
X   =1.00

X   =0.01
perf

lossSD
Software Design and Quality

Traceability Link Recovery for Relations in
Natural Language Software Architecture

Documentation and Software Architecture
Models

Bachelor’s Thesis of

Jianan Ye

At the KIT Department of Informatics

KASTEL – Institute of Information Security and Dependability

First examiner: Prof. Dr.-Ing. Anne Koziolek

Second examiner: Prof. Dr. Ralf H. Reussner

First advisor: M.Sc. Dominik Fuchß

Second advisor: M.Sc. Sophie Corallo

19. Juni 2023 – 19. October 2023



Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe



I declare that I have developed and written the enclosed thesis completely by myself. I

have not used any other than the aids that I have mentioned. I have marked all parts of the

thesis that I have included from referenced literature, either in their original wording or

paraphrasing their contents. I have followed the by-laws to implement scientific integrity

at KIT.

PLACE, DATE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Jianan Ye)





Abstract

In software development, software architecture plays a vital role in developing and main-

taining software systems. It is communicated through artifacts such as software architec-

ture documentation (SAD) and software architecture models (SAM). However, maintaining

consistency and traceability between these artifacts can be challenging. If there are in-

consistencies or missing links, it can lead to errors, misunderstandings, and increased

maintenance costs. This thesis proposes an approach for recovering traceability links of

software architecture relations between natural language SAD and SAM. The approach

involves the use of Pre-trained Language Models (PLMs) such as BERT and ChatGPT and

supports different extraction modes and prompt engineering techniques for ChatGPT, as

well as different model variants and training strategies for BERT. The proposed approach

is integrated with ArDoCo, a tool that detects inconsistencies and recovers trace links

between software artifacts. ArDoCo is used for pre-processing the SAD text and parsing

the SAM, thus facilitating the traceability link recovery process. In order to assess the

performance of the framework, a gold standard of SAD and SAM created from open-source

projects is utilized. The evaluation shows that the ChatGPT approach has promising

results in relation extraction with a recall of 0.81 and in traceability link recovery with

an F1-score of 0.83, while BERT-based models struggle due to the lack of domain-specific

training data.

i





Zusammenfassung

In der Softwareentwicklung spielt die Softwarearchitektur eine wichtige Rolle bei der

Entwicklung undWartung von Softwaresystemen. Sie wird durchArtefaktewie Softwarear-

chitekturdokumentation (SAD) und Softwarearchitekturmodelle (SAM) kommuniziert. Die

Wahrung der Konsistenz und Nachvollziehbarkeit zwischen diesen Artefakten kann jedoch

eine Herausforderung darstellen.Wenn es Inkonsistenzen oder fehlende Verbindungen gibt,

kann dies zu Fehlern, Missverständnissen und erhöhten Wartungskosten führen. In dieser

Arbeit wird ein Ansatz zur Wiederherstellung der Rückverfolgbarkeit von Softwarear-

chitekturbeziehungen zwischen natürlichsprachigem SAD und SAM vorgeschlagen. Der

Ansatz beinhaltet die Verwendung von vortrainierten Sprachmodellen (PLMs) wie BERT

und ChatGPT und unterstützt verschiedene Extraktionsmodi und Prompt-Engineering-

Techniken für ChatGPT, sowie verschiedene Modellvarianten und Trainingsstrategien

für BERT. Der vorgeschlagene Ansatz ist mit ArDoCo integriert, einem Werkzeug, das

Inkonsistenzen erkennt und Trace-Links zwischen Software-Artefakten wiederherstellt.

ArDoCo wird für die Vorverarbeitung des SAD-Textes und das Parsen des SAM verwendet,

was den Prozess der Wiederherstellung der Traceability-Links erleichtert. Um die Leis-

tungsfähigkeit des Frameworks zu bewerten, wird ein Goldstandard von SAD und SAM

aus Open-Source-Projekten verwendet. Die Auswertung zeigt, dass der ChatGPT-Ansatz

vielversprechende Ergebnisse bei der Beziehungsextraktion mit einem Recall von 0,81

und bei der Wiederherstellung von Rückverfolgbarkeitslinks mit einem F1-Score von 0,83

erzielt, während BERT-basierte Modelle aufgrund des Mangels an domänenspezifischen

Trainingsdaten Schwierigkeiten haben.

iii





Contents

Abstract i

Zusammenfassung iii

1 Introduction 1

2 Fundamentals 3
2.1 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Part of Speech Tagging . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Dependency Parsing . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.3 Relation Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Large Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Generative Pretrained Transformer . . . . . . . . . . . . . . . . . 5

2.2.2 Bidirectional Encoder Representations from Transformers . . . . 5

2.3 Palladio Component Model . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Architecture Documentation Consistency . . . . . . . . . . . . . . . . . . 8

3 Related Work 9
3.1 Relation Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Traceability Link Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Prompt Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Relation Extraction for Software Architecture Documentation 11
4.1 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Entity Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 Representing Relation Extraction Result . . . . . . . . . . . . . . . . . . . 13

5 Relation Extraction with ChatGPT 15
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2.1 Relation Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2.2 GPT Communicator . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 Prompting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3.1 First Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3.2 Advanced Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3.3 Prompt Variations . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3.4 Prompt for Cross Sentence Relation . . . . . . . . . . . . . . . . . 27

5.3.5 Other Prompting Approaches . . . . . . . . . . . . . . . . . . . . 29

v



Contents

6 Relation Extraction with BERT 31
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3 Trainings Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.3.1 Pre-Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.3.2 Fine-Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Link Generation 37
7.1 Link Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.1.1 Dependency Representation in Model . . . . . . . . . . . . . . . 37

7.1.2 Containment Representation in Model . . . . . . . . . . . . . . . 38

7.2 Link Generator Implementation . . . . . . . . . . . . . . . . . . . . . . . 38

7.2.1 Connecting Dependency Links . . . . . . . . . . . . . . . . . . . 39

7.2.2 Connecting Containment Links . . . . . . . . . . . . . . . . . . . 39

8 Evaluation 41
8.1 Gold Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.1.1 Gold standard for Recognition and Classification of Relations . . 42

8.1.2 Gold Standard for Traceability Links . . . . . . . . . . . . . . . . 42

8.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.3 Relation extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.3.1 GPT Relation Extraction Results . . . . . . . . . . . . . . . . . . . 46

8.3.2 BERT Relation Extraction Results . . . . . . . . . . . . . . . . . . 47

8.4 Traceability Link Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.4.1 GPT Traceability Link Recovery Results . . . . . . . . . . . . . . 48

8.4.2 BERT Traceability Link Recovery Results . . . . . . . . . . . . . 49

8.5 Performance of GPT and BERT . . . . . . . . . . . . . . . . . . . . . . . . 51

8.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9 Conclusion 53

Bibliography 55

vi



List of Figures

1.1 Traceability Link Recovery for Relations in SAD and SAM . . . . . . . . 2

2.1 POS Tagging by Stanford CoreNLP . . . . . . . . . . . . . . . . . . . . . 3

2.2 Dependency Parsing by Stanford CoreNLP . . . . . . . . . . . . . . . . . 4

2.3 Relation Extraction by Stanford CoreNLP using OpenIE . . . . . . . . . . 5

2.4 An Example of PCM Provided and Required Interface Relation . . . . . . 7

2.5 An Example of a PCM Composite Component . . . . . . . . . . . . . . . 7

2.6 Overview of ArDoCo [10] for Traceability Link Recovery and Inconsistency

Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 General Approach for Implementation . . . . . . . . . . . . . . . . . . . 11

4.2 UML Class for Entity Provider . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 UML Model for Extracted Result . . . . . . . . . . . . . . . . . . . . . . . 14

