behavior as the loop variable is incremented before calculating
the squared value. Nevertheless, reordering as an automatic
obfuscation attack is challenging, as there are limited pos-
sible swaps due to the requirement to respect dependencies
between statements. Consequently, this technique may be
less effective than statement insertion, but the method is
still a viable obfuscation strategy, especially when combined
with statement insertion. Since statement order is primarily
a stylistic choice and different orders are not suspicious, this
technique is more challenging for a human reviewer to spot.

5 TOKEN SEQUENCE NORMALIZATION
This section introduces our main contribution, a language-
independent defense mechanism called token sequence normal-
ization. With this mechanism, we combine the effectiveness
of graph-based approaches with the scalability of token-based
approaches in a best-of-both-worlds approach. As discussed
in Section 3, the results of token-based plagiarism detectors
are invariant to lexical modifications of the input submissions.
This is because all variants produced through lexical modifi-
cations result in the same token sequence. With our defense
mechanism, we expand upon these capabilities by making
the token sequence virtually invariant against insertion- and
reordering-based attacks. We achieve this by normalizing the
token sequence by removing dead statements and putting

subsequent independent statements in a fixed order. As a
result, we achieve high resilience to automatic plagiarism
generation using these attacks.

5.1 Requirements
For any normalization approach to be applicable in real-world
scenarios, it must satisfy specific criteria. Firstly, it needs
to be language-independent, ensuring versatility across pro-
gramming languages. Developing a normalization approach
from scratch for each new language is impractical. More-
over, it must operate at an abstract level, focusing on tokens
rather than code, enabling the capture of structural simi-
larities while minimizing the influence of language-specific
syntax [24, 31, 37]. Furthermore, it must support explainabil-
ity via traceability, allowing for the visualization of potential
plagiarism with the original, unaltered code. This is essen-
tial from both ethical and administrative perspectives [46],
as it ensures that the original code remains the basis for
human decision-making in plagiarism detection [23]. Further-
more, the altered code may no longer contain idiosyncrasies
(e.g., obvious obfuscation attempts) that assist the decision-
making [32]. As a consequence, normalization approaches
that modify the input programs as pre-processing steps are
not applicable. Existing dead code elimination methods do
not fulfill these requirements, as they are language-dependent,
modify the programs, and are incompatible with ethical and
administrative concerns. In contrast, our defense mechanism
is specifically designed to meet these requirements.

5.2 Overview
The defense mechanism is an additional step in the pipeline
of a plagiarism detector before the pairwise comparison (see
Figure 1), which effectively de-obfuscates plagiarism for the
remaining steps in the pipeline. At a high level, our mecha-
nism operates as follows for each input program:
(1) We enrich the token sequence with additional language-

independent semantic information about the interdepen-
dence of the tokens.

(2) We construct a language-independent graph-based rep-
resentation of the tokenized program from the enriched
token sequence, which abstracts from the original code.
This graph represents a partial order of the tokens.

(3) We then use this graph to generate a normalized to-
ken sequence, thus effectively reverting insertions and
reorderings.
(a) Insertions are countered via subsequence removal.
(b) Reordering is negated by topological sorting [19].

(4) The comparison is still conducted exclusively on the token
sequence, circumventing the computational complexity
of graph-based approaches.

We call the representation of the tokenized program a token
normalization graph (TNG). Each node in this graph repre-
sents the tokens of a program statement. As it is based on the
token sequence, it is language-independent, which enables
our defense mechanism to be applicable to any program-
ming language. Thus, the format of the semantic information

Detecting Automatic Software Plagiarism via Token Sequence Normalization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

utilized to enrich the token sequence must also be language-
independent. We specify a generic format for the semantic
information based on the interdependence between tokens
that abstracts from the detail of the underlying programming
language. The semantic information must be extracted from
the input programs alongside the tokens. Therefore, the ex-
traction needs to be implemented separately for each language
the detector supports. It is the sole language-dependent step
that our defense mechanism adds. However, extracting seman-
tic information does not impose additional constraints on the
detector since tokenization is inherently language-dependent.

5.3 Semantic Information
In order to construct a TNG, we need information about the
interdependencies between the tokens. This information is not
present in the token sequence and thus must be additionally
attached to the tokens. To that end, a language-independent
format is required for this semantic information. Using this
format, the tokens can be automatically annotated during
their extraction from the parse tree. Different types of state-
ments lead to different types of information. Thus, this format
allows us to map the relations of the statements in the pro-
gram to the tokens independent of the underlying language
of the program. We specify the following format for this
semantic information:

Criticality describes statements that contribute to programs’
behavior through means other than variables and thus must
not be removed. Therefore, a token can be either critical or not
critical. In our example in Listing 1, the critical statements
are the while statement and the println statement. Thus,
the loop start and apply tokens in Table 1 are critical.
Fixed Order describes how statements must maintain their
relative order to ensure semantic equivalence. Tokens can
thus be either fixed in their order or non-fixed. Fixed order
tokens act as reordering boundary, as preceding tokens cannot
be moved after this boundary and vice versa. In the running
example, the while statement dictates that the statements
within the loop cannot be moved outside the loop. Thus, the
loop tokens of lines 4 and 8 in Table 1 are fixed order tokens.
Variable Access describes the variable accesses (read or write)
for each statement, thus indicating on which other statements
they depend. Hence, each token has two variable identifier
sets: One for read accesses and one for write accesses. In
the running example, the while statement depends on the
statement the declares the variable i. Therefore, the loop
start token contains i in its read access set.
Loop describes statement blocks in which the execution order
of the statements can deviate from their declaration order.
Therefore, the first and last tokens corresponding to the loop
are marked with loop start and loop end flags. In the run-
ning example, the statements in the loop body are repeatedly
executed. Thus, the incrementation of the variable i may be
executed not only after the println statement but also before
due to the repeated execution. In the running example, both
loop start and loop end are marked with the loop flag.

5.4 Token Normalization Graph
We use the token normalization graph as the underlying
data structure to generate a normalized token sequence. A
TNG is a specialized version of a program dependence graph
(PDG). It is designed for tokens instead of code and through
a higher abstraction level not confined to the programming
language’s syntax. Thus, a TNG crucially provides language
independence. A TNG contains additional edges required for
the token sequence normalization. While a PDG focuses only
on statement dependencies in code, the TNG considers both
token interdependence and the order of the tokens. Both are
required for token-based approaches.

We construct the TNG from the token sequence and the
additional semantic information. A TNG node represents a
single statement and contains all tokens generated from that
statement. After the construction of the TNG, we no longer
need the original token sequence. A TNG has three types of
edges, all of which are directed:

Variable Flow Edges indicate that a statement writes to a
variable that another statement reads. They are similar to
the data dependencies in the PDG.
Variable Order Edges indicate that altering the order of the
two statements may alter variable values and, thus, the pro-
gram’s behavior. Wherever there is a variable flow edge, there
is also a variable order edge; however not necessarily in the
same direction.
Fixed Order Edges indicate that altering the order of the two
statements may affect the program’s behavior for reasons
beyond variable value alterations.

