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Abstract—It is well-known that the state-space averaged models
of buck and boost converters possess the property of differential
flatness, which can prove beneficial to control design. This paper
investigates the differential flatness of systems that consist of buck
and boost converters interconnected at their outputs in three
structures, which model DC microgrids with different properties.
We present the mathematical form of potential flat outputs which
depends on the number of converters of each type. Flatness-based
feedforward control is demonstrated in simulations for all three
types of interconnection. A numerical solution of the implicit flat
parametrization is used where the explicit flat parametrization is
not available.

Index Terms—DC microgrid, differential flatness, feedforward
control, boost converter, buck converter

I. INTRODUCTION

DC microgrids provide new options for the distribution of
electrical power, especially in cases where power generation
and consumption is already associated with DC devices, such
as photovoltaic cells [1]. Whenever multiple power generators
feed into the bus via DC converters, control algorithms are
needed to provide load sharing between the sources while
maintaining constant bus voltage. We propose that for grids
that are differentially flat, flatness-based feedforward may be
used to readjust the load sharing while minimizing the effect
on the bus voltage during the transition.

Differential flatness is a concept originally introduced in [2],
and is closely linked to feedback linearizability [3]. It allows
the parametrization of the trajectories of all system variables,
i.e. states, inputs, and outputs, based on an arbitrarily chosen
trajectory for the so-called flat output. In control applications,
flatness is especially useful in tracectory planning, where the in-
vertibility problems of nonminimum phase systems are avoided,
and optimal control problems can be reformulated. Further
uses include trajectory tracking using tracking observers, and
feedforward linearization.

The flatness properties of models of different types of
switching power converters on their own have been analyzed by
e.g. [4], [5], [6], and series interconnection of two boost con-
verters is investigated in [7]. Flatness-based control approaches
have been investigated for interleaved boost converters [8], [9]
which are modeled equivalently to one of the grid models in
this paper, but there time-scale separation has been used to
consider the flatness of current and voltage dynamics separately.
A similar time-scale separation approach is also used for a
modular power flow controller for DC microgrids in [10].
Flatness-based optimal control has been investigated also for
a particular DC microgrid system with three bidirectional
buck-boost converters [11]. The differential flatness of buck

converters connected to a common bus with capacitive storage
was recently investigated in [12]. The buck converter model
is linear, and the inclusion of boost converters with a bilinear
model, as well as considering multiple grid topology models
with an arbitrary number of nodes is the goal of the present
paper.

In Section II, the three models of interconnection and
the concept of differential flatness are described. Section III
provides the system equations for the DC microgrids, and
discusses the flatness and possible flat outputs. Examples of a
flatness-based feedforward for a setpoint change are given for
all three topologies in Sec. IV.

II. UNDERLYING CONCEPTS

A. Systems of Interconnected DC Converters

For the model of a grid of DC converters interconnected
at their outputs, we consider the state-space averaged [13],
or equivalently first-order averaged [14], models of buck and
boost converter. Each converter is assumed to have an individual
output capacitor, and the load is modeled as purely resistive.

We examine three different models for the interconnection
of the DC converters, shown in Fig. 1.

Output-paralleled Direct parallel connection of converter
outputs, which models a DC microgrid with negligible line
resistances, or can also represent interleaved converters
[8], [9].

Resistive grid Converters in connection with a purely resistive
grid. Nonnegligible line impedances in the DC microgrid
are included using the quasi-stationary line model [12].

Capacitive storage Converters in a grid that employs bus-
connected capacitive storage. This case models a DC
microgrid where in addition to loads, there is also
capacitive storage attached directly to the bus to reduce
voltage fluctuations [1].

B. Differential Flatness

We give a definition for differential flatness based on the
differential geometric view introduced in [15]. The definition
is given for systems in an explicit form with a distinction
between state and input variables, but a definition for implicit
systems without this distinction is also possible [16].