5.1 Data Flow Diagram GPT Approach . . . . . . . . . . . . . . . . . . . . . 15

5.2 Data Flow Diagram for GPT Classes . . . . . . . . . . . . . . . . . . . . . 16

5.3 UML Class for GPT Relation Extractor . . . . . . . . . . . . . . . . . . . . 17

5.4 UML Class for GPT API Client . . . . . . . . . . . . . . . . . . . . . . . . 19

6.1 Data Flow Diagram BERT Approach . . . . . . . . . . . . . . . . . . . . . 31

6.2 UML Class for BERT Relation Extractor . . . . . . . . . . . . . . . . . . . 32

6.3 Evaluation of BERT Large Uncased MTB using SemEval Testing Dataset 36

7.1 Dependency Relation in Model with Direct Connection . . . . . . . . . . 37

7.2 Dependency Relation in Model with Transitive Connection . . . . . . . . 38

7.3 Containment Relation in Model . . . . . . . . . . . . . . . . . . . . . . . 38

8.1 Relation Extraction Performance Metrics by GPT-3.5-Turbo Mode . . . . 46

8.2 Relation Extraction Performance Metrics by GPT-4 Mode . . . . . . . . . 47

8.3 Relation Extraction Performance Metrics by BERT Model . . . . . . . . . 48

8.4 Traceability Link Recovery Performance Metrics by GPT-3.5-Turbo Mode 49

8.5 Traceability Link Recovery Performance Metrics by GPT-4 Mode . . . . . 50

8.6 Traceability Link Recovery Performance Metrics by BERT Model . . . . 50

vii





List of Tables

4.1 Relation Types for this framework . . . . . . . . . . . . . . . . . . . . . . 12

5.1 Relation Types for this framework . . . . . . . . . . . . . . . . . . . . . . 16

5.2 GPTRelationExtractor Constructor Parameters . . . . . . . . . . . . . . . 18

5.3 EntityMode Enums and Description . . . . . . . . . . . . . . . . . . . . . 18

5.4 GPT API Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.5 Request parameters for GPT API . . . . . . . . . . . . . . . . . . . . . . . 20

6.1 SemEval Relations and Relation Type Mapping . . . . . . . . . . . . . . . 34

6.2 Relations by Work of Software Knowledge Relation ExtractionFramework 36

8.1 Evaluated Relation Extraction Modes for Different Models . . . . . . . . 41

8.2 Relation Extraction Gold Standard Example. . . . . . . . . . . . . . . . . 42

8.3 Traceability Link Gold Standard Example . . . . . . . . . . . . . . . . . . 43

8.4 Multi-Class Confusion Matrix for Relation Types Dependency, Contain-

ment, and None . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.5 Binary Confusion Matrix for Trace Link . . . . . . . . . . . . . . . . . . . 48

ix





1 Introduction

Software architecture is a crucial aspect of software engineering that improves the design

and understanding of software systems [5]. There are different ways to describe software

architecture, such as architecture documentation (SAD) and software architecture models

(SAM). While SAD provides an informal, natural language description of the architecture,

SAM gives a formal and graphical representation of the architectural elements and their

relationships. Artifacts documenting software design decisions help to prevent software

from deteriorating [19] but need to be maintained, as failure to properly maintain these

artifacts can lead to inconsistencies and sometimes remain undetected, leading to increased

costs [10]. However, maintaining consistency and traceability between artifacts can be a

time-consuming task when manually updating each change that has been made, as finding

all locations is challenging and made worse when occurrences are differently worded,

which is a common occurrence causing inconsistencies [30] and therefore making it hard

to use simple string searches. A solution to this is to use links that connect occurrences

of entities across different artifacts, which are also called trace links. If the software has

not been properly maintained, these trace links have to be recovered in a process called

Traceability Link Recovery (TLR), which is sought to be automatic.

Figure 1.1 illustrates this process. On the left side, two different artifacts describing

the architecture are shown. The artifact documentation is textual and written in natural

language. In the first sentence it describes two entities, ’logic component’ and ’sql datastore’

highlighted in orange, and its relation ’is connected to’ is highlighted in blue. The artifact

model displays two components, Composite Component Logic and Basic Component SQL

Datastore, which are connected by a blue line, describing the architecture from a graphical

view. As both artifacts describe the same relation, it is wanted to create a link between

these two occurrences. The tables on the right side are representations for each occurrence

that can identify the location of each occurrence, containing the sentence, entities, relation,

and type for the documentation and entities and relations for the model. The process is

complete by connecting these two representations, shown in the figure as the trace link

arrow.

This thesis presents an approach to address this problem of TLR for software architecture

relations. It involves using pre-trained language models (PLMs) for relation extraction

and integrates with a framework for recovering software architecture entity trace links.

The foundation for this is laid out in Chapter 2, introducing natural language processing

techniques, pre-trained language models, a modeling language called palladio component

model, and a TLR framework architecture documentation consistency. This is followed by

Chapter 3, which reviews the related literature in relation extraction and traceability link

1



1 Introduction

Sentence Entity 1 Entity 2 Relation Type

1 logic component sql datastore is connected to dependency

... ... ... ... ...

"The logic component is connected to
the sql datastore. The database
contains all important data for the
system."

Documentation

Model

«Composite Component»
Logic 

«Basic Component»
SQL Datastore

Entity 1 Entity 2 Relation Type

Logic SQL Datastore Dependency

... ... ...

Tracelink

Figure 1.1: Traceability Link Recovery for Relations in SAD and SAM

recovery. Chapter 4 presents the general approach to relation extraction using ChatGPT, a

conversational general-purpose PLM based on GPT [20], and BERT [3], a state-of-the-art

language model for multiple natural language tasks. Chapter 5 presents the method using

ChatGPT along with its implementation and the process of creating prompts. Chapter 6

presents the method using BERT and details the training process for the used BERT models.

Chapter 7 then describes the representation for relations in model and documentation and

the process of finding and connecting them. In Chapter 8, the different extraction modes

and model variants used are evaluated, and the results are discussed. Finally, Chapter 9

concludes this thesis with challenges and limitations of the approach, as well as potential

directions for future research.

2



2 Fundamentals

This chapter lays out the foundation for comprehending the key concepts discussed in

this thesis. It encompasses two primary subjects: Traceability Link Recovery in Software

Architecture Documentation and the utilization of Large Language Models for relation

extraction. Section 2.1 offers an introduction to Natural Language Processing techniques,

outlining the necessary steps for relation extraction. Section 2.2 introduces LLMs and

provides an insight into two well-known models, GPT and BERT. Section 2.3 provides in-

sights into the software architecture modeling language known as the Palladio Component

Model. Section 2.6 describes the framework ArDoCo and its processing pipeline.

2.1 Natural Language Processing

Natural Language Processing (NLP) is a research field that focuses on how computers

interact with humans using written or spoken natural language. NLP techniques are used

in various TLR processes, including the automated analysis of textual artifacts such as

documentation and source code. The NLP techniques relevant to this thesis include Part

of Speech (POS) tagging (Subsection 2.1.1), Dependency Parsing (Subsection 2.1.2, and

Relation extraction (Subsection 2.1.3).

2.1.1 Part of Speech Tagging

POS Tagging involves assigning grammatical categories, such as nouns, verbs, adjectives,

and adverbs, to words in a sentence, aiding in understanding the syntactic structure of

written pieces. Techniques like the Penn Treebank [18] POS tagging are frequently used

in TLR to enhance the analysis of natural language text. An example is shown in Figure

2.1.

John has a book on his desk

NNP VBP DT NN IN PRP$ NN

Figure 2.1: POS Tagging by Stanford CoreNLP

This figure uses POS tagging through Stanford CoreNLP to assign grammatical tags to the

words in the sentence. The tags consist of Proper Nouns (NNP) for specific names, Verbs

3



2 Fundamentals

(VBZ) for actions and states, Determiners (DT) for articles, Nouns (NN) for common objects,

Prepositions (IN) for linking phrases, Possessive Pronouns (PRP$) indicating ownership,

and Adjectives (JJ) for describing nouns.

2.1.2 Dependency Parsing

Dependency Parsing is a technique used for syntactic analysis of natural language sen-

tences to determine their grammatical structure. It is particularly useful in TLR while

analyzing textual requirements and source code. Dependency parsing helps identify re-

lationships between words and phrases in sentences. Figure 2.2 shows an example of

dependency parsing.

John has a book on his desk

nsubj

dobj

det

nmod:on

nmod:poss

case

Figure 2.2: Dependency Parsing by Stanford CoreNLP

This figure shows how dependency parsing is used to identify the syntactic relationships

between words in a sentence. The arrows connect the words to indicate their relationships.