The TNG is then constructed as follows: First, we group all
tokens within a statement as nodes. Next, we label nodes
containing at least one critical token as critical. We then use
the tokens marked as fixed order to create position signifi-
cance edges. For each node with fixed order tokens, we create
incoming and outgoing edges to and from all preceding and
subsequent nodes, as determined by the original order of the
tokens. We employ the variable access sets and loop flags to
create variable flow edges. Finally, disregarding loop flags,
we determine variable order edges solely by variable access
sets. Once the TNG is complete, it contains all the necessary
data for generating a normalized token sequence. Thus, the
original token sequences can be safely discarded. Moreover,
as for all token-based approaches, the original programs are
no longer required for the similarity calculation.

Figure 2 shows a PDG for the plagiarized program in
Listing 1. The control and data dependencies between the
different code statements are represented via edges. While the
dead statement for the variable called debug can be identified,
it cannot be used to generate a normalized token sequence
due to the requirements mentioned in Section 5. Figure 3
shows the TNG for the same program. In contrast to the
PDG, the nodes represent tokens instead of code. The TNG
contains the three types of edges based on the semantic in-
formation discussed in Subsection 5.3. The two nodes with
a gray background are marked as critical. Furthermore, the

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Timur Sağlam, Moritz Brödel, Larissa Schmid, Sebastian Hahner

i++
while (i <= 10)

int i = 1

int square = i * i

println(square)

boolean debug = false

Figure 2: Program dependence graph of the running example
showing control dependencies (solid arrows) and data depen-
dencies (dashed arrows).

variable

apply
[C]
r={square}
w=∅

variable r={i}
w={square}

assign r={i}
w={i}

variable r=∅
w={i}

loop start
[C,F,L]
r={i}
w=∅

Figure 3: Token normalization graph for the PDG in Figure 2,
fixed order edges (solid), variable order edges (dashed), and
variable flow edges (dotted). The critical (C), fixed-order (F),
and loop (L) flags, with the variable access sets (r for read, w
for write), are included for illustrative purposes.

semantic information of the corresponding tokens is illus-
trated in the bottom right corner of the node. The semantic
information is only depicted for the sake of clarity. It is used
to construct the TNG but is no longer necessary for the
normalization thereafter.

5.5 Generating the Normalized Token Sequence
After constructing the TNG, we can leverage it to generate
a normalized token sequence in two steps. First, we remove
all dead nodes. These are all nodes from which no critical
node can be reached via variable flow edges. This effectively
reverts insertions into the token sequence. Next, we remove all
variable flow edges from the TNG, making it acyclical. They
have served their purpose for the dead node removal and are
no longer required. In our running example in Listing 1, the
statement containing the variable named debug is considered
dead code, and so is its corresponding variable node in
the TNG in Figure 3. This node will be removed, as it has
no outgoing variable flow edge. Table 2 illustrates how that
affects the normalized token sequence. The code insertion
leads to an additional token in the obfuscated token sequence.
However, after the dead node removal, this effect is reversed.
Figure 4 illustrates the TNG from Figure 3 with the dead node
removed and variable flow edges omitted. The previous cycles,
such as the one between the loop start and assign nodes,

assign loop start

variable

variable

apply

Figure 4: Token normalization graph after the dead nodes and
removal of variable flow edges, still present are fixed order
edges (solid) and variable order edges (dashed).

Table 2: Comparison of the original and obfuscated token
sequences with the obfuscated one after the two steps dead
node removal and topological sorting Listing 1.

Original → Obfuscated →Nodes Removed→ Top. Sorted
1 method start method start method start method start
2 variable variable variable variable
3 (+) variable (–)
4 loop start loop start loop start loop start
5 variable variable variable variable
6 apply (~) assignment assignment (~) apply
7 assignment (~) apply apply (~) assignment
8 loop end loop end loop end loop end
9 method end method end method end method end

are no longer present. A partial order becomes apparent when
considering the topmost variable node as the root.

Next, we use topological sorting [19] to generate a normal-
ized token sequence. This counters attempts to re-order the
token sequence. Specifically, we order the tokens of the re-
maining nodes by their node’s distance to the aforementioned
root. Nodes with the same distance represent subsequent inde-
pendent statements. We sort them via the types of the tokens
in the nodes. This is a robust criterion, as the extracted
tokens are invariant to lexical modifications [37]. Note that if
two nodes with the same root distance are equal according to
that criterion, they contain the same tokens and their order
does not affect the normalized token sequence.

In our running example in Listing 1, statements 6 and 7
were swapped. Table 2 illustrates how this obfuscation affects
the token sequence. When using the reduced TNG in Figure 4
to generate the normalized token sequence, the sequence after
the topological sorting will be identical to the original one
(see Table 2). Thus, the plagiarism detector computes a
100% match for our running example, despite the obfuscation
attempt shown in Listing 1. As our approach only normalizes
the tokens sequence. The original, unaltered code, with all
its idiosyncrasies, is used for the visualization. However, as
a result of our normalization, the similarity calculation and
code matching are not compromised by obfuscation attacks.

Detecting Automatic Software Plagiarism via Token Sequence Normalization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

6 EVALUATION
This section evaluates our defense mechanism, which we im-
plemented2 for the open-source plagiarism detector JPlag3

and the programming language Java. We chose JPlag as it is
state-of-the-art [32], open-source, and was used for the evalu-
ation of Mossad [13]. We show that our defense mechanism
is effective and applicable to real-world datasets4.

6.1 Methodology
The evaluation follows the Goal-Question-Metric (GQM)
method [4, 5], and the GQM plan is as outlined:
G1 Improve resilience against automatic obfuscation attacks.

Q1 Resilience against insertion-based attacks?
Q2 Resilience against reordering-based attacks?
Q3 Resilience against combined attacks?
M1-3 Similarity scores with and without the normalization.

G2 Retain the performance and false-positive rate of the detection
Q3 Does the normalization affect the performance?
M3 Runtime overhead of the normalization.
Q4 Does the normalization affect the false positive rate?
M4 Deviation of the similarity scores for unrelated solutions.

Our first goal (G1), regarding obfuscation attack resilience,
maps to research questions RQ1 and RQ2, while our second
goal (G2), regarding the scalability and false-positive rate,
maps to RQ3 and RQ4. For software plagiarism detection,
pairs of solutions are compared, and their similarity is calcu-
lated. Thus, the similarity scores of plagiarism instances to
their originals (similarity score to original, SSO) must be high
to maximize the true positive rate. Vice versa, the similarity
score of pairs or unrelated solutions must be low.

6.1.1 Datasets. We conducted our evaluation using four dis-
tinct datasets, each with specific characteristics. First, we
used two tasks from PROGpredia [34], a publicly available
collection of submissions from introductory programming
courses. We chose these specific tasks because they had longer
programs and more solutions than the others. Task 19 re-
quires students to implement a social network analyzer with
a graph data structure and a depth-first search to count
distinct groups. Task 56 requires them to find a minimum
spanning tree using Prim’s algorithm and calculate the to-
tal minimum distance to connect all points with Euclidean
distance. To prepare the datasets for our evaluation, we only
used solutions written in Java and removed all solutions that
did not compile, as JPlag requires input programs to compile.
However, as these public data sets are relatively small, we
also used two datasets from our first semester’s Java pro-
gramming lecture. One is from a mandatory assignment that
required students to implement the game TicTacToe with
both support for human and basic AI players via a simple
command line interface. The other is from the final project
of the course where students were tasked to implement a
tile-based farming board game, requiring students to design

2Further information on the implementation can be found in [8].
3https://github.com/jplag/JPlag
4We provide the implementation of our approach, and the datasets
used for the evaluation as part of the supplementary material [42].

and implement a large program with around 30-40 source
files. To prepare these datasets, we removed all known human
plagiarism based on the results of past plagiarism checks.