Definition 1 (Differential flatness [3])
A system ẋ = f(x, u) defined on a smooth n-dimensional
manifold X with u ∈ Rm is called differentially flat at a point



G0

G0

Cisi viEi

Ei

Output-paralleled case

Ci vi
Gi

Resistive grid case
Boost and Buck Converters i = 1, . . . ,m

Ci vi
Gi

Li

Li

si

C0 v0 G0

Capacitive storage case

Fig. 1. Types of Interconnection

(xf , ūf ) := (x, u, u̇, . . . ) ∈ X × Rm
∞ if is possible to define a

virtual flat output

z = ψ(x, u, u̇, . . . , u(q)), (1)

in a neighborhood of (xf , ūf ) depending on state, input and
a finite number q of input derivatives, such that the elements
of z are locally differentially independent in a neighborhood
of zf = ψ(xf , ūf ) and in this neighborhood there exists a
parametrizing map

x = φx(z, ż, . . . , z
(ℓ−1)), u = φu(z, ż, . . . , z

(ℓ)) (2)

that depends only on z and a finite number of z-derivatives,
such that

dφx(z̄)

dt
= f(φx(z̄), φu(z̄)) (3)

is identically satisfied.

The flat output is not necessarily the same as the system
output, and also not unique. When choosing which flat output
to use for a control application, it is advantageous if controlled
variables are components of the flat output, and also if the
number of derivatives ℓ needed for the parametrization is low.

As [16] points out, an explicit analytical form of the
parametrization does not necessarily exist, and in general an
implicit equation

Φ(y, z, ż, z̈, . . . ) = 0, (4)

needs to be solved for y = [x⊤, u⊤]⊤. This is possible when
∂Φ
∂y is nonsingular due to the implicit function theorem. We
employ numerical solution of (4) to obtain the trajectories in
x, u when an explicit form cannot be obtained by the computer
algebra tools of the MATLAB Symbolic Math Toolbox in our
examples.

There exists no general test to determine whether a nonlinear
system with multiple input variables is flat or not. Differential
flatness is equivalent to dynamic feedback linearizability. A

necessary and sufficient condition for static feedback lineariz-
ability of affine systems

ẋ = f(x) +

m∑
i=1

gi(x)ui, x ∈ Rn (5)

with f, g in C∞ was introduced by [17].
Theorem 1 (Condition for static feedback linearizability [17],
[18])
An affine system (5) is static feedback linearizable if and only
if Qi is involutive and of constant rank for i = 0, . . . , n− 1,
where

Q0 = span{g1, . . . , gn}, Qi+1 = Qi + adi+1
f Q0 (6)

and dimQn−1 = n.
While static and dynamic feedback linearizability are equiv-

alent for single-input systems [18], they are not for multiple-
input systems. Thus, Thm. 1 only provides a sufficient condition
for flatness in the multiple-input case. A necessary condition
is provided by the ruled manifold criterion.
Theorem 2 (Ruled manifold criterion [16])
If an implicit system

F (x, ẋ) = 0m (7)

is flat, then for all (x, ẋ) satisfying (7), there exists a vector a
such that

F (x, ẋ+ λa) = 0m ∀λ ∈ R. (8)

However, because the static feedback linearizability condition
(6) is only sufficient, and the ruled manifold condition (8) is
only necessary for differential flatness, neither can provide a
definitive statement about flatness or nonflatness for arbitrary
systems.

III. FLATNESS OF INTERCONNECTED DC CONVERTERS

For all three interconnection models, we consider systems
that consist of a total of m converters, with q boost converters,
and m− q buck converters.

The system states xi, i = 1, . . . , n represent inductor currents
and capacitor voltages, and the input signals uj , j = 1, . . . ,m
represent the pulse-width modulation (PWM) duty ratios in
the individual converters. Note that for the boost converters,
the input signal represents the proportion of each PWM cycle
where the switching element is turned off, this is to simplify
the equations by having u appear instead of (1− u).