The "nsubj" tag identifies the nominal subject of a verb. In the example, "John" is the

subject of the verb "has". The "dobj" tag identifies the direct object of a verb. In the

given sentence, "book" is the direct object of the verb "has". The "det" tag indicates a

determiner like an article or any word that specifies a noun. In the given sentence, "a"

is the determiner for "book". The "nmod:on" tag represents a prepositional modifier that

establishes a relationship between the words. In this context, it connects "book" and "desk,"

indicating that the "book" is positioned "on" the "desk". The "nmod:poss" tag indicates

a possessive modifier, which shows ownership or association. In this sentence, it links

"desk" and "his," revealing that the "desk" belongs to "him". Finally, the "case" tag reflects

the case marking of a preposition, linking "desk" and "on" and conveying that "desk" is

governed by the preposition "on".

2.1.3 Relation Extraction

Relation Extraction (RE) is the process of identifying and classifying semantic relationships

between entities that are mentioned in the text. This thesis uses relation extraction

techniques to detect textual connections between software architecture entities. The goal

is to establish links between textual relations and the ones present in the model. An

example is created using Stanford CoreNLP with OpenIE shown in 2.3.

Figure 2.3 displays two extracted relation triplets for a sentence. The first triplet consists

of "John" (highlighted in blue) as entity 1, the relation "has" (highlighted in darker green),

4



2.2 Large Language Model

John has a book on his desk

subject

object

John has a book on his desk

subject

object

Figure 2.3: Relation Extraction by Stanford CoreNLP using OpenIE

and "book" (highlighted in blue) as entity 2. The second triplet involves the same entity 1

and relation but with a more complex entity 2, "book on his desk" (highlighted in blue). In

this case, the relationship extends to the detailed context.

2.2 Large Language Model

Large Language Models (LLMs) represent a significant breakthrough in NLP and have

revolutionized various NLP tasks and TLR. LLMs are built upon the transformer model

and leverage self-attention mechanisms. This feature enables more efficient parallelization

during training on text data compared to earlier neural network models [25], making

unsupervised training on large volumes of text data more practical. LLMs used in fine-

tuning are typically pre-trained on natural language before fine-tuning and are commonly

referred to as pre-trained language models (PLMs).

2.2.1 Generative Pretrained Transformer

Generative Pretrained Transformer (GPT) is a well-known language model that is trained

to predict the next word of a sentence, also known as completion. Models like GPT-3.5

and GPT-4 are general-purpose and can be used for a wide range of language-related tasks.

ChatGPT, a conversational model based on GPT, is specially trained for conversations with

humans. Users can interact with ChatGPT using natural language prompts. In the context

of TLR, ChatGPT can be used for different NLP tasks, including information retrieval.

It excels in Open Information Extraction (OpenIE) settings [14] and also demonstrates

impressive performance using zero-shot approaches, even compared to fully supervised

models [28].

2.2.2 Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers (BERT) is an LLM that has

significantly improved the performance of several NLP tasks. BERT has the ability to

5



2 Fundamentals

predict missing words in a sentence by considering the context from both left and right.

This unique training method, also known as matching the blank, is particularly useful for

relation classification tasks, and by analyzing the context and semantic meaning of a word

in a sentence, BERT is able to understand its meaning better than previous models that

only looked at text in one direction [22].

The thesis BERT approach relies on a framework[27] based on Soares et al. work titled

"Matching the blanks: Distributional similarity for relation learning" [22]. The paper

presents a novel approach to learning relation representations directly from text without

using any predefined ontology or labeled training data. The process involves filling entity

mentions within relation statements with a special symbol and training a relation encoder

to predict whether or not two statements express the same relation. The relation encoder is

built on top of the BERT model and uses entity markers and entity start states to represent

relations. The paper evaluates the method for various relation extraction and classification

tasks and shows that it achieves state-of-the-art results. It outperforms previous methods

that use human-labeled data or knowledge graphs. The paper also shows that the method

is effective in low-resource settings and can reduce the annotation effort required for

creating relation extractors.

2.3 Palladio Component Model

The Palladio Component Model (PCM) is a modeling language used for component-based

software architectures and helps predict the architecture’s performance and reliability [1].

The model is based on the concept of CBSE roles, which involves four developer roles

(component developer, software architect, system deployer, and domain expert) and their

corresponding modeling languages. In this work, PCM is used as a modeling tool for the

software model artifact. PCM can model a variety of component relations, but only the

provided/required interfaces shown in Figure 2.4 and the composite component structures

shown in Figure 2.5 are taken into account for this approach.

Figure 2.4 has two components and an interface. The Logic component provides the ILogic

interface, which the UI component requires. The provided interfaces represent the services

that a component offers to its environment, while the required interfaces represent the

services that a component expects from its environment.

Figure 2.5 displays the composite component Logic containing an assembly context of

the component UI and including their provided and required interfaces. The composi-

tion structure defines how components are instantiated and interconnected in a system

architecture.

6



2.3 Palladio Component Model

Figure 2.4: An Example of PCM Provided and Required Interface Relation

Figure 2.5: An Example of a PCM Composite Component

7



2 Fundamentals

2.4 Architecture Documentation Consistency

Architecture Documentation Consistency (ArDoCo) [10] is a framework for inconsistency

detection between SAD and SAM and uses an adaptation of SWATTR [11], a framework

for TLR between natural language SAD and SAMs. ArDoCo can detect two kinds of

inconsistencies, one being existing components in SAM not mentioned in the SAD, termed

Unmentioned Model Elements (UMEs), and the other being mentions in SAD that are not

part of the model, Missing Model Elements (MMEs). For detecting UMEs, it achieved an

excellent accuracy of 0.93, while MME detection has a good accuracy of 0.75. An overview

of ArDoCo’s approach for TLR and inconsistency detection is shown in Figure 2.6.

Architecture
Documentation

Architecture
Model

Trace Links

Recommended
Instances

Inconsistencies

Text Extraction Element
Identification

Element
Connection

Model Extraction Filter Inconsistency
Identification

Inconsistency DetectionTraceability Link Recovery

Figure 2.6: Overview of ArDoCo [10] for Traceability Link Recovery and Inconsistency

Detection

Figure 2.6 depicts the two processes used in ArDoCo. On the left side is the trace link

recovery pipeline adapted from SWATTR, and on the right is the process for inconsistency

detection. The TLR part consists of four processing steps: text extraction, model extraction,

element identification, and element connection. The pipeline first pre-processes the

SAD using NLP techniques like POS tagging and dependency parsing. Then, the model

extraction step parses the model data into an internal representation. The text extraction

step then uses heuristics and agents to search for names and types of possible model

elements, which are then grouped by similarity and given a confidence rating. In the next

step, element identification, the confidence gets adjusted based on the element types of

the component model and forms a recommended instance. Finally, the element connection

step creates trace links by connecting RI to model instances based on string similarity. The

inconsistency detection consists of a filtering and inconsistency identification step and

builds upon the previously created trace links and recommended instances. The filtering

step uses threshold, occurrence, and unwanted word filters to reduce the amount of false

positives. After filtering out recommended instances the remaining ones are marked as

inconsistencies.

This thesis builds upon ArDoCo and utilizes the pre-processed text, the parsed model, and

the recovered trace links to apply TLR to relations.

8



3 Related Work

This chapter explores the literature related to the main topic of the thesis, which is estab-

lishing trace links between SAD and SAM entity relations. To achieve this, relationships

from the software architecture domain need to be extracted. Two key research areas are

relevant to this thesis. The first area is relation extraction, which is crucial for the success

of this work. It is important to be familiar with state-of-the-art techniques, alternatives,

and their advantages. The second area is automatic traceability link recovery, which is

essential for establishing the connections between SAD and SAM entity relations. For both

of these areas, LLMs are considered state-of-the-art and are used in this thesis. Therefore,

prompt engineering techniques are also discussed.

3.1 Relation Extraction

This section reviews the literature on relation extraction and the benchmarks used for

evaluating this task. Relation extraction is the process of identifying and categorizing the

semantic relationships between entities in text data. Previous studies on relation extraction

relied on pattern-based methods that used handcrafted linguistic rules and patterns [7, 9].