Thus, we ended up with the following four datasets, which
provide diverse programs, enabling us to evaluate our defense
mechanism thoroughly. These size specifications are given in
lines of code (LOC), excluding comments and empty lines.
PROGpedia Task 19: Consists of 27 submissions, with a mean
size of 131 LOC and a median of 106 LOC.
PROGpedia Task 56: Consists of 28 submissions, with a mean
size of 85 LOC and a median of 77 LOC.
TicTacToe: Consists of 626 submissions, with a mean size of
236 LOC and a median of 225 LOC.
BoardGame: Consists of 434 submissions, with a mean size
of 1529 LOC and a median of 1487 LOC.

6.1.2 Automatic Plagiarism Generation. For our evaluation,
we employ three types of automated obfuscation attacks.
First, we use the attack employed by Mossad solely based
on insertion. This attack can insert any arbitrary number of
statements into a single program. We use both statements
from the original program and a custom entropy file with
pre-defined statements. Second, we use a variant based on
Mossad where statements are reordered instead of inserted.
For this attack, the number of changes that can be made to
a single program is limited, as only some statements can be
reordered without changing the original solutions. Thus, this
attack is weaker than the previous one. Finally, we employ
a combined attack, insertion after reordering. This attack
makes it especially hard for humans to spot plagiarism. It also
further reduces the computed similarity score compared to
solely inserting. We used these three attack types to generate
plagiarism instances for all four datasets. For the PROG-
pedia datasets, we generate three plagiarism instances per
original solution, thus resulting in 81 and 84 instances, re-
spectively. For the TicTacToe and BoardGame data sets, we
generate three plagiarism instances from twenty randomly
chosen solutions due to significantly higher generation time,
thus resulting in 60 plagiarism instances for each dataset. In
summary, we evaluated our approach with four data sets,
totaling 1.115 originals and 285 plagiarism instances.

6.2 Evaluation of Obfuscation Attack Resilience
To assess the effectiveness of our defense mechanism, we
compare a version of JPlag with our normalization to one
without it. Additionally, we analyze the impact of varying
numbers of modifications by conducting multiple evaluation
runs during the plagiarism generation process.

6.2.1 Insertion-based Attack. Initially, we evaluate insertion-
based attacks, aligning with Mossad’s plagiarism generation
approach. The outcomes are depicted in Figure 5 a), which
shows the average SSOs for the four datasets for a varying
number of insertions relative to the size of the original so-
lutions. Without our defense mechanism, JPlag computes
an average SSO of less than 25% for all four datasets, and
notably, for the TicTacToe dataset, it drops below 10%. This

https://github.com/jplag/JPlag

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Timur Sağlam, Moritz Brödel, Larissa Schmid, Sebastian Hahner

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.2

0.4

0.6

0.8

1

modifications as proportion of statement count

av
er

ag
e

SS
O

a) insertion-based

0 0.2 0.4 0.6 0.8 1

0.9

0.92

0.94

0.96

0.98

1

modifications as proportion of statement count

av
er

ag
e

SS
O

b) reordering-based

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1

modifications as proportion of statement count

av
er

ag
e

SS
O

c) insertion after re-ordering
Figure 5: Average SSO for all plagiarism instances of a dataset with our defense mechanism disabled (solid lines) and enabled
(dashed lines). The green line is TicTacToe, the purple is BoardGame, the blue is PROGpedia-19, and the yellow is PROGpedia-56.

PROGpedia-19

PROGpedia-56

TicTacToe

BoardGame

0

0.2

0.4

0.6

0.8

1

si
m

ila
rit

y
sc

or
e

a) insertion-based

PROGpedia-19

PROGpedia-56

TicTacToe

BoardGame

0.8

0.85

0.9

0.95

1

si
m

ila
rit

y
sc

or
e

b) reordering-based

PROGpedia-19

PROGpedia-56

TicTacToe

BoardGame

0

0.2

0.4

0.6

0.8

1

si
m

ila
rit

y
sc

or
e

c) insertion after re-ordering
Figure 6: SSO distribution for all three datasets with our defense mechanism disabled (blue) and enabled (orange).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1

modifications as proportion of statement count

SS
O

a) TicTacToe, insertion-based

0 0.1 0.2 0.3 0.4

0.75

0.8

0.85

0.9

0.95

1

modifications as proportion of statement count

SS
O

b) TicTacToe, reordering-based

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

1

modifications as proportion of statement count
SS

O
c) TicTacToe, insertion after re-ordering

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1

modifications as proportion of statement count

SS
O

d) PROGpedia-19, insertion-based

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.75

0.8

0.85

0.9

0.95

1

modifications as proportion of statement count

SS
O

e) PROGpedia-19, reordering-based

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1

modifications as proportion of statement count

SS
O

f) PROGpedia-19, insertion after re-ordering

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1

modifications as proportion of statement count

SS
O

g) PROGpedia-56, insertion-based

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.75

0.8

0.85

0.9

0.95

1

modifications as proportion of statement count

SS
O

h) PROGpedia-56, reordering-based

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1

modifications as proportion of statement count

SS
O

i) PROGpedia-56, insertion after re-ordering

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

1

modifications as proportion of statement count

SS
O

j) BoardGame, insertion-based

0 0.2 0.4 0.6 0.8 1

0.75

0.8

0.85

0.9

0.95

1

modifications as proportion of statement count

SS
O

k) BoardGame, reordering-based

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.2

0.4

0.6

0.8

1

modifications as proportion of statement count

SS
O

l) BoardGame, insertion after re-ordering
Figure 7: Detailed SSOs for the datasets’ individual programs with our mechanism disabled (solid) and enabled (dashed).

Detecting Automatic Software Plagiarism via Token Sequence Normalization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

renders most plagiarism detectors ineffective. To achieve such
a low threshold, approximately 50-60% additional statements
need to be inserted. In contrast, when our defense mechanism
is active, the mean SSO surges to over 99% for both PROG-
pedia datasets and TicTacToe. Furthermore, the SSO surges
to over 96% for the BoardGame dataset. These remarkably
high SSO values raise strong suspicions, enabling the prompt
identification of plagiarism instances.

Answer to RQ1: Our defense mechanism effectively
detects Mossad-generated plagiarism instances.

6.2.2 Reordering-based Attack. Next, we focus on evaluating
reordering-based attacks exclusively. The average SSOs for
the four datasets, for a certain relative number of re-ordering
operations, are depicted in Figure 5 b) (note the difference in
the y-axis scale). As anticipated, reordering attacks are less
effective, as evidenced by our findings. For the TicTacToe
and BoardGame datasets, the average SSO never drops below
95%, while for both PROGpedia datasets, the mean SSO
ranges between 90 and 95%. However, achieving this effect
only requires performing, on average, between a third and a
quarter of the possible re-ordering operations. However, with
our mechanism activated, all mean SSOs surge above 98%,
making it easy to identify plagiarism instances.