A. Output-Paralleled Converters

For the case of output-paralleled converters, all capacitors
act as one with the capacitance C0 =

∑m
i=1 Ci, resulting in a

system

Liẋi = Ei − xnui, i = 1, . . . , q (9a)
Lj ẋj = −xn + Ejuj , j = q + 1, . . . ,m

(9b)

C0ẋn =

m∑
j=q+1

xj −G0xn +

q∑
i=1

xiui (9c)



with n = m + 1 states, where the states xi and xj are the
inductor currents of the boost converters and buck converters,
respectively, and xn is the capacitor voltage.

Because the system is input-affine with one more state
variable than inputs and linearly controllable, it is flat [18].
With at least one boost converter, i.e. q > 0,

z =
[
L1x

2
1 + C0x

2
n x2 . . . xm

]⊤
. (10)

can be used as a flat output. The first component is similar to
the energy stored by a singular boost converter, which is well
known to be a flat output for that case [4]. If there is at least
one buck converter in the system, i.e. q < m, another possible
flat output is

z =
[
x1 x2 . . . xm−1 xn

]⊤
. (11)

Using the flat output (11) may be preferable over (10) for
control design since the bus voltage xn is a component of the
flat output.

B. Resistive Grid

For the case of a purely resistive grid, the overall system
model

Liẋi = Ei − xm+iui, i = 1, . . . , q (12a)
Lj ẋj = −xm+j + Ejuj , j = q + 1, . . . ,m

(12b)

Ciẋm+i = −
m∑

k=1

Gikxm+k + xiui (12c)

Cj ẋm+j = −
m∑

k=1

Gjkxm+k + xj (12d)

has n = 2m states, with the first m states representing the
inductor currents and the other states the capacitor voltages.
The conductances Gij between the converters are obtained
via Kron reduction of the system’s nodal admittance matrix
[19]. To this end, we express the relationship between the
converter output voltages vC =

[
xm+1 · · · x2m

]⊤
and the

load voltage v0 with the load-induced capacitor currents iC in
vector-matrix notation as[

iC
0

]
=

[
diag(g) −g
−g⊤

∑m
k=0Gk

] [
vC
v0

]
, (13)

where g is the column vector of line conductances and diag(g)
is a square matrix with the line conductances on the main
diagonal. From the Kron reduction, we obtain

iC =
(
diag(g) + g(

m∑
k=0

Gk)
−1g⊤

)
vC = GvC (14a)

v0 = (

m∑
k=0

Gk)
−1g⊤vC . (14b)

More complex purely resistive networks can be simplified in a
similar manner, with v0 becoming a vector with an element
for each load node.

This system is flat independent of the number of buck and
boost converters and a flat output is given by

z =



L1x
2
1 + C1x

2
m+1

...
Lqx

2
q + Cqx

2
m+q

xm+q+1

...
x2m


, (15)

where the components represent the energy stored in each
boost converter and the output voltage of each buck converter.
Because the parametrization of x and u requires solving a
polynomial of a degree higher than 4 for q > 1, we numerically
solve the implicit parametrization (4) for trajectory calculation
in the example.

C. Grid with Capacitive Storage

The model of the grid with capacitive storage

Liẋi = Ei − xm+iui, i = 1, . . . , q

(16a)
Lj ẋj = −xm+j + Ejuj , j = q + 1, . . . ,m

(16b)
Ciẋm+i = Gi(xn − xm+i) + xiui (16c)
Cj ẋm+j = Gj(xn − xm+j) + xj (16d)

C0ẋn =

m∑
k=1

Gk(xm+k − xn)−G0xn (16e)

has n = 2m+ 1 states. The first 2m states are equivalent to
those in the resistive grid case, and the state xn represents
the voltage of the bus-connected capacitve storage. It is flat if
there is at least one buck converter, and a flat output is given
by

z =



L1x
2
1 + C1x

2
m+1

...
Lqx

2
q + Cqx

2
m+q

xm+q+1

...
x2m−1

xn


. (17)

Note that the flat output contains the bus voltage as a
component, but not the output capacitor voltage of one of
the buck converters.