Recent advances in this field have incorporated deep-learning techniques and large-scale

datasets. Neural networks such as CNN-based [32, 26] and RNN-based models [34, 13]

are used to effectively capture complex contextual information. Pre-trained language

models like BERT [2] and GPT [20] have been used to enhance the accuracy of relation

extraction. BERT-based models [22, 24] have achieved the State-Of-The-Art (SOTA) in

sentence-level relation extraction benchmarks like Semval 2010 task 8 [8]. This benchmark

involves a sentence and two tagged nominals, where the relation and the direction of the

relation are predicted. A dataset was created with nine semantic relations and an additional

OTHER relation. For document-level relation extraction, the BERT-based models [33, 17]

have achieved the SOTA in DocRED [31]. This dataset includes document-level relation

extraction tasks and benchmarks. It is constructed using Wikipedia and Wikidata and has

human-annotated coreference, intra-sentence, and inter-sentence relations. Tang et al.

[23] have explored relation extraction in the software engineering domain using BERT

to pre-train on a dataset created from user-generated Stack Overflow content. This work

is similar to the relation extraction part of this thesis but is not specific to the software

architecture domain.

9



3 Related Work

3.2 Traceability Link Recovery

This section provides an overview of the current research on automated traceability link

recovery in software engineering. Over the years, various approaches have been suggested,

such as similarity-based methods that use information retrieval (IR) to evaluate the similar-

ity between artifacts. Nevertheless, these methods are still far from achieving automated

recovery of links [16]. Deep learning and neural networks have introduced powerful

techniques for traceability link recovery. RNN-based methods [6] have demonstrated the

ability to learn complex patterns and representations from software artifacts, showing

significant promise in this field. BERT-based models have improved the accuracy of natural

language and code artifact traceability compared to classical IR and RNN techniques. Lin et.

al [15] presented a BERT-based model that generates trace links between natural language

and programming language artifacts using pre-trained BERT. All these approaches applied

TLR to natural language documentation and programming language, which is a different

problem than TLR between SAD and SAM. This problem has been worked on by Keim et.

al. [11] but is not applied to relations.

3.3 Prompt Engineering

In utilizing conversational language models, such as ChatGPT, prompt engineering plays

a vital role in enabling consistent and efficient utilization. In this thesis, ChatGPT is used

for the task of relation extraction, which can be achieved through zero-shot prompting.

Wei et. al.’s work [28] demonstrated the effectiveness of frameworks based on ChatGPT

in information extraction tasks, even surpassing some supervised models. The paper

introduced ChatIE, an information extraction framework based on ChatGPT, which trans-

forms the information extraction task into a multi-turn question-answering problem with

a two-stage framework. The work by White et al. [29] provides a catalog of prompt

patterns that can solve common problems occurring in conversational language models.

Each pattern is explained in detail and structured into name and classification, intent and

context, motivation, structure and key ideas, an example, and the consequences of it. Some

of these patterns are applicable to this thesis. For example, the "Template Pattern" allows

for defining a consistent structure for the output, while the "Meta Language Pattern" and

the "Persona Pattern" enable the setting of the context for a software architecture model

documentation domain. Additionally, when creating prompts, it is necessary to consider

further constraints for valid relation types. The presented prompts are general examples

and are not applied to the domain of SAD, therefore this approach has to create prompts

for the ChatGPT method of relation extraction.

10



4 Relation Extraction for Software
Architecture Documentation

This chapter presents the ideas for using LLMs for relation extraction in SAD. The general

approach is presented in Section 4.1. Section 4.2 shows how entities are processed from an

ArDoCo result. Section 4.3 describes the result that the LLM relation extraction process

delivers.

4.1 General Approach

LLM ConnectorRelation Extractor

Link Generator

Entities

Sentence,
Entities

Recommen
dations

Prompt RelationType
Entities,

RelationType

Model LLM

Entity Provider
Entities

Figure 4.1: General Approach for Implementation

Figure 4.1 shows the general approach for relation extraction from SAD. The approach

uses ArDoCo for creating entity trace links and LLMs for relation extraction from SAD.

The implementation connects the elements and performs the following tasks: First, it

processes text into a format that can be passed to an LLM. The framework must provide

these if the LLM needs configuration data or other input forms like prompts. Then, the

output from the LLM is filtered for invalid results and processed into an object containing

all the information needed to create trace links. Finally, the extracted relations need to be

connected to their model counterpart.

The implementation comprises four main components: Relation Extractor, Entity Provider,

LLM Connector, and Link Generator. There are two external components: ArDoCo,

depicted as the blue owl, and LLMs, shown in the speech bubble. The Relation Extractor

11



4 Relation Extraction for Software Architecture Documentation

is the starting point and central component for relation extraction. It connects the other

parts and is responsible for pre-processing the input data and post-processing the output

data of the LLM. The Entity Provider connects ArDoCo to the relation Extractor and

processes the data needed from ArDoCo results. This component receives project data

from ArDoCo, which includes software architecture documentation and the found entity

trace links. Entities extracted with ArDoCo are instances of software architecture elements

and are components, packages, and objects [21] for which a trace link exists. The LLM

Connector is responsible for communication between the implementation and the LLM.

It provides the necessary tools for accessing the LLM. If the LLM is accessed through

a web service, these tools would include functions for sending HTTP requests and the

configuration data needed to set up the prompt. The output received from the LLM is then

built into a Recommendation. Afterward, the Recommendation is passed to the Relation

Extractor for further processing. A Recommendation is an object containing information

about the extracted relation. This includes the entity pair, the classified relation type, a

textual representation of the relation, and possibly a double value for the probability of

this result. Relation types for this framework are Dependency, Containment, or None, as

shown in Table 4.1. The Invalid type is set in post-processing for faulty relations.

Relation Type Description
Dependency Entity is reliant on another entity

Containment Entity is part of another entity

None

Entities are not in a relation,

or the type is neither dependency nor containment.

Table 4.1: Relation Types for this framework

4.2 Entity Provider

This section presents the Entity Provider, which has the responsibility to connect the

Relation Extractor to ArDoCo. It is mainly used for running ArDoCo and processing the

resulting entity trace link into an Entity object. In addition, it has some utility functions

for Entities.

As shown in Figure 4.2, the class contains the attribute ArDoCoResult. This attribute

is used to save the result calculated by ArDoCo for a given project to avoid multiple

calculations of the same project. The functions shown are the most important ones of this

class. The first two functions use ArDoCo to get Entities mapped to their sentence number

of the given project. The first function receives its entities from TraceLinks, while the

second function obtains them from Recommendations. The difference between the two

functions is that one has a counterpart in the model, while the other iindicates a possible

missing model entity. The third function is used to find a model ID for an Entity based on

string similarity. The fourth function builds unique pairs out of a list of WordEntity.

12



4.3 Representing Relation Extraction Result

EntityProvider

result: ArDoCoResult

getTracelinkEntities(Project, double, int) : Map<Integer, List<Entity»

getRecommendedEntities(Project, double) : Map<Integer, List<Entity»

getSimilarEntityId(List<WordEntity>, Entity) : String

getUniqueEntityPairs(List<WordEntity>) : List<Pair<WordEntity, WordEntity»

...

Figure 4.2: UML Class for Entity Provider

4.3 Representing Relation Extraction Result

This section displays how the extracted results are modeled. A result extracted from either

GPT or BERT approach is modeled as a Recommendation, shown in Figure 4.3.

The class Recommendation comprises of two entities of type Entity, a relation of type

Relation, and a probability for the likeliness of this prediction with the type double. An

Entity has a name for the occurrence in text and an ID to identify the component it

represents in the model. A Relation extends Entity and has, in addition, the attributes

relationType of type RelationType and direction of type RelationDirection. RelationType is

an enum with the entries DEPENDENCY, CONTAINMENT, and NONE. RelationDirection

is an enum with E1_E2 and E2_E1 to indicate the order of direction of the relation.

13



4 Relation Extraction for Software Architecture Documentation

Entity

name: String

id: String

Relation

Recommendation

probability: double

≪enum≫
RelationDirection

+ E1_E2 : RelationDirection

+ E2_E1 : RelationDirection

≪enum≫
RelationType

+ DEPENDENCY : RelationType

+ CONTAINMENT : RelationType

+ NONE : RelationType

Figure 4.3: UML Model for Extracted Result

14



5 Relation Extraction with ChatGPT

In this chapter, we will discuss the concept of extracting relations SAD using GPT. An

overview of this approach is presented in Section 5.1, while Section 5.2 covers the imple-

mentation behind the approach. Additionally, Section 5.3 details the journey of how the

prompts used in this approach are built.

