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1

CHAPTER

ONE

MOTIVATION AND INTRODUCTION

Full waveform inversion (FWI) seeks to determine material properties such as (pressure/shear) wave
velocity, mass density, and attenuation below the earth’s surface from measurements of seismic waves
on the surface. The aim is to identify a material distribution whose simulated solution of the wave
equation can account for the full information contained in seismic recordings. The comparison of the
full data content is what distinguishes FWI from techniques that invert for either phase (e.g travel time
inversion) or amplitude (e.g Amplitude Versus Offset) information only. Historically, methods in seismic
exploration rely on assumptions from geometric optics, that is, that waves travel on rays from one point
to another. While this assumption made calculations numerically feasible in the past, it also results in a
lower resolution in the reconstructions overall. By dropping this assumption and making full calculations
of wave fields FWI does not have the constraint of geometric optics and allows for a increased resolution
in exchange for more computational effort. With FWI we are able to gain information about the structure
of earth. On a large scale we can gain insight about plate tectonics, and on a small scale we can find
reservoirs of natural resources like oil or gas. An early pioneer of this field was Albert Tarantola. He
formulated the reconstruction as a least-squares optimization problem to invert for the pressure wave
velocity and suggested an iterative process to find a suitable model [Tar84]. Let µ be the sought-for
material and u a space-time wave field. Then in geophysics this formulation is typically stated as a
regularized constrained optimization problem of the form

find µ such that J(µ) = C(u) + βR(µ) −→ min subject to M(µ)u = 0, β ∈ R+ ,

with C being a quadratic functional and M a linear constraint on u. The functional C contains the
mismatch of the recorded and simulated data, and the constraint M ensures that the simulated data is a
solution of the differential equation modeling the wave propagation. The termR(µ) is called regularization
and does not come directly from the physical problem but rather is a tool to stabilize the minimization.
The influence of the regularization term is steered by β. While C being a suitable L2 distance is the classic
formulation by Tarantola and the one we will use in this thesis, many other choices are considered in
the literature [EGvL+18, BOV09]. The problems in FWI are large scale in nature and as computational
power continues to increase, more possibilities arise to exploit this process to its full potential. Because
of this, FWI is an active field of research to this day. Overviews can be found in [VO09, OGP+13] or
more recently in [VAB+17]. Textbooks by Tarantola [Tar05] and Fichtner [Fic11] offer introductions to a
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wide scope of topics in the field. Fichtner’s book covers more seismological aspects whereas Tarantola’s
book is more focused on the inverse problem aspect from a probabilistic perspective. The problem of
FWI has also been discussed in mathematical publications with regard to its ill-posedness in the sense
of inverse problems (in a rigorous mathematical sense) and Fréchet-differentiability [KR16, KR19]. In
the past decade, a new type of formulation for the underlying problem in FWI often called Wavefield
Reconstruction Inversion (WRI) has become more popular. There, numerical solutions are allowed to
violate the partial differential equations that model the physics (M(µ) ̸= 0) and the discrepancy is
included as an additional penalty term in the discrepancy functional [vLH13, vLH15]. With the notation
above, we then can cast it as a relaxed version of the optimization above as

find (u, µ) such that J̃(u, µ) = C(u) + λ2∥M(µ)u∥2 + βR(u, µ) −→ min , λ ∈ R,

with λ determining how much emphasis is put on the constraint. Although it looks similar, we do not
consider the term ∥M(µ)u∥2 as a regularization of the optimization, but rather a physics motivated
reformulation of the problem. The WRI formulation expands the search space, and therefore can help
to find better approximations of the material parameters in the end. Moreover, it can be shown that
the associated forward operator is less nonlinear [Rie21, vLH13]. For this reason, this formulation is
expected to behave better in some ways for example to have an increased radius of convergence, since
the methods applied to FWI are local and known to be heavily dependent on a good initial guess. The
first WRI methods were done in frequency domain due to its easier implementation. But in the last years
algorithms related to WRI are successfully applied also in time domain [GAO21] and showed promising
results. The underlying formulation of WRI can be interpreted as what is called all-at-once approach
in the mathematical community [HA01], since we invert for both, the material and u at once. Some
mathematical results for abstract all-at-once formulations regarding regularization properties of iterative
methods, like Landweber or Tikhonov, have been shown in [Kal16]. The problem of the all-at-once
formulation (in a setting slightly different from how physicists usually look at it) was also shown to be
ill-posed and Fréchet-derivatives of the associated forward operator were calculated in [Rie21].
In this thesis we expand further on the viability of Inexact Newton methods used in the mathematical
nonlinear inverse problem literature [Rie05] applied to FWI in the sense of Tarantola, which from now on
we will call reduced formulation. Moreover, we develop and apply inexact Newton methods for the all-at-
once formulation in time domain and explore its potential for some typical synthetic FWI experiments.
This thesis is structured as follows: In Chapter 2 a derivation of the physical model for wave propagation
and a short introduction to the governing partial differential equation (PDE) is given. Also, existence
and uniqueness of solutions of the PDE are discussed. In Chapter 3 we present some discretization
aspects in time and space. In Chapter 4 we present the problem of FWI in a operator-equation based
setting that is typical for mathematical inverse problems. Further, we derive the formulas we need for the
inexact Newton method. Moreover, we apply problem-adapted inexact Newton methods to the reduced
formulation and present inversion results. In Chapter 5 we present theory for the all-at-once approach in
an operator-based formulation. We show some ansatzes of algorithms and finally apply a problem-adapted
inexact Newton method to the all-at-once formulation and give results. We summarize the results and
give an outlook on possible future research in Chapter 6.
Note that we understand this thesis as a thesis in the context of mathematical inverse problems and
therefore use the operator-based formulations in Chapter 4 and Chapter 5. However, we do also refer to
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the underlying problems as (regularized) optimization problems for two reasons: First, every geophysical
publication uses optimization formulations. Second, the behavior of optimization problems can often be
somewhat easier to conceptualize compared to ill-posed equations.
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CHAPTER

TWO

MODELING AND EXISTENCE THEORY

2.1 Forward modeling

The starting point of any physics-related inverse problem is choosing a model describing the physics –
in our case wave propagation. Wave propagation in solids is governed by the material law the wave
permeates, that is, the relation of stress σ (force per area) and strain ε (change of deformation). These
quantities are usually expressed as second order tensors with 3 and 6 components for 2 and 3 dimensions,
respectively. In seismics it is typically assumed that the waves do not permanently deform the materials
they permeate (often called elasticity). Another assumption is linearity of the material law, which is
justified by the fact that the amplitudes of the waves (how much a particle moves from its position of
equilibrium), with respect to the wavelength are small. Attenuation makes the response of the material
to strain time-dependent and a convolution in the material law necessary. The most general form of a
material law with the properties above is

σ = ∂tΨ ∗ ε , (2.1)

where Ψ is the relaxation function, which vanishes for t < 0. The relationship via convolution in time
means the reaction of the material is not completely spontaneous, but the material’s stress response also
depends on the time history of the strain and Ψ. The material law on its own does not give rise to an
equation of motion, which is needed to model waves. Therefore, we complement (2.1) with the balance
of momentum (or Newton’s second law)

ϱ∂tv = div σ , (2.2)

with the velocity v = ∂tu and u being the displacement vector, that is, the difference between the
position of a particle at equilibrium (when no force is applied) and its current position. The divergence
in (2.2) is applied row wise. If we assume the displacements to be very small compared to the whole
body (infinitesimal strain assumption), we get

ε(u) = 1
2(∇u + (∇u)⊤) .

In this thesis we only consider longitudinal waves – called pressure waves – which makes σ diagonal,
because the diagonals contain the stresses in normal directions. Further, we only consider isotropic
behavior, that is, the material behaves the same, regardless of incidence of the incoming waves making
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κ0

τ1κ1 κ1

τ2κ2 κ2

τLκL κL

Figure 2.1: Dash pot and spring model for the GSLS

the material law symmetric. With these assumptions, the material law in (2.1) reduces to a scalar valued
dependency. For κ ··= ∂tΨ this yields

σ = κ ∗ ε(u)⇒ ∂tσ = κ ∗ ε(∂tu) = κ ∗ ε(v) .

The model is further reduced in components, since for longitudinal waves it is sufficient to only consider
the hydrostatic pressure p. We assume σii = p/dim for i = 1, 2 and dim = 2 in the two-dimensional
case, or i = 1, 2, 3 and dim = 3 for the three-dimensional case, then

p ··= trace(σ) = κ ∗ trace(ε(v))⇔ p = κ ∗ div(v) .

Combining this with (2.2) yields the linear system

ϱ∂tv = ∇p , (2.3)

p = κ ∗ div(v) .

In this formulation Ψ is typically unknown. The time-dependent behavior of materials can be quantified
by applying sudden stress to it and measure the evolution of the strain in the material and vice versa.
In general, the relaxation function is not known. Therefore, modeling attenuation means modeling Ψ.
Typically, the function Ψ is modeled as a combination of mechanical elements like springs and dash pots.
This ansatz yields an analytic representation of Ψ, which eliminates the need of convolutions at the cost of
additional equations (with additional variables that are called memory variables) in the linear system. In
this thesis we choose the Generalized Standard Linear Solid (GSLS) to model attenuation. How springs
and dash pots are arranged in GSLS is depicted in Fig. 2.1. A detailed account of all aspects discussed
above (anisotropy, attenuation) as well as other ways to combine the mechanical elements can be found
in Carcione’s book [Car14].
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2.1.1 Derivation of the model

Let Ω ⊂ R2 be a bounded Lipschitz domain. Then, the visco-acoustic wave equation using the GSLS to
model attenuation can be written as the following first order system

ϱ(x)∂tv(t,x) = ∇
L∑
l=0

pl(t,x) + fv(t,x) in [0,∞)× Ω ,

1
κ0(x)∂tp0(t,x) = div v(t,x) + fp0(t,x) in [0,∞)× Ω , (2.4)

1
κl(x)∂tpl(t,x) = div v(t,x)− 1

τlκl(x)pl(t,x) + fpl
(t,x) for l = 1, . . . , L in [0,∞)× Ω ,

where v : [0,∞)× Ω −→ R2 is the velocity field and p0, . . . , pL : [0,∞)× Ω −→ R are the scalar pressure
components and fv : [0,∞) × Ω −→ R2 and fpl

: [0,∞) × Ω −→ R are forcing terms for l = 0, . . . , L.
Further, ϱ, κ0, . . . , κL are the density and the bulk moduli and τ1, . . . , τL are the stress relaxation times
of the dash pots. Writing these equations in that way was introduced in [Zel19]. If we choose L = 0, the
system reduces to the linear acoustic wave equation without attenuation.

2.1.2 Viscosity

We briefly discuss which effect attenuation has on the physics and modeling of the waves. Attenuation
effects are linked to loss (or rather conversion) of energy of the wave due to friction. A typical physical
quantity to characterize this behavior is called the quality factor Q (Q−1 = 1/Q is often called dissipation
factor). It can be defined by

Q(ω) = 2πW (ω)
∆W (ω) ,

where ∆W is the energy loss of the wave with frequency ω per period and W is the energy in that period.
From this formula we can see that higher values of Q signify less energy loss and vice versa. Although the
definition of Q allows frequency dependence, in seismics it is usually assumed – and this assumption fits
to seismic measurements – that Q is constant over all relevant frequencies [LAK76]. Hence, over the same
traveling distance the content of higher frequencies is damped stronger than lower frequencies. This is
due to shorter wavelengths which go through more periods to travel the same distance. This effect can be
observed in real data, meaning that the frequency content of measurements with a large distance to the
source contain mainly low frequencies. To make this more tangible, assume Q≫ 1. Then, the amplitude
decay of a monochromatic plane wave of frequency ω with velocity c as a function of propagation distance
is described by a(x) = e−ωx/(2cQ) [Ige16]. The decay of the amplitude is faster for higher values of ω.
Decreasing Q leads to a faster decay as well. This attenuating effect on the amplitudes also implies
dispersion, that is, phase velocity is also dependent on frequency [Fut62]. As mentioned in the previous
section, attenuation can be implemented into the wave equation with different phenomenological models
[Car14]. Each model of attenuation comes with a formula to calculate Q in the assumed model. Setting

κ1 = · · · = κL = κ0τp , (2.5)

then the formula to calculate Q = QGSLS in GSLS is

Q(ω) = 1 + α1(ω) τp

α2(ω) τp
=

1
τp

+ α1(ω)
α2(ω) , (2.6)
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with

α1(ω) =
L∑
l=1

ω2τ2
l

1 + ω2τ2
l

, α2(ω) =
L∑
l=1

ωτl
1 + ω2τ2

l

,

see [Boh02]. The representation in (2.6) shows a somewhat reciprocal relationship between the quantities
Q and τp. Note that τp is a parameter which is introduced due to computational convenience in [BRS95]
whereas Q is a quantity with physical meaning. The dependence of the phase velocity on the frequency
in GSLS is expressed by the dispersion relation

vp(ω) =

√
κ0 (1 + α1(ω)τp)

ϱ
. (2.7)

Looking at α1 we can see that it is monotone in ω, which results in anormal dispersion, that is, higher
frequencies travel faster. Like mentioned above, in seismics we assume a constant quality Q0 that depends
on the subsurface we want to model. To achieve this behavior in GSLS over some frequency band [ω1, ω2],
the functional

JQ0(τl, τp) =
∫ ω2

ω1

(
Q−1(ω, τl, τp)−Q−1

0
)2 dω ,

is minimized for τp with τl’s fixed a priori [BRS95] or with τp, τl as minimization parameters [Boh02].
Including more τl’s allows for a better constant approximation. However, one wants to keep τl as low as
possible, because an increase in the number of equations in (2.4) leads to a higher number of unknowns
in numerical calculations. This results in longer computing times and greater memory requirements leads
to more computing time and higher memory requirements. Typical choices for values of L are between 1
and 5.
Now, let ω0 ∈ [ω1, ω2] be fixed and α1 = α1(ω0). Plugging the assumption on the κl’s (2.5) and the
definition of vp from (2.7) into the forward equation (2.4), we get

ϱ(x)∂tv(t,x) = ∇
L∑
l=0

pl(t,x) + fv(t,x) in [0,∞)× Ω ,

1 + α1τp(x)
ϱ(x)vp(x)2 ∂tp0(t,x) = div v(t,x) + fp0(t,x) in [0,∞)× Ω , (2.8)

1 + α1τp(x)
ϱ(x)vp(x)2τp(x)∂tpl(t,x) = div v(t,x)− 1

τl

1 + α1τp(x)
ϱ(x)vp(x)2τp(x)pl(t,x)

+ fpl
(t,x), for l = 1, . . . L, in [0,∞)× Ω .

From now on, we denote the vector containing the particle velocity v and the pressure vector p =
(p0, . . . , pL)⊤ as u(t,x) = (v(t,x),p(t,x))⊤ ∈ R2+(1+L). Define the operators

M(x)u(t,x) =
(
ϱ(x)v(t,x), 1 + α1τp(x)

ϱ(x)vp(x)2 p0(t,x), . . . , 1 + α1τp(x)
ϱ(x)vp(x)2τp(x)pL(t,x)

)
, (2.9)

D(x)u(t,x) = (0, 0, τ−1
1 p1(t,x), . . . , τ−1

L pL(t,x))

Au(t,x) = −(∇(p0(t,x) + p1(t,x) + . . . ,+pL(t,x)),div v(t,x), . . . ,div v(t,x)) .

If we further write f(t) = (fv(t), fp0(t), fp1(t), . . . , fpL
(t)), we can rewrite (2.8) as

Lu(t,x) = M(x)∂tu(t,x) + Au(t,x) + M(x)D(x)u(t,x) = f(t,x) in [0,∞)× Ω . (2.10)
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Combined with initial value u(0) = u(0, x) = u0 and spatial boundary conditions, this can be written as
an initial value problem in time. For the end time T > 0, find u, such that

Lu(t) = f(t) , t ∈ [0, T ], u(0) = u0, (2.11)

This equation is purely symbolic since we have no proper definition of spaces where these formal operators
act on. In the next chapter we will put this in a more formal frame.

Remark 1. Note that in (2.8) the forcing term fp should be divided by 1+α1τp(x)
ϱ(x)vp(x)2 , as the source is added

to the second equation in (2.3). In all reconstructions we assume that the material at the source position
is known. Therefore, we can incorporate that factor into f without having to consider it later in the
formulas for the inversion.

2.2 Existence theory

In this section we want to give a short existence and uniqueness result for solutions of equation (2.8).
Additionally, we want to repeat the results used for the proof from semigroup theory. Detailed proofs
for existence and uniqueness of solutions in a more general setting for the visco-elastic equations can be
found in [Zel19, KR19], where the results for the visco-acoustic case are a simple corollary. Again, let
Ω ⊂ R2 be a bounded Lipschitz domain with disjoint decomposition of the boundary ∂Ω = ∂ΩD ∪ ∂ΩN .
We define

X ··= L2(Ω,R2+(1+L)) Y ··= L2([0, T ],X) ,

D(A) ··= {u = (v, p0, p1, . . . , pL) ∈X | Au ∈X,n · v|∂ΩN
= 0, (p0 + · · ·+ pL)|∂ΩD

= 0},

where we use the usual notation of the Lp-spaces, p ∈ [0,∞] related to the Lebesgue measure. Equipped
with the scalar products

(·, ·)0,Ω : X ×X −→ R, (u1,u2) 7−→
∫

Ω
u1(x) · u2(x) dx ,

(·, ·)0,[0,T ]×Ω : Y × Y −→ R, (ũ1, ũ2) 7−→
∫

[0,T ]

∫
Ω

ũ1(t,x) · ũ2(t,x) dx dt ,

the spaces X and Y are Hilbert spaces. By ∥ · ∥2
0,Ω = (·, ·)0,Ω and ∥ · ∥2

0,[0,T ]×Ω = (·, ·)0,[0,T ]×Ω we denote
the norms induced by the scalar products. For u = (uv,up0 ,up1 , . . . ,upL

),y = (yv,yp0 ,yp1 , . . . ,ypL
) ∈

D(A) we get with the divergence theorem

(Au,y)0,Ω =
L∑
l=0

(
div uv,ypl

)
0,Ω +

L∑
l=0

(∇upl
,yv)0,Ω

= −
L∑
l=0

(
uv,∇ypl

)
0,Ω −

L∑
l=0

(upl
,div yv)0,Ω

= (u,−Ay)0,Ω .

Therefore, the operator A is skew symmetric on the chosen domain. The multiplication operators M ,D

depend on the values of scalar parameter functions ϱ, vp, τp : Ω −→ R. For our applications it is physically
meaningful to assume that functions are bounded from below and from above, that is, there are bounds
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0 < ϱmin < ϱmax, 0 < vp,min < vp,max, 0 < τp,min < τp,max, which gives us a set of physically admissible
parameter functions

P adm ··= {µ ∈ L∞(Ω,R3) : µ(x) ∈ [ϱmin, ϱmax]× [vp,min, vp,max]× [τp,min, τp,max]} . (2.12)

From now on we denote the mappings that map a set of admissible parameters µ = (ϱ, vp, τp)⊤ ∈ P adm

to the corresponding operator from (2.9) and (2.10) by M(µ),D(µ), and L(µ). Since M and D are
multiplication operators with non-negative factors, for µ ∈ P adm and u ̸= 0 we get

C1∥u∥2
0,Ω ≥ (M(µ)u,u)0,Ω > C2∥u∥2

0,Ω, (D(µ)u,u)0,Ω ≥ 0 (2.13)

with C1, C2 > 0 depending on the bounds in P adm.We present a concise part of the existence theory for
linear evolution equations and apply it to (2.11).
Let H be a Hilbert space, and B be a (typically unbounded) linear operator in H with domain D(B).
Let T > 0 and f(t) ∈ H, for t ∈ [0, T ], then we seek a function u(t) ∈ D(B), for t ∈ [0, T ] that fulfills
the initial value problem

∂tu(t) = −Bu(t) + f(t) , t ∈ [0, T ], u(0) = u0 , (2.14)

with u0 ∈ D(B). We present some conditions on B and f that ensure the existence of a unique solution
of this evolution equation, utilizing semigroup theory. Thus, the notion of semigroups is introduced.

Definition 1. Let W be a Banach space. A map S(·) : R≥0 −→ L(W ) is called a strongly continuous
operator semigroup if it satisfies

1. S(0) = I and S(t+ s) = S(t)S(s) for all t, s ∈ R≥0,

2. for each w ∈W S(·)w : R≥0 −→W, t 7−→ S(t)w is continuous.

The generator B of S(·) is given by

Bw = lim
h−→0+

(S(h)w − w)/h , for D(B) =
{
w ∈W | lim

h−→0+
(S(h)w − w)/h exists in W

}
.

With this concept the existence of a possibly non-differentiable function as a solution is usually shown
first.

Definition 2. Let B be the generator of the strongly continuous operator semigroup S(·), u0 ∈ W ,
f ∈ L1([0, T ],W ), then we call u ∈ C([0, T ],W ) defined as

u(t) = S(t)u0 +
∫ t

0
S(t− s)f(s) ds

a mild solution of (2.14).

Now, we combine several standard theorems into a single theorem which yields the necessary existence
results required for this thesis.

Theorem 1. Let H be a Hilbert space, and let B be a linear operator in H with domain D(B) satisfying
the following conditions:

1. (y,By)H ≥ 0 for every y ∈ D(B).
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2. B is maximal monotone that is I +B from D(B) −→ H is surjective.

Then, for u0 ∈ D(B) the initial value problem (2.14) has a

(a) unique mild solution u ∈ C ([0, T ], H) for f ∈ L1([0, T ], H).

(b) unique classical solution u ∈ C1 ([0, T ], H)∩C([0, T ],D(B)) for f ∈ C ([0, T ], H)∩W 1,1 ([0, T ], H).

Proof. For the existence of a mild solution one has to show that B is the generator of a strongly continuous
operator semigroup. Assumptions 1. and 2. are sufficient for this. The combination of properties of
maximal monotone operators [Bre11, Proposition 7.1] and the Lumer-Phillips theorem [RR04, 12.22]
imply that B generates strongly continuous operator semigroup. (it implies even more, that is ∥S(t)∥ ≤
1,∀t ∈ [0, T ]). Therefore, if we assume f ∈ L1([0, T ], H) this yields a mild solution in the sense of
Definition 2. Assuming additionally that f ∈ C ([0, T ], H) ∩W 1,1 ([0, T ], H), the mild solution can be
shown to be differentiable and thus is a classical solution (see [RR04, Theorems 12.16]).

We want to apply the theorem above to our setting to obtain a classical solution.

Theorem 2. Let f ∈ C ([0, T ],X) ∩W 1,1 ([0, T ],X) and µ ∈ P adm. Then, the initial value problem of
the visco-acoustic wave equation

L(µ)u(t) = M(µ)∂tu(t) + (A + M(µ)D(µ))u(t) = f(t), t ∈ [0, T ], u(0) = 0 (2.15)

has a unique solution u ∈ C1 ([0, T ],X) ∩ C ([0, T ],D(A)).

Proof. For a more compact notation we suppress the dependence of the operators M ,D on µ. We also
use the parameterization from (2.4) because it is less cluttered. Then, M has the form

Mu = (ϱv, κ−1
0 p0, κ

−1
1 p1, . . . , κ

−1
L pL) ,

with κ0 = v2
pϱ(1 + α1τp)−1, κl = τpκ0, l = 1, . . . , L. We want to apply Theorem 1, for this reason we

transform the equation (2.15) to

∂tu(t) = −M−1(A + MD)u(t) + M−1f(t) ,

with f = M−1f and B = M−1(A + MD) we are in the right setting. Also, since M ,D are invertible
bounded linear operators, it holds that D(A) = D(M−1(A + MD)). We also equip X with the energy
scalar product (u,v)M ,Ω ··= (Mu,v)0,Ω which induces an equivalent norm due to (2.13).(

x,M−1(A + MD)x
)

M ,Ω =
(
x,M−1Ax

)
M ,Ω + (x,Dx)M ,Ω ≥ (Ax,x)0,Ω = 0.

In the last step we used the skew-symmetry of A. We need to show that M−1(A + MD) + I is onto.
Therefore, for every g = (gv, g0, . . . , gL) ∈X we need to find (v, p0, . . . , pL) ∈ D(A) such that

v − 1
ϱ
∇

L∑
l=0

pl = gv , (2.16)

p0 − κ0 div v = g0 , (2.17)(
1 + 1

τl

)
pl − κl div v = gl, l = 1, . . . , L. (2.18)
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The trick of the proof is to find an auxiliary variational problem whose solution in turn gives us such an
element in D(A). In order to define this problem we add the pressures

p =
L∑
l=0

pl = g0 + κ0 div v +
L∑
l=1

τl
τl + 1(gl + κl div v) = g̃ + κ̃div v ,

with κ̃ ··= κ0 +
∑L
l=1

τl

τl+1κl, g̃ ··= g0 +
∑L
l=1

τl

τl+1gl. Multiply this equation with a test function ψ ∈ Z =
{ψ ∈ H1(Ω): ψ|∂ΩD

= 0} and assume (v,0)⊤ ∈ D(A). Integrating over Ω and using partial integration
we get (

κ̃−1p, ψ
)

0,Ω = (div v, ψ)0,Ω +
(
κ̃−1g̃, ψ

)
0,Ω

= −(v,∇ψ)0,Ω +
(
κ̃−1g̃, ψ

)
0,Ω +

∫
∂Ω

(ψv) · n ds

ψ∈Z= −(v,∇ψ)0,Ω +
(
κ̃−1g̃, ψ

)
0,Ω +

∫
∂ΩN

(ψv) · n ds (2.19)

= −(v,∇ψ)0,Ω +
(
κ̃−1g̃, ψ

)
0,Ω .

Plugging (2.16) into the equation above yields(
κ̃−1p, ψ

)
0,Ω = −

(
ϱ−1∇p+ gv,∇ψ

)
0,Ω +

(
κ̃−1g̃, ψ

)
0,Ω

⇔
(
ϱ−1∇p,∇ψ

)
0,Ω +

(
κ̃−1p, ψ

)
0,Ω = −(gv,∇ψ)0,Ω +

(
κ̃−1g̃, ψ

)
0,Ω . (2.20)

In the derivation of the equation above we assumed (v,0)⊤ ∈ D(A). Now, if we have p̂ ∈ Z that fulfills
(2.20), we can “walk the steps backwards” and construct a corresponding v̂ that, in fact, lies in the
domain of the differential operator. To achieve, this we define the operators

a : Z × Z −→ R, (p, ψ) 7−→
(
ϱ−1∇p,∇ψ

)
0,Ω +

(
κ̃−1p, ψ

)
0,Ω ,

l : Z −→ R, ψ 7−→ −(gv,∇ψ)0,Ω +
(
κ̃−1g̃, ψ

)
0,Ω ,

and the corresponding variational problem

find p ∈ Z such that a(p, ψ) = l(ψ), ∀ψ ∈ Z .

The functional on the right-hand side l is obviously bounded. Using Poincaré’s inequality and the
boundedness and positivity of the parameters, we can show that the bilinear form a is uniformly elliptic.
Therefore, we can apply the Theorem of Lax-Milgram [RR04, Theorem 9.14] which gives us a unique
p̂ ∈ Z with a(p̂, ψ) = l(ψ) ∀ψ ∈ Z. Define v̂ = gv + ϱ−1∇p̂, then rearranging (2.20) yields

−(v̂,∇ψ)0,Ω =
(
κ̃−1(̃p̂− g̃), ψ

)
0,Ω
∀ψ ∈ Z. (2.21)

Note that (2.19) is the variational formulation of (2.16).Therefore, if we compare (2.19) and (2.21), we
can see that v̂ · n = 0 on ∂ΩN holds in a variational sense. Further, this equivalence shows div v̂ =
κ̃−1(p̂ − g̃) ∈ L2(Ω). Therefore, we have shown (v̂,0)⊤ ∈ D(A). Plugging this v̂ into (2.17) and (2.18)
gives us the individual pressure functions p̂0, . . . , p̂L. Together, we showed for every g ∈ X there is a
û = (v̂, p̂0, p̂1, . . . , p̂L) ∈ D(A) such that (M−1(A + MD) + I)û = g. This concludes the proof that the
operator is onto. Now that we have shown the prerequisites for Theorem 1, we get that the evolution
equation has a solution u ∈ C1 ([0, T ],X) ∩ C([0, T ],D(A)).



2.3. Adjoint equation 13

Remark 2. Note that in this work we are not interested in assuming low regularity. In fact, we will
always assume that our right-hand sides are in C∞

c and shifted such that they vanish at t = 0 and the
initial value u0 is zero. Therefore Theorem 3.3 in [KR19] gives us smooth solutions in time.

2.3 Adjoint equation

Later on in Chapter 4 the adjoint equation to (2.8) is needed. Here, we calculate its representation with
respect to the scalar product (·, ·)0,[0,T ]×Ω. Let L be the differential operator defined in (2.10). For this
we seek suitable functions u,y ∈ C1([0, T ],D(A)) and an operator L⋆ such that it holds

(Lu,y)0,[0,T ]×Ω = (u,L⋆y)0,[0,T ]×Ω .

Using the skew-symmetry of A, symmetry of M ,D, and integration by parts, we get

(Lu,y)0,[0,T ]×Ω =
∫ T

0
(M∂tu(t),y(t))0,Ω + (MDu(t),y(t))0,Ω + (Au(t),y(t))0,Ω dt

=
∫ T

0
(u(t),−M∂ty(t))0,Ω + (u,MDy(t))0,Ω + (u(t),−Ay(t))0,Ω dt

+ (Mu(T ),y(T ))0,Ω − (Mu(0),y(0))0,Ω

= (u, (−M∂t −A + MD)y)0,[0,T ]×Ω

+ (Mu(T ),y(T ))0,Ω − (Mu(0),y(0))0,Ω .

For functions satisfying (Mu(T ),y(T ))0,Ω = (Mu(0),y(0))0,Ω a notion of adjointness can be seen. We
restrict ourselves to pairs of functions with the properties u(0) = y(T ) = 0. For these functions we can
define an adjoint

L⋆ = −M∂t −A + MD . (2.22)

Note that we use ⋆ as superscript to mark the adjoint in regard to the differential equation and use ∗
at most other occasions. Solving the adjoint equation requires finding the solution to the terminal value
problem

−M∂tz(t)−Az(t) + MDz(t) = g(t) z(T ) = 0.