The question of whether the system is flat or not with only
boost converters (q = m) is still open, as there is no general
test for flatness of mutliple-input nonlinear systems. Using the



test introduced by [18], we can show that the system is not
linearizable via static feedback. For i, j = 1, . . . ,m, we have

gi =



0
...
0

−xm+i

Li

0
...
0
xi

Ci

0
...
0



, [gi, gj ] = 0n, (18)

meaning that Q0 is involutive. However, for the distribution
Q1 = Q0 + adf Q0, we note that due to

adf gi =



0
...
0

Gi(xm+i−xn)
CiLi

0
...
0

Gixi

C2
i

+ Ei

CiLi

0
...
0

− Gixi

CiC0



, [gi, adf gi] =



0
...
0

2Gixi

C2
i Li

+ Ei

CiL2
i

0
...
0

Gi(xn−2xm+i)
C2

i Li

0
...
0

Gixm+i

CiC0



,

(19)
the distribution is not involutive, since [gi, adf gi] ∈ Q1 but
[gi, adf gi] ̸∈ Q1. However, we cannot preclude flatness from
this as it would be possible in the single-converter case. The
ruled manifold criterion [16] can show nonflatness for some
systems. For the system (16), eliminating the input u from the
system by solving (16a) for ui and inserting this into (16c)
yields the implicit system

Ciẋm+i = Gi(xn − xm+i) +
xi(Ei−Liẋi)

xm+i
, i = 1, . . . ,m

(20a)

C0ẋn =

m∑
k=1

Gk(xm+k − xn)−G0xn. (20b)

Since these equations are linear in ẋ, there exists a vector
a ̸= 0n such that the equation holds true with ẋ = ξ + λa for
all λ ∈ R. Since there is no contradiction, the ruled manifold
criterion also provides no statement about flatness or nonflatness
of the system.

IV. EXAMPLES OF FLATNESS-BASED FEEDFORWARD
CONTROL

In this section, we demonstrate in simulations how the
property of differential flatness can be used to develop

TABLE I
EXAMPLE SYSTEM PARAMETERS

Value Unit
i 1 2 3
Ei 100 150 400 V
Li 2 3 2 mH
Ci 250 250 250 µF
Gi 100 50 66.67 S
G0 0.33 S

TABLE II
OPERATING POINTS FOR THE OUTPUT-PARALLELED EXAMPLE

Operating Point a
xa = [100.00, 66.70, 33.32, 300.00]⊤

ua = [0.333, 0.500, 0.750]⊤

za = [100.00, 66.70, 300.00]⊤

Operating Point b
xb = [150.00, 33.30, 33.35, 300.00]⊤

ub = [0.333, 0.500, 0.750]⊤

zb = [150.00, 33.30, 300.00]⊤

feedforward signals that transfer the interconnected system
from one operating point (xa, ua) to another operating point
(xb, ub) while keeping other variables, specifically the bus
voltage, constant. Examples are given for all three cases, each
time employing two boost converters and one buck converter.
The parameters of the converters and transmission lines shared
between cases are given in Tab. I. The line conductances are
not used in the example for output-paralleled converters.

A. Example for Output-Paralleled Converters

In the example system for output-paralleled converters, the
values of the three paralleled capacitances are summed to give
C0 = 750 µF. For the flatness-based trajectory design, we
choose the flat output

z =
[
x1 x2 x4

]
, (21)

from which we can derive an explicit parametrization

x = φx(z, ż) (22a)
u = φu(z, ż, z̈). (22b)

The trajectory should transfer the system between the operating
points given in Tab. II. For direct output-paralleled interconnec-
tion, the steady-state input depends only on the output voltage
and not on the power sharing between the three converters. To
obtain a continuous state trajectory, a third-order polynomial
trajectory

z(t) = za+(zb−za)p(t/T ), with p(τ) = −2τ3+3τ2, (23)

is used for the flat output, with a transfer time of 2.5ms. Note
that the second-order derivative is discontinous in at the start
and end of the operating point transfer, and via (22b) this
discontinuity can also appear in the input signal u. The state
trajectories are shown in Fig. 2. Note how the voltage x4
remains constant throughout the operating point transfer.
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Fig. 2. Trajectories of the Output-Paralleled Example