5.1 Overview

Entity Provider GPT CommunicatorRelation Extractor

Link Generator

Entities

Project

Sentence and
Entity

Recommen
dations

Prompt RelationType

Entities,
RelationTypeEntities

Model

Figure 5.1: Data Flow Diagram GPT Approach

Figure 5.1 presents an overview of the concept, which involves four components imple-

mented in this work and two external ones. The implemented components are the Relation

Extractor, Entity Provider, GPT Communicator, and Link Generator. They are depicted

with a rectangle and flow in the enumerated direction. The external components are

represented by the blue owl icon (ArDoCo) and the green icon (GPT API).

The approach uses the Relation Extractor as the starting point and manages the other

components. First, the Entity Provider is called with a project parameter to get the entities

of each sentence of that project from ArDoCo. Then, the entities and the sentence are

given to the GPT Communicator to send a request to the GPT API. Finally, the response

containing the entities, relation, and relation type is returned and given to the Link

Generator to create trace links.

15



5 Relation Extraction with ChatGPT

Relation Type Description
Dependency Entity is reliant on another entity

Containment Entity is part of another entity

None

Entities are not in a relation,

or the type is neither dependency nor containment.

Table 5.1: Relation Types for this framework

5.2 Implementation

Figure 5.2 shows a more detailed variation of Figure 5.1. The classes part of the previously

introduced components are Relation Extractor, Entity Provider, GPT Communicator, Seri-

alizer, Filter, Link Generator, and the enum Prompt Templates. The implementation of the

Relation Extractor, GPT API Client, and Filter will be explained in the following section.

The other classes are explained in Chapter 4 for Entity Provider and Chapter 7 for Link

Generator.

Link Generator GPT Relation Extractor

GPT CommunicatorEntity Provider

Relation Extractor

Entity Provider

GPT API Client

Prompt Builder

Serializer

Filter

ProjectSentence, Entities

Sentence, Entities,
Mode

Mode Prompt Template

ResultGPT
Recommendation

Prompt

Result
GPT

Recommendaiton

Entity Tracelinks

Project

Recommendation Filtered
Recommendation

Link Generator
Recommendation

Start

Relation Trace Link

Model 

Figure 5.2: Data Flow Diagram for GPT Classes

The relation extraction process begins with initializing the Relation Extractor using an

ArDoCo project. The project is an enum for ArDoCo benchmark projects. The extractor is

then called with an extraction mode. The available extraction modes are entity recognition

mode, entity set mode, and entity pair mode, which are explained in the following section.

Next, the Entity Provider is called with the project. The Entity Provider uses ArDoCo to

calculate the entity trace link of that project. It maps a list of entities and sentences to their

sentence number and returns them to the Relation Extractor. The entities extracted using

ArDoCo are instances of software architecture elements, such as components, packages,

and objects [21].

16



5.2 Implementation

In the next step, the GPT Communicator is called with the entities, sentence, and extraction

mode. It then builds the entities and associated sentences into a prompt template using

the Prompt Builder. The prompt template used depends on the mode chosen. Afterward, a

request is sent with GPT parameters, shown in Table 5.5, to the GPT API. The received

response is in a format set by the prompt and contains two entities, their relation, and the

relation type.

Next, the data from the response is parsed into a GPT Recommendation and is returned

to the Relation Extractor. It uses the Filter to filter out invalid results. This is done by

comparing the entity list with the received results. Results that have entities that are not

in the entity list will be marked as invalid. The valid Recommendation receives the model

ID from the entities of the entity list.

5.2.1 Relation Extraction

To extract a relation, the class GPTRelationExtractor can be used as a starting point. The

class is illustrated in Figure 5.2.1 and can be instantiated with four parameters, explained

in Table 5.2. Once the GPTRelationExtractor is instantiated, the public function extractRe-

lation can be called with an ExtractionMode enum, described in Table 5.3. The function

initially calls the EntityProvider (described in Section 4.2) to obtain a list of entities that

are mapped to their respective sentence numbers. This entity list is then passed to the

function getEntitiesStringByMode, which returns a List of entity Strings mapped to their

sentence number. This function builds unique entity pairs if the mode ENTITY_PAIR is

selected. Next, the function extractRelationWithGPT is called with the sentence, entities,

and ExtractionMode. This function goes through each map entry, calling the GPTAPIClient

through the function useGPTClientByMode. It then serializes the returned String with

GPTSerializer into a Recommendation. The resulting List of Recommendations, mapped

to their respective sentence numbers, is then returned. In the last step, Recommendations

are given to GPTFilter, which removes any Recommendations missing entities, that cannot

be assigned a relation type, or have no entity counterpart in the model.

GPTRelationExtractor

project : Project

entitiesPerSentence : int

ardocoConfidence : double

model : GPTModel

+ GPTRelationExtractor(Project, int, double, GPTModel)

+ extractRelations(ExtractionMode) : Map<Integer, List<Recommendation»

- getEntitiesStringsByMode(...) : Map<Integer, List<String»

- extractRelationWithGPT(...) : Map<Integer, List<Recommendation»

- useGPTClientByMode(...) : String

Figure 5.3: UML Class for GPT Relation Extractor

17



5 Relation Extraction with ChatGPT

The instantiation of GPTRelationExtractor takes four parameters that are shown in 5.2.

It takes the parameters: ArDoCo Benchmark project, an integer entitiesPerSentence, a

double for the confidence of the entities, and an enum GPTModel.

A Project contains the text file for the documentation and model files as UML or PCM

repositories. Possible projects are JABREF, MEDIASTORE, BIGBLUEBUTTON, TEAST-

ORE, and TEAMMATES. The integer entitiesPerSentence determines how many valid

entities are needed to put the sentence and its entities into the map to be extracted. Valid

entities are entities for which a trace link has been recovered using ArDoCo. The double

ardocoConfidence is the threshold of the confidence of the recovered trace link by ArDoCo.

The enum GPTModel determines which GPT model is used for relation extraction. There

are two possible models GPT-3.5-turbo and GPT-4.

Type Name Possible Value

Project project {JABREF, MEDIASTORE,..}

int entitiesPerSentence [0,..]

double ardocoConfidence [0,1]

GPTModel model {GPT_3_5_TURBO, GPT_4}

Table 5.2: GPTRelationExtractor Constructor Parameters

In Table 5.3, the different extraction modes are displayed. Each mode has unique prompts

that request information from the GPT API and fill out the prompt with a different amount

of entities. A description of the prompts used for each mode can be found in Section 5.3.

The ENTITY_RECOGNITION mode only sends the sentence where relations are sought to

the GPT API. This allows the GPT to determine which entities to extract relations from. In

the ENTITY_PAIR mode, GPT is restricted to only two entities for which the relation has

to be determined. The ENTITY_SET mode is a middle ground between the two previous

modes. It provides GPT with a set of entities that restricts the search, allowing GPT to

determine for which entities of the set relations are extracted.

ExtractionMode Description

ENTITY_RECOGNITION GPT decide which entities are used to extract relations.

ENTITY_SET GPT extract the relation from the given entity set.

ENTITY_PAIR GPT extract the relation from the given entity pair.

Table 5.3: EntityMode Enums and Description

5.2.2 GPT Communicator

The GPT Communicator component consists of three classes: GPTAPIClient, GPTSerializer,

and the enum GPTPromptTemplates. GPTAPIClient, shown in Figure 5.4, is initialized

with the GPTmodel parameter, an integer value for max tokens, and a double value for

temperature, which are explained in Table 5.4.

18



5.2 Implementation

The GPTAPIClient is responsible for sending requests to the GPT API. It has three functions

for setting up prompts for the entity extraction modes: gptEntityRecognition, gptEntitySet,

and gptEntityPair. Each of these functions takes a sentence as a String and, except for the

entity recognition mode, entities as a String. They use GPTPromptTemplate to get the

prompt template for the assigned mode and fill in the sentence and entities. The filled

prompt, along with the initialized attributes and API token, are then built into a JSON

and sent to the API endpoint using the sendRequest function. The parameters used are

described in Table 5.4. After receiving a response, it is serialized, and the completion

content for the prompt is returned.