We can cast it into an initial value problem with the transformation t̃(t) = T − t. The chain rule gives
us ∂tz(t̃(t)) = ∂t̃(t)z(t̃(t)) · ∂tt̃(t) = −∂t̃(t)z(t̃(t)). Dropping the dependency on t we get

M∂t̃z(t̃)−Az(t̃) + MDz(t̃) = g(t̃) z(0) = 0. (2.23)

This shows that we can solve an initial value problem instead. For this initial value problem the theory
from section Section 2.2 is applied easily. Later, we will not distinguish between t and t̃, the time will
always be called t. Looking at (2.23) we can see that the attenuation operator D has the same sign as
in the forward equation (2.8). Hence, both equations exhibit damping properties.

2.4 Measurement operator

In real world applications of FWI, data is gathered with instruments that are called receivers. While both
measurements of components of v and p =

∑L
l=0 pl are possible, we restrict ourselves to p. We assume to
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have R ∈ N receivers at positions r0, . . . , rR−1 ∈ Ω, which measure at discrete times γ0, . . . , γJ−1, with
γj = γ0 + j △t for j = 0, . . . , J − 1 and △t ∈ R+. Define S̃ ··= RR×J and the measurement operator

Ψ: Y −→ S̃, u = (v,p)⊤ 7−→ s̃ =


(u, ϕr0,γ0)0,[0,T ]×Ω · · ·

(
u, ϕr0,γJ−1

)
0,[0,T ]×Ω

...
. . .

...(
u, ϕrR−1,γ0

)
0,[0,T ]×Ω · · ·

(
u, ϕrR−1,γJ−1

)
0,[0,T ]×Ω

 ,

where ϕrr,γj : [0, T ]× Ω −→ R2+(1+L) is a function with compact support that models the measurement
process at the location of the r-th receiver at the j-th time (think of a smooth approximation to the delta
distribution). On this space of seismograms a scalar product can be defined by

(s̃1, s̃2)
S̃

=
R−1∑
r=0

s̃1,rW s̃⊤
2,r , with W = △tdiag(0.5, 1, . . . , 1, 0.5) ∈ RJ×J ,

where s̃i,r denotes the r-th row of s̃i for i ∈ {1, 2}. Later, we need the adjoint of the measurement
operator. Note that in Chapter 2 we denoted the relaxation function by Ψ. Since the relaxation function
was only of interest in Chapter 2 we can reuse the symbol without creating confusion later on. Consider
s̃ ∈ S̃ and u ∈ Y , then

(s̃,Ψu)
S̃

=
R−1∑
r=0

s̃rW (Ψu)⊤
r

=
R−1∑
r=0

J−1∑
j=0

Wjj s̃j,r

∫ T

0

∫
Ω

u(t,x) · ϕrr,γj (t,x) dx dt

=
∫ T

0

∫
Ω

R−1∑
r=0

J−1∑
j=0

Wjj s̃j,rϕrr,γj (t,x) · u(t,x) dx dt .

Hence, the adjoint is defined by

Ψ∗ : S̃ −→ Y , s̃ 7−→
R−1∑
r=0

J−1∑
j=0

Wjj s̃j,rϕrr,γj
(t,x) .

The evaluation of the adjoint measurement operator on a seismogram is the wave field that has the
support of the measurement kernels. Its values are multiplied by the values of the seismogram. Often it
is convenient to interpret seismograms as continuous functions in time as opposed to a matrix. Hence,
we define the interpolation space

S ··= {s ∈ C([0, T ],RR) : (s(t))r is a linear spline with nodes γ0, . . . , γJ−1 for all r ∈ R}. (2.24)

Then, the interpolation operator ι : S̃ −→ S is bijective and an isometry from S̃ to L2([0, T ],RR) since
the weights W yield exact integration for linear functions. Therefore, we define the scalar product on S

via
(s1, s2)S

··=
(
ι−1s1, ι

−1s2
)

S̃
.

Usually, in practical applications, data gathers for inversion is collected in multiple phases. Human-
made sources of pressure waves, such as explosions, are excited at different locations and times and are
individually measured. Each instance of these excitations are is referred to as a shot. The number of
shots is Ξ ∈ N, and therefore our data typically lies in SΞ.
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CHAPTER

THREE

DISCRETIZATION

Now, we shift our focus to some discretization aspects. Since discretization itself is not the main topic
of this thesis we will provide a concise overview and give references in which the topics are explained in
more depth.

3.1 Space Discretization

In space we choose a discontinuous Galerkin (dG) discretization with full upwind stabilization which
relies on ideas from [HW08, LeV02], and was presented for waves without attenuation in [HPS+15] (For a
general introduction to finite element methods we refer to [EG04]). The full upwind stabilization for dG
was first introduced for conservation laws of the form ∂tu + div (Tu) = 0 with a suitable linear operator
T and relies on traveling wave solutions of Riemann problems (initial value problems with discontinuous
initial data along a hyperplane). Due to the operator D from (2.9) our problem is not in the divergence
form. However, neglecting D, the ansatz yields a suitable stabilization for the visco-acoustic (as special
case of the visco-elastic case) wave equation as shown in [Zie20]. For the discretization in space the
domain Ω is decomposed into open convex polyhedral sets K ⊂ Ω, called cells, that is, Ω =

⋃
K∈K K (K

is the set of all cells). The discontinuous finite element space of polynomials of maximal order k ≥ 0 is
defined by

Xh ··=
{

xh ∈ L2(Ω,Rdim +(1+L)) : xh|K component-wise polynomial of max. order k ∀ K ∈ K
}
. (3.1)

As ansatz and test functions, we use nodal Lagrangian ansatz functions which are denoted by φi,K ∈Xh

for the node with index i in cell K. All space integrals are evaluated with a Gaussian quadrature and
therefore products of ansatz and test functions are integrated exactly. Let FK be the set of faces belonging
to one cell K, and set F =

⋃
K FK for all faces in the domain. For inner faces f ∈ F ∩ Ω, let Kf be the

neighboring cell such that f = ∂K ∩ ∂Kf . On boundary faces f ∈ F ∩ ∂Ω we set Kf = K. Let nK,f

be the outer unit normal vector on the face f of K. For xh ∈ Xh the restriction to K is denoted by
xh,K = xh|K . On inner faces f ∈ F∩Ω, we define the jump on the face of a cell by [xh]K,f = xh,Kf

−xh,K .
On boundary faces f ∈ F ∩ ∂ΩN , we set nK,f · [vh]K,f = 0 and [ph]K,f = −2ph, and on f ∈ F ∩ ∂ΩD we
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set [vh]K,f = −2vh and [ph]K,f = 0. The operators without spatial derivative are discretized by

(Mhxh,yh)0,Ω = (Mxh,yh)0,Ω ∀xh,yh ∈Xh ,

(Dhxh,yh)0,Ω = (Dxh,yh)0,Ω ∀xh,yh ∈Xh ,

(Ghxh,yh)0,Ω = (Ixh,yh)0,Ω ∀xh,yh ∈Xh .

For x ∈ Ω, define the impedance

Z(x) ··=
√

(1 + Lτp(x))/(1 + ατp)(x) ϱ(x)vp(x), ZK ··= Z|K , ZKf
··= Z|Kf

,

and define functions on the faces of cells α1 = 1/(ZK+ZKf
), α2 = ZKZKf

/(ZK+ZKf
), α3 = ZKf

/(ZK+
ZKf

), α4 = ZK/(ZK + ZKf
). The upwind flux scheme (for the calculation of the flux we, again, refer

to the references above) then gives us the upwind stabilized differential operator Ah =
∑
K∈K AK,h. Let

(vh,ph), (wh, qh) ∈ Xh and define ph ··=
∑L
l pl,h, q ··=

∑L
l ql,h as sum over the components of ph, qh.

Then, we can write the operator in each cell as

(AK,h(vh,ph), (wh, qh))0,K = −(∇pK,h,wK,h)0,K − (div vK,h, qK,h)0,K

−
( ∑
f∈FK

(α1[ph]K,f , qK,h)0,f

+ (α3nK,f · [vh]K,f , qK,h)0,f

+ (α4[ph]K,f ,nK,f ·wK,h)0,f

+ (α2nK,f · [vh]K,f ,nK,f ·wK,h)0,f

)
.

Then, the semi-discrete problem for the forward problem is

Mh∂tuh(t) + (Ah + MhDh)uh(t) = fh(t), for t ∈ [0, T ] .

Analogously, for the discretization of the adjoint operator A∗, we have A∗
h =

∑
K∈K A∗

K,h(
A∗
K,h(vh,ph), (wh, qh)

)
0,K = (∇pK,h,wK,h)0,K + (div vK,h, qK,h)0,K

−
( ∑
f∈FK

(α1[ph]K,f , qK,h)0,f

− (α3nK,f · [vh]K,f , qK,h)0,f

− (α4[ph]K,f ,nK,f ·wK,h)0,f

+ (α2nK,f · [vh]K,f ,nK,f ·wK,h)0,f

)
,

(3.2)

for all (vh,ph), (wh, qh) ∈ Xh. Note that −(Ah) ̸= (−A)h = A∗
h since the signs of the flux terms are

incompatible.
This semi-discretization of A and A∗ is stable and consistent. Further, for sufficiently smooth functions
it can be shown that the L2 error of the semi-discretization is convergent of order k + 1/2 [HPS+15].
In general, operators with subscript h are representations of the operators on finite dimensional linear
subspaces. Underlined objects are the representations with respect to the finite element basis. Let
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{φi}i=1,...,dim Xh
be a basis of Xh. Then, the entries of the matrices are given by

(Ah)i,j =
(
Ahφi,φj

)
0,Ω , (Mh)i,j =

(
Mhφi,φj

)
0,Ω , (3.3)

(Dh)i,j =
(
Dhφi,φj

)
0,Ω , (Gh)i,j =

(
φi,φj

)
0,Ω .

A vector in xh ∈ Xh can be written as xh =
∑dim Xh

i=1 xihφi . Due to the nature of the dG space the
matrices Mh,Dh,Gh are block diagonal with block size (k + 1)2. The matrix Ah is block-banded. The
bandwidth is the number of neighbors per cell plus one. In our case this is always four, since we use
structured meshes with quadrilaterals of same size.

3.2 Time Discretization

Let N ∈ N be the number of points in our time grid and set tn = n · △t for n = 0, . . . , N with
△t = T/N . Define the fully discretized space of wave fields Y h = XN

h . In this thesis we will use two time
discretization schemes. The first one is an exponential integrator which has been shown to be efficient
for wave equations in conjunction with our dG discretization in [HPS+15]. A very brief introduction
and using only formal calculations is given here. For a thorough introduction for a very wide scope of
problems we refer to the review on exponential integrators by Hochbruck and Ostermann [HO10]. We
use the exponential notation exp(P ) for a general linear operator P freely. For formal explanations see
[RR04]. The idea of an exponential integrator is that we can express (mild) solutions of an initial value
problem of the form ∂tu+ Pu = f, u(0) = u0 using the variation of constants formula

u(t) = exp(−Pt)u0 +
∫ t

0
exp(−(t− τ)P )f(τ) dτ .

Evaluating this formula at discrete time steps yields

u(tn+1) = exp(−P△t)u(tn) +
∫ tn+1

tn

exp(−(tn+1 − τ)P )f(τ) dτ

△t=tn+1−tn= exp(−P△t)(tn) +
∫ △t

0
exp(−(△t− τ)P )f(τ + tn) dτ .

The integral is then typically approximated by interpolation of f and exact integration of the resulting
integral. In this case we interpolate f at the midpoint of the interval yielding∫ △t

0
exp(−(△t−τ)P )f(τ+tn) dτ ≈

∫ △t

0
exp(−(△t−τ)P )f((tn+tn+1)/2) dτ = p(−△tP ) f((tn+tn+1)/2) ,

where p(t) = (exp(t)− 1)/t (this function is typically called φ1 which we avoid due to clash of notation).
Now, we apply this formula to our discrete setting. From the proof of Theorem 2 we know that the
discrete operator in our case is P h = −M−1

h (Ah + MhDh). Therefore, we get a fully discretized time
stepping scheme

yh,n+1 = exp(−△tP h)yh,n + △t p(−P h△t) fh,n+1/2 .

Evaluation of the exponential and p is costly for large matrices. Therefore, we reduce it to only one
evaluation using the identity −△t ·p(−△tP )P = exp(−△tP )− I, which, after some rearrangement, yields

yh,n+1 = yh,n + △t p(−P h△t)(P hyh,n + fh,n+1/2) . (3.4)
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Algorithm 3.1 Fixed point iteration

Require: C % Matrix; b % right-hand side x0 % starting value ε % relative tolerance
1: r0 ← b− Cx0

2: B ← BJ(C) % build Block-Jacobi Preconditioner
3: while ∥rk∥ > ε∥r0∥ do
4: xk ← xk−1 +Brk−1

5: rk ← rk−1 − Cxk
6: end while
7: return xk

We have not discussed how to evaluate the function p. If we use an iterative Arnoldi process it is only
necessary to evaluate p on a (comparatively) small matrix. The evaluation of p can be done by evaluating
a matrix exponential of a slightly bigger matrix as discussed in [AMH11]. The matrix exponential in turn
is calculated by a modified scaling and squaring approach as proposed in [AMH09]. Although the results
in [HPS+15] encourage the use of an implicit scheme, we found that in our case the explicit scheme is
more efficient and shows good stability properties. Therefore, we evaluate the exponential by an explicit
Arnoldi process which can also be found in more detail in [HPS+15].
Later in this thesis the exponential integration rule will be inconvenient to use. As to why this is the case
will be discussed there. Instead, we will use the trapezoidal rule which is an unconditionally stable implicit
two stage Runge-Kutta method of order two. This yields a method of the form yh,n+1 = yh,n + ∆y with
the linear system(

Mh −
△t
2 (Ah + MhDh)

)
∆y = △t(Ah + MhDh)yh,n + 1

2(fh,n + fh,n+1) .

The arising linear system is preconditioned with a block-wise Jacobi method and solved with a fixed point
iteration see Algorithm 3.1 which was faster than GMRES for the linear systems we have to solve.

3.3 The finite element library M++

The numerical calculations in this thesis are realized with the help of the open-source parallel finite
element software M++ [BW21]. This library is written in C++ using OpenMPI (Open Message Passing
Interface) [GFB+04] to realize its distributed memory parallelization, that is, one calculation can be
run on several physical machines (nodes) at the same time. Therefore, it benefits from modern large
scale computing clusters which are made of many nodes (such as the Hochleistungsrechner Karlsruhe
(HoreKa)) and makes calculations possible that would not fit on a single machine. For a more detailed
description of M++, its development, and references of more research that uses M++ see [Bau23]. To realize
the features used in my own FWI project, I developed features in M++ and helped to maintain the library
as well. The FWI project is not part of the library but rather includes M++ and uses its functionality.
All code developed in the FWI software is programmed in such a way that the results are the same (to
machine precision) even for a varying number of processor cores. The final version of the FWI code used
in this thesis can be found at https://gitlab.kit.edu/kit/mpp/fwi/-/releases/Dissende. Additionally, all
data and software needed to produce the figures and instructions to run the calculations can be found at
https://doi.org/10.35097/1898.
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3.4 Numerical Convergence

In [BFE+21] it was shown in two different studies that the space discretization from Section 3.1 with
polynomial degree k yields convergence order of k+1. The first study compared numerical solutions with
a known smooth solution and the other one in a heterogeneous material that is closer to the application
and without known solution. Here, we conduct another study that lies in between these two. We want to
qualitatively compare the numerical solution of (2.8) with compactly supported sources and homogeneous
material parameters to solutions calculated with Green’s functions. Some explanations regarding Green’s
function for the wave equation are given in the appendix Chapter A.

3.4.1 Source implementation

In our forward calculations the source terms are of the form f(t,x) = (0, fp0(t,x), 0, . . . , 0)⊤. For the
p0 component we have fp0(t,x) = ϕ(t − t0)δ(x − xsrc,0) with δ being the Dirac delta distribution and
ϕ a smooth real function which is zero for negative times (otherwise it would be called ’acausal’). The
delta distribution is of low regularity and therefore some caution has to be put into its implementation.
Regularized delta distributions are discussed in [HNS16]. A method to increase order based on the ideas
of Bramble and Schatz [BS77] involving a convolution can be found in [YS13]. We opt for a rather straight
forward implementation, that is, for any test function φ ∈Xh we get

(f(t),φ)0,Ω = ϕ(t− t0)φ(xsrc,0) .

The approximation is a Galerkin approximation of the delta distribution. We can find a representation
of the delta distribution that is contained in the closure of a cell K̄ with basis elements φj ∈Xh. Then,
δh,K =

∑
j∈IK

δh,jφj with IK being the set of indices corresponding to the cell K. We enforce the
defining property of the delta distribution by

δh,K(φi,K) =
∑
j∈IK

δh,j
(
φj,K ,φi,K

)
0,K

!= φi,K(xsrc,0), ∀i ∈ IK .

The coefficients of the approximation can be calculated by solving the linear system

Gd = s, with Gi,j =
(
φj,K ,φi,K

)
0,K , di = δh,i and si = φi(xsrc,0) , ∀i, j ∈ IK . (3.5)

The Gramian matrix G is symmetric positive definite and therefore the linear system in (3.5) is uniquely
solvable for any s. By construction it holds(

δ − δh,K ,φi,K

)
0,K = 0 ∀i ∈ IK ,

showing Galerkin orthogonality. Changing the source position also changes the coefficients of δh,K ,
since we change the right-hand side of the linear system (3.5). Therefore, the approximations are not
translations of each other, not even in the conforming case of the Spectral Element Method (SEM) as
discussed the book by Fichtner [Fic11]. Also note that even if we choose xsrc,0 to be the nodal point
corresponding to φi,K the approximation of the delta distribution is not a scaled version of φi,K . This
would only be the case for an orthogonal discrete basis where the nodal points coincide with the quadrature
points like it is the case in SEM. Fichtner also comments in his book that this implementation yields a
low pass filtered version of the delta distribution. Therefore, in the vicinity of the source the solution will
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not be correct. However, if the cells are small enough this low-pass filtering effect vanishes at the distance
of the diameter of one cell in the case of SEM in [Fic11]. We want to investigate this behavior for our
dG method in the vicinity of the source and consider the domain Ω = [−400m, 400m] × [−400m, 400m]
and choose vp = 3500 m/s, ϱ = 2000 kg/m3. Define the relative error

errh,krel,p(x) = |p(x)− ph,k(x)|
maxx∈Ω |p(x)− ph,k(x)| ,

where p is the pressure of a solution obtained by a Green’s function and ph,k the pressure of a solution of
our dG solver with polynomial degree k = 2, 3, 4 and mesh width h = 50 m, 25 m, 12.5 m and no damping
(L = 0). We place the source at (0, 0) and choose the mesh such that the source is in three different
locations within a cell: One at the middle of a cell, one at very close vicinity of the corner of a cell and
one precisely on the corner of a cell. In the last case the source has a support of four cells instead of one.
In the plot of the error errh,krel,p in Fig. 3.1 we see that the behavior of the error in the vicinity is sensitive
to the placement of the source within the cell. It is noticeable that placing the source in the middle of
the cell produces the best results. It is surprising that polynomial degree k = 3 produces smaller errors
than k = 4. From this small study we deduct that in our synthetic experiments we should always try to
choose the position of the sources and receivers – since they also act as source in the adjoint problem –
to be close to the cell’s midpoint and try to avoid the borders and corners. Further, if it is feasible in
terms of degrees of freedom one should choose k = 3. In real data sets we cannot choose our sources and
receivers freely, they are given by the geometry in the real world. Therefore, it would be necessary to
determine how much of a phase difference a change of the position to the cell’s midpoint would introduce
(that is, distance moved in relation to the propagation speed). Local refinement of the grid at the source
and receiver locations could also be a way to reduce the phase difference since a smaller grid reduces the
distance to the next midpoint of a cell. Even if we do not measure in the direct vicinity, these errors are of
interest since large errors at the source and receiver locations can lead to artifacts in the reconstructions.

3.5 Absorbing boundary conditions

In our simulations we often want to avoid nonphysical reflections at the boundaries of the computational
domain Ω. To this end, we extend Ω to ΩE by a layer of length d. In that layer we keep the impedance
Z(x) =

√
(1 + Lτp(x))/(1 + ατp)(x) ϱ(x)vp(x) constant to reduce reflections. This reduction is very

dependent on the angle of incidence. Waves with incidence of zero degrees produce no reflections (constant
impedance gives a transmission coefficient of one in the 1D wave equation). Higher values produce
growing reflections. Further, we decrease the phase velocity gradually so that a wave entering this
domain stays there for a longer time. In the case of L > 0, we additionally increase the value of Q
exponentially, damping the amplitude of the wave. To further decrease unwanted reflections at the
beginning of the damping layer we make the transition from Ω to ΩE smooth with a cosine to a linear
decrease. Let Qi, Qb be the quality factors inside the computational domain and at the boundary of
the artificial layer, respectively. Further, vp,i, vp,b, vp,t are the velocity values inside the domain, at the
boundary of the artificial layer and at the transition from the cosine to the linear decrease of velocity.
Let r(y) = minx∈∂Ω max{|y1 − x1|, |y2 − x2|} be the distance of a point y ∈ ΩE \ Ω to the domain Ω.
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Figure 3.1: Error errh,krel,p = |p(x)−ph,k(x)|
maxx∈Ω |p(x)−ph,k(x)| with ph,k being the pressure component of the solution

of the dG method for mesh width h and polynomial degree k and a point source in space. For better
visibility the error is plotted on a logarithmic scale. Top Left: source is in the middle of the cell. Top
Right: source is at the corner of a cell. Bottom left: source is in very close vicinity of a corner. In all plots
we have h refinement from left to right and refinement of the polynomial degree k from top to bottom.
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Then, for a point y ∈ ΩE \ Ω the values of the parameters are given by

Ql(r(y)) = Qi

(
Qb
Qi

)r(y)/d
, vp,l(r(y)) =

(vp,i − vp,t) cos
(
x
st

π
2

)
+ vp,t for r(y) ∈ [0, st],

(vp,t − vp,b)x−sl

r−sl
+ vp,t for r(y) ∈ [st, d].

We use the values Qb = min{1.1, Qmin}, vp,b = 0.2vp,i, vp,t = 0.85vp,i, st = 0.3d which are proposed in
[Boh98]. The value Qmin = limτp→∞ Q(ω0) (2.6)= α1(ω0)/α2(ω2) is the minimal value for the quality factor
for fixed τl’s and ω0. In Fig. 3.2 we can see the values of Q and v as a function of distance. The extension
and choice of values yield good absorbing qualities in a very natural way within the model. The size of
the layer d is adapted to be between 1-2 wavelengths of the frequency ω0. A typical setting for FWI is
shown in Fig. 3.2: An extension of the domain on three sides where the remaining side is the surface of
the earth.

Ω

ΩE

d

0 st d

Qb

Qi

distance to boundary

Q

vb

vi

v p

Figure 3.2: Left: example of extended domain, with reflecting bounds at the top. Right: values of Q
(blue, line) and vp (red,dash dotted).
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CHAPTER

FOUR

INVERSION WITH THE REDUCED FORMULATION

Like we discussed in the the introduction of this thesis, the aim of FWI is to determine material properties
beneath the earth’s surface using measurements acquired on the surface. To achieve the this aim, we
want to determine a wave field u and material parameter µ for a given source term f and measured data
sobs that accomplish two goals at the same time:

1. The model error ∥L(µ)u− f∥0,[0,T ]×Ω ≈ 0.

2. The data error ∥Ψu− sobs∥S ≈ 0.

Although the meaning of ≈ can vary depending on the specific problem, reducing these quantities to some
extent is always part of an inversion. The two requirements guarantee that u is physically meaningful
and consistent with the material as well as accounting for the data. In this chapter, we introduce one
approach to achieve this objective utilizing a suitable mathematical formulation. Later, in Chapter 5, we
present another one.

4.1 Reduced formulation

We define an operator Φ that maps a material distribution to the corresponding measurement and call it
parameter-to-seismogram map. Let sobs be the measured data that usually is contaminated with noise,
P adm the set of admissible parameters from (2.12), and SΞ the seismogram space from (2.24) containing
all Ξ shots. Then one way to formulate the parameter identification problem is

find µ ∈ P adm such that Φ(µ) = sobs ∈ SΞ . (RED)

In this chapter we will define the parameter-to-seismogram map and its Fréchet derivative and adjoint
thereof in a precise mathematical manner. We will present some analysis, and briefly discuss the ill-
posedness of the problem. We call the formulation in this chapter (that is, (RED)) the reduced formulation
of FWI.

4.1.1 Theory of the reduced operator

We start of with the definition of the mapping from above.
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Definition 3. Let u0 = 0 and f ξ ∈W 1,1([0, T ],X)∩C1([0, T ],X), ξ = 0, . . . ,Ξ− 1. The parameter-to-
seismogram map is defined by

Φ: P adm −→ SΞ, µ 7−→ (Ψu0, . . . ,ΨuΞ−1)⊤with uξ = Fξ(µ) ,

with the parameter-to-wave field map

Fξ : P adm −→ Y , µ 7−→ uξ, u fulfills L(µ)uξ(t) = f ξ(t), t ∈ [0, T ] and u(0) = 0 ,

with L being the differential operator of the visco− acoustic wave equation from Theorem 2.

Remark 3. With Definition 3, we set the model error to zero by construction and therefore we only have
to address the data error in the inversion.

To avoid unnecessary notation, most of the analysis is done on F = F0 for Ξ = 1. The results carry
over to Ξ ∈ N. Further, they carry over to Φ since it is only a composition with a linear operator. The
maps F ,Φ are well-defined due to the existence results from Section 2.2. It can also be shown that these
maps are also (locally) Lipschitz continuous for reasonable assumptions on f and u0 cf. [KR16]. Now, we
can formulate the problem (RED) in a mathematically well-defined way. The motivation to investigate
analytical properties of the problem (RED) is that it is notoriously hard to solve. It can even be proven
that it is locally ill-posed. First, we want to recall that definition.

Definition 4. Let K : U −→ V be an operator between Banach spaces U and V . Then, the equation

K(x) = y

is locally ill-posed at x̂ ∈ D(K), satisfying K(x̂) = y, if in any neighborhood of x̂ there exists a sequence
{xk}k∈N ⊂ D(K) such that

lim
k→∞

∥K(xk)−K(x̂)∥V = 0, however ∥xk − x̂∥U ̸→ 0 for k →∞ .

In this work we mainly talk about nonlinear operators. Outside of theorems and proofs we will mostly
use the term ill-posedness (which is a mathematical term relevant in the theory of linear operators) if we
actually mean local ill-posedness. Now, we want to show that we can always construct a sequence showing
ill-posedness of the parameter-to-solution map for any interior point of the admissible parameters.

Theorem 3. Let F : P adm −→ Y be the parameter-to-wave field operator from Definition 3. Then, the
equation

F(µ) = u

is locally ill-posed for any interior point µ = (ϱ, vp, τp)⊤ of P adm.

Proof. To prove the ill-posedness, we follow the steps from [KR19, Theorem 4.3] and apply the arguments
shown there to our notation. First, let µ = (ϱ, vp, τp)⊤ ∈ int (P adm). Choose a fixed ẑ ∈ int(Ω) and
δ > 0 such that Bδ(ẑ) ⊂ Ω. Then, let r1, r2, r3 be small enough such that

µk :=


ϱ+ r1χk

vp + r2χk

τp + r3χk

 ∈ P adm , with χk : Ω −→ R , z 7−→

1 if |ẑ − z| ≤ δ
k ,

0 else .
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Now, it is clear that ∥µ − µk∥∞,Ω3 = max{r1, r2, r3}, for all k ∈ N. Therefore, this sequence does not
converge. Now, let uk = F(µk) and u = F(µ). Then, u△,k := uk − u, satisfies the initial value problem

L(µk)u△,k(t) = (M(µ)−M(µk))(∂tu(t) + Du(t)), u△,k(0) = 0.

From [KR19] page 3, we know that the solution of our differential equation has a continuous dependency
on the right-hand side. For u△,k this means that there is C > 0 (independent of k) such that

∥u△,k∥0,[0,T ]×Ω ≤ C∥(M(µ)−M(µk))(∂tu(t) + Du(t))∥0,[0,T ]×Ω. (4.1)

Now, we show that Ek := M(µk)−M(µ) fulfills limk→∞ Ekw = 0 for all w ∈ Y . The material parameters
µ, µk only differ inside the support of χk. Therefore, Ekw is also supported on the support of χk. It is clear
that it is bounded, since it is a component-wise multiplication operator with only positive factors. The
scalar function ν : (rmin, rmax)× (vmin, vmax)× (τmin, τmax) −→ R , ν(r̃, v, τ) = (1 +ατ)/(r̃v2) represents
the factor in front of ∂tp0 in the wave equation (2.8). The factor ν̃(r̃, v, τ) = ν(r̃, v, τ)/τ corresponds to
∂tpl , l = 1 . . . , L. With these definitions we can write

Ekw|suppχk
=



r1wv

(ν(ϱ+ r1, vp + r2, τp + r3)− ν(ϱ, vp, τp))wp0

(ν̃(ϱ+ r1, vp + r2, τp + r3)− ν̃(ϱ, vp, τp))wp1

...
(ν̃(ϱ+ r1, vp + r2, τp + r3)− ν̃(ϱ, vp, τp))wpL


where ν(ϱ, vp, τp) denotes the point-wise composition of the functions. Now, we apply the the mean value
theorem on ν, ν̃:

∇ν(r̃, v, τ) =


− 1+ατ

r̃2v2

−2 1+ατ
r̃v3

α
r̃v2

 , ∇ν̃(r̃, v, τ) =


− 1+ατ
r̃2v2τ

−2 1+ατ
r̃v3τ
1

r̃v2τ2


therefore we can (note that α > 0)

|∇ν(r̃, v, τ) · (r1, r2, r3)⊤| ≤
∣∣∣∣1 + ατmax

r2
minv

2
min

∣∣∣∣ r1 +
∣∣∣∣21 + ατmax

rminv3
min

∣∣∣∣ r2 +
∣∣∣∣ α

rminv2
min

∣∣∣∣ r3︸ ︷︷ ︸
=:b1(r1,r2,r3)

and
|∇ν̃(r̃, v, τ) · (r1, r2, r3)⊤| ≤

∣∣∣∣ 1 + ατmax

r2
minv

2
minτmin

∣∣∣∣ r1 +
∣∣∣∣2 1 + ατmax

rminv3
minτmin

∣∣∣∣ r2 +
∣∣∣∣ 1
rminv2

minτ
2
min

∣∣∣∣ r3︸ ︷︷ ︸
=:b2(r1,r2,r3)

.