6.2.3 Combined Attack. In the third phase of our evaluation,
we examine combined attacks that involve insertion after
reordering. The outcomes of this assessment are depicted in
Figure 5 c), which closely resemble the results of the inser-
tion attacks on their own. Without our defense mechanism,
JPlag calculates an average SSO of less than 20% for the
PROGpedia and BoardGame datasets and below 10% for
the TicTacToe dataset. However, when reordering is applied
before insertion, it requires approximately 5-10% fewer inser-
tions to achieve the same SSO as with insertions alone. With
our defense mechanism enabled, all SSOs rise to over 95%,
making these plagiarism instances highly detectable.

Answer to RQ2: Our defense mechanism provides
robust resilience against general obfuscation attacks
based on insertion and re-ordering.

6.3 Evaluation of False-Positive Rate
When applying our approach to the PROGpedia datasets,
we encounter 378 and 351 comparisons between unrelated
solutions. For the TicTacToe dataset, there are 195.625 unre-
lated comparisons, and for the BoardGame dataset, 93.961.
Our defense mechanism must not increase the similarities of
these comparisons, as it could lead to a higher false-positive
rate during plagiarism inspection. Therefore, we compare
the similarities for these unrelated comparisons with and
without our mechanism enabled. As depicted in Figure 8,
the similarity scores remain nearly unchanged. The median
and mean values show no significant alterations. For the
PROGpedia-19 and BoardGame datasets, the upper whisker
slightly rises, while PROGpedia-56 slightly decreases. In the

PROGpedia-19

PROGpedia-56

TicTacToe

BoardGame

0

0.1

0.2

0.3

0.4

0.5

si
m

ila
rit

y
sc

or
e

Figure 8: The similarity scores of unrelated solutions with our
defense mechanism enabled (orange) and disabled (blue).

Table 3: Runtime for TicTacToe (626 programs, 167.562 LOC
total, ~200.000 comparisons) and BoardGame (434 programs,
685.730 LOC total, ~94.000 comparisons), avg. of 100 runs.

Dataset Metric disabled enabled diff

TicTacToe Runtime 6.97s 7.86s +0.89s
𝜎 (SD) 0.10s 0.10s

BoardGame Runtime 16.83s 23.28s +6.45s
𝜎 (SD) 0.53s 0.44s

case of TicTacToe, there is a single outlier that experiences
a slight increase. However, all these changes are less than
2% and are not considered significant. When measuring the
difference between the individual comparisons, over 95% of
them have a similarity below 1%. These results demonstrate
that unrelated programs do not experience an increase in
similarity.

Answer to RQ3: Our mechanism does not impact the
false-positive rate of the plagiarism detector.

6.4 Evaluation of Performance Impact
To assess the performance implications of our mechanism,
we compared the runtime of JPlag with and without our
approach. We measured the runtime for the TicTacToe and
BoardGame datasets, as the PROGpedia datasets are too
small for meaningful measurements. TicTacToe has the most
submissions and, thus, the most comparisons. BoardGame
has the largest submissions. We utilized a consumer notebook,
specifically a MacBook Pro equipped with an M1 Pro chip
and 16GB of memory for our performance measurements. As
shown in Table 3, there is only an overhead of 0.89 seconds
for TicTacToe, and 6.45 seconds for BoardGame. Note, that
this is the overhead for the full datasets, not individual
programs. State-of-the-art software plagiarism detectors like
JPlag are highly optimized, and the performance impact of
our mechanism is negligible. Thus, the total runtime of JPlag
with our mechanism combined is in mere seconds.

Answer to RQ4: Our approach scales well due to its
negligible impact on the detector’s performance.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Timur Sağlam, Moritz Brödel, Larissa Schmid, Sebastian Hahner

6.5 Discussion
As expected, insertion-based attacks are stronger than reordering-
based attacks, but combining both proves the most effective.
This is particularly evident when examining the SSO distribu-
tion after the plagiarism generation is complete (see Figure 6).
Notably, for reordering-based attacks, the impact strongly
depends on the input program. Multiple provided solutions
may exhibit varying feasibility for reordering-based attacks,
which is sensible. This also depends on the given assignment,
as it performs better for PROGpedia-56. Reordering performs
the worst for the TicTacToe and BoardGame datasets, which
is likely due to these assignments defining a more extensive
solution space than the PROGpedia assignments.

When inspecting individual plagiarism instances in Fig-
ure 7, it becomes evident that increasing the number of
reordering operations sometimes leads to an increase in simi-
larity rather than reduction, particularly noticeable for the
PROGpedia-19 dataset (d-f). As there is uncertainty about
whether further changes will result in reduced similarity, this
situation resembles a hill-climbing problem. When relying
solely on insertion attacks, performing more insertions is
advantageous, as the similarity only decreases or stagnates
but never rises. This observation no longer holds for the
combined attack, but it is still evident that more insertions
tend to yield better-obfuscated plagiarism. Despite the well-
obfuscated nature of the generated plagiarism instances, our
approach is able to detect them reliably. Moreover, our ap-
proach is still effective even for the larger programs (~1500
LOC) in the BoardGame dataset. The results demonstrate
the effectiveness of our defense mechanism against various
obfuscation attacks. Our mechanism does not affect the false
positive rate and only has a negligible performance impact.

6.6 Threats to Validity
We now detail steps taken to mitigate threats to validity per
guidelines of Wohlin et al. [53] and Runeson and Höst [39].
Internal Validity. To ensure internal validity, we measured the
effectiveness of plagiarism detection both with and without
our mechanism while keeping other conditions constant.
External Validity. To ensure external validity, we base our
evaluation on a diverse range of real-world datasets. The
datasets differ in sample size, program sizes, assignment type
and complexity, as well as origin. We design our mechanism
and evaluate it for specific obfuscation attacks, as they are fre-
quently employed in manual obfuscation attacks [20, 32] and
are highly automatable [13]. We evaluated only Java datasets
due to the limited availability of real-world datasets. However,
besides providing the semantic information during the tok-
enization, our mechanism is entirely language-independent,
and the TNG and the normalization itself do not use Java-
specific information. Thus, it can be generalized to any other
language. Furthermore, it is not tool-specific and can be
implemented for any token-based approach. Additionally, it
could be generalized to other structural-based approaches.
Construct Validity. We ensure construct validity via specifying
targeted obfuscation types, accurate labeling of the datasets,

an approach-independent ground truth, and by using an
established evaluation methodology and similarity metrics.
Reliability. We base our evaluation on openly available data
sets to enhance reliability. Due to sensitive data, we cannot
fully publish two datasets. However, we provide an imple-
mentation of our approach, the public dataset, generated
plagiarisms, and other relevant artifacts [42].