GPTAPIClient

model : GPTModel

maxToken : int

temperature : double

+ GPTAPIClient(GPTModel, int, double)

+ gptEntityRecognition(String) : String

+ gptEntitySet(String, String) : String

+ gptEntityPair(String, String) : String

+ sendRequest(String, String) : String

Figure 5.4: UML Class for GPT API Client

To set up GPT, each request sent to the GPT API requires four parameters, which are shown

in Table 5.4. The model parameter determines the GPT model used for completion. The

max_token parameter sets the maximum number of total tokens allowed, which includes

prompt tokens along with completion tokens. If the completion goes beyond this value, the

response will be truncated. Typically, a token in English consists of about four characters

or 0.75 words
1
. The temperature parameter controls the randomness of the response. A

value of 0.0 means little randomness, resulting in an almost deterministic response to the

same prompt, while a value of 1.0 has the highest randomness. The message parameter

includes the prompt that GPT needs to complete.

Parameter Description
model The GPT model

max_tokens Max amount of prompt and completion tokens

temperature Randomness of the completion

message The prompt message to complete

Table 5.4: GPT API Parameter

1
https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them

19



5 Relation Extraction with ChatGPT

5.3 Prompting

Crafting effective prompts is vital to achieving a good performance with the GPT concept.

This section will discuss the process of creating prompts from the initial iteration to

the final prompts. Creating prompts that align with the requirements of this framework

involves an iterative process of experimentation and adaptation. The development of

prompts is explored to provide insights into successful prompts and those that did not

yield the intended results. For the best results, a prompt has to be precise. This can prevent

misinterpretation and variations in the responses. In addition, a prompt should also be

short, as longer prompts require more tokens, which has a higher cost.

The ideas behind GPT for relation extraction are similar, and it is done by having a

program send requests to the ChatGPT API containing a prompt and then using the

received information to create trace links. There are various methods for configuring the

model and writing a prompt. In this section, the focus is on prompting. All answers given

by GPT use the parameters shown in Table 5.5.

Parameter Value Description
max_token 300 The allowed amount of completion tokens

temperature 0.0 The Randomness of the completion

model gpt-3.5-turbo The model used for completion

Table 5.5: Request parameters for GPT API

The max_token parameter is mainly used to keep each request’s cost and response time

low. For this program, the value of 300 is chosen. The temperature parameter is the

randomness of the received completion. The value 0.0 is chosen as no randomness is

wanted. The value 0.0 is near deterministic. This means that the response should be the

same for the same prompt sent to GPT. The model parameter defines the GPT variant used

for the completion. The option gpt-3.5-turbo is chosen as a cost-efficient chat model, and

it allows a maximum amount of 4096 completion tokens, which is more than needed.

5.3.1 First Iterations

For the first iterations, a simple prompt asks for the relation of a given sentence. In

Listing 5.1, an example is given for the sentence "The logic component includes the SQL

datastore".

Give me the r e l a t i o n o f the f o l l ow i n g s en t en c e " The l o g i c

component i n c l u d e s the SQL d a t a s t o r e " .

Listing 5.1: Example for a Simple Prompt

20



5.3 Prompting

In this case, GPT responds with a sentence in natural language, seen in Listing 5.2. The

response GPT gives suggests that it has understood that SQL datastore and logic com-

ponents are in a composite relation. But as the response is in natural language, it would

require natural language processing to make it usable.

The s en t en c e s u gg e s t s t h a t the SQL d a t a s t o r e i s a p a r t or

component o f the l o g i c component .

Listing 5.2: GPT Response to a Simple Prompt

Using templates is a method for solving the problem of an unstructured response. A

template can specify which information is needed and how it should be formatted. The

data required from GPT are the entities, the relation, and the classified relation type.

Listing 5.3 shows these data filled into a template. This template uses the JSON format

and has placeholder variables in caps. In addition, a short sentence asking GPT to respond

in JSON instead of natural language is added.

Give me the r e l a t i o n o f the f o l l ow i n g s en t en c e

" The l o g i c component i n c l u d e s the SQL d a t a s t o r e " .

P l e a s e answer us ing only the p rov ided t emp l a t e .

{
"entity1": ENTITY1,
"entity2": ENTITY2,
"relation": RELATION,
"relationType": RELATIONTYPE
}

Listing 5.3: Prompt with JSON Template

The response from GPT is now in the defined format as seen in Listing 5.4. The entities and

relations have been recognized, even without specifying the corresponding placeholder.

But as there is no description for relation type, GPT completes it with "is included in".

{

" e n t i t y 1 " : " l o g i c component " ,

" e n t i t y 2 " : " SQL d a t a s t o r e " ,

" r e l a t i o n " : " i n c l u d e s " ,

" r e l a t i o nTyp e " : " i s i n c l u d e d in "

}

Listing 5.4: GPT Response with JSON Templates

A sentence describing it is added to let GPT understand what is wanted for relationType.

The relation types that GPT should classify into are dependency, containment, and none.

The improved prompt can be seen in Listing 5.5.

Give me the r e l a t i o n o f the f o l l ow i n g s en t en c e

" The l o g i c component i n c l u d e s the SQL d a t a s t o r e " .

21



5 Relation Extraction with ChatGPT

The relationType is restricted to only "dependency",
"containment", and "none".
P l e a s e answer us ing only the p rov ided t emp l a t e .

{

" e n t i t y 1 " : ENTITY1 ,

" e n t i t y 2 " : ENTITY2 ,

" r e l a t i o n " : RELATION ,

" r e l a t i o nTyp e " : RELATIONTYPE

}

Listing 5.5: Prompt with Defined Relation Types

The result GPT gives (see Listing 5.6) is now usable for relation recognition and classifi-

cation. But as this sentence is trivial, the prompt has to be modified for more advanced

sentences.

{

" e n t i t y 1 " : " l o g i c component " ,

" e n t i t y 2 " : " SQL d a t a s t o r e " ,

" r e l a t i o n " : " i n c l u d e s " ,

" r e l a t i o nTyp e " : " conta inment "

}

Listing 5.6: GPT Response with Defined Relation Types

5.3.2 Advanced Cases

This subsection discusses more advanced sentences and improvements for the prompt.

The cases in this section include:

1. Sentence without a SA relation.

2. Sentence with multiple SA relations.

3. Sentence with SA and non-SA relations.

For the Case 1, the sentence "The software architecture document describes the
overall structure of the system" is used as a negative case with neither a dependency

nor containment. With this sentence put into the prompt in Listing 5.5, GPT returns the

response shown in Listing 5.7. GPT classified the relation "describes" as a dependency,

even though the sentence appears to provide a general description rather than specifying

a direct relationship.

{ " e n t i t y 1 " : " s o f twa r e a r c h i t e c t u r e document " ,

" e n t i t y 2 " : " o v e r a l l s t r u c t u r e o f the system " ,

" r e l a t i o n " : " d e s c r i b e s " ,

" r e l a t i o nTyp e " : " dependency " }

22



5.3 Prompting

Listing 5.7: GPT Response for Negative Test

Many additions and modifications to the prompt have been tried such as "If the relation
is neither a dependency nor a containment, classify it as "none", but all have been
unsuccessful in having the negative case classified as relationType ’none’. The problem

has its roots in the naming of the relations. The relation names are not mutually exclusive,

so GPT tends to go for positive cases rather than negatives. Combined with the type

’none’ being able to be interpreted as having no relation between the entities, it led to

the classification of the type ’dependency’ and, in some cases, ’containment’. This led

to many failed attempts for an actual negative case. The solution to this problem is to

rename the negative case ’none’ to ’other’, which GPT could better interpret as neither

dependency nor containment. Changing the previously created prompt shown in Listing

5.5 from ’none’ to ’other’, yielded the true negative result shown in Listing 5.8.

{

" e n t i t y 1 " : " s o f twa r e a r c h i t e c t u r e document " ,

" e n t i t y 2 " : " o v e r a l l s t r u c t u r e o f the system " ,

" r e l a t i o n " : " d e s c r i b e s " ,

" r e l a t i o nTyp e " : " o t h e r "

}

Listing 5.8: GPT Response for Negative Test with ’Other’

For Case 2, sentences can contain multiple SA relations. This needs modification to the

prompt to support results that can contain more relations. A sentence was added that asks

for all results to be returned. Furthermore, the JSON template was modified to an array

to allow the result to be parsed. The modified template is shown in Listing 5.10. Listing

5.9 shows an example sentence containing two components, one package and one class

instance entity, which are connected by a dependency and a containment relation.