Using these inequalities yields

∥Ekw∥2
0,Ω = ∥Ekw∥2

0,suppχk

≤ r2
1∥wv∥2

0,suppχk
+ b1(r1, r2, r3)2∥wp0∥2

0,suppχk

+ b2(r1, r2, r3)2
L∑
l=1
∥wpl

∥2
0,suppχk

.

Now, fix r < 1 and choose r1, r2, r3 > 0, such that max{r2
1, b1(r1, r2, r3)2, b2(r1, r2, r3)2/L} < r2. This

choice is possible since b1, b2 are multilinear (therefore continuous and b1(0, 0, 0) = b2(0, 0, 0) = 0) func-
tions. For any w ∈ Y this yields

∥Ekw∥2
0,Ω ≤ r2∥w∥2

0,suppχk
.



26 Chapter 4. Inversion with the reduced formulation

The measure of the support of χk vanishes as k tends to infinity which implies ∥w∥2
0,suppχk

. Hence, we
get limk→∞ Ekw = 0. It further shows that the norm of the sequence is bounded:

∥Ek∥2 ≤ r2.

Due to the boundedness of the operators, we can use dominated convergence:

lim
k→∞

∥Ek(∂tu + Du)∥0,[0,T ]×Ω = lim
k→∞

∫ T

0
∥Ek(∂tu + Du)∥0,Ω

=
∫ T

0
lim
k→∞

∥Ek(∂tu + Du)∥0,Ω

= 0 .

Therefore by (4.1) we get limk→∞ ∥u△,k∥0,[0,T ]×Ω =0. This shows limk→∞ ∥F(µk)− F(µ)∥0,[0,T ]×Ω = 0,
however by construction ∥µk − µ∥0,Ω ̸−→ 0 for k −→∞ and thus concluding the proof.

In the forward equations (2.4) and (2.8) we have seen that we can choose different sets of parameters
to describe the material laws. Note that the proof of Theorem 3 only utilizes that the mapping of the
parameters to the factors in the equation has to be smooth and with bounded derivatives. Therefore,
for any choice of physical parameters that have this property we could easily repeat the arguments from
Theorem 3. From the proof we can see that the ill-posedness is directly connected to the topology of the
domain and the range of F . While the L∞-norm is not affected by shrinking the support of indicator
functions, it does have this effect on the L2-norm. This raises the question whether or not one should
look at other spaces than L∞ for the parameters. But looking at the results of the existence theory in
Section 2.2 we see that L∞ is the proper space, since we can ensure existence and uniqueness of the
solutions. Also, the result in Theorem 3 implies the ill-posedness of (RED), since the measurement
operator Ψ is a bounded linear operator.
We want to solve the inverse problem (RED) with a Newton-type method. Therefore, we need the Fréchet
derivative of F and its adjoint. It is more convenient to analyze this on an operator basis instead of the
parameters themselves. The explicit formulas for a given parameterization then follow with the chain
rule.

Definition 5. Let S(X) = {P ∈ L(X) : P ∗ = P} and B = {B ∈ S(X) : β−∥x∥2
X ≤ (Bx, x)0,Ω ≤

β+∥x∥2
X} for given 0 < β− < β+ < ∞ . Further, assume f ∈ C∞([0, T ],X) with compact support,

bounded derivatives, and f (i)(0) = 0 ∀i ∈ N. Define the operator-to-solution map

F : B ⊂ S(X) −→ Y , Π 7−→ u ,

where u solves Π∂tu(t) + (A + ΠD)u(t) = f(t), ∀t ∈ [0, T ] and u(0) = 0.

From [KR19, Theorem 3.2] we know that this map is well-defined. Together with the regularity
assumptions on f the solutions are smooth in time.

Theorem 4. The map from Definition 5 is Fréchet differentiable at any interior point Π ∈ B with

F ′(Π)[H] = u,
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where u solves

Π∂tu(t) + (A + ΠD)u(t) = −H(∂tF (Π)(t) + DF (Π)(t)), ∀t ∈ [0, T ] (4.2)

and u(0) = 0.

Proof. See [KR19, Theorem 3.2], the theorem there is for weaker assumptions on f and only yields that u

is a mild solution (see Definition 2). The additional assumption f ∈ C∞([0, T ],R) with compact support
and bounded derivatives with f (i)(0) = 0 ∀i ∈ N, results in higher of F (Π). This implies that the
right-hand side of (4.2) possesses sufficient regularity for Fréchet derivative to be a classical solution.

We cannot apply Theorem 4 directly to our problem as it involves operators and not parameters in
our sense. Therefore, we need to apply the theory to the map M : P adm −→ L(X), µ 7−→M(µ).

Lemma 1. Let P = L∞(Ω)3 be the space of all parameters, then

M : P ⊃ P adm −→ L(X)

is Fréchet differentiable for µ = (ϱ, vp, τp) ∈ int(P adm) and η = (ηϱ, ηvp , ητp) ∈ P with

M ′(µ)[η] = diag
(
ηϱ,

1 + ατp

ϱv2
p

(
−1
ϱ
ηϱ −

2
vp
ηvp + α

1 + ατp
ητp

)
,

1 + ατp

ϱv2
pτp

(
−1
ϱ
ηϱ −

2
vp
ηvp −

1
(1 + ατp)τp

ητp

)
,

. . . ,
1 + ατp

ϱv2
pτp

(
−1
ϱ
ηϱ −

2
vp
ηvp −

1
(1 + ατp)τp

ητp

))
.

Proof. Recall the definitions of ν, ν̃ : (rmin, rmax) × (vmin, vmax) × (τmin, τmax) −→ R , ν(r, v, τ) = (1 +
ατ)/(rv2) , ν̃(r, v, τ) = ν(r, v, τ)/τ from the proof of Theorem 3. Then the formula from above can also
be written as

M ′(µ)[η] = diag (ηϱ,∇ν(µ) · η,∇ν̃(µ) · η, . . . ,∇ν̃(µ) · η) .

To prove this formula we consider a more general setting. Let gi for i ∈ 1, . . . , D ∈ N be a smooth
bounded function RP −→ R with bounded derivatives. Consider the point-wise composition

G : L∞(Ω,RP ) −→ L(X),m 7−→ diag(g1(m), g2(m), . . . , gD(m)) .

Then, for m ∈ L∞(RP ,R) it holds that

G′(m) : L∞(Ω,RP ) −→ L(X) , d 7−→ diag(∇g1(m) · d,∇g2(m) · d, . . . ,∇gD(m) · d) .

Further, it holds

(G(m+ d)−G(m)−G′(m)d)i = gi(m+ d)− gi(m)−∇gi(m) · d ,

where i denotes the it-h component. Since g is smooth, we can use Taylor’s expansion and obtain

∥gi(m+ d)− gi(m)−∇gi(m) · d∥∞ = ess supx∈Ω|gi(m(x) + d(x))− gi(m(x))−∇gi(m(x)) · d(x)|

≤ Ci · ess supx∈Ω∥d(x)∥2
∞

≤ Ci · ∥d∥2
∞ .

Defining C̃ ··= max{C1, . . . , CD} yields

∥G(m+ d)−G(m)−G′(m)d∥∞ ≤ C̃∥d∥2
∞ ,
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showing that G is Fréchet differentiable. The operator M can be defined by choosing P = L + 2
and g1(r, v, τ) = r, g2(r, v, τ) = ν(r, v, τ) = g3(r, v, τ) = . . . , gL+2(r, v, τ) = ν̃(r, v, τ), which yields the
assertion.

With this representation in place we can apply the theory from above to our setting.

Theorem 5. The parameter-to-wave field map is Fréchet differentiable for any µ ∈ int(P adm) with

F ′(µ) : P 7−→ Y , F ′(µ)[η] = u ,

where u solves

M(µ)∂tu(t) + (A + M(µ)D)u(t) = L′
µ,F(µ)[η](t), t ∈ [0, T ], u(0) = 0 . (4.3)

With
L′
µ,u : P −→ Y , L′

µ,u[η] = −M ′(µ)[η](∂tu + Du)

we denote the operator that linearly maps the direction of the derivative to the right-hand side of (4.3)
for u ∈ C1([0, T ],X).

Proof. In the notation of Theorem 4, the chain rule for the Fréchet derivative gives us (F (M(µ)))′[η] =
F ′(M(µ))[M ′(µ)[η]].

Application of Theorem 4 yields the same results for the parameter-to-seismogram map.

Corollary 1. The parameter-to-seismogram map defined in Definition 3 is also Fréchet differentiable for
any µ ∈ int(P adm) and η ∈ P with

Φ′(µ)[η] = (ΨF ′
0(µ)[η], . . . ,ΨF ′

Ξ−1(µ)[η])⊤ ∈ SΞ .

Proof. This follows directly from the fact that Ψ is a bounded linear operator and the result of Theorem 4.

From Theorem 5, we can conclude that to compute the Fréchet derivative, the same equation as in the
forward problem must be solved. The right-hand side depends on the evaluation of the parameter-to-wave
field at µ. As mentioned earlier, we want to evaluate the adjoint of the Fréchet derivative. The adjoint of
the Fréchet derivative can be expressed using L′∗

µ,u : Y −→ P ′. In the next lemma, we will first compute
the adjoint of an auxiliary operator in order to achieve this goal. To compress the notation but not lose
sight of the dependencies, going further, we will put “inactive” components as subscript like we did in
the definition of L′

µ,u. This also helps to emphasize in what sense we understand it as linear operator
and in what sense we want to calculate the adjoint.

Lemma 2. Let u ∈ Y and µ = (ϱ, vp, τp) ∈ P adm. Then, define the linear operator

M ′
µ,u : P −→ Y , η 7−→M ′(µ)[η]u .

Its adjoint has the representation

M ′∗
µ,u : Y −→ L1(Ω)3 ⊂ P ′ , M ′∗

µ,uy =


R− ν(ϱ,vp,τp)

ϱ T0 − ν̃(ϱ,vp,τp)
ϱ

∑L
l=1 Tl

− 2ν(ϱ,vp,τp)
vp

T0 − 2ν̃(ϱ,vp,τp)
vp

∑L
l=1 Tl

ν(ϱ,vp,τp)α
1+ατp

T0 − ν̃(ϱ,vp,τp)
(1+ατp)τp

∑L
l=1 Tl
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with y = (yv,yp0 ,yp1 , . . .ypL
) and

R(x) = (yv(·,x),uv(·,x))0,[0,T ] , Ti(x) =
(
ypi

(·,x), (1/τi) upi
(·,x)

)
0,[0,T ] for i = 0, . . . , L

with (u,v)0,[0,T ] =
∫ T

0 u(t)v(t) dt and x ∈ Ω. We suppressed the spatial dependencies of ϱ, vp, τp, R, T0, . . . , TL

in the representation above.

Proof. We calculate the representation of the adjoint directly. Therefore, we start with

(
y,M ′

µ,u[η]
)

0,[0,T ]×Ω =
(
y,M ′(µ)[η]u

)
0,[0,T ]×Ω

=
∫

Ω

∫
[0,T ]

y(t,x) · (M ′(µ)[η](x)u(t,x)) dt dx .

The scalar product leads to a sum over the components of the vectors. We look at those components one
by one and start with the velocity component:

∫
Ω

∫
[0,T ]

yv(t,x) · (ηϱ(x)uv(t,x)) dt dx =
∫

Ω
ηϱ(x)

∫
[0,T ]

yv(t,x) · uv(t,x) dt dx

=
〈
ηϱ, (yv,uv)0,[0,T ]

〉
L∞(Ω)×L∞(Ω)′ .

For the first pressure component we get

∫
Ω

∫
[0,T ]

yp0(t,x) · ν(ϱ(x), vp(x), τp(x))
(
−ηϱ(x)
ϱ(x) −

2ηvp(x)
vp(x) +

αητp(x)
1 + ατp(x)

)
up0(t,x) dt dx

=
〈
ηϱ,−

ν(ϱ, vp, τp)
ϱ

(
yp0 ,up0

)
0,[0,T ]

〉
L∞(Ω)×L∞(Ω)′

+
〈
ηvp ,−

2ν(ϱ, vp, τp)
vp

(
yp0 ,up0

)
0,[0,T ]

〉
L∞(Ω)×L∞(Ω)′

+
〈
ητp ,

ν(ϱ, vp, τp)α
1 + ατp

(
yp0 ,up0

)
0,[0,T ]

〉
L∞(Ω)×L∞(Ω)′ .

For the remaining pressure components we get

∫
Ω

∫
[0,T ]

ypl
(t,x) · ν̃(ϱ(x), vp(x), τp(x))

(
−ηϱ(x)
ϱ(x) +

−2ηvp(x)
vp(x) +

−ητp(x)
(1 + ατp(x))τp(x)

)
1
τl

upl
(t,x) dt dx

=
〈
ηϱ,
−ν̃(ϱ, vp, τp)

ϱ

(
ypl

,
1
τl

upl

)
0,[0,T ]

〉
L∞(Ω)×L∞(Ω)′

+
〈
ηvp ,
−2ν̃(ϱ, vp, τp)

vp

(
ypl

,
1
τl

upl

)
0,[0,T ]

〉
L∞(Ω)×L∞(Ω)′

+
〈
ητp ,
−ν̃(ϱ, vp, τp)
(1 + ατp)τp

(
ypl

,
1
τl

upl

)
0,[0,T ]

〉
L∞(Ω)×L∞(Ω)′ .

To obtain the final representation we have to add all equations above and group the summands by
the η terms. Define R(x) ··= (yv(x),uv(x))0,[0,T ] and T0(x) ··=

(
yp0(x),up0(x)

)
0,[0,T ] , Ti(x) ··=
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(
ypi

(x), 1
τi

upi
(x)
)

0,[0,T ]
, i = 1, . . . , L. Combining the results above we get

(
y,M ′

µ,u[η]
)

0,[0,T ]×Ω =
〈
ηϱ, R−

ν(ϱ, vp, τp)
ϱ

T0 −
ν̃(ϱ, vp, τp)

ϱ

L∑
l=1

Tl
〉
L∞(Ω)×L∞(Ω)′

+
〈
ηvp ,−

2ν(ϱ, vp, τp)
vp

T0 −
2ν̃(ϱ, vp, τp)

vp

L∑
l=1

Tl
〉
L∞(Ω)×L∞(Ω)′

+
〈
ητp ,

ν(ϱ, vp, τp)α
1 + ατp

T0 −
ν̃(ϱ, vp, τp)
(1 + ατp)τp

L∑
l=1

Tl
〉
L∞(Ω)×L∞(Ω)′

=
〈
η,


R− ν(ϱ,vp,τp)

ϱ T0 − ν̃(ϱ,vp,τp)
ϱ

∑L
l=1 Tl

− 2ν(ϱ,vp,τp)
vp

T0 − 2ν̃(ϱ,vp,τp)
vp

∑L
l=1 Tl

ν(ϱ,vp,τp)α
1+ατp

T0 − ν̃(ϱ,vp,τp)
(1+ατp)τp

∑L
l=1 Tl

〉L∞(Ω)3×(L∞(Ω)3)′ ,

proving the representation. Note that R, T0, . . . , TL are in L1(Ω) since u,y are in the L2 space Y , the
parameter functions are bounded, and Ω is bounded. This yields M ′∗

µ,uy ∈ L1(Ω)3 ⊂ P ′ .

In a similar vein we can define an adjoint of the linearized differential operator.

Corollary 2. The adjoint of the linear operator L′
µ,u from Theorem 5 is

L′∗
µ,u : Y −→ P ′

adm, L′∗
µ,u[y] = −M ′∗

µ,∂tu+Du[y] .

Proof. We can calculate the adjointness directly by(
y,L′

µ,u[η]
)

0,[0,T ]×Ω =
(
y,−M ′

µ,∂tu+Du[η]
)

0,[0,T ]×Ω

=
〈
−M ′∗

µ,∂tu+Du[y], η
〉
L∞(Ω)×L∞(Ω)′ .

Now, we can formulate an equation for the adjoint of the Fréchet derivative. Here, we need the adjoint
equation from Section 2.3.

Theorem 6. Using the notation from Theorem 5, we set F ′
µ[η] = F ′(µ)[η] and utilize the definition of

L⋆ given in (2.22), we have

F ′∗
µ : Y −→ P ′, y 7−→ F ′∗

µ [y] = −L′∗
µ,F(µ)[z] ,

where z ∈ C([0, T ],X) is the mild solution of L⋆z(t) = y(t), a.e. in [0, T ], z(T ) = 0.

Proof. Mild solutions are solutions with less regularity (see Definition 2). Plugging in the assumption
L⋆z = y into the scalar product yields(

F ′
µ[η],y

)
0,[0,T ]×Ω =

(
F ′
µ[η],L⋆z

)
0,[0,T ]×Ω

= (LF ′(µ)[η], z)0,[0,T ]×Ω
(4.3)=

(
−L′

µ,F(µ)[η], z
)

0,[0,T ]×Ω

=
〈
η,−L′∗

µ,F(µ)[z]
〉
L∞(Ω)3×(L∞(Ω)3)′ .
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With this in place, we can calculate the adjoint of the linearized parameter-to-seismogram map.

Corollary 3. With the notation of Theorem 6 and the definition Φ′
µ[η] = Φ′(µ)[η] we can formulate the

adjoint of Φ′
µ by

Φ′∗
µ : SΞ −→ P ′, s 7−→

Ξ−1∑
ξ=0
F ′∗
µ,ξ[Ψ∗sξ] .

Proof. Again, we calculate it directly:

(
Φ′
µ[η], s

)
SΞ =

Ξ−1∑
ξ=0

(
ΨF ′

µ,ξ[η], sξ
)

S

=
Ξ−1∑
ξ=0

(
F ′
µ,ξ[η],Ψ∗sξ

)
0,[0,T ]×Ω

=
〈
η,

Ξ−1∑
ξ=0
F ′∗
µ,ξ[Ψ∗sξ]

〉
L∞(Ω)3×(L∞(Ω)3)′ .

Remark 4. In the following we will continue to use the parameterization with (ϱ, vp, τp). In our
calculations we want to avoid non-physical negative values for the parameters. Hence, we use a pa-
rameterization that enforces positivity for all parameters and invert for ϱ̃, ṽp, τ̃p with the definitions
ϱ = exp(ϱ̃), vp = exp(ṽp), τp = exp(τ̃p). For the explicit formulas we just have to calculate the derivative
and its adjoint of M̃(ϱ̃, ṽp, τ̃p) = M(exp(ϱ̃), exp(ṽp), exp(τ̃p)).

M̃
′
(ϱ̃, ṽp, τ̃p)[η̃] = diag( exp(ϱ̃) · η̃ϱ̃,∇ν(exp(ϱ̃), exp(ṽp), exp(τ̃p))[exp(ϱ̃)η̃ϱ̃, exp(ṽp)η̃ṽp , exp(τ̃p)η̃τ̃p ],

∇ν̃(exp(ϱ̃), exp(ṽp), exp(τ̃p))[exp(ϱ̃)η̃ϱ̃, exp(ṽp)η̃ṽp , exp(τ̃p)η̃τ̃p ])

and adjoint M̃
′∗
µ̃,u : Y −→ P ′

adm, which is expressed by

M̃
′∗
µ,uy =


R− ν(exp(ϱ̃), exp(ṽp), exp(τ̃p))T0 − ν̃(exp(ϱ̃), exp(ṽp), exp(τ̃p)

∑L
l=1 Tl

−2ν(exp(ϱ̃), exp(ṽp), exp(τ̃p))T0 − 2ν̃(exp(ϱ̃), exp(ṽp), exp(τ̃p))
∑L
l=1 Tl

ν(exp(ϱ̃),exp(ṽp),exp(τ̃p)) exp(τ̃p)α
1+α exp(τ̃p) T0 − ν̃(exp(ϱ̃),exp(ṽp),exp(τ̃p))

1+α exp(τ̃p)
∑L
l=1 Tl

 .

In the following sections we drop the (mathematically correct) notation with the dual pairings for the
materials and use a scalar product notation. This is justified, since from now on we assume to be in
discrete spaces.

4.2 Discretization aspects for the Fréchet derivative and its ad-
joint

With the results from the last section we have the formulas we need to calculate the Fréchet derivative
and its adjoint. To evaluate them, it is necessary to have access to ∂tF(µ) and F(µ) at the same time.
We only save F(µ) and calculate ∂tF(µ) on the fly with a one-sided finite difference. For large scale
applications, for example in three dimensions, saving full wave fields is often not feasible. Therefore,
several methods to reduce RAM storage have been developed. For instance, only saving snapshots of
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F(µ) and calculating them on the fly for the adjoint. This adds calculation time. Several techniques
for FWI are presented in [BHDlPF16]. They include using fewer bits for each stored value, reducing the
degree of the ansatz polynomial, temporal compression by saving less time steps, and using interpolation.
We do not apply such methods, we have sufficient capacity for our calculations on the machines we use
(up to 1 TB RAM).
Let P h be the discrete dG parameter space as in Section 3.1, equipped with the L2 scalar product, hence
P h ⊂ L2(Ω)3. In our case we assume the polynomial degree to be zero and therefore the parameters are
cell-wise constant. Now, we want to discuss the actual formulas that have to be implemented to calculate
Φ′∗
µ [s] for a s ∈ S. Let z ∈ C1([0, T ],X) fulfill L⋆z = Ψ∗s. Then, we have to solve the variational

problem
find η∗ ∈ P h such that (η∗, ηi)0,Ω3 =

(
L′∗
µ,u[z], ηi

)
0,Ω3 ∀ηi ∈ P h ,

with L′∗
µ,u from Corollary 2. To find the coefficients of η∗, we have to solve a linear system where the

stiffness matrix contains the pairwise scalar products of the ηi’s. For the discontinuous Galerkin ansatz
space this is a block diagonal matrix. Since we assume cell-wise constant material parameters, this matrix
becomes a diagonal matrix with the size of the cell on the diagonal. With z from above and u = F(µ)
we can explicitly give the formulas for the coefficients of η∗ for each material parameter. For better
readability we suppress the dependence on t and x

η∗
ϱ|K = |K|−1

∫ T

0

∫
K

−zvuv + ν̃(ϱ, vp, τp)
ϱ

|K

(
τp|Kzp0∂tup0 +

L∑
l=1

1
τl

zpl
upl

)
dx dt ,

η∗
vp
|K = |K|−1

∫ T

0

∫
K

2ν̃(ϱ, vp, τp)
vp

|K

(
τpzp0∂tup0 +

L∑
l=1

1
τl

zpl
upl

)
dx dt , (4.4)

η∗
τp
|K = |K|−1

∫ T

0

∫
K

−ν(ϱ, vp, τp)α
1 + ατp

|Kzp0∂tup0 + ν̃(ϱ, vp, τp)
(1 + ατp)τp

|K
L∑
l=1

1
τl

zpl
upl

dx dt .
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4.3 The Red-CG-REGINN algorithm

Remember that in this section the goal is to solve

find µ ∈ P adm such that Φ(µ) = sobs ∈ SΞ

with a Newton-type method and noisy data sobs. Define G(µ) = Φ(µ) − sobs and apply the Newton
method to the root finding problem G(µ) = 0. Choosing an inexact Newton method yields in the k-th
nonlinear step

µk+1 = µk + △µ, with G′(µk)[△µ] ≈ −G(µk) .

Since there is no guarantee that the linearized problem even has a solution, we want to find a solution in
the least squares sense. Therefore, we turn to the normal equation

G′∗(µk)G′(µk)[△µ] ≈ G′∗(µk)[−G(µk)]⇔ Φ′∗
µk Φ′(µk)[△µ] ≈ Φ′∗

µk [sobs − Φ(µk)]. (4.5)

The combination of a regularized inexact Newton method and a regularized CG method for the linearized
problem is called CG-REGINN (where REGINN is the abbreviation for REGularization by INexact Newton
and was proposed in [Rie99]). The combination of these two algorithms is well-suited for a nonlinear
locally ill-posed problem since in [Rie05] it is shown that this is a regularization method. Further, we
cycle through the shots and update after every shot. This makes it a Kaczmarz method which is well-
known variant of iterative methods in the inverse problem community [HLS07, HKLS07]. We call the
combination of the algorithms in the reduced case Red-CG-REGINN. Note that even if Φ is locally ill-posed
everywhere, this does not imply that the linear problem is ill-posed (in the sense of Nashed, that is, the
range of the linear operator is not closed). There are properties for nonlinear operators that do imply the
ill-posedness for the linearization [Hof99], but they are typically hard to prove. In the case of FWI these
properties were not shown yet. Generally, we are on the safe side when we just assume ill-posedness of the
linearized problem. Convergence analysis of Newton-like schemes often need that a structural assumption
on the nonlinearity, one of which is the tangential cone condition1 (TCC), holds. The TCC is very hard
to prove in the continuous setting for most nonlinear problems. However, in [ER21] Eller and Rieder
show a TCC for semi-discrete FWI in the acoustic regime and for the elastic case in [EGR22]. Note that
when we introduced the inexact Newton method, we skipped over some mathematical problems. The CG

method is a Hilbert space method, and the domain of Φ′(µ) for any µ ∈ int(P adm) is L∞(Ω)3, which is a
non-reflexive Banach space. Hence, we cannot apply the CG algorithm directly in the continuous setting.
However, since we are not interested in a convergence analysis on the continuous problem, we look for
the solution in the discrete spaces P h ⊂ L2(Ω)3 and Y h, which both are Hilbert spaces. We then search
for a solution in the discrete spaces. A REGINN variant that is applicable even for L∞ is presented in
[PR23]. To complete the algorithm we employ the stopping criterion for the CG method, which is from
[Win16] (other strategies are also possible, see [Rie99, Sec. 6] for an explanation). In REGINN, we call
the while loop starting at line 2 and ending at line 13 of Algorithm 4.2 the outer loop. We call the
repeat loop that spans the lines 5-11 in Algorithm 4.2 the inner loop. In the inner loop, the update is

1V, W Banach spaces, F : V ⊃ D −→ W a Fréchet differentiable nonlinear operator. F satisfies the TCC at x+ ∈ int(F)
if ∥F (v) − F (w) − F ′(w)(v − w)∥W ≤ ω∥F (v) − F (w)∥W , for all v, w ∈ Br(x+) for a ω < 1, where Br(x+) is the open ball
in V with radius r > 0 about x+.
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calculated by iteratively solving (4.5). For shot ξ we set the maximal iteration number of the inner loop
to lkmax = max{l̃kmax,ξ, lmax,glob} with

l̃kmax,ξ =


1 for k = 0 ,

2 for k = 1 ,

lk−1
ξ + lk−2

ξ for k ≥ 2 .

(4.6)

By lk−2
ξ , lk−1

ξ we denote the amount of iterations the inner loop needed to terminate in the last two inner
loop calls. Further, lmax,glob is a preset number of maximal inner iterations to limit the maximal cost of
each inner loop call. Let r̃l be the residual in the inner loop, then the relative reduction factor ϑkξ ∈ (0, 1)
for which we break the inner loop when the condition ∥r̃l∥S ≤ ϑkξ∥r̃0∥S is defined by

ϑkξ = min
{

0.999, ϑ̃kξ
}
, with ϑ̃kξ =



1 for k = 0 ,

∥r̃1∥S / ∥r̃0∥S for k = 1 ,

1− (lk−2
ξ /lk−1

ξ ) (1− ϑk−1
ξ ) for lk−1

ξ > lk−2
ξ ∧ k ≥ 2 ,

γ ϑk−1
ξ otherwise .

(4.7)

This gives two conditions when to break the loop, either we reach lmax,k, or we achieve a relative reduction
in the residual by ϑkξ . The resulting algorithm for the inner loop can be seen in Algorithm 4.1. Finally,
we add the possibility of using a preconditioner in the CG algorithm. Let us assume that the measurement
is contaminated with noise, therefore we write sδobs. If we were able to measure without noise sobs would
the “true” measurement. Then, the noise level δ is ∥sobs − sδobs∥0,Ω ≤ δ. A crucial part of nonlinear
regularization methods is the stopping rule for the outer loop. A widespread choice for inverse problems
is Morozov’s discrepancy principle see ([EHN96]), which stops the algorithm when for some D > 1 it
holds

∥sobs − Φ(µK)∥S ≤ D∥sobs − sδobs∥S < ∥sobs − Φ(µk)∥S k = 0, . . . ,K − 1.

Therefore, we stop the iteration when the nonlinear residual is close to the noise level and K the smallest
index that fulfills the discrepancy principle. This discrepancy principle is used as parameter choice in
many algorithms for linear and nonlinear inverse problems. It ensures that the algorithm stops and is
in fact also used in the analysis of CG-REGINN in [Rie05]. In realistic applications, however, we often
do not know the exact level of noise, and we have to hand-tune the parameter D. In geophysical
applications there is no “gold standard” with regard to the stopping rule for the outer iteration. Also,
most publications do not focus on the stopping rule. Some publications use a fixed maximal number of
iterations [KFBI18, EHO+12, YBM+18], stop if an update has little effect on the norm of the residual
[FKIB09, ABG+13], or the norm of the update is small [FKIB10, Kur12]. Sometimes the stopping
criterion is not even specified. In our experiments, we will always use a fixed number of iterations that
was determined by balancing the need to minimize calculation times and to have a solution that is good
enough. We do not investigate stopping criteria further. Possible choices for rules that do not depend on
the (unknown) level of noise are for example the method by Hanke(-Bourgeois) and Raus (see [HR96])
or the L-Curve criterion (see [EHN96]). The whole Red-CG-REGINN algorithm is shown in Algorithm 4.2.
Throughout this thesis, the term “one iteration” shall refer to an entire cycle through all the sources.