6.7 Limitations and Emerging Threats
Complex Attacks. Our defense mechanism effectively handles
plagiarism generators like Mossad that insert or re-order
statements, as outlined in our threat model (Section 4). How-
ever, future plagiarism generators might introduce complex
attacks, e.g., based on refactoring or reimplementation, that
change larger parts of the token sequence. One example is
converting for-loops into while loops. It is challenging to
apply these complex attacks broadly in the program to affect
the token sequences thoroughly. Any automation would be
either algorithmic, like Mossad [13], or AI-based, for exam-
ple, by utilizing large language models (LLMs). However,
doing so without affecting the semantics is challenging. Our
approach’s impact on complex attacks remains unclear. Fur-
thermore, a fundamental assumption in our threat model is
that obfuscation attacks preserve the program behavior of
the original solution. Attacks that tolerate a certain degree of
change in behavior might allow for stronger obfuscation while
still producing partially correct solutions. However, students
are unlikely to prefer them due to the risks of low scores or
poor grades. In some courses, such attacks could even lead to
the rejection of the plagiarized solution if minimal functional
requirements are violated. These hypothetical attacks are
beyond the scope of this paper.

AI-based Attacks. AI-based attacks [6], particularly those
utilizing Language Models (LLMs), present a growing con-
cern for plagiarism detection. When employing LLMs to
cheat on programming assignments, we see two scenarios.
Automatic obfuscation of an existing solution and fully gen-
erating solutions from the assignment description. In our
experience [40], automatic obfuscation is currently the most
effective approach for medium and larger assignments, as
fully generating only works well for smaller programs. Au-
tomatic obfuscation resembles human obfuscation practices,
thus leading to combined atomic changes to the token se-
quence. Thus, our approach might be partially effective for
this attack type. However, the level of effectiveness remains
to be demonstrated in future research. For fully generated
solutions, there’s an ongoing debate on whether this form of
cheating qualifies as plagiarism [32, 40]. Here, our approach
may improve the detection rate by aiding in recognizing their
similarities due to the semi-deterministic nature of LLMs.
However, reliably detecting such instances with low false
positives is challenging. As our defense mechanism addresses
traditional obfuscation techniques, it is not optimized for
AI-based attacks. Tackling AI-based attacks is a complex
challenge that requires additional defense mechanisms [40]
and lies beyond the scope of this paper.

Detecting Automatic Software Plagiarism via Token Sequence Normalization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

7 RELATED WORK
In this section, we discuss related work from plagiarism de-
tection, clone detection, and code normalization.

Plagiarism Detection. Mossad uses compiler optimizations
and the intermediate representation for semantic checks.
Krieg [21] seeks to enhance the resilience of token-based
plagiarism detectors against attacks by Mossad. They pro-
pose various preprocessing-based mechanisms to achieve this
goal. One of these approaches uses compiler optimizations to
remove dead code. However, this approach is highly language-
specific and limited in its effectiveness. Liu et al. [24] intro-
duce GPlag that constructs PDGs from the source code and
compares them using subgraph isomorphy. In contrast to
them, we do not construct the PDG directly from source
code, providing greater language independence, and we do
not compare the graphs directly, leading to a faster runtime
and making our solution feasible in practice. TNGs are a
“best of both worlds” approach, combining the effectiveness
of graph-based approaches with the fast runtime and lan-
guage independence of token-based approaches. Cheers et al.
[11] present the plagiarism detector BPlag. It uses symbolic
execution to extract behavior from source code and calcu-
lates a similarity score by comparing graphs representing
the extracted behavior. As symbolic execution and graph
comparisons are both computationally expensive, BPlag’s
runtime is too high for practical use. Karnalim [20] uses byte-
code to identify code plagiarism in an academic context. He
uses techniques that could be seen as normalization forms,
such as linearizing method contents. Chae et al. [10] aim to
detect plagiarism on bytecode by comparing the sequence
and frequency of API calls. They do so with a novel graph,
which they turn into a vector via random walks. We neither
work with bytecode nor consider API calls. Zhang et al. [55]
propose LoPD that checks for differences between programs
by comparing the computation paths for specific inputs. We
do not consider program input or runtime behavior.

Clone Detection. Clone detection is related to plagiarism de-
tection. However, code clones are created accidentally [18].
Wang et al. [48] seek to specifically detect what they call
large-gap clones, meaning clones with big differences. Their
tool CCAligner tokenizes source code and finds fuzzy matches
through a novel e-mismatch index. White et al. [50] present
a machine-learning approach to clone detection. They use a
neural network to turn source code into vectors; similar vec-
tors correspond to code clones. Ly [26] aims to enhance clone
detection through source code normalization using PDGs.
While their approach shares similarities with ours, we nor-
malize tokenized programs and in the context of obfuscation
attacks on plagiarism detectors. Furthermore, our approach
is mostly language-independent. Nonetheless, plagiarism de-
tection is a different field [28]. In plagiarism detection, the
goal is to accurately quantify the likelihood of code being
plagiarized despite potential obfuscation attacks by an adver-
sary. In contrast, code clone detection aims to find similar,
unintentionally created code sections within a code base.

Code Normalization. Code normalization is also utilized in
various other research areas. In general, we can distinguish
between two types of normalization. Lexical normalization
provides invariance to lexical modifications. Program seman-
tics need not be considered. Roy and Cordy [38] use lexical
normalization to detect code clones. They ignore editing
differences so that lines of code can be compared textually.
Allyson et al. [2] seek to improve a text-based plagiarism
detector. They do this with several preprocessing techniques,
for example, removing whitespace. As JPlag’s tokenization
step, as for most token-based detectors, is a form of lexical
normalization. Thus, our defense mechanism does not need
to consider lexical modifications. Instead, token sequence nor-
malization is a form of structural normalization. This type
of normalization makes code comparisons invariant to struc-
tural modifications. Program semantics must be considered
here. Wang et al. [49] use structural normalization to simplify
program analysis by bringing code into a consistent form.
They use the system dependence graph, a generalization of
the PDG. They construct the graph directly from the source
code and consider it the result of the normalization.

8 CONCLUSION
This paper addresses the challenge of automated obfuscation
attacks facilitated by plagiarism generators. We presented a
novel defense mechanism called token sequence normalization
to normalize the internal representation of plagiarism detec-
tors. It combines the effectiveness of graph-based approaches
with the scalability of token-based approaches. Our mecha-
nism demonstrates broad resilience against reordering- and
insertion-based obfuscation, increasing the calculated simi-
larities to over 98% for individual attacks and over 95% for
combined attacks, thus offering an effective solution for state-
of-the-art plagiarism detectors. Our evaluation shows that
our mechanism not only renders automated attacks infeasible
but also maintains a virtually unchanged false positive rate
and comes only with a negligible performance overhead. In
future work, we plan to incorporate additional semantic in-
formation from the programs to further broaden the defense
mechanism’s abilities. In this paper, our focus is on defend-
ing against known obfuscation techniques. In the future, we
aim to proactively address emerging threats, such as attacks
based on refactoring operations or attacks tolerating minor
program behavior changes. For example, by representing and
propagating uncertainty [15] within the TNG. We especially
want to explore defense mechanisms against AI-based attacks,
e.g., using large language models (LLMs).

ACKNOWLEDGMENTS
This work is based on the research project SofDCar (19S21002),
which is funded by the German Federal Ministry for Economic
Affairs and Climate Action. It is also supported by the Ministry of
Science, Research and the Arts Baden-Württemberg (Az: 7712.14-
0821-2), by the pilot program Core Informatics of the Helmholtz
Association (HGF), by the topic Engineering Secure Systems of
the HGF and by KASTEL Security Research Labs.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Timur Sağlam, Moritz Brödel, Larissa Schmid, Sebastian Hahner

REFERENCES
[1] Alex Aiken. 2022. MOSS Software Plagiarism Detector Website.