In the s o f twa r e a r c h i t e c t u r e , the PaymentGateway component

r e l i e s on the C r e d i tC a r dP r o c e s s o r f o r payments , wh i l e the

OrderManagement package c on t a i n s o rde r management c l a s s e s " .

Listing 5.9: Example Sentence with Multiple Relations

Give me the r e l a t i o n o f the f o l l ow i n g s en t en c e

" [ The Sen tence ] "

The r e l a t i o nTyp e i s r e s t r i c t e d to only " dependency " ,

" conta inment " , and " o th e r " .

P l e a s e answer us ing only the p rov ided temp la t e , and

if multiple results are available, include all of them.
[ {

" e n t i t y 1 " : ENTITY1 ,

" e n t i t y 2 " : ENTITY2 ,

" r e l a t i o n " : RELATION ,

23



5 Relation Extraction with ChatGPT

" r e l a t i o nTyp e " : RELATIONTYPE

} ]

Listing 5.10: Relation Extraction Entity Recognition Mode

The output from GPT, shown in Listing 5.11, contains an array with two JSON objects. It

contains both relations in the sentence from Listing 5.9 and is correctly classified.

[ {

" e n t i t y 1 " : " PaymentGateway " ,

" e n t i t y 2 " : " C r e d i tC a r dP r o c e s s o r " ,

" r e l a t i o n " : " r e l i e s on " ,

" r e l a t i o nTyp e " : " dependency "

} ,

{

" e n t i t y 1 " : " OrderManagement " ,

" e n t i t y 2 " : " o rde r management c l a s s e s " ,

" r e l a t i o n " : " c o n t a i n s " ,

" r e l a t i o nTyp e " : " conta inment "

} ]

Listing 5.11: GPT Response for Multiple Relations Example

In Case 3, a sentence is given that fulfills both requirements of the previous cases. Which

contains multiple relations including the negative type Other and can be seen in Listing

5.12.

The CustomerManagement package c on t a i n s cus tomer da t a

c l a s s e s , the Orde rP ro c e s s i ng component r e l i e s on i t f o r

cus tomer in fo rma t i on , and the B i l l i n g S y s t em i n t e r f a c e s

with e x t e r n a l payment gateways .

Listing 5.12: Example Sentence with Multiple Positive and Negative Relation Cases

The sentence shown in 5.12 is put into the prompt in Listing 5.10 and gives the following

result shown in Listing 5.13. The first extracted relation is a trivial case that has been

correctly extracted. The last relation is a true negative. While the second relation is not

trivial as CustomerManagement is referred to using an "it". This insight motivates further

prompts for cross-sentence relation extraction in Section 5.3.4. With this case complete, a

prompt was found that can fulfill the relation extraction task for more advanced cases.

[ {

" e n t i t y 1 " : " CustomerManagement package " ,

" e n t i t y 2 " : " cus tomer da t a c l a s s e s " ,

" r e l a t i o n " : " c o n t a i n s " ,

" r e l a t i o nTyp e " : " conta inment "

} ,

{

24



5.3 Prompting

" e n t i t y 1 " : " O rde rP ro c e s s i ng component " ,

" e n t i t y 2 " : " CustomerManagement package " ,

" r e l a t i o n " : " r e l i e s on " ,

" r e l a t i o nTyp e " : " dependency "

} ,

{

" e n t i t y 1 " : " B i l l i n g S y s t em " ,

" e n t i t y 2 " : " e x t e r n a l payment gateways " ,

" r e l a t i o n " : " i n t e r f a c e s with " ,

" r e l a t i o nTyp e " : " o t h e r "

} ]

Listing 5.13: GPT Response for Multiple Positive and Negative Relation Cases

5.3.3 Prompt Variations

This subsection discusses prompt variations for different GPT relation extraction ap-

proaches. These variations are used to create different modes of extraction. The modes

are listed in 5.3.3. Each mode has its purpose.

Mode 1 lets GPT do the recognition of the entities in text, and only the sentence is

provided. This mode is useful for finding relations of entities that haven’t been recognized

by ArDoCo. The previously crafted prompt shown in Listing 5.10 is using this mode for

relation extraction.

1. Relation extraction using entity recognition.

2. Relation extraction with a set of entities given.

3. Relation extraction with entity pairs given.

For the second Mode 2, a set of entities is given. The relations to look for should only be of

those entities. This mode is particularly useful when using entities provided by ArDoCo,

as these entities have a counterpart in the model, which is needed for creating trace links.

From here on, the JSON template is using a placeholder for better readability.

Give me the r e l a t i o n o f the f o l l ow i n g s en t en c e

" [ The Sen tence ] "

for only the following entities
"[The Entities]"
The r e l a t i o nTyp e i s r e s t r i c t e d to only " dependency " ,

" conta inment " , and " o th e r " .

P l e a s e answer us ing only the p rov ided temp la t e , and

i f mu l t i p l e r e s u l t s a r e a v a i l a b l e , i n c l u d e a l l o f them .

[ JSON Template ]

Listing 5.14: Relation Extraction Entity Set Mode

25



5 Relation Extraction with ChatGPT

The sentence used in Listing 5.12 is inserted into the prompt in Listing 5.14, along with the

entities "CustomerManagement, OrderProcessing, BillingSystem". GPT correctly responds,

as shown in Listing 5.15 with the first entity pair (CustomerManagement, OrderProcessing)

which is classified correctly as a dependency. The next pair (CustomerManagement,

BillingSystem) is correctly classified as a dependency, and their relation, "interfaces with",

is also correctly identified. However, the entities are not connected using this relation.

The relation interfaces are between "BillingSystem" and "external payment gateways".

Whereas for the other possible entity pairs like (OrderProcessing, BillingSystem), GPT

predicted it to be not in a relation. As seen in this example, it is sometimes hard to interpret

a non-trivial sentence. The placement of commas and the formulation of longer sentences

can cause ambiguity in the author’s meaning, which is hard for humans, just as for LLMs

to understand. With the tendency of GPT to go for positive classification, the increased

occurrence of false positives should be kept in mind.

[ {

" e n t i t y 1 " : " CustomerManagement " ,

" e n t i t y 2 " : " O rde rP ro c e s s i ng " ,

" r e l a t i o n " : " r e l i e s on " ,

" r e l a t i o nTyp e " : " dependency "

} ,

{

" e n t i t y 1 " : " CustomerManagement " ,

" e n t i t y 2 " : " B i l l i n g S y s t em " ,

" r e l a t i o n " : " i n t e r f a c e s with " ,

" r e l a t i o nTyp e " : " dependency "

} ]

Listing 5.15: GPT Response for Entity Set Mode

Mode 3 takes the previous mode into an even more controlled direction by providing entity

pairs to extraction relations. This mode reduces the entity set to just a pair, which can help

avoid misinterpretations like those that occurred in Mode 2. However, the performance of

this mode may worsen if the entity pairs are not well-chosen. To use Mode 3, the previous

prompt can be used without modification, and the given entities can be limited to two.

The responsibility of passing over only entities in pairs lies within the program that uses

these prompts. As only a single entity pair is given, only one relation and its type can be

found, and therefore, it is possible to remove the part having multiple results. However,

the array is still included for compatibility reasons in parsing. The prompt can be seen in

Listing 5.16 which is a slightly modified version of Mode 2.

Give me the r e l a t i o n o f the f o l l ow i n g s en t en c e

" [ The Sen tence ] "

\ t e x t b f { f o r on ly the g iven e n t i t y p a i r }

" [ The E n t i t i e s ] "

The r e l a t i o nTyp e i s r e s t r i c t e d to only " dependency " ,

" conta inment " , and " o th e r " .

26



5.3 Prompting

P l e a s e answer us ing only the p rov ided t emp l a t e .

[ JSON Template ]

Listing 5.16: Relation Extraction Entity Pair Mode

5.3.4 Prompt for Cross Sentence Relation

Cross-sentence prompts are necessary for identifying relations that span multiple sen-

tences, such as coreference and inter-sentence relations. In the previous example (Listing

5.12), an instance of such a case in partial sentences was observed, where a previously

defined component is referred to as "it". In addition, utilizing cross-sentence prompts has

the added advantage of reducing the overhead per prompt, making it a more cost-effective

option.