Remark 5. From the solution of well-posed problems it is well-known that Kaczmarz methods can be
drastically improved [SV09] by choosing the shots randomly (uniformly or with probabilities, depending
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Algorithm 4.1 Preconditioned Conjugate Gradient (PCG) algorithm for the normal equation restricted
to P h

Require: rk ∈ S, µk ∈ P h, ϑ ∈ (0, 1), lmax ∈ N, Precon
Ensure: △µk ∈ P h, lk ∈ N

1: l← 0, β ← 0, r̃0 ← rk

2: p0, f0 ← 0 ∈ P h

3: repeat
4: l← l + 1
5: d← Φ′∗

µk [r̃l−1] ∈ P h % solution of one adjoint wave equation as shown in Corollary 3
6: dPC ← Precon(d)
7: pl ← dPC + β (dPC , d)0,Ω pl−1

8: q ← Φ′
µk [pl] ∈ S % solution of one forward wave equation as shown in Corollary 1

9: α← (dPC , d)0,Ω /∥q∥S

10: f l ← f l−1 + αpl

11: r̃l ← r̃l−1 − α q

12: β ← 1/(dPC , d)0,Ω

13: until ∥r̃l∥S ≤ ϑ∥rk∥S or l ≥ lmax

14: △µk ← f l, lk ← l

15: return (△µk, lk)

on the norm of the residual). In [Shi19] the shots are chosen randomly for FWI in a stochastic inversion
process, and the choice shows good convergence properties.

Remark 6. In the beginning of this section we mentioned that CG-REGINN is a suitable regularization
method. Here, we want to elaborate a little bit on the term regularization. In the theory of inverse problems
a regularization method yields a reasonable (generalized) solution for an ill-posed inverse problem, even
if the input data is perturbed by noise. In our case of CG-REGINN this is achieved by early-stopping
the CG-iteration and not “over solving” it in each iteration (regularization of the linearized problem) as
well as adding a suitable stopping criterion for the nonlinear iterations (regularization of the nonlinear
problem). Another form of regularization (often called variational regularization) that is widely used in
many applications is by adding a penalty-term R : P h −→ R to the functional one is minimizing. In the
case of the reduced problem (RED) the functional then has the form

find µ such that J(µ) = 1
2∥Φ(µ)− sobs∥2

S + βR(µ) −→ min subject to L(µ)u− f = 0, β ∈ R+ . (4.8)

The choice of R can stabilize the minimization process or promote certain features in our minimization.
One regularization function commonly used in FWI is RT (µ) = ∥µ − µref∥2

0,Ω, which is the classical
Tikhonov regularization for µref = 0 and promotes solutions that are close to µref . This regularization term
usually produces smooth solutions. Another regularization is the total variation RTV(µ) =

∫
Ω |∇hµ| dx,

where ∇h is a discrete gradient. This regularization term comes from the context of image processing.
It is known for its tendency to for sharp edges making it a suitable choice for layered media. With the
additional parameter β we can steer how much the penalty influences the algorithm. Usually, we want
to choose the parameter not too large to stay close to the original problem but still large enough to profit



36 Chapter 4. Inversion with the reduced formulation

Algorithm 4.2 Red-CG-REGINN

Require: µ0 ∈ P h % starting guess; sobs ∈ SΞ % observed seismograms
Ensure: µk ∈ P h % approximate solution of (RED)

1: k ← 0, ξ ← 0,
2: while not termination do
3: µk0 ← µk

4: ξ ← 0
5: repeat
6: rkξ ← sobs,ξ − Φξ(µkξ )
7: determine lkmax,ξ and ϑkξ % according to (4.7) and (4.6)
8: (△µkξ , lkξ )← PCG(rkξ ,µkξ ,ϑkξ ,lkmax,ξ) % call of Algorithm 4.1
9: µkξ+1 = µkξ + △µkξ

10: ξ ← ξ + 1
11: until ξ > Ξ− 1
12: µk+1 ← µkΞ−1

13: k ← k + 1
14: end while
15: return µk

from the regularization.
Even discretizing a continuous problem can already be considered as regularization. In our case this effect
is negligible, because we do not use hierarchical methods or problem-adapted ansatz functions such as
wavelets. For further reading and rigorous mathematical analysis of iterative methods for nonlinear ill-
posed problems we refer to [KNS08]. For the standard theory on linear ill-posed problems [EHN96] and
for the more geophysical side of the topic we refer to [Tar05, Fic11].

4.3.1 Connection to geophysics

In this section we want to elaborate on how the problem is formulated in most geophysical publications. In
geophysics, the problem of FWI is considered a nonlinear optimization problem and was first formulated
by Tarantola in [Tar84]. To this day physicists tackle the problem [VO09] this way. We mentioned the
formulation in (4.8). Now set R ≡ 0 and obtain

find µ such that J(µ) = 1
2∥Φ(µ)− sobs∥2

S −→ min subject to F(µ) = u.

Since the differential operator does not appear in the functional that is minimized, this formulation is
called reduced formulation. The equation is ’reduced’ from the functional and appears as a constraint. If
we consider FWI as an optimization problem, we need a descent direction. A standard way is to use the
negative gradient. Formally taking the derivative of J yields

J ′(µ)[η] = (ΨF(µ)− sobs,ΨF ′(µ)[η])S

= (F ′∗(µ)Ψ∗[ΨF(µ)− sobs], η)0,Ω3

= (Φ′∗(µ)[Φ(µ)− sobs], η)0,Ω3 .
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Therefore, ∇J(µ) = −Φ′∗(µ)[Φ(µ) − sobs] is often called the gradient in FWI contexts. If R ̸≡ 0 and
is differentiable, we can still carry out this procedure, and it would yield a different gradient. Formally
differentiating one more time gives us

J ′′(µ)[η1, η2] = (Φ′(µ)[η2],Φ′(µ)[η1])S + (ΨF(µ)− sobs,ΨF ′′(µ)[η1, η2])S

= (Φ′∗(µ)Φ′(µ)[η1], η2)0,Ω3 + (Φ′′∗(µ)[η1, ·][Φ(µ)− sobs], η2)S

=
(
Φ′∗(µ)Φ′(µ)[η1] + Φ′′∗

µ [η1, ·][Φ(µ)− sobs], η2
)

0,Ω3 .

To find a minimizer of J , we can use the Newton method applied to J ′. This yields the Newton equation

Φ′∗(µ)Φ′(µ)[∆] + Φ′′∗(µ)[∆, ·][Φ(µ)− sobs] = Φ′∗(µ)[Φ(µ)− sobs] . (4.9)

Neglecting the second derivative yields the Gauß-Newton approximation. Methods that do not incor-
porate information about higher derivatives of Φ than the first one are often called gradient methods.
Methods that approximate the second derivative are, for instance, Quasi-Newton methods like L-BFGS.
This method is a standard algorithm for large scale optimization problems [NN91] as well as in geo-
physics e.g. in [DCC17]. Truncated Newton methods solve equation (4.9) approximately as was done
in [MBB+14]. They could also be called Inexact-Newton methods for the problem J ′ = 0. Note that
the use of the name Newton method differs. While we used the name Newton method for the iterative
root-finding algorithm in general, in optimization contexts it specifically means applying the root finding
algorithm to ∇J(µ) = 0. The formulas necessary for the calculation of the second derivative of Φ and its
adjoint can be found in [KR19], where they are derived in a rigorous mathematical framework.

4.4 Red-CG-REGINN Mono-parameter reconstruction

In this section we show viability of Red-CG-REGINN for mono-parameter settings, that is, we only invert
for one of the parameters while leaving the others constant. We look at a transmission problem and then
at the more complex and layered Marmousi model.

4.4.1 Transmission problem

We discuss our first inversion setup. We consider the transmission geometry as shown in Fig. 4.1 and
conduct experiments in a computational domain Ω = (406.25, 1706.25)m × (0, 2000)m and the extended
domain ΩE = (106.25, 2006.25)m × (−400, 2400)m. In the absorbing layer ΩE we use the parameters
Qb = 15, vp,t = 0.85vp,i, vp,b = 0.2vp,i, st = 300 as explained in Section 3.5. The computational mesh has
the width h = 12.5 m and we use a polynomial degree of k = 2 for the ansatz functions. The forward
and adjoint wave equations are solved with the exponential midpoint rule (3.4) with end time T = 0.6 s
and △t = 0.0005 s. The number of degrees of freedom in space is dofh = 1198080. We apply a fixed
number of 10 iterations and set γ = 0.9 as the reduction factor for the inner stopping rule (4.7). In
the domain are three areas ∆1 = [900, 1100]m × [600, 800]m,∆2 = [900, 1100]m × [900, 1100]m,∆3 =
[900, 1100]m × [1200, 1400]m, where we change the values of the parameters ϱ, vp, τp. We place Ξ = 6
equally spaced sources on a line between xsrc,0 = (600 m, 370 m)⊤ and xsrc,5 = (600 m, 1620 m)⊤ on the
left side of ∆i, i = 1, 2, 3. Further, we place R = 64 equally distanced receivers on the right side of the
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Figure 4.1: Left: geometry, sources, inclusions, and receivers for the transmission problem. Right:
parameters of the numerical calculation.
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Figure 4.2: Ricker wavelet and its integral with fc = 25Hz and tshift = 1.5/fc.
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∆i, i = 1, 2, 3 starting at r0 = (1350 m, 370 m)⊤ and ending at r63 = (1350 m, 1630 m)⊤. For the source
signal in time we choose a Ricker wavelet

r(t) = (1− 2 · σ(t) · σ(t)) · exp(−σ(t) · σ(t)), σ(t) = π · fc · (t− tshift), fc, tshift ∈ R, (4.10)

which is a standard source signal for seismic calculations. In this case we choose fc = 25 Hz and
tshift = 1.5/fc. The form of the signal is shown in Fig. 4.2. In all transmission experiments in this
thesis the background values are vbg = 3500 m/s , ϱbg = 2000 kg/m3, and τbg = 0.0767. For the pa-
rameters that model the frequency dependent behavior of the quality factor, we choose L = 5 and
τl = (0.3207 s, 0.0748 s, 0.0153 s, 0.0034 s, 0.0013 s). Together with τp,bg from above this yields a back-
ground dissipation factor of 1/Qbg = 1/15. This is a typical value for sediments close to the seabed. In
our inversions for vp and τp we want to avoid the inverse crime (IC), that is, producing the observed
data in synthetic examples with the same solver for the wave equation. In this case we use data that is
produced by SOFI2D [Boh02]. There, the visco-acoustic wave equation in time domain is discretized by
finite differences (FDTD) in space and time. Committing the inverse crime typically makes inversions
easier, because the observed data contains the same structural discretization error as the data we try
to fit it with [CK19]. Since sources are implemented differently (in dG and FDTD) each FDTD shot is
scaled to match the maximal amplitude of the dG data. The rescaling is done with data that is produced
with a higher degree of the ansatz functions. In Fig. 4.3 we can see the difference of the FDTD data and
the data if we had produced it with the dG solver. Note that we used the same layout of the vp and τp

inversion in the publication [BFE+21]. Here, we used a finer spatial grid h = 12.5 compared to h = 25
for the inversion. Also, we included the sources and receivers in the error calculation and used a different
data set to rescale the FDTD data.
For all inversions we calculate and plot errors of the iterates. By µtrue we always denote the true material
distribution in all reconstructions. If we mean one specific material parameter, we put the parameter in
the subscript. Further we define δµk• ··= µtrue

• − µk• with • ∈ {ϱ, vp, τp}. The subscript can also contain
other, additional, information. The normalized error in the k-th iteration is defined by

err•
2,k ··=

∥δµk•∥0,Ω

∥δµ0
•∥0,Ω

and err•
∞,k
··=

supx∈Ω |δµk•(x)|
supx∈Ω |δµ0

•(x)| for • ∈ {ϱ, vp, τp} . (4.11)

We will only look at the L∞-error for the transmission examples and only in this chapter. In most
reconstructions the L∞-error will not decrease. Therefore, we stick to the L2-error to measure the error
in the latter part of the thesis. The value of the full nonlinear residual at the point µk is

reskfull =

√∑Ξ−1
ξ=0 ∥Φξ(µk)− sobs∥2

S√∑Ξ−1
ξ=0 ∥Φξ(µ0)− sobs∥2

S

.

To calculate this quantity Ξ wave equations have to be solved since we never have access to Φξ(µk) for
all shots at the same time in the calculation. To avoid this costly calculation but to still have access to
a quantity that approximates the residual for a nonlinear iteration we use

resk =

√∑Ξ−1
ξ=0 ∥r̃

k
end,ξ∥2

S√∑Ξ−1
ξ=0 ∥r̃

0
end,ξ∥2

S

, (4.12)

where r̃kend,ξ, k > 0, is the final residual of the inner loop for shot ξ. For k = 0 we use the initial residual
of the first inner loop. Calculating this quantity in the algorithm does not add any numerical cost. The
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(a) vp reconstruction

vbg 3500 m/s

v∆1,p 3675 m/s

v∆2,p 3850 m/s

v∆3,p 3325 m/s

ϱbg 2000 kg/m3

τbg 0.0767

(b) τp reconstruction

τbg 0.0767
τ∆1 0.3375
τ∆2 0.0345
τ∆3 0.1304
ϱbg 2000 kg/m3

vbg 3500 m/s

(c) ϱ reconstruction

ϱbg 2000 kg/m3

ϱ∆1 2500 kg/m3

ϱ∆2 3000 kg/m3

ϱ∆3 1500 kg/m3

τbg 0.0767
vbg 3500 m/s

Table 4.1: Parameters for the mono-parameter reconstructions for the transmission geometry.
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Figure 4.3: Comparison of the data we would invert if we committed inverse crime sDG
obs with the data

from the FDTD solver (with adjusted amplitude) sFD
obs. Seismograms of the receivers 6, 21, 46, and 61 of

shot 3. Left: vp inversion. Right: τp inversion.

values of reskfull and resk will deviate. The deviation depends on how large the linearization error is since
resk is a composition of residuals of the linearized problem. Further, materials are updated after each
shot ξ therefore the value of r̃kend,ξ̃ for ξ̃ = 0, . . . ξ was calculated for a different value of the material. The
discrepancy can be gauged by ∥(Φξ(µk+1)−sobs,ξ)−r̃kend,ξ∥S In our experiments this norm was small, and
therefore we use resk in our considerations. Similarly to the relative error, for mono-parameter inversions
we put the parameter we invert for in the superscript.

Inversion of vp

In the inversion for vp we choose the values in the ∆ regions to be relative deviations of 5%, 10% and
−5% of the background value. The values of the parameters can be found in Table 4.1. The top left of
Fig. 4.10 shows a comparison of the seismogram from the FDTD solver and the seismogram of the initial
value from the DG solver. The effect of the change in vp materializes in the phase shift of the first arrival
of the wave. All iterates of the inversion are depicted in Fig. 4.11. The final result of the inversion of vp

compared to the true value can be seen in Fig. 4.4. The inclusions are clearly visible and distinguishable
against the artifacts around the source. In the error plots in Fig. 4.9 we can see that the L2 error behaves
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0.9 1.1 0.9 1.1 −0.1 0.1

Figure 4.4: vp mono-parameter inversion. Left: true value µtrue
vp

. Middle: final reconstruction µ10
vp

. Right:
difference of the true value and the final reconstruction δµ10

vp
. The values of the iterates are divided by

vp,bg = 3500 m/s. Initial guess is constant vp,bg.

in a semi-convergent manner. It is the smallest in iteration 5 and increases after that. This is due to
over fitting. After most of the meaningful data (that is, the part our solver can explain) is fitted, the
algorithm tries to fit the difference of the solutions produced by the dG and the FDTD algorithms. This
introduces artifacts around the source. These artifacts are responsible for the high values in the L∞-error
in Fig. 4.9: After 6 iterations the error is higher than it is in the beginning. Note that these results do
not contradict our results from [BFE+21], where we saw a reduction of the error for all iterates. There
we did not include the sources and receivers in the calculation of the error. Although the errors rise from
the 5-th iteration, we can see in Fig. 4.8 that the residual resvp still decreases monotonously showing the
ill-posedness of the problem. To circumvent the problem of the increasing error, the iteration should be
stopped adaptively instead of using a fixed number of 10 iterations (e.g. Hanke-Raus). Another measure
that should reduce artifacts substantially is adding a source time inversion. This is an additional step
that is widely used in geophysical applications [Pra99, GSFB14], where the true signal of the sources is
usually not known and has to be approximated. In our case we also do not have access to the true signal
(due to differing implementations) and therefore the artifacts could be reduced with such approximation.

Inversion of τp

For the mono-parameter inversion of τp we choose the values of τp. Such a way that we get values of
the dissipation factor (1/Q)∆1 = 1/5, (1/Q)∆2 = 1/10, (1/Q)∆3 = 1/30. The exact values of τp to attain
that value are in Table 4.1. The values inside the inclusions ∆1,∆2,∆3 are chosen in such that there is a
visible effect on the seismogram: The inclusions are small relative to the wavelength of the waves. Hence,
we have to set high values of attenuation inside of them, because the amount of damping depends on the
number of cycles a wave travels through the material. In Fig. 4.10 we can see the effect of the change
in τp: There is a difference in amplitude but not in phase. Moreover, in Fig. 4.3 we can see that for
the data produced by the FDTD solver the amplitudes do not match perfectly, but the phases are very
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Figure 4.5: Dissipation Q−1(τp) (see (4.13)) values for the τp mono-parameter inversion. Left: true value
µtrue

1/Q. Middle: final reconstruction µ10
1/Q. Right: difference of the real value with the final reconstruction

δµ10
1/Q. The depicted values are divided by 1/Qbg = 1/15. Initial guess is constant 1/Qbg.

similar. Since the inversion for τp is mainly sensitive to the amplitudes, this introduces a lot of additional
artifacts. We do not plot the auxiliary parameter τp, but rather the physical quantity dissipation with
the formula (2.6) which yields

Q−1(τp) =
1 + τp

∑L
l=1

ω0τl

1+ω2
0τ

2
l

1 + τp
∑L
l=1

ω2
0τ

2
l

1+ω2
0τ

2
l

, with ω0 = 2πfc . (4.13)

All iterates of the inversion are depicted in Fig. 4.12. The final reconstruction of Q−1 can be seen in
Fig. 4.5. In the reconstruction we can see that the perturbations are pronounced, but the reconstruction
is riddled with artifacts especially around the source locations. Like we mentioned above: Since the
inversion is very sensitive to amplitude changes, with source inversion the artifacts could be reduced even
more than in the case of the vp inversion. In Fig. 4.8 we can see that, just like in the vp reconstruction,
the residual decreases in a monotone way underlining the unreliability of the norm of the residual in this
inversion.

Inversion of ϱ

Typically, ϱ is harder to reconstruct than the other parameters and typically requires additional care.
This is especially true for multi-parameter reconstructions and requires a careful combination of the choice
of the parameterization and modifications on the inversion algorithm. Some publications that deal with
this topic are [KDNK+12, JLM12, OGP+13]. These considerations are beyond the scope of this thesis.
Nevertheless, in the publications mentioned it is discussed that ϱ is hard to construct due to the following
reasons: It has no effect on the phase and mainly on the amplitude of reflections and a weak effect on
transmitting waves. However, we do want to present a mono-parameter inversion for our transmission
example. Since rather realistic deviations from the background like, 5-10%, do not yield any results,
we change the materials such that we have relative deviations of 25%, 50%, and -25%. In addition, we
carry out this inversion with inverse crime to not make the reconstruction harder than it already is. In
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Figure 4.6: ϱ mono-parameter inversion. Left: true values µtrue
vp

. Middle: final reconstruction µ10
ϱ .

Right: difference of the true value and the final reconstruction δµ10
ϱ . The depicted values are divided by

ϱbg = 2000 kg/m3. Initial guess is constant ϱbg.

Fig. 4.10, the bottom row shows the impact of the change in ϱ on the seismograms. The result of the
inversion can be seen in Fig. 4.6. The norm of the residual decreases monotonously to a similar relative
value like in the τp inversion see Fig. 4.8. Although we can see a decrease in error in Fig. 4.9, it is not very
substantial, even though we commit the inverse crime. It is likely that we can observe only the boundaries
of the inclusion due to the strong impact of ϱ on the reflection of waves. We add another reconstruction
of ϱ: we place receivers in a box around ∆1,∆2,∆3. The corners are r0 = r192 = (1350 m, 370 m)⊤,
r64 = (1350 m, 1630 m)⊤, r96 = (650 m, 1630 m)⊤, and r160 = (650 m, 370 m)⊤. In this experiment, we
set the number of iterations to 30. In the reconstruction in Fig. 4.7 we can see that the algorithm now
detects all edges of the inclusions. The inner part however is still not reconstructed very well. This shows
that when using an unrealistic good measurement setup, we can improve the ϱ inversions.
In Fig. 4.8 we can see an example of how many inner loops are necessary to reach the stopping criterion.

All numerical experiments in this section were carried out on a cluster with 12 nodes. Every node has
20 Intel Xeon CPU E5-2609 v2 with a 2.50GHz clock rate processors and 90 GB of memory. We used
two nodes for each calculation of the inversions and started the program with 32 processes. With this
configuration, one mono-parameter inversion with 10 outer iterations takes about 24 h and the solution
of one wave equation takes about 100 s.



44 Chapter 4. Inversion with the reduced formulation

0.75 1.5 −0.25 0.50

0 5 10 15 20 25 300.6

0.8

1

1.2

iteration

re
la

tiv
e

er
ro

r

full acq. mono-parameter ϱ (Red-CG-REGINN)

errϱ2
errϱ∞

vb

vi

v p

Figure 4.7: ϱ mono-parameter inversion with full acquisition (receivers on all sides). Left: final recon-
struction µ30

ϱ . Middle: difference of the real value with the final reconstruction δµ30
ϱ . The values of

the iterates are divided by ϱbg = 2000 kg/m3 (yellow). Right: relative errors as defined in (4.11) for this
inversion.

0 1 2 3 4 5 6 7 8 9 10

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

iteration

re
la

tiv
e

re
sid

ua
l

transmission mono-parameter(Red-CG-REGINN)

resvp

resϱ

res1/Q

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

nonlinear iteration

nu
m

be
r

of
in

ne
r

ite
ra

tio
ns

transmission mono-parameter(Red-CG-REGINN)

lkvp
lkϱ lk1/Q

Figure 4.8: Left: relative residuals (as defined in (4.12)) of the mono-parameters experiments from
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Figure 4.10: Seismograms of receivers 6, 21, 46, and 61 of shot 0 for the mono-parameter transmission
experiment. Left: comparison of (synthetic, adapted FD Data for vp, τp, and dG data for ϱ) observed
data and data corresponding to the initial guess. Right: comparison of (synthetic, adapted FD Data for
vp, τp, and dG data for ϱ) observed data and of final result of the reconstruction method. From top to
bottom: vp, τp, ϱ.
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Figure 4.11: Iterates µkvp
for k = 1, . . . , 10 of the vp mono-parameter inversions with no inverse crime.

The values of the iterates are divided by vp,bg = 3500 m/s.
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Figure 4.12: Dissipation Q−1(τp) (see (4.13)) values for the iterates µkτp
for k = 1, . . . , 10 of the τp mono-

parameter inversions with no inverse crime. The values of the iterates are divided by 1/Qbg = 1/15.
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4.4.2 Marmousi

We test the algorithm with a more complex layered geometry. We use a part of the pressure wave velocity
distribution called Marmousi2 (we will refer to this geometry as Marmousi) [MWM06] which is a very
popular model to test inversion algorithms in geophysics. In Fig. 4.13 on the left we can see the true
distribution of vp. The Marmousi model is an example of a marine data acquisition and very different to
the example from Section 4.4.1. On top there is a water layer with depth of 450 m. Below the water layer
there are sediments with varying wave propagation speeds. In the water layer the propagation speed is
set to 3500 m/s, the density to 1000 kg/m3 and the dissipation to 10−6. Below the water, ϱ is constant set
to 2000 kg/m3 and the dissipation to 1/60. In our case we do a mono-parameter inversion for vp. For the
source signal in time we use the integral

r̃(t) =
∫ t

0
r(s) ds, (4.14)

with r being the Ricker wavelet from (4.10) with central frequency fc = 9 Hz and tshift = 0.5 s. We
choose L = 3 and τl = (1.0540 s, 0.0825 s, 0.0084 s) and τp = 0.0001 in the water layer which results in a
dissipation of 0.000625. To attain the dissipation of 1/60 in the rest of the model we set τp = 0.0274.
We set vp,min = 1500 m/s and vp,max = 4000 m/s in the true model. The combination of central frequency
of the source, number of damping parameters τl, maximal and minimal values for vp vp,min, vp,max and
dissipation values is taken from the Marmousi2 reconstruction in [Kur12]. The computational domain
is Ω = (0, 8000)m × (0, 3000)m. Along the top boundary, we prescribe Dirichlet boundary conditions
such that the sum of all pressure components is zero on the boundary. In geophysics this is called
free surface boundary. On the other three boundaries we extend the domain by 600 m which yields
ΩE = (−600, 8600)m × (0, 3600)m. In the absorbing layer ΩE \ Ω we use the following parameters in
our Marmousi calculations: Qb = 1.1, vp,t = 0.85 · vp,i, vp,b = 0.1 · vp,i, st = 0.3 · 600 m as explained in
Section 3.5. The computational mesh has the width h = 25 and we use a polynomial degree of k = 1. The
wave equations for the forward and adjoint problem are solved with the exponential midpoint rule with
end time T = 5.88 s and △t = 0.0056 s. The number of spatial degrees of freedom is dofh = 1618176. We
place Ξ = 25 equally distanced sources with equal distance on a line between xsrc,0 = (100.5 m, 20.0 m)⊤

and xsrc,24 = (7899.5 m, 20.0 m)⊤ close to the surface of the water. Further, R = 350 equally distanced
receivers are placed on a line close to the seabed at starting at r0 = (0.5 m, 435.0 m)⊤ and ending
at r349 = (7999.5 m, 435.0 m)⊤. Moreover, we choose γ = 0.95 in (4.7), which is higher than in the
transmission experiment. Increasing γ makes the accuracy, to which the inner iteration is solved, increase
slower. Therefore, it decreases the number of inner iterations. Additionally, we set a maximal number of
iterations for the CG algorithm to lmax,glob = 15. Eventually, we set the number of outer iterations to 10
as termination criterion in Algorithm 4.2 and produce the data with the same solver (dG) we use for the
inversion. We commit inverse crime in all Marmousi experiments.

If we just apply Red-CG-REGINN without additional measures, the inversion would fail. Therefore, we
add some techniques that are widely used in the geophysics community to make the inversion possible in
this geometry with this algorithm.
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Figure 4.13: Left: ground truth µtrue
vp

of vp (in m/s) in the Marmousi model, white circles mark source
locations, white crosses mark receiver locations. Right: initial guess µ0

vp
for the vp inversion.

Frequency filtering

We add a well-known ansatz from the geophysics community. This technique is described in [BSZC95].
It consists of an algorithm with multiple stages, where we low-pass filter the data and the source signal
and include more frequencies in each stage. This is done to reduce the number of local minima and
is widely used to improve the convergence behavior in FWI algorithms [VO09]. Now, choose F =
(f0, f1, . . . , fνmax−1)⊤ ∈ Rνmax ∪ {∞} with increasing fi which yields an algorithm with νmax stages. Let
sobs be the measured data and ϕ ∈ C∞

c (R) a the source signal in time (in the case of the Marmousi
inversion this is r̃). Now, for each fi ∈ F we apply a Butterworth2 low-pass filter with peak frequency fi
to each component of sobs and to ϕ and run the inversion algorithm Red-CG-REGINN with these. With
the result of the i-th stage we start the same process with the next fi+1 ∈ F . The resulting algorithm
can be found in Algorithm 4.3. If the last frequency fνmax−1 is set to ∞, no filter is applied in that
stage. Naively, one can think of such a filtering process in terms of Fourier transforms. We can Fourier
transform the data/signal, then decrease the magnitude of the coefficients higher fi in frequency domain,
and then apply an inverse Fourier transform to get a time dependent signal again. In reality using the
Fourier transform in that way is not helpful, since local changes in the Fourier transform can lead to global
changes in the signal and distort the signal heavily. Therefore, a careful filter design is necessary. We
use an infinite impulse response Butterworth low-pass filter which is a standard variant of a digital filter
design as described for example in [Lyo97]. We use the implementation of this filter from the free and
open source library DSPFilters (https://github.com/vinniefalco/DSPFilters). A filtered source signal for
the Marmousi inversion can be seen in Fig. 4.16 and filtered measured data can be found in Fig. 4.14.