Stanford University. http://theory.stanford.edu/~aiken/moss/
Accessed: 2024-01-12.

[2] França B. Allyson, Maciel L. Danilo, Soares M. José, and Bar-
roso C. Giovanni. 2019. Sherlock N-overlap: Invasive Normaliza-
tion and Overlap Coefficient for the Similarity Analysis Between
Source Code. IEEE Trans. Comput. 68, 5 (5 2019), 740–751.
https://doi.org/10.1109/TC.2018.2881449

[3] Rodrigo C Aniceto, Maristela Holanda, Carla Castanho, and
Dilma Da Silva. 2021. Source Code Plagiarism Detection in an Ed-
ucational Context: A Literature Mapping, In 2021 IEEE Frontiers
in Education Conference (FIE). Frontiers in Education Confer-
ence, 1–9. https://doi.org/10.1109/FIE49875.2021.9637155

[4] Victor R. Basili. 1992. Software Modeling and Measurement:
The Goal/Question/Metric Paradigm. Technical Report. USA.

[5] Victor R. Basili and David M. Weiss. 1984. A Methodology for
Collecting Valid Software Engineering Data. IEEE Transactions
on Software Engineering SE-10, 6 (11 1984), 728–738. https:
//doi.org/10.1109/TSE.1984.5010301

[6] Stella Biderman and Edward Raff. 2022. Fooling MOSS Detec-
tion with Pretrained Language Models, In Proceedings of the
31st ACM International Conference on Information & Knowl-
edge Management (Atlanta, GA, USA), Mohammad Al Hasan
and Li Xiong 0001 (Eds.). International Conference on In-
formation and Knowledge Management, 2933–2943. https:
//doi.org/10.1145/3511808.3557079

[7] Miguel A. Botto Tobar, Mark G.J. van den Brand, and Alexan-
der Serebrenik. 2022. Cross-Language Plagiarism Detection:
Methods, Tools, and Challenges: A Systematic Review. Inter-
national Journal on Advanced Science, Engineering and In-
formation Technology 12, 2 (20 May 2022), 589–599. https:
//doi.org/10.18517/ijaseit.12.2.14711

[8] Moritz Brödel. 2023. Preventing Automatic Code Plagiarism
Generation Through Token String Normalization. bachelor’s
thesis. Karlsruher Institut für Technologie (KIT). https://doi.
org/10.5445/IR/1000165371

[9] Tracy Camp, W. Richards Adrion, Betsy Bizot, Susan Davidson,
Mary Hall, Susanne Hambrusch, Ellen Walker, and Stuart Zweben.
2017. Generation CS: The Growth of Computer Science. ACM
Inroads 8, 2 (may 2017), 44–50. https://doi.org/10.1145/3084362

[10] Dong-Kyu Chae, Jiwoon Ha, Sang-Wook Kim, BooJoong Kang,
and Eul Gyu Im. 2013. Software Plagiarism Detection: A Graph-
Based Approach, In Proceedings of the 22nd ACM International
Conference on Information & Knowledge Management (San Fran-
cisco, California, USA), Qi He, Arun Iyengar, Wolfgang Nejdl,
Jian Pei, and Rajeev Rastogi (Eds.). International Confer-
ence on Information and Knowledge Management, 1577–1580.
https://doi.org/10.1145/2505515.2507848

[11] Hayden Cheers, Yuqing Lin, and Shamus P. Smith. 2021. Aca-
demic Source Code Plagiarism Detection by Measuring Program
Behavioral Similarity. IEEE Access 9 (2 2021), 50391–50412.
https://doi.org/10.1109/ACCESS.2021.3069367

[12] Georgina Cosma and Mike Joy. 2008. Towards a Definition of
Source-Code Plagiarism. IEEE Transactions on Education 51, 2
(may 2008), 195–200. https://doi.org/10.1109/te.2007.906776

[13] Breanna Devore-McDonald and Emery D. Berger. 2020. Mossad:
Defeating Software Plagiarism Detection. Proceedings of the
ACM on Programming Languages 4, OOPSLA, Article 138 (nov
2020), 28 pages. https://doi.org/10.1145/3428206

[14] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. 1987. The
Program Dependence Graph and Its Use in Optimization. ACM
Trans. Program. Lang. Syst. 9, 3 (jul 1987), 319–349. https:
//doi.org/10.1145/24039.24041

[15] Sebastian Hahner, Robert Heinrich, and Ralf Reussner. 2023.
Architecture-Based Uncertainty Impact Analysis to Ensure Con-
fidentiality. In 2023 IEEE/ACM 18th Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems
(SEAMS). IEEE/ACM, Melbourne, Australia, 126–132. https:
//doi.org/10.1109/SEAMS59076.2023.00026

[16] Mike Joy and Micheal Luck. 1999. Plagiarism in programming
assignments. IEEE Transactions on Education 42, 2 (may 1999),
129–133. https://doi.org/10.1109/13.762946

[17] JPlag. 2023. JPlag Repository. GitHub. https://github.com/
jplag/JPlag Accessed: 2024-01-12.

[18] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and
Stefan Wagner. 2009. Do Code Clones Matter?, In Proceedings of
the 31st International Conference on Software Engineering. 2009

IEEE 31st International Conference on Software Engineering,
485–495. https://doi.org/10.1109/ICSE.2009.5070547

[19] A. B. Kahn. 1962. Topological Sorting of Large Networks. Com-
mun. ACM 5, 11 (nov 1962), 558–562. https://doi.org/10.1145/
368996.369025

[20] Oscar Karnalim. 2016. Detecting source code plagiarism on in-
troductory programming course assignments using a bytecode
approach. In 2016 International Conference on Information &
Communication Technology and Systems (ICTS). IEEE, 63–68.
https://doi.org/10.1109/icts.2016.7910274

[21] Pascal Krieg. 2022. Preventing Code Insertion Attacks on
Token-Based Software Plagiarism Detectors. Bachelor’s The-
sis. Karlsruhe Institute of Technology. https://doi.org/10.5445/
IR/1000154301

[22] Cynthia Kustanto and Inggriani Liem. 2009. Automatic Source
Code Plagiarism Detection, In 2009 10th ACIS International
Conference on Software Engineering, Artificial Intelligences, Net-
working and Parallel/Distributed Computing, Haeng-Kon Kim
and Roger Y. Lee (Eds.). 2009 10th ACIS International Con-
ference on Software Engineering, Artificial Intelligences, Net-
working and Parallel/Distributed Computing, 481–486. https:
//doi.org/10.1109/SNPD.2009.62

[23] Tri Le, Angela Carbone, Judy Sheard, Margot Schuhmacher,
Michael de Raath, and Chris Johnson. 2013. Educating Computer
Programming Students about Plagiarism through Use of a Code
Similarity Detection Tool, In 2013 Learning and Teaching in Com-
puting and Engineering. Learning and Teaching in Computing
and Engineering, 98–105. https://doi.org/10.1109/LaTiCE.2013.
37

