KIT | KIT-Bibliothek | Impressum | Datenschutz

Predicting fractional cover of standing deadwood at landscape level based on long short-term memory networks and Sentinel time series

Schiefer, Felix ORCID iD icon 1; Frick, Annett; Frey, Julian; Koch, Barbara; Zielewska-Büttner, Katarzyna; Junttila, Samuli; Schmidtlein, Sebastian ORCID iD icon 1; Kattenborn, Teja
1 Institut für Geographie und Geoökologie (IFGG), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Increasing climate extremes lead to the global phenomenon of increased tree mortality. Remote sensing provides great opportunities to track such dynamics. Effective and scalable approaches usually rely on multispectral data with moderate spatial resolution and high temporal resolution that are available at regional and global level (e.g., Landsat, Sentinel-2). There exist various remote sensing approaches that aim to track tree mortality by assessing vegetation status and changes, e.g., vegetation indices, classification, and time series analysis. Such products can either only inform on whether a stand is degraded (e.g., due to stress induced loss of foliage or vegetation health status) or the information on deadwood is only a single observation at a particular point in time. Until now, there is no detailed data product available that can explicitly inform on tree mortality over larger areas and multiple years. However, temporal and spatial information on tree mortality is of the uttermost importance, primarily to understand the extent and dynamics of this phenomenon and secondarily to understand the underlying mechanisms and environmental drivers. ... mehr


Volltext §
DOI: 10.5445/IR/1000167639
Veröffentlicht am 24.01.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Geographie und Geoökologie (IFGG)
Publikationstyp Poster
Publikationsdatum 27.05.2022
Sprache Deutsch
Identifikator KITopen-ID: 1000167639
Veranstaltung Living Planet Symposium (2022), Bonn, Deutschland, 23.05.2022 – 27.05.2022
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page