Pseudo-Hessian preconditioner

In addition to the filtering technique, we add a pseudo-Hessian preconditioner. The idea was first in-
troduced by Shin [SJM01] in the frequency domain and developed further in several publications. We
use the version adapted to time domain and the possibility to include multiple parameters in [YBM+18].
This kind of preconditioner assumes zero-offset geometry, that is, source and receiver are at the same

2This is a filter that does not change the phase of the signal. Frequencies above the peak frequency fpeak are damped
by 24dB(102.4 ≈ 254) per octave, that is, doubling of the frequency. This can be expressed by the damping factor
D(f) ≈ 10−2.4·(f−fpeak)/fpeak , f > fpeak. Note that this is an idealized description but should suffice in this context.

https://github.com/vinniefalco/DSPFilters
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Figure 4.14: Top: unfiltered observed (simulated, dG) data and low-pass (1.7Hz, Butterworth order 2)
filtered observed (simulated, dG) data. Bottom: seismogram for the initial guess. The seismograms of
the first shot at xsrc,0 = (20, 100.5).
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Figure 4.15: Left: Result µ∞,10
vp

after the 10 iterations of the last stage without preconditioner and no
frequency filtering for the Marmousi experiment (vp values in m/s). Right: Difference δµ∞,10

vp
of the true

model and the final inversion.
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Figure 4.16: Left: integrated Ricker wavelet r̃ and its low-pass (1.7Hz) filtered version. Right: information
about the discretization for the Marmousi geometry.

position. While this is not entirely true in our Marmousi model, this layout is still close enough. For a
transmission-like problem layout this preconditioner should not be used. Parameter values closer to the
source and receivers are typically more influential on the seismogram than values deeper in the model.
The preconditioner amplifies values further away from the sources/receivers and dampens values close
to them . This makes inversions of deeper layers inside the model possible. Although we assumed in
this section that we only invert for one parameter, we formulate the Pseudo-Hessian preconditioner in a
setting where we invert for Ninv parameters. With the definition of L′

µk
ξ
,u from Theorem 5, in the k-th

iteration, for shot ξ and for every cell K we calculate

G(i, j)K =
∫ T

0

(
L′
µk

ξ
,Fξ(µk

ξ
)[ei],Fξ(µ

k
ξ )(t)

)
0,K

(
L′
µk

ξ
,Fξ(µk

ξ
)[ej ],Fξ(µ

k
ξ )(t)

)
0,K

dt ∀i, j = 1, . . . , Ninv,

(4.15)
where G(i, j)K denotes the (i, j)−th entry of the block matrix corresponding to the cell K and ei are
vectors that are constant one on the cell K for one parameter and zero for the others. In the mono-
parameter case G is a diagonal matrix. For more than one parameter this yields a block diagonal matrix.
In both cases the inverse is easily calculated. In (4.15) the value of

(
L′
µk

ξ
,Fξ(µk

ξ
)[ei],Fξ(µkξ )(t)

)
0,K

is a
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Figure 4.17: Left: relative (to the start of each stage) residual as defined in (4.12). Right: relative
L2-error as defined in (4.11) of the vp Marmousi inversion. The vertical lines indicate the different stages
of the algorithm. The value for k = 10 (left) and k = 20 (right) is depicted in Fig. 4.18 and k = 30 in
Fig. 4.15.

weighted integral over the product of forward wave fields. As a result, the preconditioner exhibits larger
values in close proximity to the source and smaller at increasing distances. This property allows for a
better reconstruction of the deeper layers as we invert G on application and therefore these values are
increased. Since the block matrices can become almost singular, this can introduce additional artifacts.
To suppress artifacts and stabilize the inversion we add a small ε > 0 as a regularization to the diagonal
of G before we invert it:

Gε ··= G + εI. (4.16)

Inversion of vp

For our vp inversion, we choose νmax = 2 and F = (1.7,∞)⊤ for the frequency filtering technique. We
apply a zero-phase Butterworth filter of order 2. Note that without frequency filtering, the inversion with

Algorithm 4.3 Red-CG-REGINN with frequency filtering,

Require: µ0 ∈ P h % starting guess; sobs ∈ SΞ % seismograms
Ensure: µν ∈ P h

1: µinit ← µ0

2: for ν in F do
3: sobs,ν ← filter(ν, sobs) % apply filtering to the data
4: µν ← Red-CG-REGINN(µinit, sobs,ν , ν) % start the inversion with source signal and the data filtered

to frequency ν;
5: µinit ← µν

6: end for
7: return µν
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Figure 4.18: Left: result µ1.7,10
vp,PC after 10 iterations of the stage with filtering to 1.7 Hz. Right: result µ∞,10

vp,PC

after 10 iterations of the stage with no filtering. In both inversions the Pseudo-Hessian preconditioner is
applied. The vp values are in m/s.

Red-CG-REGINN for the Marmousi model fails. Further, to speed up convergence, we apply the regularized
preconditioner Gε from (4.16) with ε = 10−5 in the first stage (ν = 1.7) of the frequency filtering and
with ε = 10−3 for the second stage (ν =∞). We call the k-th iterate in these stages µ1.7,k

vp,PC, µ
∞,k
vp,PC. Since

the preconditioner can promote artifacts, we add another stage of inversion with no frequency filtering
and no preconditioner to smoothen the final result we call the iterates µ∞,k

vp
. In all stages we set a fixed

number of 10 iterations as stopping rule in Algorithm 4.2. Moreover, we assume that the size of the
water layer is known and therefore restrict updates to the values below y = 450 m. As initial value we
use a blurred version of the true value, shown in Fig. 4.13 on the right. Further, we add a box constraint:
Whenever vp is updated and its value would be greater than 4500 m/s or smaller than 1500 m/s we set
it to 4500 m/s resp. 1500 m/s. In Fig. 4.14, we present a plot of the observed (simulated,dG) data along
with its filtered version. In addition, we show the seismograms of the simulated data for the initial guess
along with the filtered version of the observed (simulated,dG) data. The unfiltered and filtered signal is
shown in Fig. 4.16. In Fig. 4.15 we can see the result of the final stage of the inversion. The upper part
of the model (above y = 2 km) is reconstructed well, the main features of the model are clearly visible.
With increasing depth, however, the quality of the reconstruction decreases in general and especially on
the left side of the model. This is not a problem of our algorithm or the model itself, but is rather due
to bad illumination. We can see in the middle part of the model that the reconstruction is rather good,
but on the left side the model is curved in such a way that the layers reflect towards the left boundary
and therefore are not captured well with our receiver setup. In Fig. 4.17 we can see the evolution of
the error which is decreasing in a monotone way and therefore showing the viability of Red-CG-REGINN

for this setup. In Fig. 4.18 the intermediate results of the first two stages are depicted. We can see the
result of the frequency filtering in comparison with the result of the second stage: the edges are a little
more blurry and some of the inclusions are not as well resolved as the after the inversion with no filter.
This is typical for frequency filtered inversions: the resolution typically depends on the wavelengths of
the data, and if we reduce the frequencies of the data, we also filter the smaller wavelengths and get a
lower resolution. In Fig. 4.19 the difference of one stage to the next one is shown, while there are changes
in the whole domain from the first to the second stage, the last stage really just removes the oscillations
in the upper part of the model. Over the whole inversion, the residuals are reduced monotonously as
we can see in Fig. 4.17. Note that the absolute value increases after every filtering step since we include
more data.
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Figure 4.19: Left: difference of the results of the filtered and the first unfiltered stage µ1.7,10
vp,PC − µ

∞,10
vp,PC.

Right: difference of the two unfiltered with and without preconditioning µ∞,10
vp,PC − µ∞,10

vp
. The vp values

are in m/s.

4.4.3 Reconstructions with noise

A typical problem in applications is that the measured data is noisy. This poses a problem in ill-posed
problems since they tend to be especially sensitive to noise. The algorithm CG-REGINN is shown to be
a regularization algorithm and hence especially well-suited for problems of this kind. We want to see
how the Red-CG-REGINN behaves for the already known Marmousi example, so we add artificial Gaussian
noise to our synthetically produced observed data to simulate this more realistic scenario. The pseudo-
random numbers are generated by the function std::mt19937 from the standard library of C++. This is
a realization of the Mersenne-Twister algorithm [MN98]. To avoid correlated noise, we carefully choose
the seeds for the pseudo-random number generator differently for each core and trace of the seismogram.
Typically, the level of noise given by the signal-to-noise ratio (SNR). Assume that any signal can be
decomposed into useful data and useless data (noise). Then, the SNR is given by

SNR = power of useful data
power of useless data . (4.17)

Now, let s ∈ S be a seismogram filled with normally distributed random numbers with expected value 0
and variance 1. Then, we obtain a seismogram with a desired SNR-value (which is typically given in the
logarithmic unit dB, which we do not use here) by

sδobs = sobs + ∥sobs∥S

SNR · s

∥s∥S
.

Now, we set different levels of SNR = 0.1, 1, 10. A value of 10 means that the signal content is 10 times
higher than the noise level, which is moderate noise. On the other hand SNR = 0.1 means that the noise
level is higher than the signal content. The SNR is calculated on the whole seismogram and additive
which leads to individual SNR ratios for each receiver. Receivers closer to the source tend to have a
higher ratio and receivers further away have a lower ratio due to the amplitude loss with distance. This
effect can be seen in the trace-wise normalized seismogram in Fig. 4.21. The ’true’ data is barely visible
for the 80-th receiver in case of SNR = 1. A typical method in geophysics to reduce the influence of noise
is setting parts of the seismograms to zero (called muting), where we know or can see in the data, that
the source has not arrived yet and is often done by hand. For example, we could mute the 80-th receiver
in the SNR = 10 case until ≈ 3.6 s. The individual SNR values for shots 0, 12 and 18 are depicted in
Fig. 4.22. Close to the source position, the SNR values are higher and decrease with increasing distance.
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Figure 4.20: Reconstructions of Marmousi with noisy data. Top row: 10-th iterate µ10
vp

for SNR = 10.
Left: first stage. Right: second stage. Middle row: 10-th iterate µ10

vp
for SNR = 1. Left: first stage.

Right: second stage. Bottom row: left: best result L2 error-wise for SNR = 1 µ∞,5
vp,PC, see Fig. 4.23.

Right: result for SNR = 0.1.

In Fig. 4.20, final and intermediate results of the reconstruction with noise are shown. In the top row the
result after the first stage (left) of frequency filtering and after the second (right) are shown for the case
of SNR = 10 (both stages with fixed of 10 iterations). These results are very similar to the reconstruction
without noise in Fig. 4.18. The results for SNR = 1 are shown in the second row, but the final result
contains a large number of artifacts. However, the result after only 5 iterations, shown in the bottom
row on the left, is better than the final after 10 iterations, as shown in the error plot in Fig. 4.23 on
the left. Note that the norms of the residuals during in the reconstruction, as depicted in Fig. 4.23 to
the right. Thus, the increase in errors could have been avoided by using backtracking (that is, reducing
the step size until the residual decreases) or terminating the algorithm when the residuals increase. This
indicates the need for careful handling of noise. The first stage’s outcome with SNR = 0.1 is displayed on
the bottom right of Fig. 4.20, which has no similarity to the true model. In total, this demonstrates that
this also shows that a substation part of the structure can be reliably extracted from the measurements
with noise-corrupted signals for reasonable noise levels (SNR = 10, 1).
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Figure 4.21: Values of Receiver 0 and 80 in the Marmousi experiment for shot 0, comparison of noisy
and non-noisy data, each measurement is normalized.
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Figure 4.22: Signal-to-noise ratio evaluated receiver-wise for SNR = 10 for the shots 0, 12, 18. For
SNR = 1 and SNR = 0.1 qualitatively the curves look the same but the values of the SNRs are scaled by
0.1 and 0.01.
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Figure 4.23: Left: relative L2-error as defined in (4.11) of the Marmousi vp inversion with noise. The
vertical line indicates the change from the first filtered 1.7 Hz stage to the unfiltered stage. The inversion
without noise is added for comparison. Results are shown in Fig. 4.20. Right: relative residuals, normal-
ized to the first value of each stage.
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4.4.4 Artifacts

Theory

Artifacts are typically present in reconstructions with the reduced formulation around sources and re-
ceivers, even when inverse crime is committed. According to Fichtner [Fic11] (quasi) singular values are
to be expected in the gradient. Here, attempt to put this behavior into formulas, so we can describe
the occurrence of the singularities with a better mathematical foundation and understanding. To this
end we examine the gradient for vp in the special case of constant parameters and no damping. From
the formulas in Lemma 2 we know that in this case the gradient is proportional to (∂tup0 , zp0)0,[0,T ] (x),
where zp0 is the p0 component of the solution of the adjoint problem that is, the solution of

L⋆z(t) = (Ψ∗s)(t), [0, T ], z(T ) = 0.

see Theorem 6 and Corollary 3. Therefore, we can write

△µvp(x) ≃ (∂tup0 , zp0)0,[0,T ] (x) .

Again we will make use of Green’s function as we did in Section 3.4.1 and which are briefly described
in Chapter A. A typical source in the forward problem is f(t,x) = δ(x − xsrc,0)ϕ(t), with ϕ ∈ C∞

c (R),
supp(ϕ) ⊂ [0, T ] and non-vanishing derivatives. Thus, we have an explicit representation of the pressure
field

up0(x, t) =
(
G ∗ (δxsrc,0∂tϕ)

)
(x, t) = (G(x− xsrc,0, ·) ∗t ∂tϕ) (t),

where ∗t is the convolution only in time. The right-hand side of the adjoint problem is typically composed
of the measured seismogram at the receiver locations. For a single receiver at r0 measuring at only one
time γi we have g(x, t) = δ(x− r0)δ(t− γi) and can express the solution via

zp0(x, t) = −(G ∗ ∂tg)(x, T − t) = ∂t(G ∗ g)(x, T − t) = ∂tG(x− r0, T − t− γi).

Plugging this in the equation for the update of vp we get

△µvp(x) ≃
∫ T

0
∂tup0(x, t) · zp0(x, t) dt

≃
∫ T

0
(G(x− xsrc,0, ·) ∗t ∂2

t ϕ)(t) · ∂tG(x− r0, T − t− γi) dt. (4.18)

We examine this in more detail for the 3D case (we do this because it is easier to do calculations compared
to the 2D case) and plug in Green’s function

G3(x, t) = 1
4πv2

p||x||2
δ

(
t− ||x||2

vp

)
into (4.18). This yields

△µvp,γi
(x) ≃

∫ T

0

1
∥x− xsrc,0∥2

∂2
t ϕ

(
t− ∥x− xsrc,0∥2

vp

)
· 1
∥x− r0∥2

∂tδ

(
T − t− γi −

∥x− r0∥2

vp

)
dt

≃ 1
∥x− xsrc,0∥2∥x− r0∥2

∂3
t ϕ

(
T − γi −

∥x− r0∥2 + ∥x− xsrc,0∥2

vp

)
.
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The terms show singular behavior close to the receiver and source position. In a reconstruction we have
a full seismogram where the si’s are the values measured at the times γi, we can make use of the linearity
of the adjoint equation, which results in

△µvp(x) ≃
N∑
i=0

si

∫ T

0
(G(x− xsrc,0, ·) ∗t ∂2

t ϕ)(t) · ∂tG(x− r0, T − t− γi) dt. (4.19)

This shows that the terms from (4.18) form some kind of basis for the update. For a full seismogram
this is a sum over all measurements and therefore the (near) singularities add up, and high values are
expected in the vicinity of the sources and the receivers. A physics-based explanation of the artifacts
near the source is that close to the sources, changes of the parameters have an effect on a large portion
of the energy contained in the wave and hence it will result in a strong change in the resulting wave field.

Numerical examples

In this part present two kinds of numerical calculations. We visualize results of direct (i.e. evaluating
the integral in (4.18) with the help of the Green’s function) evaluations of the integral (which we will
call kernel) from (4.19) for vp in the case without damping (which corresponds to L = 0). We compare
them with calculations from the M++ program where we evaluate the integrals from (4.4). Moreover,
we also plot the results for ϱ and τp. Only in the τp case we use damping, the results of the damping
and non-damping case are very similar for ϱ and vp. For the experiment we place one source and one
receiver with distance of 750 m and a homogeneous background speed of 3500 m/s and with T = 0.4 s
and △t = 0.0005 s. As signal ϕ, we use r̃ from (4.14) with fc = 25 Hz and tshift = 1.5/25.0 s. Then, we
evaluate the integral in (4.19) for artificial seismograms that are the canonical unit vectors in the discrete
seismogram space, that is,

S ∋ si(t) =

1 for t = γi,

0 else.

We do this for every γi in our time grid. By doing that we can see how sensitive the integral is to
changes at the time γi in the seismogram. The results for points on a direct line connecting source and
receiver in the vp case are shown in Fig. 4.24. We can see that the values have the same shape, but
are scaled versions of each other. Qualitatively, the results of the direct and the M++ calculations are
similar. Further, they take the form of the second derivative of the source signal instead of the third as
we would expect in the 3D case. In Fig. 4.25 in the top row we can see that the values for τp resemble
the negative of the first derivative of the time source, and the values are also scaled versions of the same
form along the connecting line. In the case of ϱ, we can see that the shape of the kernels change along the
connecting line. At the source/receiver it is similar to the kernel in the vp case, but it changes quickly
to a curve that resembles the first derivative of the source signal. We can also see that the amplitude of
the kernels drops quickly and to very low values, which could be part of the explanation why ϱ is hard
to reconstruct in the transmission setup. In all calculations we see, that if we change one value of the
seismogram in the support of these kernels, we always change all values along the connecting line of the
source and receiver. In Fig. 4.26 the quantitative behavior of the amplitudes of these kernels relative to
the distance of receiver and source (0 is receiver 1 is source) is depicted. The results are symmetric to
the middle of the source and receiver for vp and ϱ. For τp we see very large values around the source
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compared to the values at the receiver. These seem to be irregular and may be related to the large error
of the source in the cell containing the source in our discretization. Once we move away from the cell
containing the source, the amplitudes look symmetrical again, and the lowest amplitudes have a similar
relative amplitude in the center of the line, compared to the receiver location. This symmetry can be
seen on the right in Fig. 4.26. This result underlines the necessity of tapering around the source, which
we do by ignoring the source cell in our inversions.
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Figure 4.24: Normalized (i.e. to the maximal amplitude) vp kernels (see (4.18)) at the source, at quarter
distance and half distance to the source. Top: direct calculation of via Green’s function, bottom: M + +
calculation.
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Figure 4.25: Normalized (i.e. to the maximal amplitude) of τp (top) and ϱ (bottom) kernels at the source,
one percent distance and half distance to the source.
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Figure 4.26: Left: normalized (i.e. to the maximal amplitude) amplitude of the kernels from Fig. 4.24
and Fig. 4.25. Right: for better visibility the τp part without the ’singular’ values close to zero.



4.5. Multi-parameter reconstruction in FWI 65

0.5 1.5
0.85 1.10

0.5 3.0

Figure 4.27: True values of the multi-parameter reconstruction. Left: µtrue
vp

. Middle: µtrue
vp

. Right:
Dissipation (Q−1(τp)) µtrue

1/Q .To ensure good visibility, each image has its own color map where the
maximal true values is set as the upper bound.

4.5 Multi-parameter reconstruction in FWI

Previously, in Section 4.4, we considered examples where only one of the parameters was sought for in
each reconstruction. These were the mono-parameter reconstructions. The assumption that only one
parameter (e.g. only vp) is capable of explaining the measured data is a simplification. In reality, more
than one material parameter is responsible for shape of the seismogram. Therefore, it is desirable to invert
for more than one parameter at once. This is called multi-parameter inversion, and it is well-known to be
a hard task. Typical difficulties are the coupling of the parameters in the updates (often called cross-talk)
and that some parameters can be dominant in the inversion. This means in a joint reconstruction only
one parameter gets updated significantly. These problems are described in many publications e.g. in
[OGP+13].
Now, we apply Red-CG-REGINN to a multi-parameter problem, and apply the algorithm as before but
calculate the updates for all parameters at the same time. Compared to the mono-parameter variant
this adds almost no computational effort: exactly the same number of wave equations have to be solved
numerically. Again, we consider the geometry from Fig. 4.1 and change one parameter in each ∆i for
i = 1, 2, 3 and leave the others constant. The true distributions of the parameters can be found in
Fig. 4.27 and the numerical values of the parameters in Fig. 4.28. Results of this inversion are shown
in Fig. 4.29. In the diagrams showing the errors in the reconstructions in Fig. 4.28, we can see that
only the vp component is updated significantly. From the results of the mono-parameter experiments we
conducted before, we know that Red-CG-REGINN is capable of reconstructing parameter changes in τp. In
the multi-parameter reconstruction, however, the changes of τp are very minor compared to the changes
in the vp component. This is due to the fact that the L2-norm is more sensitive to phase difference of
signals than to amplitude differences. Therefore, when the algorithm tries to minimize the residual, it
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Figure 4.28: Left: relative error as defined in (4.11) of the iterations for the reconstruction with
Red-CG-REGINN in the multi-parameter case with inverse crime. Right: parameter values in the multi-
parameter case.

is most ’greedy’ in the vp direction. This greediness makes the algorithm’s updates scaled mainly to
the vp component and tends to suppress updates to parameters with lower sensitivity. Therefore, we
aim to construct an algorithm that can scale the update differently for each component and increase the
accuracy of the τp reconstruction in a simultaneous reconstruction with vp. In the following, we explain
our ansatz in a very general setting which is not exclusive to the problem (RED) and then apply it in
our context of REGINN in FWI.

4.5.1 Multi Steepest Descent (mSD) - A subspace gradient descent ansatz

Let U, V be real Hilbert spaces with scalar products (·, ·)U and (·, ·)V . For an inexact Newton method
applied to a general nonlinear problem Γ: U −→ V , it is required to solve linear problems of the form
Ax = b, b ∈ V , where A ∈ L(U, V ) is the Fréchet derivative of Γ at the current iterate of the scheme.
One typical way to approximate a solution is to minimize (in our case with regularization) a quadratic
residual functional like

J : U −→ R, J(x) = 1
2∥Ax− b∥

2
V .

If Ax∗ = b, then x∗ is also a critical point of J . The functional J is twice Fréchet differentiable for every
x ∈ U with

J ′(x)[h] = (A∗(Ax− b), h)U , J ′′(x)[h][h̃] = (A∗Ah̃, h)U , for h, h̃ ∈ U. (4.20)

Given a descent direction s ∈ U a common way to calculate the step size is

ς = argmin
ς̃∈R

J (x+ ς̃s) = (−A∗(Ax− b), s)U
∥As∥2

V

. (4.21)

A well-known characterization of a descent direction for differentiable functions is that J ′(x)[s] < 0 and
therefore we know−J ′(x)[s] = (−A∗(Ax−b), s)U > 0 and ς is assured to be positive. Choosing the descent
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Note that only µ15
vp

is considerably different to the initial value, which is 1 for all pictures.

direction s = −A∗(Ax − b), results in the standard steepest descent step size cf. [NW06, Chapter 3.3].
We mentioned at the beginning of the section that we want to find individual factors for each parameter
component. Therefore, we choose some finite orthogonal decomposition U = U0 ⊕ · · · ⊕ UM−1,M ∈ N,
and denote the corresponding orthogonal projections onto Um by Πm : U −→ Um ⊂ U . Let d ∈ U be
an arbitrary vector and denote the component of d in Um by dm := Πmd ∈ Um. Now, we can write
d =

∑M−1
m=0 dm. Transferring the ansatz from (4.21) to our idea, we look for the M -tuple that solves the

minimization problem

α ··= (α0, . . . , αM−1) = argmin
(α̃0,...,α̃M−1)∈RM

J

(
x+

M−1∑
m=0

α̃mdm

)
∈ RM .

To find the minimizing (α0, . . . , αM−1), we set the partial derivatives to zero:

∂α̃n
J

(
x+

M−1∑
m=0

α̃mdm

)
!= 0 . (4.22)

If we plug the derivative from (4.20) into (4.22) for all n = 0, . . . ,M − 1 we get

J ′

(
x+

M−1∑
m=0

α̃mdm

)
[dn] = (A∗(Ax− b), dn)U︸ ︷︷ ︸

=J′(x)[dm]

+
M−1∑
m=0

α̃m (A∗Adm, di)U︸ ︷︷ ︸
=J′′(x)[dm][dn]

!= 0 .

This results in M linear equations for αm, m = 0, . . . ,M − 1. Now, define the matrix

B ··=


(Ad0, Ad0)V (Ad1, Ad0)V · · · (AdM−1, Ad0)V

...
...

...
...

(Ad0, AdM−1)V (Ad1, AdM−1)V · · · (AdM−1, AdM−1)V

 ∈ RM×M , (4.23)

and the vectors

c ··= −


(A∗(Ax− b), d0)U

...
(A∗(Ax− b), dM−1)U

 = −


J ′(x)[d0]

...
J ′(x)[dM−1]

 ∈ RM .
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With these definitions we can express (4.22) as the linear problem

Bα = c . (4.24)

The matrix B is a Gramian matrix and hence positive semi-definite. For any β ∈ RM \ {0} it holds

β⊤Bβ =
M−1∑
m=0

M−1∑
n=0

(Adm, Adn)V βmβn =
(
M−1∑
m=0

βmAdm,

M−1∑
n=0

βnAdn

)
V

=

∥∥∥∥∥A
M−1∑
m=0

βmdm

∥∥∥∥∥
2

V

≥ 0 . (4.25)

Because of orthogonality, the dm’s are pairwise linearly independent, we can assure positive definiteness
if A is an injective operator. Under this assumption existence and uniqueness of such a minimizing M -
tuple α is ensured. Using this ansatz we get a descent direction of J which the following short calculation
shows.

Lemma 3. Let dm ∈ Um for m = 0, . . .M − 1 and U = U0 ⊕ · · · ⊕ UM−1. Further, assume that
A ∈ L(U, V ) is injective. Let α =

(
α0, . . . , αM−1

)⊤
solve the linear system (4.24) with the dm for

m = 0, . . .M − 1 plugged into B and c. Then, the vector
∑M−1
m=0 αmdm ∈ U is a descent direction of J .

Proof. We show this with the characterization of descent directions for differentiable functions.

J ′(x)
[
M−1∑
m=0

αmdm

]
=
M−1∑
m=0

αmJ
′(x)[dm] = −(α, c)RM

(4.24)= −(α,Bα)RM

(4.25)
< 0 .

Note that, unlike in (4.21), is not ensured that αm > 0 for m = 0, . . . ,M − 1.

Remark 7. The descent direction s =
∑M−1
m=0 αmdm is also optimal in the sense of the one-dimensional

optimization in (4.21):

ς =
−(A∗(Ax− b),

∑M−1
m=0 αmdm)U

∥A
∑M−1
m=0 αmdm∥2

V

= (α, c)RM

∥
∑M−1
m=0 αmAdm∥2

V

(4.25)= (α, c)RM

α⊤Bα

(4.24)= 1 .

So far, we have not described an algorithm to solve the linear problem Ax = b, but rather a way to
calculate a descent direction on J(x). The algorithm results from applying this procedure iteratively. We
start with an initial guess x0 and calculate the descent direction in J(x0), then we update x1 = x0 +d and
calculate the descent direction in J(x1) and so on until a stopping criterion is met. In our case, we use the
same stopping criterion (4.6) as we used for the CG method in Section 4.3. We add the possibility to ensure
that a minimal number of inner iterations lmin are done and add the possibility of adding a preconditioner.
The whole algorithm is shown in Algorithm 4.4. The combination with REGINN is called mSD-REGINN.
Subspace ansatzes like the one we presented were proposed in the seismic inversion literature before. For
some general nonlinear methods in geophysics a similar ansatz was proposed in [KSW88]. In [STK91]
the authors propose an algorithm which applies to a multi-parameter FWI without regularization. In
[OME93] by Oldenburg, McGillivray and Ellis a subspace algorithm in the context of geophysics is
discussed. This publication has influenced publications in FWI like [LAH12] where the authors use
a sparse model representation in conjunction with Gauss-Newton method for inversion, whereas the
authors in [MHMG10] use a sparse sampling of the model. In [MVdKG+10, XM14] the authors compute
step sizes for every parameter separately without using additional information how they influence each
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Algorithm 4.4 Preconditioned Multi Steepest Descent (PmSD) algorithm (inner loop)
Require: A ∈ L(U, V ), Precon: V −→ V , b ∈ V , ϑ ∈ (0, 1), lmin, lmax ∈ N, x0 ∈ U

1: l← 0,
2: r0 ← b−Ax0

3: repeat
4: dl ← A∗rl

5: dPC ← Precon(d)
6: Bl, cl ← AssembleLinearSystem(A, dPC) % see (4.24).
7: α← (Bl)−1cl % α ∈ RM

8: xl+1 ← xl +
∑M−1
m=0 αmd

l
PC,m

9: rl+1 ← rl −
∑M−1
m=0 αmAd

l
PC,j % AdlPC,j can be reused here if it is saved in line 6.

10: l← l + 1
11: until

(
∥rl∥V ≤ ϑ∥b∥V or l ≥ lmax

)
and l ≥ lmin

12: return (xl, l − 1)

other. Both approaches suffer from the need to manually adjust parameters, which can be very problem
dependent. Additionally, in [XM14] the authors carry out an expensive line search. In the explanation
of the algorithm we presented one step of the algorithm. In [GIP20] they use techniques similar to our
ansatz but they build their coupling matrices (in our case called B) with Full-Hessian evaluations and
use a more elaborate choice of descent directions. What makes mSD-REGINN unique among the algorithms
above, is using it as a regularized iterative method for our inexact Newton scheme. The algorithm to
solve the inner loop can also be interpreted in the light of projection optimization methods [Saa03]. With
our choice of d as the gradient, we do not incorporate information about prior updates which could speed
up convergence. Therefore, a possible and natural extension of mSD-REGINN could be a combination with
the Sequential Subspace Optimization Method (SESOP) [NZ05] (or the corresponding regularized version
thereof Regularized SESOP [WS17]). The idea of SESOP can be described with our algorithm. While we
take different parts of our gradient into account in the optimization, they take multiple descent directions
and optimize the same problem as we did. Therefore, if we had L descent directions and split them into
M parts, the matrix B from (4.23) is in RLM×LM .

4.5.2 Application of mSD-REGINN in the reduced case

Now, we want to apply mSD-REGINN to the reduced problem (RED). The functional arising from the
Newton ansatz in the k-th iteration for shot ξ is

Jkξ : P −→ R, Jk,ξ(△µkξ ) = 1
2∥Φ

′
µk,ξ[△µ

k
ξ ]− rkξ∥2

S̃
,

with rkξ = sobs,ξ − Φξ(µkξ ). Further, we use the abbreviations Φ′
µk,ξ = Φ′

ξ(µk) and Φ′∗
µk,ξ

:= Φ′∗
ξ (µk). In

section 4.5.1 the choice of d ∈ U was left completely free. We use the standard gradient (see line 4 of
Algorithm 4.4), but other choices would be possible, too.
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Algorithm 4.5 Red-mSD-REGINN algorithm

Require: µ0 ∈ P h % starting guess; sobs ∈ SΞ % seismograms
Ensure: µk ∈ P h % approximate solution of (RED)

1: k ← 0
2: while not termination do
3: µk0 ← µk

4: ξ ← 0
5: repeat
6: rkξ ← sobs,ξ − Φξ(µkξ )
7: determine lkmax,ξ and ϑkξ % according to (4.7) and (4.6)
8: (△µkξ , lkξ )← PmSD(Φ′

µk,ξ, I, r
k
ξ ,ϑkξ ,lkmax,ξ, 1,0) % call of Algorithm 4.4

9: µkξ+1 ← µkξ + △µkξ
10: ξ ← ξ + 1
11: until ξ > Ξ− 1
12: µk+1 ← µkΞ−1

13: k ← k + 1
14: end while
15: return µk

Transmission Problem

We choose M = 3 and use the decomposition P = P ϱ ⊕ P vp ⊕ P τp with the projections Πϱ,Πvp ,Πτp ,
which are the identity on the parameter in the subscript and set the other parameters to zero. Note that
it is additionally possible to divide the space geometrically, which we do not employ in this experiment.
As mentioned before we expect ϱ to be hard/almost impossible to reconstruct for this experimental setup,
we include it in the method for now to put as little a priori information in the algorithm as possible. The
matrix from (4.23) in this case then has the form

Bl =


∥Φ′

µk,ξ[d
l
1]∥2

S

(
Φ′
µk,ξ[d

l
1],Φ′

µk,ξ[d
l
2]
)

S

(
Φ′
µk,ξ[d

l
1],Φ′

µk,ξ[d
l
3]
)

S(
Φ′
µk,ξ[d

l
2],Φ′

µk,ξ[d
l
1]
)

S
∥Φ′

µk,ξ[d
l
2]∥2

S

(
Φ′
µk,ξ[d

l
2],Φ′

µk,ξ[d
l
3]
)

S(
Φ′
µk,ξ[d

l
3],Φ′

µk,ξ[d
l
1]
)

S

(
Φ′
µk,ξ[d

l
3],Φ′

µk,ξ[d
l
2]
)

S
∥Φ′

µk,ξ[d
l
3]∥2

S

 ,

with dl being the descent direction and dl1 = Πϱd
l, dl2 = Πvpd

l, dl3 = Πτpd
l. The right-hand side is

cl =


(

Φ′
µk,ξ[△µ

k
ξ ]− rlξ,Φ′

µk,ξ[d
l
1]
)

S(
Φ′
µk,ξ[△µ

k
ξ ]− rlξ,Φ′

µk,ξ[d
l
2]
)

S(
Φ′
µk,ξ[△µ

k
ξ ]− rlξ,Φ′

µk,ξ[d
l
3]
)

S

 .