[24] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. 2006.
GPLAG: Detection of Software Plagiarism by Program Depen-
dence Graph Analysis, In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing (Philadelphia, PA, USA), Tina Eliassi-Rad, Lyle H. Ungar,
Mark Craven, and Dimitrios Gunopulos (Eds.). Knowledge Dis-
covery and Data Mining, 872–881. https://doi.org/10.1145/
1150402.1150522

[25] Anna Lubiw. 1981. Some NP-Complete Problems Similar to Graph
Isomorphism. SIAM J. Comput. 10, 1 (2 1981), 11–21. https://
doi.org/10.1137/0210002 arXiv:https://doi.org/10.1137/0210002

[26] Kevin Ly. 2017. Normalizer: Augmenting Code Clone Detectors
Using Source Code Normalization. Master’s thesis. California
Polytechnic State University, San Luis Obispo. https://doi.org/
10.15368/theses.2017.21

[27] Rien Maertens, Charlotte Van Petegem, Niko Strijbol, Toon
Baeyens, Arne Carla Jacobs, Peter Dawyndt, and Bart Mesuere.
2022. Dolos: Language-agnostic plagiarism detection in
source code. Journal of Computer Assisted Learning 38,
4 (8 2022), 1046–1061. https://doi.org/10.1111/jcal.12662
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/jcal.12662

[28] Leonardo Mariani and Daniela Micucci. 2012. AuDeNTES: Auto-
matic Detection of TeNtative Plagiarism According to a REference
Solution. ACM Trans. Comput. Educ. 12, 1, Article 2 (mar 2012),
26 pages. https://doi.org/10.1145/2133797.2133799

[29] Ciaran McCreesh, Patrick Prosser, and James Trimble. 2020. The
Glasgow Subgraph Solver: Using Constraint Programming to
Tackle Hard Subgraph Isomorphism Problem Variants, In Graph
Transformation, Fabio Gadducci and Timo Kehrer (Eds.). Inter-
national Conference on Graph Transformation 12150, 316–324.
https://doi.org/10.1007/978-3-030-51372-6_19

[30] William Murray. 2010. Cheating in Computer Science. Ubiquity
2010 (06 2010), 2. https://doi.org/10.1145/1865907.1865908

[31] Lawton Nichols, Kyle Dewey, Mehmet Emre, Sitao Chen, and
Ben Hardekopf. 2019. Syntax-Based Improvements to Plagia-
rism Detectors and Their Evaluations, In Proceedings of the 2019
ACM Conference on Innovation and Technology in Computer Sci-
ence Education (Aberdeen, Scotland Uk), Bruce Scharlau, Roger
McDermott, Arnold Pears, and Mihaela Sabin (Eds.). Annual
Conference on Innovation and Technology in Computer Science
Education, 555–561. https://doi.org/10.1145/3304221.3319789

[32] Matija Novak, Mike Joy, and Dragutin Kermek. 2019. Source-Code
Similarity Detection and Detection Tools Used in Academia: A
Systematic Review. ACM Transactions on Computing Education
19, 3, Article 27 (sep 2019), 37 pages. https://doi.org/10.1145/
3313290

[33] K. J. Ottenstein. 1976. An Algorithmic Approach to the Detection
and Prevention of Plagiarism. ACM SIGCSE Bulletin 8, 4 (dec
1976), 30–41. https://doi.org/10.1145/382222.382462

http://theory.stanford.edu/~aiken/moss/
https://doi.org/10.1109/TC.2018.2881449
https://doi.org/10.1109/FIE49875.2021.9637155
https://doi.org/10.1109/TSE.1984.5010301
https://doi.org/10.1109/TSE.1984.5010301
https://doi.org/10.1145/3511808.3557079
https://doi.org/10.1145/3511808.3557079
https://doi.org/10.18517/ijaseit.12.2.14711
https://doi.org/10.18517/ijaseit.12.2.14711
https://doi.org/10.5445/IR/1000165371
https://doi.org/10.5445/IR/1000165371
https://doi.org/10.1145/3084362
https://doi.org/10.1145/2505515.2507848
https://doi.org/10.1109/ACCESS.2021.3069367
https://doi.org/10.1109/te.2007.906776
https://doi.org/10.1145/3428206
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://doi.org/10.1109/SEAMS59076.2023.00026
https://doi.org/10.1109/SEAMS59076.2023.00026
https://doi.org/10.1109/13.762946
https://github.com/jplag/JPlag
https://github.com/jplag/JPlag
https://doi.org/10.1109/ICSE.2009.5070547
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/368996.369025
https://doi.org/10.1109/icts.2016.7910274
https://doi.org/10.5445/IR/1000154301
https://doi.org/10.5445/IR/1000154301
https://doi.org/10.1109/SNPD.2009.62
https://doi.org/10.1109/SNPD.2009.62
https://doi.org/10.1109/LaTiCE.2013.37
https://doi.org/10.1109/LaTiCE.2013.37
https://doi.org/10.1145/1150402.1150522
https://doi.org/10.1145/1150402.1150522
https://doi.org/10.1137/0210002
https://doi.org/10.1137/0210002
https://arxiv.org/abs/https://doi.org/10.1137/0210002
https://doi.org/10.15368/theses.2017.21
https://doi.org/10.15368/theses.2017.21
https://doi.org/10.1111/jcal.12662
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/jcal.12662
https://doi.org/10.1145/2133797.2133799
https://doi.org/10.1007/978-3-030-51372-6_19
https://doi.org/10.1145/1865907.1865908
https://doi.org/10.1145/3304221.3319789
https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290
https://doi.org/10.1145/382222.382462

Detecting Automatic Software Plagiarism via Token Sequence Normalization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[34] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2023.
PROGpedia: Collection of source-code submitted to introductory
programming assignments. Data in Brief 46 (2 2023), 108887.
https://doi.org/10.1016/j.dib.2023.108887

[35] Chris Park. 2003. In Other (People’s) Words: Plagia-
rism by university students–literature and lessons. As-
sessment & Evaluation in Higher Education 28, 5 (oct
2003), 471–488. https://doi.org/10.1080/02602930301677
arXiv:https://doi.org/10.1080/02602930301677

[36] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. 2000.
JPlag: Finding plagiarisms among a set of programs. Karl-
sruhe Institute of Technology. https://doi.org/10.5445/ir/542000
Technical Report.