TABLE III
OPERATING POINTS FOR THE RESISTIVE GRID EXAMPLE

Operating Point a
xa = [100.11, 66.81, 33.33, 300.33, 300.67, 300.50]⊤

ua = [0.3330, 0.4989, 0.7512]⊤

za = [21.30, 18.00, 300.50]⊤

Operating Point b
xb = [150.25, 33.37, 33.33, 300.50, 300.33, 300.50]⊤

ub = [0.3328, 0.4994, 0.7512]⊤

zb = [33.86, 12.95, 300.50]⊤

B. Example for Resistive Grid

A flatness-based feedforward is calculated to transfer the
system between the operating points given in Tab. III within
T = 2.5ms starting at t = 0.5ms. Since the parametrization
of x and u depends on derivatives of z up to the second order,
we use the polynomial trajectory

z(t) = za+(zb−za)p(t/T ), with p(τ) = 6τ5−15τ4+10τ3,
(24)

where z3 = x6 remains constant throughout the transfer. The
state and input trajectories are shown in Fig. 3. Also included
is the trajectory of the DC bus voltage v0, which dips slightly
during the operating point transfer. However, it is clearly visible
that the parametrized trajectories for the buck converter current
x3 and control signal u3 perform a compensation such that the
buck converter output voltage x6 stays constant, fulfilling the
objective.

C. Example for Grid with Capacitive Storage

In the example for a grid with capacitive storage, the
bus-connected capacitance is chosen as C0 = 250 µF. A
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Fig. 3. Trajectories of the Resistive Grid Example

TABLE IV
OPERATING POINTS FOR THE CAPACITIVE STORAGE EXAMPLE

Operating Point a
xa = [100.11, 66.81, 33.33, 300.33, 300.67, 300.50, 300.00]⊤

ua = [0.3330, 0.4989, 0.7512]⊤

za = [42594.50, 35992.77, 300.00]⊤

Operating Point b
xb = [150.25, 33.37, 33.33, 300.50, 300.33, 300.50, 300.00]⊤

ub = [0.3328, 0.4994, 0.7512]⊤

zb = [67725.19, 25890.77, 300.00]⊤

feedforward signal for a transition between the operating points
given in Tab. IV is designed. The same type of fifth-order
polynomial trajectory (24) is used as for the resistive grid case,
but a longer transition time of T = 5ms is chosen. The state
and input trajectories are shown in Fig. 4. It is clear that the
bus voltage x7, which is a component of the flat output, stays
constant throughout the transition.

V. CONCLUSIONS AND OUTLOOK

Models of different DC microgrid topologies including both
buck converters with linear dynamics and boost converters with
bilinear dynamics are differentially flat. The exception is the
grid with capacitive storage employing only boost converters,
where no statement about flatness or nonflatness has been
achieved. The inclusion of buck-converters in the grid is
advantageous to the flatness-based control, since it enables
the use of a flat output that includes the bus voltage as a
component for the output-paralleled case and the capacitive
storage case. This differential flatness property can be used to
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design trajectories that perform a change in the distribution of
power injection between the converters with minimal effect on
bus voltage.

One drawback of the flatness-based feedforward control is
that it requires centralized calculation, since the trajectories
for the individual converters are interdependent. In addition,
the local controllers of all converters require an absolute time
reference to synchronize their coordinated control inputs. These
drawbacks are shared with other types of feedforward control
for wide-area systems.

In the present paper, we only consider the scenario where the
variable to be maintained at a constant value is a component
of the flat output. Other types of restrictions could be added
and from the flat parametrization one would then obtain a
differential or differential-algebraic equation in z that can be
solved as a boundary value problem.
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