For each step in the inner loop it is necessary to solve M + 1 = 4 wave equations. One for evaluation of
the adjoint Φ′∗

µk,ξ and M = 3 for the linearized wave equations Φ′
µk,ξ[d

l
m],m = 1, 2, 3.

Multi-parameter inversion for ϱ, vp and τp

The reconstruction result with Red-mSD-REGINN is shown in Fig. 4.30 and the convergence history of
the reconstructions can be seen in Fig. 4.31. We can see that – in contrast to the inversion with
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Red-CG-REGINN shown in Fig. 4.28 – the errors in vp and the dissipation Q−1(τp) both decrease in a
monotone way. The error for the ϱ component is the same as for the mono-parameter inversion. This
experiment shows that if we apply Red-mSD-REGINN in the way we presented it above, it is a clear improve-
ment to the inversion with Red-CG-REGINN. Application of Red-mSD-REGINN can help for simultaneous
inversion of vp and τp. In the reconstructions in Fig. 4.30 we can see that especially the vp part has fewer
artifacts compared to the Red-CG-REGINN inversion in the region where τp is changed. The algorithm
Red-CG-REGINN compensates changes in τp with changes in vp since the τp updates are suppressed. In
this experiment we commit inverse crime.

0.5 1.5 0.85 1.10 0.5 3.0

0.2 0.2 0.1 0.1 0.8 1.0

Figure 4.30: Results of the multi-parameter inversions with Red-mSD-REGINN. Top: final reconstructions
µ10
ϱ , µ10

vp
, and µ10

τp
, bottom: difference of the true value with the final reconstruction δµ10

ϱ , δµ10
vp

, and
δµ10

1/Q.The values of the iterates are divided by ϱbg = 2000 kg/m3, vp,bg = 3500 m/s, 1/Qbg = 1/15.
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Figure 4.31: Relative errors, as defined in (4.11), of the multi-parameter inversions with mSD-REGINN

from Section 4.5.2 Left: L2-error. Right: L∞-error.
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4.5.3 Subspace Preconditioned Red-CG-REGINN (Red-SPCG-REGINN)

In this section we present a preconditioner, that is motivated by the results in the previous chapter. We
want to take the information we gather in the matrix Bl and use it as a preconditioner to improve the
CG algorithm. The first version we tested is the block-diagonal preconditioner

Cl1 = diag(Bl, . . . , Bl) ∈ RNcellsNinv×NcellsNinv .

where Ncells is the number of cells in the mesh and Ninv the number of parameters we want to invert at
once. For this preconditioner, the matrix Bl has to be calculated in every inner loop, which makes this
algorithm have the same cost as the Red-mSD-REGINN. We call the algorithm resulting from this choice
SKPCG1-REGINN. If we freeze the preconditioner we save the costly way of calculating Bl. This is the second
preconditioner we want to investigate. This algorithm has an overhead of 3 wave equations to calculate
B0, but then it has the same cost as a normal CG algorithm. In this case we define Cl2 = Cl0 and call it
SKPCG2-REGINN. Another preconditioner we tested was multiplying the Bl’s with the background values
of the parameters Dbg := diag(ρ−1

bg , v
−1
bg , τ

−1
bg ) to additionally take the different scaling of the parameters

into account. This variant is called SKPCG3-REGINN. Here, we set

Cl3 := Cl1 · diag(Dbg) ∈ RNcellsNinv×NcellsNinv .

All these preconditioners can be seen as a crude approximation to the inverse Φ′
µΦ′∗

µ after discretization
which of course is too expensive to compute in its entirety.

Results

We do not present reconstructions or error graphs here since this ansatz produced reconstructions that
were significantly worse than the ones with Red-mSD-REGINN. The algorithm Red− SKPCG1-REGINN pro-
duced more or less the same results as Red− SKPCG2-REGINN, showing that the expensive recalculation
each step does not bring any advantages. The rescaling in Red− SKPCG3-REGINN also not did not improve
the results. All-in-all the tests indicated that this is not a viable way to implement a preconditioner for
the multi-parameter CG. For this reason, we did not pursue this ansatz further.
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CHAPTER

FIVE

INVERSION WITH ALL-AT-ONCE FORMULATION

5.1 All-at-once formulation

In this chapter we present an approach to solve the inverse problem of FWI which differs from the
reduced approach in Section 4.1.1. In Definition 3 of the parameter-to-solution map it is ensured that the
seismogram is the point-wise evaluation of a wave field that solves the wave equation (2.8). However, we
can relax this assumption and modify the problem (RED) to solve for u in the inversion process instead
of only for µ. Before we give the formulation of the problem, we have to introduce some notation.

5.1.1 All-at-once operator

In this section we follow [Rie21] closely and apply the theorems to the visco-acoustic instead of the visco-
elastic case, which are presented therein. We recall some definitions from Chapter 2. Two spaces we
frequently use are

X = L2(Ω,R2+(1+L)) and Y = L2([0, T ],X) .

For µ = (ϱ, vp, τp) ∈ P adm ⊂ P and u = (v, p0, . . . , pL) ∈X we defined

M(µ)u = (ϱv, ν(ϱ, vp, τp)p0, τ
−1
p ν(ϱ, vp, τp)p1, . . . , τ

−1
p ν(ϱ, vp, τp)pL) ,

Du = (0, 0, τ−1
1 p1, . . . , τ

−1
L pL) ,

Au = −(∇(p0 + · · ·+ pL),div v, . . . ,div v) ,

with ν : R3 −→ R, (r, v, τ) 7−→ 1+ατ
v2r , where α = α(ω0) =

∑L
l=1

ω2
0τ

2
l

1+ω2
0τ

2
l

. The constant is set to ω0 = 2πfc,
with fc being the central frequency of the source signal. With this choice it is assured that ω0 lies within
the frequency band we want to model. In the proof of Theorem 2 we showed that A is the generator of a
strongly continuous operator semigroup and therefore with Theorem 1 we get that for f ∈ L1 ([0, T ],X)
and u0 ∈ D(A) there exists a unique mild solution u ∈ C([0, T ],X) for

M(µ)∂tu(t) + (A + M(µ)D)u(t) = f(t) , t ∈ [0, T ] , u(0) = u0 .

If we turn to the integrated version of the equation

M(µ)u(t) + (A + M(µ)D)
∫ t

0
u(s) ds = M(µ)u0 +

∫ t

0
f(s) ds, t ∈ [0, T ] ,
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we get the additional notion of the integrated solution of the evolution equation. In our case the mild and
the integrated solution are the same since A is the generator of a strongly continuous operator semigroup,
cf. [Sch19, Proposition 2.15]. Due to its rather abstract representation via semigroups working with mild
solutions explicitly is hard. On the other hand, the integrated solution has an explicit representation that
simplifies its use and still enables us to require less regularity in f when formulating the inverse problem.

Remark 8. In the next definition we apply a trick to achieve boundedness of an extension of the operator
A. For this, we introduce the norm ∥ · ∥−1 = ∥(I + A)−1 · ∥X and consider X−1 as the completion of X

with respect to this weaker norm. The norm is well-defined since −1 is in the resolvent set of A [Sch19].
We can extend A by A−1 which is a linear operator from X−1 to X−1. In [Sch19] it is shown that the
graph norm of A−1 is equivalent to ∥·∥X . Therefore we get that D(A−1) = X−1 and A−1 ∈ L(X,X−1).
With Y −1 ··= L2([0, T ],X−1) we get A−1 ∈ L(Y ,Y −1). We omit further details here and cite Schnaubelt:
“[...] one can quite often use Y −1[ that is, spaces such as Y −1] to ’legalize illegal computations’ without
knowing a precise description of it” [Sch19, p. 52]. To ensure mathematical correctness of the theorems
we will use the notation above. For more detailed explanations we refer to [Rie21] or [Sch19].

Now, we define the operators we need for the formulation of the all-at-once setting.

Definition 6. Let Ψ be the measurement operator as defined in Section 2.4, and P adm the set of admis-
sible parameters introduced in Section 2.2 and λ ∈ R+. The all-at-once operator is defined by

Φ̃λ : Y × P adm −→ Y −1 × S, (u, µ) 7−→
(
λ
(
L̃(µ)u−M(µ)u0

)
Ψu

)
, (5.2)

with
L̃ : P adm −→ L(Y ,Y −1), µ 7−→ L̃(µ)u ··= M(µ)u + (M(µ)D + A−1)Ju , (5.3)

where
J : Y −→ Y , u 7−→ (Ju)(t) =

∫ t

0
u(s) ds .

Hence, for a fixed λ the nonlinear problem we aim to solve is:

Given (sobs,f)⊤ find (u, µ)⊤ ∈ Y × P adm such that Φ̃λ(u, µ) =
(
λ(Jf −M(µ)u0)

sobs

)
. (AAO)

As we mentioned in Section 4.3.1 this can also be cast as an optimization problem:

min
(u,µ)∈Y ×P adm

J̃λ(u, µ) ,

with

J̃λ : Y × P adm −→ R , J̃λ(u, µ) = 1
2∥Ψu− sobs∥2

S + λ2

2 ∥L̃(µ)u− Jf∥2
0,[0,T ]×Ω, λ ∈ R+ . (5.4)

In Section 4.1.1, we saw that the reduced formulation (RED) can be cast as an optimization problem
with a PDE constraint. The functional in (5.4) is a relaxed version of that. The choice of the parameter
λ controls the influence of the second term on the optimization. For increasing λ the relaxed version
transitions to the reduced formulation. The potential merits of the all-at-once formulation in FWI were
first shown by Herrmann and Leeuwen in frequency domain in [vLH13]. In a simple example the authors
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show that their version of the functional (5.4) yields a more convex minimization problem without local
minima. Publications exploring this ansatz in FWI with various optimization strategies have become
a field of interest in recent years, see [vLH15]. A review, also in frequency domain, about all-at-once
methods in conjunction with different times of regularization was carried out in [GAO20]. More recent
studies of algorithms that are closely related ansatzes in time domain can be found in [GAO21, YZ23].
All-at-once methods are also well-known in the mathematical inverse problem community. A general
mathematic overview as well as convergence results of some typical iterative nonlinear inversion algorithms
for problems with all-at-once formulation can be found in [Kal16]. A sound mathematical framework for
operators involved in the all-at-once formulation for FWI in time domain was established in [Rie21].
There it the author showed that all derivatives of higher order than two vanish for materials that depend
linearly on the parameters (in our notation this would mean that µ 7−→M(µ) is linear). This could be
beneficial in the inversion process since the problem is less nonlinear.

Remark 9. If we recall the definitions outlined at the beginning of Section 4.1.1, the objective is to
simultaneously minimize both the data and the model error (in a slightly different version).

Remark 10. Note that in the geophysical literature, always the ’strong’ version of the differential operator
is considered without the integration operator. The functional considered there is

1
2∥Ψu− sobs∥2

S + λ2

2 ∥L(µ)u− f∥2
0,[0,T ]×Ω, λ ∈ R+ .

For our inversions in this thesis we stick to the integrated version introduced in the beginning of this
section.

5.1.2 Theory of all-at-once

We use results from [Rie21] which, for convenience of the reader, we summarize in the following.

Definition 7. Let Q ∈ L(X) and A−1X −→X−1 from Remark 8. Define

F̃λ : (Y × B) ⊂ (Y × S(X)) −→ Y −1 × S, (u,Π) 7−→
(
λ(Πu + (ΠQ + A−1)Ju)

Ψu

)
,

where S(X) = {P ∈ L(X) : P ∗ = P} and B = {B ∈ S(X) : β−∥x∥2
X ≤ (Bx, x)0,Ω ≤ β+∥x∥2

X} for given
0 < β− < β+ <∞ .

Theorem 7. The mapping F̃λ from Definition 7 is Fréchet differentiable at any (u,Π) ∈ int(Y × B)
with

F̃ ′
λ(u,Π)[h,H] =

(
λ(Π(I + QJ)h + H(I + QJ)u + A−1Jh−Hu0)

Ψh

)
.

Proof. See [Rie21, Lemma 3.5].

Now we apply Theorem 7 to our setting. Note that, as before, we write L̃µ instead of L̃(µ). We do
this to save space and emphasize that in these cases µ is fixed.



78 Chapter 5. Inversion with all-at-once formulation

Lemma 4. Recall the definitions M ′
µ,u from Lemma 2, P = L∞(X)3 and L̃ is from (5.3). The all-at-

once operator Φ̃ is Fréchet differentiable at any (u, µ) ∈ int(Y × P adm). The Fréchet derivative is given
by

Φ̃′
λ(u, µ) : Y × P −→ Y −1 × S, (h, η) 7−→

λ(L̃µh + L̃
′
µ,u[η]−M ′

µ,u0
[η]
)

Ψh

 ,

where we define

L̃
′
µ,u[η] = M ′

µ,(I+DJ)u[η] .

The explicit representation is

L̃
′
µ,u[η] =



ηϱuv

1+ατp
ϱv2

p

(
− 1
ϱηϱ −

1
vp
ηvp + α

1+ατp
ητp

)
up0

1+ατp
ϱv2

pτp

(
− 1
ϱηϱ −

1
vp
ηvp − 1

(1+τpα)ητp

)
(up1 + τ−1

1 u↑
p1

)
...

1+ατp
ϱv2

pτp

(
− 1
ϱηϱ −

1
vp
ηvp − 1

(1+τpα)ητp

)
(upL

+ τ−1
L u↑

pL
)


with u = (uv,up0 , . . . ,upL

),h = (hv,hp0 , . . . ,hpL
), µ = (ϱ, vp, τp), η = (ηϱ, ηvp , ητp) ,u↑(t) = (Ju)(t) =∫ t

0 u(s) ds, and the pl component of u↑ is denoted by u↑
pl
, for l = 0, . . . , L.

Proof. Using the representation in Definition 6, we can write Φ̃λ(u, (ϱ, vp, τp)) = F̃λ(u,M(ϱ, vp, τp)) and
we apply Theorem 7 with Q = D ∈ L(X) and M(ϱ, vp, τp) ∈ B for (ϱ, vp, τp) ∈ P adm. Using the chain
rule for Fréchet derivatives we obtain

Φ̃′
λ(u, (ϱ, vp, τp))[h, η] = F̃ ′

λ(u,M(ϱ, vp, τp))[h,M ′(ϱ, vp, τp)[ηϱ, ηv, ητp ]] .

Plugging the Fréchet derivative of M from Lemma 1 in the formula into Theorem 7 yields the represen-
tation.

Before we calculate the adjoint of Φ̃′
λ, we calculate J∗.

Lemma 5. Like before we use the notation Y = L2([0, T ],X). Consider the operator

J : Y −→ Y , u 7−→ (Ju)(t) =
∫ t

0
u(s) ds .

This operator is bounded and its adjoint is

J∗ : Y −→ Y , u 7−→ (J∗u)(t) =
∫ T

t

u(s) ds .

Proof. With χI : R −→ R, I ⊂ R, we denote the indicator function. Then, we get

∥Ju∥2
0,[0,T ]×Ω =

∫ T

0
|χ[0,t](s)|2∥u(s)∥2

0,Ω ds ≤
∫ T

0
∥u(s)∥2

0,Ω ds = ∥u∥2
0,[0,T ]×Ω ,
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which shows boundedness. Further, we can calculate

(Ju,v)0,[0,T ]×Ω =
∫ T

0

∫
Ω

(∫ T

0
χ[0,t](s)u(s,x) ds

)
· v(t,x) dx dt

=
∫ T

0

∫
Ω

u(s,x) ·
(∫ T

0
χ[0,t](s)v(t,x) dt

)
dx ds

=
∫ T

0

∫
Ω

u(s,x) ·
(∫ T

s

v(t,x) dt
)

dx ds

= (u,J∗v)0,[0,T ]×Ω

Analogous to before we define u↓(t) ··= (J∗u)(t) =
∫ T
t

u(s) ds. Although we could use the abstract
representation from [Rie21] to derive the formula for the adjoint of Φ̃′, we calculate the representation
ourselves in a straightforward way.

Lemma 6. With the definition of M ′∗ from Lemma 2 we define L̃
′∗
µ,u : Y ′

−1 −→ L1(Ω) ⊂ P ′

L̃
′∗
µ,u[y] ··= M ′∗

µ,(I+DJ)u[y] =


R− ν(ϱ,vp,τp)

ϱ T̃0 − ν̃(ϱ,vp,τp)
ϱ

∑L
l=1 T̃l

− 2ν(ϱ,vp,τp)
vp

T̃0 − 2ν̃(ϱ,vp,τp)
vp

∑L
l=1 T̃l

ν(ϱ,vp,τp)α
1+ατp

T̃0 − ν̃(ϱ,vp,τp)
(1+ατp)τp

∑L
l=1 T̃l

 . (5.5)

The adjoint of Φ̃′
λ(u, µ) then can be expressed as

Φ̃′∗
λ (u, µ) : Y ′

−1 × S −→ Y × P ′, (y, s) 7−→
(

λL̃
⋆

µy + Ψ∗s

λ(L̃′∗
µ,u −M ′∗

µ,u0
)[y]

)
.

The notation is from Lemma 4 with y = (yv,yp0 ,yp1 , . . . ,ypL
) and

R(x) = (yv(·,x),uv(·,x))0,[0,T ] , x ∈ Ω, T̃0 ··=
(
up0 ,yp0

)
0,[0,T ] , T̃l

··=
(
upl

+ τ−1
l u↑

pl
,ypl

)
0,[0,T ] .

The operator L̃
⋆

µ : Y ′
−1 −→ Y , y 7−→M(µ)y + (M(µ)D −A−1)J∗y has the representation

L̃
⋆

µy =



ϱyv +∇−y↓
p

ν(ϱ, vp, τp)yp0 + div− y↓
v

ν̃(ϱ, vp, τp)(yp1 + τ−1
1 y↓

p1
) + div− y↓

v

...
ν̃(ϱ, vp, τp)(ypL

+ τ−1
L y↓

pL
) + div− y↓

v


(5.6)

with yp ··=
∑L
l=0 ypl

. The differential div− and ∇− are the extensions of the operators that come with
the extension of A−1. Here, we denote the dual spaces of Banach spaces with ′.

Proof. We need to show

〈
Φ̃′
λ(u, µ)

[
h

η

]
,

(
y

s

)〉
(Y −1×S)×(Y ′

−1×S) =
〈(h

η

)
, Φ̃′∗

λ (u, µ)
[

y

s

] 〉
(Y ×P )×(Y ×P ′) .
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Since Φ̃′
λ(u, µ) is linear, we can compute the components separately. First, we compute

〈
Φ̃′
λ(u, µ)

[
h

0

]
,

(
y

s

)〉
(Y −1×S)×(Y ′

−1×S) =
〈
λL̃µh,y

〉
Y −1×Y ′

−1
+ (Ψh, s)S (5.7)

=
(

h, L̃
⋆

µy + Ψ∗s
)

0,[0,T ]×Ω
.

Plugging in the second component yields

〈
Φ̃′
λ(u, µ)

[
0
η

]
,

(
y

s

)〉
(Y −1×S)×(Y ′

−1×S) =
〈(0

η

)
, Φ̃′∗

λ (u, µ)
[

y

s

] 〉
(Y ×P )×(Y ×P ′) . (5.8)

Since L̃
′
µ,u[η]−M ′

µ,u0
[η] ∈ Y ⊂ Y −1 we can write〈

λ(L̃′
µ,u −M ′

µ,u0
)[η],y

〉
Y −1×Y ′

−1
=
〈
η, λ(L̃′∗

µ,u −M ′∗
µ,u0

)[y]
〉
L∞(Ω)3×(L∞(Ω)3)′ .

Combining the two equations (5.7) and (5.8) yields the asserted representation. For the representation
of (5.5) we use that A∗

−1 = −A−1, see the footnote on page 9 in [Rie21]. Note that we can continuously
embed Y in Y −1. We get Y ′

−1 ⊂ Y ′ ≃ Y which makes the evaluation of −A−1 well-defined. Moreover,
since in Lemma 2 we showed that M ′∗

µ,z[y] ∈ L1(Ω) for z,y ∈ Y we know that the range of Φ̃′∗
λ is indeed

in Y × P ′.

We can also show that – just like in Theorem 3 for the reduced formulation – the all-at-once formulation
(AAO) is ill-posed, too.

Theorem 8. The inverse problem Φ̃(u, µ) =
(

0, sobs

)⊤
is locally ill-posed at any interior point (u, µ) ∈

D(Φ̃).

Proof. See [Rie21, Proposition 4.2] with minor adaptations.

Remark 11. At the beginning of this section we stated that the all-at-once formulation is considered to
be less nonlinear than the reduced formulation. The reasoning for this can be seen in Theorem 7, since
u and Π only appear linearly. Therefore, all derivatives of F̃λ higher than two vanish. Note that if we
use a parameterization µ −→ M(µ) that is not linear, the derivatives higher than two do not vanish
completely. Even in the case of linear parameterizations higher derivatives in the reduced formulation
will never vanish.

From now on we assume u0 = 0, this makes calculations shorter and reflects our usual setups in
inversions.

5.2 Discretization of the operators

In this section we briefly show how the operators L̃, see (5.3), and L̃
⋆, see (5.6) are evaluated numerically.

From now on, we do not denote the dependence of the operators on µ explicitly in most contexts.
As before, operators with subscript h are representations of the operators on finite dimensional linear
subspaces. An operator that is underlined stands for the representation of that operator with respect
to our finite element basis. Recalling the definition in this section, we again denote our discontinuous
Galerkin space by Xh from (3.1) and Y h = XN

h , where N is the number of time steps in our temporal
discretization.
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Evaluation of the operators L̃h,µ and L̃
⋆

h,µ

Unlike in Section 4.1.1 to evaluate the forward operators in time we do not solve a semi-discrete ordinary
differential equation. Instead, we just have to evaluate an integral. Therefore, we define a discrete
approximation of the integral operator J . For that, we use a composite one-step integration scheme with
two weights (w1, w2) ∈ {(1, 0), (0, 1), (0.5, 0.5)}. Here, (1, 0) corresponds to the left rectangular rule, (0, 1)
to the right rectangular rule, and (0.5, 0.5) to the trapezoidal rule. The temporal step size is called △t,
for a chosen value of N its value is △t = T/(N − 1). We denote the operator that evaluates the integral
at time tn = n · △t, n = 0, . . . , N − 1 by

Jn
h,△t : Y h −→Xh, u 7−→

(
w1u0

h +
n∑
i=1

uih + w2un+1
h

)
△t .

For the full integral operator this yields the matrix representation

Jh,△t =



0 0 · · · · · · 0

w1 w2
. . . 0 0

w1 1 w2
. . . 0

...
...

. . . w2 0
w1 1 · · · 1 w2


∈ Rdim Y h×dim Y h

The numerical evaluation of the operator L̃ at time tn solves the variational problem

find ũh,n ∈Xh s.t. (ũh,n,yh)0,Ω =
(
Mhuh,n + (MhDh + MhAh)Jn

h,△tuh,yh
)

0,Ω ,∀yh ∈Xh . (5.9)

With Ah,Mh,Dh,Gh ∈ Rdim Xh×dim Xh we denote the matrices corresponding to the linear operators as
defined in (3.3). Any element xh ∈Xh can be represented via xh =

∑dim Xh

i=1 xihφi ∈Xh , and therefore
interpreted as the coordinate vector xh = (x1

h, . . . ,x
dim Xh

h ) ∈ Rdim Xh . Using this representation for
ũh,n,uh,n ∈Xh and testing (5.9) with yh = φi we can write the fully discretized version of (5.9) as the
linear system

Ghũh,n = Mhuh,n + (Ah + MhDh)Jn
h,△tuh .

Solving this system comes with little cost since Gh is a block diagonal positive definite matrix. Define

T ··= (Ah + MhDh)△t , Bwi
··= Mh + wiT , Cwi

··= wiT −Mh for i = 1, 2.

The right-hand sides of (5.9) for all time steps n = 0, . . . , N can be expressed as matrix

K̃h =



Mh 0 · · · · · · · · · 0

w1T Bw2

. . . . . . . . .
...

w1T T
. . . . . . . . .

...
...

...
. . . . . . . . .

...
...

...
. . . . . . . . . 0

w1T T · · · · · · T Bw2
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For the adjoint problem we use

J∗,n
△t : XN

h −→Xh, u 7−→

(
w2uh,N−1 +

n−1∑
i=1

uh,N−1−i + w1uh,N−1−n

)
△t ,

and we get

K̃
∗
h =



B∗
w2

T ∗ · · · · · · T ∗ w2T ∗

0 B∗
w2

. . . . . .
...

...
...

. . . . . . . . .
...

...
...

. . . . . . . . . T ∗ ...
...

. . . . . . . . . B∗
w2

w2T ∗

0 · · · · · · · · · 0 Mh


∈ Rdim Y h×dim Y h .

Note that D∗
h = Dh and A∗

h is defined as in Eq. (3.2). Further, define

GN
h = diag(Gh, . . . ,Gh) ∈ Rdim Y h×dim Y h .

Then, we can define the discrete operators

L̃h,µ = (GN
h )−1K̃h, L̃

⋆

h,µ = (GN
h )−1K̃

∗
h .

Later on we also want to invert the operators L̃h,µ, L̃
⋆

h,µ. Therefore, we want to rewrite them in a way
that makes it easier to calculate the inverse. Modifying K̃h, K̃

∗
h with the Gaussian elimination matrices

S−1,S−⊤ defined by

S−1 =



1 0 · · · · · · 0
−1 1 0 · · · 0

0
. . . . . . 0 0

...
...

. . . 1
...

0 0 · · · −1 1


with inverse S =



1 0 · · · · · · 0
1 1 0 · · · 0

1 1
. . . 0 0

...
...

. . . 1
...

1 1 · · · 1 1


we get the block banded matrices

Kh = S−1K̃h =



Mh 0 · · · · · · 0
Cw1

Bw2
0 · · · 0

0 Cw1
Bw2

0 0
...

...
. . . . . .

...
0 0 · · · Cw1

Bw2


and

K∗
h = S−⊤K̃

∗
h =



B∗
w1

C∗
w2

0 · · · 0

0 B∗
w1

. . . . . .
...

0
. . . B∗

w1

. . . 0
...

...
. . . . . . C∗

w2

0 0 · · · 0 Mh


.
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We finally can define
Lh = (GN

h )−1Kh, L
∗
h = (GN

h )−1K∗
h

yielding
L̃h,µ = (GN

h )−1SLh, L̃
⋆

h,µ = (GN
h )−1S⊤L∗

h .

Now, to invert L̃h,µ we can invert Lh which is the matrix representation of the Runge-Kutta methods
applied to semi-discrete (that is, discretized with dG in space) version of the initial value problem (2.11).
The Runge-Kutta method corresponds to the choice of the w = (w1, w2), that is, explicit Euler for
w = (0, 1), implicit Euler for w = (1, 0), and implicit trapezoid rule for w = (0.5, 0.5). To invert L̃h,µ,
for a given right-hand side b ∈ Y h, we can calculate uh = K−1

h b by using the forward substitution. We
can calculate the n+ 1-th entry of uh with

Cw1
uh,n + Bw2

uh,n+1 = bn

⇔(w1T −Mh)uh,n + (Mh + w2T )uh,n+1 = bn

⇔ (Mh + w2T )uh,n+1 = −(w1T −Mh)uh,n + bn

⇔ (Mh + w2T )(uh,n+1 − uh,n) = −(w1T −Mh)uh,n − (Mh + w2T )uh,n + bn

⇔ (Mh + w2T )(uh,n+1 − uh,n) = −T uh,n + bn

⇔ uh,n+1 = uh,n + (Mh + w2T )−1(−T uh,n + bn) ,

and then apply the rest of the operators. The same can be done for L̃
⋆

h,µ, where the inversion of L∗
h

results in a backward substitution and is equivalent to solve the adjoint wave equation (2.23) with a
Runge-Kutta method. Due to what we just calculated, in this section we will always use the implicit
trapezoidal rule. Now, we turn to the algorithms to invert the all-at-once problem (AAO).

5.3 Algorithms for the all-at-once formulation

In this section we will present algorithms that we have tested for the time domain formulation of the
all-at-once problem. While we consider only the last one to be three successful, we still describe the
others and additionally the reasons why they failed. In this way we also show how we arrived at to the
final algorithm.

5.3.1 Sequential inversion

Now we discuss the inversion procedure that was presented in [vLH13] in the frequency domain. We want
to adapt it to our time domain and formulation. Recall the misfit functional from (5.4):

Jλ : Y × P adm −→ R, Jλ(µ,u) = 1
2∥Ψu− sobs∥2 + λ2

2 ∥L̃(µ)u− Jf∥2

and the associated optimization problem

min
(u,µ)∈Y ×P adm

Jλ(u, µ).

The authors in [vLH13] suggest an iterative alternating minimizing algorithm. In every nonlinear step
they first solve the minimization problem in the u direction, which in our formulation is

u∗ = argminu∈Y Jλ(u, µ)⇔ u∗ solves
(
λ2L̃

⋆

µL̃µ + Ψ∗Ψ
)

u∗ = λ2L̃
⋆

µJf + Ψ∗sobs .
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Then, a descent direction is calculated by plugging in u∗ in the functional Jλ and differentiate in µ

direction
∂µJλ(u∗, µ)[η] = λ2

(
L̃

′∗
µ,u∗ [L̃µu∗ − Jf ], η

)
0,Ω

.