[37] Lutz Prechelt, Guido Malpohl, Michael Philippsen, et al. 2002.
Finding plagiarisms among a set of programs with JPlag. Journal
of Universal Computer Science 8, 11 (2002), 1016. https://doi.
org/10.3217/jucs-008-11-1016

[38] Chanchal K. Roy and James R. Cordy. 2008. NICAD: Accu-
rate Detection of Near-Miss Intentional Clones Using Flexible
Pretty-Printing and Code Normalization, In 2008 16th IEEE
International Conference on Program Comprehension, René L.
Krikhaar, Ralf Lämmel, and Chris Verhoef (Eds.). IEEE In-
ternational Conference on Program Comprehension, 172–181.
https://doi.org/10.1109/ICPC.2008.41

[39] Per Runeson and Martin Höst. 2008. Guidelines for conducting and
reporting case study research in software engineering. Empirical
Software Engineering 14, 2 (dec 2008), 131–164. https://doi.
org/10.1007/s10664-008-9102-8

[40] Timur Sağlam, Sebastian Hahner, Larissa Schmid, and Erik
Burger. 2024. Automated Detection of AI-Obfuscated Plagiarism
in Modeling Assignments. In Proceedings of the 46th Interna-
tional Conference on Software Engineering: Software Engineer-
ing Education and Training (Lisbon, Portugal) (ICSE SEET ’24).
IEEE Press, 13 pages. https://doi.org/10.1145/3639474.3640084

[41] Timur Sağlam, Sebastian Hahner, Jan Willem Wittler, and
Thomas Kühn. 2022. Token-Based Plagiarism Detection for Meta-
models, In Proceedings of the 25th International Conference on
Model Driven Engineering Languages and Systems: Companion
Proceedings (Montreal, Quebec, Canada), Thomas Kühn 0001
and Vasco Sousa (Eds.). ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems, 138–141.
https://doi.org/10.1145/3550356.3556508

[42] Timur Sağlam, Brödel Moritz, Larissa Schmid, and Sebastian
Hahner. 2023. Supplementary Material for "Detecting Auto-
matic Software Plagiarism via Token Sequence Normalization".
Zenodo. https://doi.org/10.5281/zenodo.10430321

[43] Timur Sağlam, Larissa Schmid, Sebastian Hahner, and Erik
Burger. 2023. How Students Plagiarize Modeling Assignments,
In 2023 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C)
(Västerås, Sweden). ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems, 98–101.
https://doi.org/10.1109/MODELS-C59198.2023.00032

[44] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. 2003. Win-
nowing: Local Algorithms for Document Fingerprinting, In Pro-
ceedings of the 2003 ACM SIGMOD International Conference on
Management of Data (San Diego, California), Alon Y. Halevy,

Zachary G. Ives, and AnHai Doan (Eds.). ACM SIGMOD Con-
ference, 76–85. https://doi.org/10.1145/872757.872770

[45] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu.
2008. Taming Verification Hardness: An Efficient Algorithm for
Testing Subgraph Isomorphism. Proc. VLDB Endow. 1, 1 (aug
2008), 364–375. https://doi.org/10.14778/1453856.1453899

[46] Simon, Judy Sheard, Michael Morgan, Andrew Petersen, Am-
ber Settle, Jane Sinclair, Gerry Cross, and Charles Riedesel.
2016. Negotiating the Maze of Academic Integrity in Com-
puting Education, In Proceedings of the 2016 ITiCSE Work-
ing Group Reports (Arequipa, Peru). ITiCSE-WGR, 57–80.
https://doi.org/10.1145/3024906.3024910

[47] Anna Sutton, David Taylor, and Carol Johnston. 2014.
A model for exploring student understandings of plagia-
rism. Journal of Further and Higher Education 38, 1 (1
2014), 129–146. https://doi.org/10.1080/0309877X.2012.706807
arXiv:https://doi.org/10.1080/0309877X.2012.706807

[48] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and
Chanchal K. Roy. 2018. CCAligner: A Token Based Large-
Gap Clone Detector, In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE), Michel Chaudron,
Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). In-
ternational Conference on Software Engineering, 1066–1077.
https://doi.org/10.1145/3180155.3180179

[49] Tiantian Wang, Xiaohong Su, and Peijun Ma. 2008. Program Nor-
malization for Removing Code Variations. In 2008 International
Conference on Computer Science and Software Engineering,
Vol. 2. IEEE, 306–309. https://doi.org/10.1109/CSSE.2008.957

[50] Martin White, Michele Tufano, Christopher Vendome, and Denys
Poshyvanyk. 2016. Deep Learning Code Fragments for Code
Clone Detection, In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering (Singapore,
Singapore), David Lo, Sven Apel, and Sarfraz Khurshid (Eds.).
International Conference on Automated Software Engineering,
87–98. https://doi.org/10.1145/2970276.2970326

[51] Michael Wise. 1993. String Similarity via Greedy String Tiling and
Running Karp-Rabin Matching. Unpublished Basser Department
of Computer Science Report (01 1993).

[52] Michael J. Wise. 1995. Neweyes: a system for comparing biological
sequences using the running Karp-Rabin Greedy String-Tiling
algorithm. Proc Int Conf Intell Syst Mol Biol 3 (1995), 393–401.

[53] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson,
Björn Regnell, and Anders Wesslén. 2012. Experimentation in
Software Engineering. Springer Berlin Heidelberg, Berlin, Heidel-
berg. I–XXIII, 1–236 pages. https://doi.org/10.1007/978-3-642-
29044-2

[54] Lisa Yan, Nick McKeown, Mehran Sahami, and Chris Piech. 2018.
TMOSS: Using Intermediate Assignment Work to Understand
Excessive Collaboration in Large Classes, In Proceedings of the
49th ACM Technical Symposium on Computer Science Education
(Baltimore, Maryland, USA), Tiffany Barnes, Daniel D. Garcia,
Elizabeth K. Hawthorne, and Manuel A. Pérez-Quiñones (Eds.).
Technical Symposium on Computer Science Education, 110–115.
https://doi.org/10.1145/3159450.3159490

[55] Fangfang Zhang, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014.
Program Logic Based Software Plagiarism Detection, In 2014
IEEE 25th International Symposium on Software Reliability Engi-
neering. IEEE International Symposium on Software Reliability
Engineering, 66–77. https://doi.org/10.1109/ISSRE.2014.18

https://doi.org/10.1016/j.dib.2023.108887
https://doi.org/10.1080/02602930301677
https://arxiv.org/abs/https://doi.org/10.1080/02602930301677
https://doi.org/10.5445/ir/542000
https://doi.org/10.3217/jucs-008-11-1016
https://doi.org/10.3217/jucs-008-11-1016
https://doi.org/10.1109/ICPC.2008.41
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1145/3639474.3640084
https://doi.org/10.1145/3550356.3556508
https://doi.org/10.5281/zenodo.10430321
https://doi.org/10.1109/MODELS-C59198.2023.00032
https://doi.org/10.1145/872757.872770
https://doi.org/10.14778/1453856.1453899
https://doi.org/10.1145/3024906.3024910
https://doi.org/10.1080/0309877X.2012.706807
https://arxiv.org/abs/https://doi.org/10.1080/0309877X.2012.706807
https://doi.org/10.1145/3180155.3180179
https://doi.org/10.1109/CSSE.2008.957
https://doi.org/10.1145/2970276.2970326
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1145/3159450.3159490
https://doi.org/10.1109/ISSRE.2014.18

	Abstract
	1 Introduction
	2 Running Example
	3 State of the Art
	4 Threat Model
	4.1 Software Plagiarism Generators
	4.2 Statement Insertion
	4.3 Statement Reordering

	5 Token Sequence Normalization
	5.1 Requirements
	5.2 Overview
	5.3 Semantic Information
	5.4 Token Normalization Graph
	5.5 Generating the Normalized Token Sequence

	6 Evaluation
	6.1 Methodology
	6.2 Evaluation of Obfuscation Attack Resilience
	6.3 Evaluation of False-Positive Rate
	6.4 Evaluation of Performance Impact
	6.5 Discussion
	6.6 Threats to Validity
	6.7 Limitations and Emerging Threats

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