Solving the augmented wave equation(
λ2L̃

⋆

µL̃µ + Ψ∗Ψ
)

u∗ = λ2L̃
⋆

µJf + Ψ∗sobs (5.10)

is very challenging in time domain. Due to the high dimensionality of Y h × Y h, direct solvers are not
viable. So, we turn to an iterative scheme. However, just applying, for example, the CG algorithm to
(5.10) does not converge in a meaningful way in the sense that the residual is not reduced more than
0.01% after 1000 iterations. In our numerical experiments we saw faster convergence by applying the CG

algorithm together with the preconditioner (1/λ2)(L̃⋆

h,µL̃h,µ)−1. To apply this preconditioner, we need
to solve one forward and one adjoint wave equation together with integration, as described at the end of
Section 5.2.

Remark 12. In our search for a suitable method to approximate the solution of the augmented wave
equation, we first implemented the equation without the integral operators just like it is done in geophysics
like mentioned in Remark 10. We switched L̃ for L and L̃

⋆ for L⋆ because then, the system L̃
⋆
L̃+ Ψ∗Ψ

is a banded block matrix with width three and hence easier to handle. For this system we implemented
two preconditioners. One block Jacobi preconditioner, where we invert the diagonal blocks. And one
block symmetric successive over relaxation (SSOR) where we first do a block forward substitution on
the lower part of the matrix and then do a block backward substitution on the upper part of the matrix.
These preconditioners improved the convergence of the algorithms, but the implementation was rather
complicated in our setting and the convergence was still slow. In [YZ23] a similar procedure to the SSOR
is done to solve a problem related to the augmented wave equation. In [GAO21] they tackle the same
problem but introduce some simplifications and therefore solve a simplified version of the equation.

Remark 13. We introduced the expression (1/λ2)(L̃⋆

h,µL̃h,µ)−1 as preconditioner above. We use this
preconditioner on arbitrary wave fields in the CG iteration. This ’destroys’ the adjointness of the operators
as we defined in Section 2.3. We allow the application of the forward operators on wave fields uh,yh ∈ Y h

that do not fulfill uh,0 = 0 and the backward operator on wave fields that do not fulfill yh,N = 0. Therefore,
the adjointness is violated by the difference(

Mhuh,0,Mhyh,0
)

0,Ω −
(
Mhuh,N ,Mhyh,N

)
0,Ω .

We saw no numerical instabilities arising from this.

Remark 14. We can reduce the dimension by using the Woodbury formula. It states that for T ∈
Rn×n ,W ∈ Rr×r , U ∈ Rn×r , V ∈ Rr×n, the following identity holds

(T − UW−1V )−1 = T−1 + T−1U(W − V T−1U)−1V T−1 .

In the discrete version of (5.10) our goal is to find
(
λ2L̃

⋆

h,µL̃h,µ + Ψ∗
hΨ
)−1

which is a challenge due

to its very high dimension. Applying the identity to T = λ2L̃
⋆

h,µL̃h,µ ,W = −Ih : S −→ S, s −→ −s,
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U = Ψ∗
h, V = Ψ yields(

λ2L̃
⋆

h,µL̃h,µ + Ψ∗
hΨ
)−1

= (λ2L̃
⋆

h,µL̃h,µ)−1

− (λ2L̃
⋆

h,µL̃h,µ)−1Ψ∗
h(Ih + Ψ(λ2L̃

⋆

h,µL̃h,µ)−1Ψ∗
h)−1Ψ(λ2L̃

⋆

h,µL̃h,µ)−1 .

With this formula we can exploit that we can apply (λ2L̃
⋆

h,µL̃h,µ)−1. We still have to solve an equation
involving (Ih + Ψ(λ2L̃

⋆

h,µL̃h,µ)−1Ψ∗
h)−1 . This formula reduces the problem to solving a linear equation

in the seismogram space

(Ih + Ψ(λ2L̃
⋆

h,µL̃h,µ)−1Ψ∗
h)s = Ψ(λ2L̃

⋆

h,µL̃h,µ)−1(λ2L̃
⋆
Jf + Ψ∗sobs) .

Although this problem is of lower dimensionality it is unclear whether it behaves better or worse than
the full equation. One iteration costs still two solutions of wave equations which is the same as the
preconditioner we used for CG.

Algorithm 5.1 Sequential method

Require: µ0 ∈ P h % starting guess; sobs ∈ SΞ % seismograms
Ensure: µk ∈ P h % approximate solution of (5.2)

1: µk ← µ0

2: while not termination do
3: µk0 ← µk

4: ξ ← 0
5: repeat
6: ξ ← ξ + 1
7: b← Jh,△tf ξ + Ψ∗sobs,ξ

8: uinit ← L̃
−1
h,µJh,△tfξ

9: u← CG(L̃h,µL̃h,µ + Ψ∗Ψ, b,uinit) % with preconditioner (1/λ2)(L̃⋆

h,µL̃h,µ)−1 which means solv-
ing one forward and one adjoint wave equation per CG iteration.

10: △µkξ ← L̃
′∗
h,µ[L̃h,µu− Jh,△tf ξ] % search direction with the formula see Lemma 6

11: α← line search(p) % Armijo rule.
12: µkξ+1 ← µkξ + α△µkξ
13: until ξ > Ξ− 1
14: µk+1 ← µkΞ−1

15: k ← k + 1
16: end while
17: return µk

We tested the algorithm on the transmission problem from Fig. 4.1 for the mono-parameter experiment
for vp with L = 0. As initial value for the CG algorithm in line 8 of Algorithm 5.1 we choose uinit =
L̃

−1
h,µJh,△tf . With uinit = 0, we saw no convergence of the material. We break the CG algorithm when

only little in the search direction changes. After 5 CG iterations each, we calculate the search direction
which comes with little numerical cost. If the relative change is below 1.015, we stop the iteration. This
condition says that in average over the last 5 iterations each iteration only changed by 1%. This condition
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offers us a possibility to gauge when to stop the CG and not just base it on the reduction of the residual.
This can be an unreliable indicator especially in systems with high condition numbers. In most iterations,
the reduction of the residual was about two orders of magnitude. In this experiment we needed between
15 and 20 CG iterations for each shot. In the end we had double the cost compared to Red-CG-REGINN and
more or less the same result and slower convergence. We do not show these results here, since we only
want to consider this geometry in the presence of damping and this first test was for without damping
(L = 0).
These first results show that this method is capable of finding the parameter inclusions, too. When we
applied the sequential algorithm in the case of L = 5 with attenuation, we observed that the method
chooses step sizes that are small and almost no change of the parameter values is seen in the iterative
process. We tried to fix this with a line search method such as the Armijo rule (which is a line search
rule, where the step size gets multiplied by the same factor after each failed line search) that allows the
line search factor to get bigger in each line search iteration. However, this did not yield stable results.
Thus, this ansatz was not pursued further since we wanted to find a stable algorithm even if attenuation
is involved. It did show, however, that the algorithm can produce results in time domain and maybe is
capable of doing so with some modifications. We turn to the algorithm we applied with success in the
reduced case.

5.3.2 AAO-CG-REGINN

The first algorithm we inspect is CG-REGINN. For the first variant, we just use the formulas obtained in
Lemma 6, Lemma 4 and apply the algorithm “out of the box”. The main numerical cost of this operation
is evaluating L̃

′
h,µ and L̃

′∗
h,µ. This makes single iterations of the algorithm cheap compared to the reduced

version. In [Rie21] it was emphasized that this could be a possible advantage over other methods, since
solving partial differential equations contributes the most to the numerical cost. However, just like with
the augmented wave equation, no convergence is seen without preconditioning. We look at the normal
equation of the Newton equation as a whole, that is

Φ̃′∗(u, µ)Φ̃′(u, µ)[△u,△µ] = Φ̃′∗(µ,u)[Φ̃(µ,u)− (Jf , sobs)] .

The system then has the form(
λ2L̃

⋆
L̃ + Ψ∗Ψ λ2L̃

⋆
L̃

′
u

λ2L̃
′∗
u L̃ λ2L̃

′∗
µ,uL̃

′
u

)(
△u

△µ

)
=
(
λ2L̃

⋆ (
L̃u− Jf

)
+ Ψ∗(Ψu− sobs)

λ2L̃
′∗
µ,u[L̃u− Jf ]

)
. (5.11)

Looking at the upper part left of the system we can see that it is similar to (5.10). The methods we
developed in the last section to solve the problem will be viable here, too. We use a preconditioner of
the form

P =
(

1
λ2 (L̃⋆

L̃)−1 0
0 Iβ

)
(5.12)

with λ being the already known penalty factor and β ∈ R+ is an additional scaling parameter. The
parameter β is necessary to account for the different scaling of the rows. In the reconstructions, we saw
that the algorithm prioritized updates of the wave field component and did not update the material. Note
that the operator P is positive definite for u(0) = u(T ) = 0 because of the existence and uniqueness of
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Algorithm 5.2 CG-REGINN method for all-at-once

Require: µ0 ∈ P h % starting guess; sobs ∈ SΞ % seismograms
Ensure: µk ∈ P h % approximate solution of (5.2)

1: µk ← µ0

2: while not termination do
3: µk0 ← µk

4: ξ ← 0
5: repeat
6: ξ ← ξ + 1
7: u← L̃

−1
h,µJh,△tfξ % other initial values are possible

8: bu ← Jf ξ + Ψ∗sobs,ξ

9: bµ ← L̃
′∗
h,µ,u[L̃h,µu− Jfn]

10: (△u,△µkξ ) ← apply CG to the system in (5.11), with preconditioner from (5.12) and right-hand
side (bu, bµ)

11: µkξ+1 ← µkξ + △µkξ
12: until ξ > Ξ− 1
13: µk+1 ← µkΞ−1

14: k ← k + 1
15: end while

the underlying initial value problem

(
u, (L̃⋆

µk
ξ
L̃µk

ξ
)−1u

)
0,[0,T ]×Ω

=
(
L̃

−⋆
µk

ξ
u, L̃

−⋆
µk

ξ
u
)

0,[0,T ]×Ω
= ∥L̃−⋆

µk
ξ

u∥2
0,[0,T ]×Ω > 0 . (5.13)

This property makes it a suitable preconditioner for the CG algorithm. Although the equalities from
(5.13) above do not hold in the discrete case as we mentioned in Remark 13, this did not cause problems
in the algorithm. The preconditioner is similar to the forward backwards scheme in [AGO20], where it
is used to solve the augmented wave equation (5.10). With the preconditioned algorithm we were able
to reconstruct a simple 1D problem with this algorithm, but a careful hand-tuning of β was necessary.
Therefore, we did not pursue this approach for 2D problems. It may be possible to develop a heuristic
rule for the choice of β, but it is not clear how. Since we wanted to avoid to hand-tune β, we investigated
another, more successful ansatz in the next section.

5.3.3 AAO-PmSD-REGINN

From Section 4.5.1 we know the mSD-REGINN algorithm and want to apply it to the all-at-once formu-
lation giving rise to what we will call AAO-PmSD-REGINN. The goal is to alleviate the problem of the
different scalings of the components and to avoid the need to hand-tune hyper parameters like in the
Red-CG-REGINN above. In the notation of Section 4.5.1 we choose U = Y h × P h, V = Y h × S. For the
following however we swap the order of the wave field space and the parameters. We split the parameter
space in M1 parts and split the wave field space in M2 subspaces. Hence, the linear system to calculate
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Algorithm 5.3 AAO-PmSD-REGINN

Require: µ0 ∈ P h % starting guess; sobs ∈ SΞ % seismograms
Ensure: µk ∈ P h % approximate solution of (RED)

1: µk ← µ0

2: while not termination do
3: µk0 ← µk

4: ξ ← 0
5: repeat
6: ukξ ← L̃

−1
h,µk

ξ
Jh,△tf ξ % one solution of the integrated forward wave equation

7: rkξ ← (0,Ψukξ − sobs,ξ) % wave residual is zero, since L̃µk
ξ
u− Jf ξ = 0

8: determine lkmax,ξ and ϑkξ according to (4.7) and (4.6) to break the iterative process in line 9
9: (△µkξ ,−, lkξ )← PmSD(Φ̃′(ukξ , µkξ ), rkξ , µkξ ) % Algorithm 4.4 the update in the wave field is discarded

10: µkξ+1 ← µkξ + △µkξ
11: ξ ← ξ + 1
12: until ξ > Ξ− 1
13: µk+1 ← µkΞ−1

14: k ← k + 1
15: end while
16: return µk

the weighting factors α = (α1, α2)⊤ like in (4.24) is of the form

(
B11 B12

B⊤
12 B22

)(
α1

α2

)
=
(
c1

c2

)
, (5.14)

where B11 ∈ RM1×M1 , B12 ∈ RM1×M2 , B22 ∈ RM2×M2 and c1 ∈ RM1 , c2 ∈ RM2 . For our inversions
we consider the parameter spaces on each cell separately: Ui+(j−1)·Ncells = eji ,∀i = 1, . . . , Ncells and
j = 1, . . . , Ninv. With eji ∈ P h we denote the ansatz function that is constant with value one in the
i-th cell and the j-th parameter. The dimension of all those spaces is M1 = Ninv ·Ncells. The values for
all other cells and parameters are zero. For the wave field space we choose U = Y h with M2 = 1. By
(h,
∑Ninv
j=1

∑Ncells
i=1 dji ) we denote the decomposition of the descent direction that results from the choices

above. The matrix B11 is composed of N2
inv blocks and reads

B11 =


D11 D12 · · · D1Ninv

D12 D22 · · ·
...

...
. . . . . .

...
D1Ninv D2Ninv · · · DNinvNinv

 , Dj1j2 ∈ RNcells×Ncells , j1, j2 = 1, . . . , Ninv (5.15)

The block matrices are diagonal for our space discretization, since the Fréchet derivative only acts locally
on the cells, so the scalar products are zero, if the cells are not the same. Assume we linearize at the
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point (ukξ , µkξ ). Then, the entries of the block matrices in (5.15) are

(Dj1,j2)i,i =
(

Φ̃′
h,µk

ξ
,uk

ξ
[0, dj1

i ], Φ̃′
h,µk

ξ
,uk

ξ
[0, dj2

i ]
)

0,Y h×S

=
(
λL̃

′
h,µk

ξ
,uk

ξ
[dj1
i ], λΦ̃′

h,µk
ξ
,uk

ξ
[dj2
i ]
)

0,[0,T ]×Ω
,

for all j1, j2 = 1, . . . , Ninv and i = 1, . . . , Ncells . Since M2 = 1, B22 is a scalar:

B22 = ∥Φ̃′
h,µk

ξ
,uk

ξ
[h, 0]∥2

0,Y h×S = ∥λL̃h,µh∥2
0,[0,T ]×Ω + ∥Ψh∥2

S .

With the choices above we further have B12 ∈ R(Ninv·Ncells)×1 with the entries

(B12)i,j =
(

Φ̃′
h,µk

ξ
,uk

ξ
[h, 0], Φ̃′

h,µk
ξ
,uk

ξ
[0, dji ]

)
0,Y h×S

=
(
λL̃h,µh, λL̃

′
h,µk

ξ
,uk

ξ
[dji ]
)

0,[0,T ]×Ω
,

for j = 1, . . . , Ninv and i = 1, . . . , Ncells. The Matrix B11 describes interaction of the parameters with
each other, B12 the interaction between parameters and elements from wave field space and B22 the
interaction of the wave field space, with itself. Let (△ul,△µl) ∈ Y h ×P h be the l-th iterate of the inner
iteration and (rlu, rls) ∈ Y h × S the l-th residual of the linearized problem. Then, the upper part in the
right-hand side vector for the linear system (5.14) is

(c1)jNcells+i =
(

Φ̃′
h,µk

ξ
,uk

ξ
[△ul,△µl]− (rlu, rls), Φ̃′

h,µk
ξ
,uk

ξ
[0, dji ]

)
0,Y h×S

=
(
λL̃h,µ△ul + λL̃

′
h,µk

ξ
,uk

ξ
[△µl]− rlu, λΦ̃′

h,µk
ξ
,uk

ξ
[dji ]
)

0,[0,T ]×Ω

for j = 1, . . . , Ninv and i = 1, . . . , Ncells. The lower part of the right-hand side is

c2 =
(

Φ̃′
h,µk

ξ
,uk

ξ
[△ul, µl]− (rlu, rls), Φ̃′

h,µk
ξ
,uk

ξ
[h, 0]

)
0,Y h×S

=
(
λL̃h,µ△ul + λL̃

′
h,µ[△µl]− rlu, λL̃h,µh

)
0,[0,T ]×Ω

+
(
Ψ△ul − rls,Ψh

)
S
.

We solve the linear system (5.14) with the use of its Schur complement

S = B22 −B⊤
12B

−1
22 B12

which in our case is only a number. Then, we can compute α2 by a simple division

α2 = S−1(c2 −B⊤
12B

−1
11 c1) . (5.16)

Then, we also can calculate α1:
B11α1 = c1 −B22α2

which does not pose a problem since we already calculated B−1
11 for S. For Ninv = 1 the Matrix B11 is

easy to invert since we just have to invert the diagonal elements. For Ninv = 2 the Schur complement for
B22 is SB11,ii = (D22)ii − (D12)2

ii/(D11)ii, i = 1, . . . , Ncells. With SB11,ii we can express the inverse as

B−1
1 =

(
D−1

22 +D−1
22 D12S

−1D12D
−1
22 −D−1

11 D12S
−1

−S−1D12D
−1
11 S−1

)
.

Since all these matrices are diagonal, all the inverses are easy to calculate. For higher values of Ninv

we can use the same inversion formula with the Schur complement, but we have to do it in a recursive
manner.
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Remark 15. In theory, the algorithm would also allow to split the wave field space. A canonic choice
would be splitting the wave field for every time step. This, however, proved to be unstable in small
numerical examples. Further, it poses a problem with regard to computational cost. With this choice the
matrix B3 is a dense symmetric matrix. For every entry one full space-time scalar product would have
to be calculated. This means calculating about 1

2N
2 space-time scalar products which is a considerable

numerical effort that is comparable to solving the wave equation N times.

We know from Section 5.3.2 that simply applying the algorithm without a preconditioning step is
unlikely to lead to convergence of the method. Therefore, we use the preconditioner from (5.12) with
β = 1:

P kξ =
(

1
λ2 (L̃⋆

µk
ξ
L̃µk

ξ
)−1 0

0 I

)
.

The positive definiteness from (5.13) guarantees that the negative gradient remains a descent direction
after application of the preconditioner. The combination of algorithms can be found in Algorithm 5.3.

Remark 16. Since we assume constant material values on each cell, we can also write the dji = djie
j
i

and therefore get for the diagonal entries

(Dj1,j2)i,i =
(
λL̃

′
h,µk

ξ
,uk

ξ
[dj1
i ], λL̃′

h,µk
ξ
,uk

ξ
[dj2
i ]
)

0,[0,T ]×Ω
≃
(
L̃

′
h,µk

ξ
,uk

ξ
[ej1
i ], L̃′

h,µk
ξ
,uk

ξ
[ej2
i ]
)

0,[0,T ]×Ω
.

These values are similar to the values used in ’Pseudo-Hessian’ preconditioner from (4.15), although they
appear in a slightly different location. It is interesting that this type of values appear naturally in our
inversion scheme which is not physically motivated.
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Figure 5.1: Left: final iterate µ15
vp

and difference to true values δµ10
vp

in the mono-parameter vp inversion
with AAO-PmSD-REGINN. Right: relative L2-error as defined in (4.11). No inverse crime is committed in
the reconstruction.

Numerical Cost

Before we present results, we want to clarify some aspects with regard to AAO-PmSD-REGINN. Although
we call it an all-at-once algorithm, it is in a way an “all-at-once algorithm in the linearization”. Only
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Figure 5.2: Mono-parameter τp inversion with AAO-PmSD-REGINN. Left: dissipation values (see (4.13))
final iterate µ10

1/Q, difference of the final iterate to the ground truth δµtrue
1/Q . Right: relative L2-error as

defined in (4.11). No inverse crime is committed.

the material parameter part carries over from one shot to the next. In the k-th iteration and the ξ-th
shot, we take the current iterate µkξ and consider the linearization in (µkξ , L̃

−1
h,µk

ξ
Jh,△tf ξ)⊤ (see line 6

of Algorithm 5.3,where ukξ = L̃
−1
h,µk

ξ
Jh,△tf ξ is calculated). There are several reasons for this: for each

shot in our inversion we would have to save a full wave field, since they differ with regard to the source
location. Hence we are not able to just pass one wave field for all shots as we do it for the material.
Having one wave field for each shot would, however, increase the memory requirement too much. Our
aim is, ultimately to avoid saving wave fields due to high memory consumption (we have to save degrees
of freedom in space times number of time steps per wave field). Moreover, we tested saving the wave
fields in a simple 1D example and found that they stagnate at some point. Then, we had to reset them
to L̃

−1
h,µk

ξ
Jh,△tf ξ to achieve convergence. For these reasons we do not carry iterates of the wave fields

in our algorithm. The inner loop of PmSD-REGINN therefore can be seen as an expansion away from the
solution of the wave fields. We set the minimal number of inner iterations lmin for AAO-PmSD-REGINN to
3. This is a value we decided on by experience. Note that the value of lmin has to be at least 2, since the
first inner iteration does not change the material. This can be seen with the following calculation. The
residual in the first iteration of the inner loop is (0,Ψukξ − sobs,ξ). Set s△ = Ψukξ − sobs,ξ. Application of
Φ̃′∗ and the preconditioner yields for first update

dPC =
(

(1/λ)2L̃
−1
h,µL̃

−⋆
h,µΨ∗s△

0

)
,

(see Algorithm 5.3). The main numerical cost of one inner iteration is solving two wave equations, one
forward and one adjoint in the preconditioner. So one iteration of the inner loop of AAO-PmSD-REGINN

needs the same number of solved wave equations as one iteration of the inner loop in Red-CG-REGINN.
However, together with the calculation of ukξ , we have to solve a minimal number of 7 = 1 + lmin · 2
wave equations per inner loop. If Red-CG-REGINN needs less than lmin to break, it is always cheaper than
AAO-PmSD-REGINN per nonlinear iteration. Otherwise, both algorithms cost the same, if they need the



92 Chapter 5. Inversion with all-at-once formulation

same number of inner iterations. We apply the same stopping rule as we did in Red-CG-REGINN.

Transmission Reconstruction

Again, we start by applying the method to the example of Fig. 4.1 for the mono-parameter problem for
vp (no inverse crime) for L = 5. In this experiment we set λ = 1. In Fig. 5.1 we can see that we can
partly reconstruct the geometry, but we do not attain the same level of error as with the Red-CG-REGINN

method. There are no source artifacts present as we saw in the reduced reconstruction in Fig. 4.4. This
could be a result of the observation we made in Remark 16. These encouraging results prompted us
to test AAO-PmSD-REGINN further. We applied the algorithm with λ = 1 to the τp mono-parameter
experiment. The algorithm does not converge, the L2-error increases from the first iteration. The result
can be seen in Fig. 5.2. It has a lot of artifacts toward the receivers. With prior knowledge where the
inclusions are one is also able to identify the middle and the bottom inclusion in the result, but they
are not distinguishable against the artifacts without that knowledge. We tried the same inversion for
various values of λ in the interval [10−6, 1020], but it barely changed the outcome of the inversion. Also
increasing lmin did not improve the results. Since the mono-parameter for τp failed, we do not apply
multi-parameter reconstructions for AAO-PmSD-REGINN and focus on the vp reconstructions from now on.

5.4 Camembert Model

In this section we present a situation, where the reduced method fails but the all-at-once method succeeds.
This can be illustrated with a variant of the Camembert model, which was first introduced in [GVT86]
as an example of a highly nonlinear problem. We consider a rectangle Ω = (0, 6000)m × (0, 4800)m
with homogeneous Neumann boundary. The background velocity is vp,bg = 4000 m/s. Within a circle
centered around xmid = (2400, 3000)⊤ with radius r = 1600 m, the velocity differs from the background
by a constant factor of 1 + p. Therefore, the velocity is v∆p = (1 + p) · vp,bg p > −1. We choose a mesh
width h = 37.5, which yields 245760 degrees of freedom in space. We set T = 2.1 and △t = 0.0005.
Most of the calculations in this section are done on the HoreKa (Hochleistungsrechner Karlsruhe). One
wave equation on 256 Intel Xeon Platinum 8368 cores with 2.4 GHz clock frequency takes 5 s to solve. A
full inversion takes about 10 hours. On the left side of the domain are Ξ = 15 equally spaced sources
xsrc,i = (100, 200 + 400 · i)⊤, i = 0, . . . , 14. The source signal we use is the integrated Ricker wavelet r̃
from (4.14) with central frequency fc = 10 Hz. On the right side of the domain, there are R = 200 equally
spaced receivers ri = (4700, 60 + 30 · i)⊤, i = 0, . . . , 199. Similar configurations of this problem are used
in [EY20] and [GAO21]. More details can be taken from Fig. 5.3. According to [GVT86] the nonlinearity
stems from the large diameter of the inclusion. This makes the initial model more important due to the
local nature of inversion schemes such as Newton-type methods. In the following section, we will use a
small example to illustrate the specific problem of the inversion of vp.

Cycle-Skipping

In this section we visualize the phenomenon called cycle-skipping, which can occur in any seismic inversion
for vp and can be explained using the Camembert geometry. In this section we assume that there is only
one source at xsrc,7 = (100, 3000)⊤ but the rest is the same as above. In Fig. 5.4 the whole measurements
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Figure 5.3: Left: Geometry, sources, inclusion, and receiver for the Camembert model. Right: parameters
of the numerical calculation.

for p = {0.00, 0.08, 0.15} are shown. When we increase p the wave arrives earlier at the receivers the
dotted line shows the approximate first arrival time for p = 0.00. Let sp80 be the measurement of the
80-th receiver for the shot mentioned above for a simulation with value p for the Camembert. In Fig. 5.5
on the left we can see sp80 for the values p ∈ {0.00, 0.08, 0.14, 0.15} on the interval [1.0, 1.7]. We can
further see that the change of vp affects mostly the phase, and has little effect on the amplitude or the
form of the wave. Now, we want to look at a simplified version of the inversion in the whole domain.
Instead of optimizing over vp we optimize over phase shifts for the measurements. In order to do this,
define mp(t) ··= χ[1.0,1.7]s

p
80(t) and consider the one dimensional optimization problem

min
s∈[−0.15,0.3]

jp(s) ··= ∥m0.00 −mp(· − s)∥2
S .

This is a simplified model of how, in general, the residual is sensitive to the change of vp for a constant
initial value (p = 0.00). In Fig. 5.5 on the right jp is depicted. We can see, that the function is non-
convex for any p, and potentially has more than one local minimum. From the tangents in the three
graphs at s = 0.0, we see that for p = 0.08, 0.14 the direction of steepest descent leads into the direction
of the minimum of the function. Therefore, a local gradient method is likely to converge. For p = 0.15
the direction of steepest descent leads away from the minimum. For this case, if we only minimize the
norm of the data residual in the L2-norm, the algorithm cannot get around the local maximum and
therefore cannot converge. This simplified example highlights the strong dependence on the initial value
for inversions of vp when only focusing on the data error. The term cycle-skipping is derived from the
fact that one cycle is skipped, which can be seen in Fig. 5.5 for p = 0.15 (red): to reduce the data-error
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Figure 5.4: Observed data in Camembert geometry with p = 0.00, 0.08, 0.15 (from left to right). Each
column in each plot corresponds to one receiver. Negative values are blue, positive values red, and zero
is white

Figure 5.5: Left: measurements of the receiver at r80 for p = 0.00, 0.08, 0.14, 0.15 in the Camembert
model with source at xsrc,7 = (100, 3000)⊤. Right: plot of jp(s) for p = 0.08, 0.14, 0.15.

the initial (blue) seismogram moves to the right instead of the left, thereby skipping the full first cycle of
the true seismogram. This phenomenon occurs commonly with real data sets as good initial values are
not attainable most of the time. In this paragraph we showed why only focusing on the data error can
be problematic and since the all-at-once formulation does additionally contain the model error (see the
beginning of Section 4.1.1), all-at-once is likely to be more robust to this problem.

Remark 17. Note that the frequency filtering from Section 4.4.2 is also a tool to reduce cycle-skipping
since cycles with lower frequency have larger cycles, making it harder to skip them. We do not include
frequency filtering in this section to have a more direct comparison of the methods. It is easy to implement
it to AAO-PmSD-REGINN.
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Figure 5.6: Results µ15
vp

for the Camembert model for p ∈ {0.02, 0.10, 0.14} Top row: Red-CG-REGINN,
bottom row: AAO-PmSD-REGINN. For both we can see the quality of the reconstruction deteriorates with
increasing p.

Results with Red-CG-REGINN

Now, we turn to the inversion process across the entire domain. Our aim is to demonstrate that the
difficulty of the inversion or the failure of Red-CG-REGINN is not determined solely by the size of the circle.
To achieve this objective, we first start with lower p values, gradually increasing until the inversion fails.
In total, we perform 15 iterations in each inversion. Looking at the final iterate in Fig. 5.6 and the errors
in Fig. 5.8, we observe good results up to a percentage of p = 0.14. However, as p increases, reconstruction
quality declines and the convergence rate slows down. Finally, for p = 0.15 Red-CG-REGINN fails. Some
iterates of this failed inversion can be seen in Fig. 5.7. In the failed inversion, a large blue area is visible,
indicating a decrease in velocity instead of an increase. This is the cycle-skipping effect: the algorithm
uses a local descent in the wrong direction.
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Figure 5.7: Iterates µkvp
for k ∈ {1, 3, 15} of Red-CG-REGINN with p = 0.15 .

Results with AAO-PmSD-REGINN

The results of AAO-PmSD-REGINN for p < 0.14 can be seen in Fig. 5.6 and Fig. 5.8. They show that
AAO-PmSD-REGINN is capable of inverting the structure of the Camembert model clearly. In all these
reconstructions we set lmin = 3. With regard to the relative error, Red-CG-REGINN is better (40% vs
50%). One major motivation of AAO-PmSD-REGINN is to find an algorithm that is more reliable in the
sense that it has a larger radius of convergence. Therefore, we will now examine inversions that lie outside
the convergence radius (p < 0.14) of Red-CG-REGINN as discussed in the preceding section. In Fig. 5.11
we can see that for p = 0.15, lmin = 3 AAO-PmSD-REGINN is able to reduce the error considerably and
therefore shows better convergence results than Red-CG-REGINN. Some iterates and the final result of this
inversion can be seen in Fig. 5.9. We increase the percentage to p = 0.16 and are now comparing the
computational efficiency of two different values of lmin, namely 3 and 5. In order to have similar run
times, we set the outer iterations of lmin = 3 to 30, whereas for lmin = 5 we keep it at 15. For both choices
we see convergence in Fig. 5.11. Note that the curve for the lmin = 3 has twice as many data points as the
other curves. Even though we set increased the number of outer iterations, the algorithm with lmin = 3
takes less time. Therefore, considering runtime only the number of forced inner iterations should be kept
as low as possible. In the p = 0.17 case, the algorithm does not converge for lmin ∈ {5, 7} but it converges
for lmin = 15. This indicates that higher values of lmin can lead to convergence when the algorithm fails
for lower values. Increasing lmin increases the numerical cost, so ideally one would choose it high enough
for the algorithm to converge and as low as possible. In practice this value cannot be calculated exactly.
Since convergence can critically depend on the value one should not be too eager to choose a value that
is the lowest possible. For p = 0.18 and p = 0.19 we set values as high as 50 of lmin and no convergence
is seen. This leads to the assumption that without further modification of the algorithm convergence
cannot be attained for the Camembert model with AAO-PmSD-REGINN. In the failed reconstructions (see
Fig. 5.10), we can see that AAO-PmSD-REGINN is not immune to cycle-skipping, as it also inserts negative
values in the update. That the all-at-once ansatz can also suffer from cycle-skipping and being trapped
in local minima is shown in [Sym20] and in [YZ23].
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Figure 5.8: Relative L2-errors as defined in (4.11) of the Camembert model. Left: Red-CG-REGINN, Right:
AAO-mSD-REGINN. Some of the final iterates are shown in Fig. 5.6.

Combination of Red-CG-REGINN and AAO-PmSD-REGINN

In the sections before we saw convergence of AAO-PmSD-REGINN for this problem for higher values of p
whereas Red-CG-REGINN tended to converge to lower values of the L2 error, if it converged. Therefore,
we want to combine the two methods to benefit from "best of both worlds". To this end we start
Red-CG-REGINN with iterates of AAO-PmSD-REGINN for p = 0.16. If these starting values are close enough to
the real value Red-CG-REGINN should converge in a case where we see divergence for the constant starting
value. Four different iterates of AAO-PmSD-REGINN are taken as starting values; µkvp,A, k = 1, 3, 5, 15. In
Fig. 5.11 we can see that the convergence of Red-CG-REGINN is dependent on the initial value. For k = 1, 3
the reconstruction of AAO-PmSD-REGINN is still not close enough to the true value to see convergence in
Red-CG-REGINN. However, for k = 5, 15 the algorithm converges and CG-REGINN seems to be able to further
reduce the error even after AAO-PmSD-REGINN stagnates. In Fig. 5.12 we can see that the boundary of
the circle is clearer and Red-CG-REGINN is able to reduce some of the artifacts while at the same time
introducing some of its own at the source positions. This also worked for p = 0.17 and k = 10, as also is
shown in Fig. 5.12. This demonstrates that we can profit from a combination of the algorithms.
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Figure 5.9: Iterates µkvp
for k ∈ {1, 3, 14} of AAO-PmSD-REGINN for the Camembert model for p = 0.15.

0.850 1.000 1.150 1.225 0.82 1.00 1.18 1.27 0.8 1.0 1.2 1.3

Figure 5.10: Final iterate µ15
vp

of AAO-PmSD-REGINN for the Camembert model for p ∈
{0.15, 0.18, 0.20}(from left to right), the two right ones are failed inversions.
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Figure 5.11: Left: relative L2-errors as defined in (4.11) of the Camembert model with AAO-PmSD-REGINN

for p ∈ {0.15, 0.16, 0.17}. Red-CG-REGINN fails for these values. Notice, that the black line has 30
iterations, instead of 15 as the others and which is indicated at the bottom. Right: relative L2-errors of
Red-CG-REGINN with initial value µ0

vp,R. As initial values, we choose iterates of AAO-PmSD-REGINN µkvp,A

for k ∈ {1, 3, 5, 15}, only for k = 5, 15 the inversion succeeds to decrease the error.
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Figure 5.12: Top: from left to right: initial values µ0
vp,R = µkvp,A for k ∈ {5, 15} and p = 0.16. The

picture on the right uses and k = 10 for p = 0.17. Both are Red-CG-REGINN continuation experiments.
Bottom: results µ15

vp,R of the inversions.
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5.5 Marmousi

5.5.1 Application of AAO-PmSD-REGINN

We apply AAO-PmSD-REGINN to the Marmousi setup from Section 4.4.2. We want to further demonstrate
that the larger convergence radius also carries over to other, more complex, and layered inversions. To
illustrate this, three initial values that lie beyond the convergence radius of Red-CG-REGINN: the ’blurred’
model from Fig. 4.13, the ’averaged’ model (which is the blurred model averaged over each row), and
the ’linear’ model (which assumes a linear increase of the initial model depending on the depth).The
values start at 1500 m/s at the seabed and increase to 4000 m/s at the bottom of the model. The latter
initial values can be seen in Fig. 5.13. We set the minimal number of inner iterations to lmin = 3
and apply no frequency filtering and do not enforce lower and upper bounds on vp. The iteration
numbers are fixed to 20 (blurred,which is stopped earlier because it attains good results earlier) and 25
(averaged, linear) outer iterations. In order to distinguish between the reconstructions from different
initial values, we refer to them as µvp,blur, µvp,avg and µvp,lin. The results in Fig. 5.15 demonstrate that
AAO-PmSD-REGINN is able to produce reasonable results, where Red-CG-REGINN fails. The quality of the
reconstruction deteriorates as the distance from the original value increases, with the blurred initial value
being closest and the linear one farthest away. The reconstruction of the shallow parts is reconstructed
reasonably well, but the deeper parts do not reflect the layered structure well. This is especially true
for the averaged and linear initial value. The L2-errors in Fig. 5.16 show that the error decreases for all
algorithms. They are normalized to the initial error of the linear reconstruction. This is done to show
a quantitative comparison: even the last iteration of the linear reconstruction has a higher error than
the initial value of the averaged reconstruction and the last averaged reconstruction still has a higher
error than the initial blurred reconstruction. This shows that the L2-error can be misleading, because
the final reconstructions arguably carry more information about the subsurface than the initial values of
the other algorithms. We should note that adjusting the frequency filter or modifying the parameter lmin

may improve reconstruction results, but it is not the focus of this study.

Remark 18. There also was one case where we did not achieve convergence. We tried to push the
algorithm to its limit and started with a constant initial value with 2750 m/s. It did not produce meaningful
results and produced singularities in the model. This reconstruction can be seen in Fig. 5.14. For this
initial value we actually did some tinkering. We applied frequency filtering of Order 2 and 4 to the
frequency 4.5 Hz and additionally increased the number of forced minimal iterations lmin to 7. None of
these measures substantially improved the results, however.

1500 2000 2500 3000 3500 4200 1500 2000 2500 3000 3500 4200

Figure 5.13: Initial values of the PmSD-REGINN inversion. Left: µvp,avg, Right: µvp,lin.
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1500 2000 2500 3000 3500 4200 1500 2000 2500 3000 3500 4200

Figure 5.14: Left: constant initial value, Right: result after 15 iterations.
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Figure 5.15: Left: final reconstructions µ20
vp,blur, µ

25
vp,avg, µ

25
vp,lin (top to bottom) of AAO-PmSD-REGINN and

differences to the true model δµ20
vp,blur, δµ

25
vp,avg, δµ

25
vp,lin

5.5.2 Continuation

While it was not our goal to attain the best error in the reconstruction, we still want to show that combin-
ing the AAO-PmSD-REGINN method with Red-CG-REGINN is able to produce results that are better than just
applying AAO-PmSD-REGINN. In this reconstruction we just added one reconstruction with Red-CG-REGINN

without frequency filtering or the Pseudo-Hessian preconditioner. The final iterates are shown in Fig. 5.17,
and the relative error reduction with respect to the initial value produced by AAO-PmSD-REGINN is shown
in Fig. 5.16. For the linear and the averaged initial, the additional error reduction is moderate (3% and
4%), while for the blurred starting model there is a more significant reduction of 15%. Note that the final
error of the blurred inversion AAO-PmSD-REGINN is comparable (28.9% relative reduction with respect
to the initial value) to the error at the end of the three stages of Red-CG-REGINN from (30.5% relative
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Figure 5.16: Left: errors for the inversions from Fig. 5.15, Fig. 5.18, and Fig. 5.17 relative to the initial
error of the all-at-once Marmousi inversion with the linear initial value. Right: relative improvement of
the final iterate for the continuation with Red-CG-REGINN of µ20

vp,blur, µ
25
vp,avg, µ

25
vp,lin.

reduction with respect initial value, see Fig. 4.17).

5.5.3 Marmousi with noise

Now we run the Marmousi experiment AAO-PmSD-REGINN with strong noise, that is, SNR ∈ {0.1, 1}, is
SNR the signal-to-noise ratio from (4.17). The error of this inversion is shown in Fig. 5.16. For SNR = 1,
the final error even drops below the error of the data without noise. This reconstruction can be taken
as evidence that AAO-PmSD-REGINN is stable even for noisy data. The algorithm does not converge for
SNR = 0.1. In Fig. 5.18 we can see that although the reconstruction is heavily riddled with noise artifacts,
we can still see the structure of the upper part of the Marmousi model.
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Figure 5.17: Final reconstruction µ10
vp,blur, µ

10
vp,avg, µ

10
vp,lin of the combination of AAO-PmSD-REGINN and

Red-CG-REGINN and difference to the true model δµ10
vp,blur, δµ

10
vp,avg, δµ

10
vp,lin for the blurred, averaged and

linear initial value from top to bottom.
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Figure 5.18: Reconstructions of Marmousi with noisy data with AAO-PmSD-REGINN. Left: final result of
the inversion, Right: difference to the true model. The initial value and SNR from top to bottom are:
blurred with SNR = 1, blurred with SNR = 0.1, averaged with SNR = 1, linear with SNR = 1.
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5.5.4 On the choice of the penalty factor λ in (AAO)

So far, not much consideration was put into the choice of λ. We simply set it to 1 in most inversions and
saw good results with this choice. Now, we want to expand on this aspect and see if we can influence the
result or the speed of convergence of the inversions by changing λ. Before we start with numerical results
of the study, we calculate the first update of the inner loop (see Algorithm 4.4) of AAO-PmSD-REGINN.
Let sobs be the observed data and define s△ ··= ΨL̃

−1
h,µJh,△tf − sobs. Then, the starting inner residual

is r0 = (0, s△)⊤. Applying Φ̃′
µ and the preconditioner we get d0

PC = ((1/λ)2L̃
−1
h,µL̃

−⋆
h,µΨ∗s△, 0)⊤. Since

there is no update in the material, we can ignore all blocks in the linear system (5.14) that are related to
the material. The whole block matrix therefore reduces to the scalar B22 = ∥Φ̃′

µ[d0
PC]∥2

0,Y h×S . We only
have to consider the formula from (5.16) to calculate the factor for the wave update directly:

α0
2 =

(
Φ̃′
[
d0

PC

]
,

(
0

s△

))
0,Y h×S

∥Φ̃′
µ[d0

PC]∥2
0,Y h×S

which yields

α0
2 =

(
Ψλ−2L̃

−1
h,µL̃

−⋆
h,µΨ∗s△, s△

)
S

∥λ−1L̃
−⋆
h,µΨ∗s△∥2

0,[0,T ]×Ω + ∥λ−2ΨL̃
−1
h,µL̃

−⋆
h,µΨ∗s△∥2

S

=

1 + λ−2 ∥ΨL̃
−1
h,µL̃

−⋆
h,µΨ∗s△∥2

S

∥L̃−⋆
h,µΨ∗s△∥2

0,[0,T ]×Ω

−1

.

Therefore, the first iterate of the inner loop is

x1 = α0
2/λ

2(L̃−1
h,µL̃

−⋆
h,µΨ∗s△, 0) = α̃0

2(L̃−1
h,µL̃

−⋆
h,µΨ∗s△, 0) with α̃0

0 ··=

λ2 +
∥ΨL̃

−1
h,µL̃

−⋆
h,µΨ∗s△∥2

S

∥L̃−⋆
h,µΨ∗s△∥2

0,[0,T ]×Ω

−1

.

From this representation we can see that

λ̃ ··=
∥ΨL̃

−1
h,µL̃

−⋆
h,µΨ∗s△∥S

∥L̃−⋆
h,µΨ∗s△∥0,[0,T ]×Ω

(5.17)

is a pivotal point in this update. While for λ ≪ λ̃ the factor α̃0
2 stays approximately constant, around

λ ≈ λ̃ the behavior changes into a transitional phase, and for λ≫ λ̃ it decreases with the speed of λ−2.
We conduct two studies: we start AAO-PmSD-REGINN for the failed τp mono-parameter example from from
Fig. 5.2 and for the Marmousi geometry, together with the blurred initial value with a wide range of
values for λ, and let it run for one iteration. We denote the result of the inner loop (which runs for 3 and
7 iterations for the τp experiment and the Marmousi experiment, respectively) by (∆hλ,∆µλ)⊤ and the
final residual by (hres,λ, sres,λ)⊤. The subscript λ emphasizes the dependence of these quantities in terms
of the penalty factor. We want to look at the evolution of ∥∆hλ∥0,[0,T ]×Ω, ∥∆µλ∥0,Ω, ∥hres,λ∥0,[0,T ]×Ω,
and ∥sres,λ∥S over λ. We do this for the first shot each, but the results apply – for these two examples – to
all shots. In Fig. 5.19 and Fig. 5.20 we can see the plot of these quantities over λ. The dotted line shows
the discrete value of λ̃ = 5.311 ·108, λ̃ = 1.318 ·105 for the Marmousi and the τp experiment, respectively.
The results in Fig. 5.19 illustrate that when λ is less than λ̃, the norms ∥∆hλ∥0,[0,T ]×Ω, ∥∆µλ∥0,Ω remain
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constant. As λ approaches λ̃ from below, the norms show a quadratic decrease. This is evident as the
norms parallel the dashed line. Not only the norm of the updates stays more or less the same, the updates
themselves are very similar, too. For the Marmousi experiment in the constant section of the curve in
Fig. 5.19 (left) we calculate

max
λi,λj∈{10−8,10−7,...,104}

∣∣∣∣1− ∥∆µλi
−∆µλj

∥0,Ω

∥∆µλi∥0,Ω

∣∣∣∣ = 3.16 · 10−3.

The maximal relative difference between the updates in the flat part is less than 3.16 · 10−3. This shows
that changing λ does not change the updates in a significant way. The behavior of ∥hres,λ∥0,[0,T ]×Ω, ∥sres,λ∥S

over λ is shown in Fig. 5.20 in the right column. When the value of λ is less than λ̃, the residual norm
sres,λ decreases in relation to the initial residual s△. From λ ≈ λ̃ on, ∥sres,λ∥S ≈ ∥s△∥S . The wave field
residual norm seemingly does not influence the updates and peaks at λ̃. This residual does not seem to
give any information about the success of the inversion, while the reduction of the data residual seems to
carry crucial information. This shows, as long as λ ≪ λ̃, the algorithm is not very sensitive to λ. Note
that the behavior does not change exactly at λ̃ but can also start earlier as we approach this point (we
called this ’transitional phase’ above). Moreover, numerical errors can change the tipping point in these
numerical calculations. Since we primarily want to avoid very small updates, we want to stay in the
’flat’ part in the plots. Therefore, we suggest choosing λ = sλ̃ with s < 10−3. Note that calculating λ̃
does not add any numerical cost. We can calculate ∥L̃−⋆

h,µΨ∗s△∥0,[0,T ]×Ω and ∥ΨL̃
−1
h,µL̃

−⋆
h,µΨ∗s△∥S while

applying the preconditioner and save it for later for the calculation of α0
2. In our experiments the value

of λ̃ almost did not change over the course of the inversion (for λ = 1). Also, it was the same order of
magnitude for all shots. Nevertheless, we suggest calculating λ̃ and adjusting λ accordingly for each shot
individually. This is especially true for cases where we may have different source signals or apply source
inversion in real measurements since this could lead to different orders of magnitude in λ̃. To conclude
this consideration, we could say that in the interval where we want λ to be in, the algorithm is not very
sensitive to it. This result can be seen as an advantage since we do not have to calibrate the factor and do
not have to think of it all that much after choosing it once/calculating it on the fly. Therefore, we have
one parameter less to tune. However, we cannot control how much influence is put on the wave equation
part in the inversion which was one of the motivations for the optimization ansatz (5.4). Moreover, the
algorithm does not revert to a reduced algorithm as we increase λ.

Remark 19. The result from our calculations mirrors an observation in [vLH15] for the parameter
choice. They identify the operator norm of ΨL̃

−1
h,µ as an interesting value and say anything smaller or

larger than the operator norm can be considered a small respectively large value of λ. Although their
algorithm is not connected to ours, they draw this conclusion from an analysis of an expansion of the
wave field in their inner loop for different values of λ. A small calculation shows the link from our
suggestion to their observation:

∥ΨL̃
−1
h,µ∥Y h−→S = sup

∥f∥0,[0,T ]×Ω ̸=0

∥ΨL̃
−1
h,µf∥S

∥f∥0,[0,T ]×Ω
≥
∥ΨL̃

−1
h,µL̃

−⋆
h,µΨ∗s△∥S

∥L̃−⋆
h,µΨ∗s△∥0,[0,T ]×Ω

.

So, in their words, our algorithm only works for small values of λ.
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Figure 5.19: Evolution of the norms of the components ∆hλ,∆µλ of the update (result of the inner loop)
in the first nonlinear iteration over λ. The dotted line marks the value of λ̃ from (5.17). Left: values
of the vp inversion for the Marmousi geometry. Right: values of the τp inversion for the Transmission
geometry.

Figure 5.20: Evolution of residual component norms hres,λ, sres,λ in the inner loop. The dotted line
indicates the numerical value of λ̃ from (5.17), while the green line signifies the residual in the seismogram
at the start of the inner loop.
Left: values of the vp inversion for the Marmousi geometry. Right: values of the τp inversion for the
Transmission geometry.
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CHAPTER

SIX

CONCLUSION

Even almost 40 years after its inception, Full Waveform Inversion remains an actively researched topic.
Applications in global scale models allow for new insights into the structure of the earth and local scale
models allow for a more efficient way to find and exploit natural resources. Due to its ill-posedness,
a careful approach to FWI is necessary. A large amount of data and high numerical cost for each
iteration make regularized methods necessary that converge in a fast and stable manner. With increasing
calculation power, new possibilities arise to exploit the method to its full potential. One way to exploit
the potential is putting research into new formulations of the underlying problem of FWI that were not
computationally viable before but have merits with regard to the inversion. In this thesis we did both.
We applied an inexact Newton method that proved to be flexible and is known to be able to stably solve
ill-posed problems (for examples in Electrical Impedance Tomography, see [WR15, MRL14]). Moreover,
we developed and applied a new type of REGINN algorithm in the all-at-once formulation in time domain.

6.1 Contribution

We started with the reduced formulation and applied the algorithm we called Red-CG-REGINN. The combi-
nation of tools (formulation of the wave equation, discretization, and inversion algorithm) was used before
in [BFE+21] for a transmission example only. After adding some techniques known from the literature
(frequency filtering, Pseudo-Hessian preconditioner) we expanded on the usefulness of this combination
by successfully applying Red-CG-REGINN to the Marmousi geometry. In this geometry we showed stability
of the vp inversion with Red-CG-REGINN in a viscous medium. Even for noisy data with a SNR up to 1.
After that we turned to the problem of multi-parameter inversion, which means that we want to invert
for multiple parameters at once. In Section 4.5 we presented and applied a novel and flexible ansatz (we
called mSD) in the REGINN context that allows to balance different parts of gradient updates in a way
that is well-suited for the multi-parameter inversion. In the reduced context the algorithm was called
Red-mSD-REGINN, and we applied it to a multi-parameter problem in a transmission geometry. We saw
monotone error decay for τp, vp, where Red-CG-REGINN was unable to reconstruct values in τp. This re-
sult demonstrated the potential of Red-mSD-REGINN to improve multi-parameter inversions in the reduced
formulation.
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In Chapter 5 we took the theoretical results for the all-at-once formulation from [Rie21] and presented
discretizations of the operators therein. We implemented and investigated an algorithm from the litera-
ture in time domain that was previously considered in frequency domain. Moreover, we developed and
presented a combination of the previously presented mSD ansatz and REGINN called AAO-PmSD-REGINN

with a preconditioner that is adapted to the all-at-once formulation. For the same geometries we used
for Red-CG-REGINN, we conducted and presented numerical experiments for AAO-PmSD-REGINN that show
viability for vp inversions and robustness under addition of artificial noise. Additionally, we showed
that AAO-PmSD-REGINN can be used to avoid cycle-skipping to some extent: In examples where the re-
duced ansatz failed, we saw convergence of AAO-PmSD-REGINN. This highlights that the algorithm is less
dependent on the choice of the initial value. In the same geometries we used for Red-CG-REGINN, we
conducted and presented numerical experiments for AAO-PmSD-REGINN that confirmed the viability for
vp inversions and robustness under addition of artificial noise. We demonstrated that a combination of
AAO-PmSD-REGINN and Red-CG-REGINN can be advantageous, that is, starting Red-CG-REGINN with the
result of AAO-PmSD-REGINN. The algorithm AAO-PmSD-REGINN is more robust with regard to the initial
value, and Red-CG-REGINN converges to better results as soon as it converges. With this combination we
get the benefits of both strengths of the algorithms. Further, we suggested an easy-to-realize choice of
the penalty parameter λ due to a brief analysis which was backed up by numerical experiments. Finally,
we also want to include a minor point: We developed a brief analysis on the origin of artifacts around
sources and receivers that are inherent to reduced methods. We also provided complimentary numerical
calculations to show the behavior of material updates in a very simple geometry.

6.2 Outlook

The final goal of most seismic inversion techniques is to be feasible and performant to real-world appli-
cations. That means inverting real measured data in a three-dimensional setting. After some additional
features (such as source inversion) are implemented, the algorithms Red-CG-REGINN, Red-mSD-REGINN,
and AAO-PmSD-REGINN can be applied to real measured data. However, for AAO-PmSD-REGINN it poses
an additional challenge to do three-dimensional inversions. The all-at-once algorithm we presented needs
to save at least four wave fields simultaneously. One each for the iterate, the update, the residual, and
one temporary while applying the preconditioner. This is a lot and can only be executed on very large
modern calculation clusters: Typical applications have at least ≈ 109 grid points (see [Ige16, vLH15]).
For a simulation with L = 3 we have 3 velocity components and 4 pressure components. Therefore, one
time step in double precision consumes ≈ 1 GB RAM, making a full wave field easily consume more than
1 TB. Hence, before the algorithm can be applied to three-dimensional problems, it should be altered
in a way that is more memory-friendly. A standard technique in reduced methods is saving snapshots
and recalculating parts of the wave field when needed. In AAO-PmSD-REGINN this is not possible, since
the wave fields are not just solutions of the wave equation. Also, we cannot store the right-hand sides
that produce the wave field. They are results of previous calculations and not known as in reduced appli-
cations. Furthermore, other preconditioners could be explored that do not rely on saving an additional
wave field. One possible way to save memory could be hp-adaptive space-time methods (cf. [DWZ20] for
a p-adaptive variant or [CDW22] for a variant with an error indicator). The space-time ansatz offers more
flexibility to adapt both h and p in space and time. In a certain sense, space-time methods are a perfect
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candidate for all-at-once methods: Solving (5.10) comes much more natural in a space-time setting, since
we are forced to consider the whole system anyway and cannot just use time-stepping. A small study
concerning space-time methods in the context of reduced FWI was done in [Ern18] and could be extended
to all-at-once methods. This space-time approach could also open up a new class of preconditioners such
as wave adapted space-time multi-grid methods.
Note that a natural extension of all algorithms in this thesis would be including elastic or visco-elastic
modeling (including shear waves), which would further increase the memory needs of AAO-PmSD-REGINN.
An optimal choice of the minimal number of inner iterations lmin also remains an open question. In
the Camembert example, we saw that the convergence of AAO-PmSD-REGINN can depend on lmin. Other
non-systematic testing indicates that lmin should be chosen as small as possible: The speed of the in-
versions did not improve with regard to calculation time when we increased it over the threshold of
convergence. However, we did not present a heuristic to choose a good value for lmin. This should be
researched further. Also, the reconstruction of τp with AAO-PmSD-REGINN warrants further research. It is
an open question whether AAO-PmSD-REGINN is capable of reconstructing attenuation. Although our first
experiments indicate that in its current version it is not, there may be some modification that improves
the sensitivity to attenuation. Finding a way around this restriction could lead to a viable algorithm for
multi-parameter problems, because the structure of the B11 block (see (5.15)) provides a very natural way
to implement multiple-parameters into the linear system (5.14). Perhaps it may even reduce cross-talk
due to its correlating nature.
In the context of the reduced FWI formulation other REGINN variants could be explored. Variants that
include additional variational regularization or other measures of distance than the L2-norm. One such
variant is a L∞ approach presented in [PR23], which was not yet implemented for two-dimensional prob-
lems. Methods that include evaluations of the second Fréchet-derivative are often considered in geophysics
and are a promising way to improve reconstructions, especially for multi-parameter inversions. There-
fore, a combination of REGINN and methods from the inverse problems community that include a second
derivative (such as [HR99]) could be explored.
For Red-mSD-REGINN more complex geometries for multi-parameter inversions could be tested. Addition-
ally, the flexibility of the decomposition of the update could be further explored. For Red-mSD-REGINN

we could not only split the different material parameters but could also separate the updates spatially.
For example with prior information about a region of interest, or by splitting the update depending on
the depths and realizing a better scaling of deeper layers that way.
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APPENDIX

A

GREEN’S FUNCTIONS

In general a Green’s function G is a function (or in some cases distribution) that solves

LG = δ0,

if L is a linear operator given by a linear differential equation with constant coefficients and δ0 is Dirac’s
delta distribution i.e. δ0(f) = f(0),∀f ∈ C∞

c (Rd). With this knowledge we can solve the differential
equation

Ly = f

for any compatible right-hand side f . The solution then reads

y = G ∗ f.

For the second order wave equation
1
v2

p
∂2
tG(x, t)−∆G(x, t) = δ(x)δ(t), p(x, 0) = 0 , ∂tp(x, 0) = 0 ,

we can easily find Green’s functions in the literature [Ige16]. The Green’s function for the wave equation
is dependent on the dimension which will be be denoted as subindex. For an arbitrary source position
xsrc,0 they are

G1(x, t) = 1
2vp

H

(
t− |x− xsrc,0|

vp

)
,

G2(x, t) = 1
2v2

pπ

H
(
t− ||x−xsrc,0||2

vp

)
√
t2 − ||x−xsrc,0||2

2
v2

p

,

G3(x, t) = 1
4πv2

p||x− xsrc,0||2
δ

(
t− ||x− xsrc,0||2

vp

)

With H : R −→ R, H(x) = 0 if x < 0, 1 else. Assuming constant material parameters, we can transform
our first order formulation into the equation above. Recall the equation from (2.8) with L = 0:

ϱ ∂tv(x, t) = ∇p(x, t)
1
ϱv2

p
∂tp(x, t) = div v(x, t) + f(x, t)

(A.1)
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with v(x, 0) = 0, p(x, 0) = 0 on the whole Rd, d ∈ {2, 3} and t ∈ [0, T ]. Note that for f(x, 0) = 0, we
also have that ∂tp(x, 0) = 0. Deriving the second equation in time yields

1
ϱv2

p
∂2
t p(x, t) = div ∂tv(x, t) + ∂tf(x, t)

plugging in the first equation we get

1
v2

p
∂2
t p(x, t)−∆p(x, t) = ϱ · ∂tf(x, t)

with ∆ = div(∇·) being the Laplacian. This problem is equivalent to the system (A.1) for constant
material parameters and well-defined with p(x, 0) = ∂tp(x, 0) = 0. Likewise, we can do the same for the
adjoint equation and get the same differential equation, but with terminal conditions

1
v2

p
∂2
t q(x, t)−∆q(x, t) = ϱ∂tg(x, t) w(x, T ) = 0 , ∂tq(x, T ) = q(x, T ) = 0 .

Therefore, the solution of the adjoint equation is given by

q(x, t) = G(·, T − ·) ∗ (−∂tg(·, T − ·) .
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APPENDIX

B

CALCULATION TIMES

We want to give a short overview over the different computing clusters we used. Some information on
HoreKa, HORST and PDE (not all nodes have the same architecture, we only list the two we used which
have the same architecture), the latter two are local nodes exclusive for the mathematics department is
compiled in the table Fig. B.1. For typical calculation times see Fig. B.3

Name # procs per node RAM per node nodes proc name clock frequency
PDE 128 1 TB 2 AMD EPYC 7713 64-Core 2.0 GHz

HoreKa 76 256 GB 570 Intel Xeon Platinum 8368 2.4 GHz
HORST 20 90 GB 12 Intel Xeon E5-2609 v2 2.5 GHz

Figure B.1: Comparison of the calculation clusters.

Problem (L, k) dofh time steps space-time dofs
Transmission (5, 2) 1198080 1200 1.44 · 109

Camembert (0, 1) 245760 4200 1.03 · 109

Marmousi (3, 1) 1618176 1050 1.69 · 109

Figure B.2: Degrees of freedom for the three problems. It should be noted that although we can compare
the numbers, the different amount of damping factors L and polynomial degree k change the structure
of the matrix and therefore change the cost of matrix multiplications.
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Problem/ Calc. Time HORST PDE HoreKa
Transmission (E) ≈ 62 s(32) ≈ 16 s –
Transmission (I) ≈ 90 s (64) ≈ 16 s –
Camembert (I) – – ≈ 5− 6 s(256)
Marmousi (E) ≈ 30 s(64) ≈ 40 s –
Marmousi (I) – ≈ 35 s (64) –

Figure B.3: Calculation times of one forward or one adjoint wave equation on the different architectures,
with (E) and (I) we denote whether the time discretization was explicit or implicit. The number in
parentheses behind the time is the number of processors used for the calculation
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