To further illustrate the significance of cross-sentence prompts, a short text consisting

of five sentences (see Listing 5.17) is created. This text contains multiple relationships,

including a cross-sentence relationship between the third and fourth sentences. By utiliz-

ing cross-sentence prompts, complex relationships spanning multiple sentences can be

identified, which would not have been possible otherwise.

1 . The system ’ s co r e f u n c t i o n a l i t y i s managed by the

CoreModule , which hand l e s da t a p ro c e s s i ng , u s e r

a u t h e n t i c a t i o n , and a c c e s s c o n t r o l .

2 . The CoreModule r e l i e s on the DatabaseManager component to

s t o r e and r e t r i e v e da t a e f f i c i e n t l y .

3 . The Au t h e n t i c a t i o n S e r v i c e component , p a r t o f the

CoreModule , v e r i f i e s u s e r c r e d e n t i a l s b e f o r e g r an t i n g

a c c e s s .

4 . I t communicates with the UserDa tabase component to

a u t h e n t i c a t e u s e r s s e c u r e l y .

5 . The PaymentProces s ing module , which i s s e p a r a t e from the

CoreModule , i n t e r a c t s with e x t e r n a l payment gateways f o r

p r o c e s s i n g t r a n s a c t i o n s .

Listing 5.17: Example Document with Multiple Sentences

The prompt seen in Listing 5.10, which is used for Mode 1, can be reused for this purpose

by using all the sentences of the document at once. The results this prompt delivers are

seen in 5.18 and are shortened using a tuple representation (Entity1, Entity2, Relation,

RelationType) for oversight. The given answer is recognized and classified correctly for

the four result entries. One of those entries is the cross-sentence relation.

{

( CoreModule , DatabaseManager , r e l i e s on , dependency ) ,

( CoreModule , Au t h e n t i c a t i o n S e r v i c e , p a r t of , con ta inment ) ,

27



5 Relation Extraction with ChatGPT

( Au t h e n t i c a t i o n S e r v i c e , UserDatabase , communicates with ,

dependency ) ,

( PaymentProces s ing module , e x t e r n a l payment gateways ,

i n t e r a c t s with , dependency )

}

Listing 5.18: GPT Response Using Entity Recognition Mode for Multiple Sentences

For comparison purposes, the same text is analyzed using Mode 1 with one sentence

at a time, and the results are presented in 5.19. The method yields more ambiguous

relations that are harder to interpret. In sentence five, the relation between the pair

(PaymentProcessing module, CoreModule) is classified as ’other’, even though it was

previously classified as ’dependency’. Such inconsistency is a common occurrence in

LLMs, and although attempts are made to modify the prompt to make the results more

consistent, they remain unsuccessful. The relation in sentence four is the cross-sentence

relation identified in the previous method. This method can only recognize the entity

pair (It, UserDatabase component), with "It" being unsolvable as the entity it refers to is

missing.

1 . { ( system ’ s co r e f u n c t i o n a l i t y , CoreModule , i s managed by ,

dependency ) }

2 . { ( CoreModule , DatabaseManager , r e l i e s on , dependency ) }

3 . { ( Au t h e n t i c a t i o n S e r v i c e , CoreModule , p a r t of , conta inment

) ,

( Au t h e n t i c a t i o n S e r v i c e , u s e r c r e d e n t i a l s , v e r i f i e s ,

dependency ) }

4 . { ( I t , Use rDa tabase component , communicates with ,

dependency ) }

5 . { ( PaymentProces s ing module , CoreModule , s e p a r a t e from ,

dependency ) ,

( PaymentProces s ing module , e x t e r n a l payment gateways ,

i n t e r a c t s with , o t h e r ) }

Listing 5.19: GPT Response Using Entity Recognition Mode with Single Sentences

One issue with the prompting method is that it’s ambiguous which sentence the relation

is being extracted from. To resolve this, the prompt template would need modification

to include an additional entry sentence number. Additionally, the implementation in

GPTSerializer would need modification to parse the additional entry.

28



5.3 Prompting

5.3.5 Other Prompting Approaches

The previously crafted prompts are often plagued by a high number of false positives in

their results. Several attempts have been made to reduce this problem, but so far, they

have not been very successful. Even modifications to the prompt, such as using "The

Persona Pattern" [29] and setting the context by using the sentence "Suppose you are a
relation classificationmodel." have not had a significant impact on the results. Similarly,

changing the relations to "Dependent-Depender" and "Component-Whole" instead
of using "Dependency" and "Containment" has not yielded meaningful improvements

either. An alternative approach involves a two-stage process similar to the one used in

[28]. In the first stage, only the relations that have occurred are requested. These relations

are then used to extract the relation triplet in the second stage. However, this method

did not lead to the desired improvements. In an attempt to reduce the number of tokens

used, the System-User feature of GPT is tested. The goal was to send a system prompt

once, containing instructions for what to do, and then send user prompts containing only

the sentences and entities that would be applied to the system prompt. This approach

is similar to how it is possible in ChatGPT to send one instruction prompt followed by

data that gets applied to the instruction. However, tokens can not be saved as the system

prompt had to be included, leading to even more used tokens.

29





6 Relation Extraction with BERT

This chapter presents a BERT-based method for extracting SAD relations, which builds

upon the idea discussed in Chapter 4. Section 6.1 provides an overview of the relevant

components and data flow, while Section 6.2 goes into detail on the implementation.

Additionally, Section 6.3 covers the training process, including pre-training and fine-

tuning.

6.1 Overview

Entity Provider Relation Extractor

Link Generator

Entities

Project

Tagged Senteces

Relations

RecommenationEntities

Model

CSV BERT

Figure 6.1: Data Flow Diagram BERT Approach

In the relation extraction approach using BERT, there are three main components: the

Entity Provider, Relation Extractor, and Link Generator. Figure 6.1 provides an overview of

this process. To find entity trace links, the approach uses ArDoCo. For relation extraction,

it employs a PyTorch implementation of BERT. However, since the project is implemented

in Java and the BERT implementation is in Python, data communication must be done

manually by passing data as a CSV file.

31



6 Relation Extraction with BERT

6.2 Implementation

In this section, we’ll discuss how the BERT relation extraction component is implemented.

The BERTRelationExtractor, as shown in Figure 6.2, serves as the starting point for this

approach. To beginwith, we call thewriteTaggedSentencesToCSV functionwith the Project

as a parameter, along with the ardocoThreshold and entitiesPerSentence values. This

function, in turn, uses these parameters to invoke the BERTEntityTagger, which tags the

sentences that contain at least entitiesPerSentence entities with a value of ardocoThreshold

or higher. The EntityProvider is utilized by the BERTEntityTagger to obtain unique entity

pairs that are tagged in the sentence. The tags that are used have the following format:

[E1]ENTITY[/E1] and [E2]ENTITY[/E2]. The tagged sentences are then written to a CSV

file containing sentence ID, entity1 text, entity1 ID, entity2 text, entity2 ID, and the tagged

sentence.

After that, a Python script reads the file, and the trained BERT model is fed with this

information. The classified relation types are then saved in another CSV file, which is

again read into the Java project using the getBERTResults function and converted into

a Recommendation. The BERT model is trained on the SemEval2010 task 8 dataset and

also determines the direction of the relation. Although the direction is not used in the

evaluation, it is saved in the recommendation.

BERTRelationExtractor

writeTaggedSentencesToCSV(Project, double, int) : void

getBERTResults(String) : Map<Integer, List<Recommendation»

Figure 6.2: UML Class for BERT Relation Extractor

6.3 Trainings Process

The BERT approach utilizes a PyTorch implementation
1
based on BERT by GitHub user

plkmo, which is trained using Matching The Blank (MTB) [22]. The framework provides

Python scripts for both pre-training and fine-tuning. After fine-tuning, a console interface

is available for relation extraction, with two modes: one for tagged sentences and one

without tags. The mode without tags uses the built-in entity tagger to infer entity pairs, but

it is not reliable in detecting software architecture entities. Therefore, the Python-based

framework had to be extended to process multiple tagged sentences and output the results

to a CSV file, as it could not directly connect to the Java implementation of this thesis. The

AI machine used for training the model is a Tesla V100S with 32 GB VRAM. The models

BERT-base-uncased, BERT-large-uncased, and ALBERT-base-v2 were obtained from the

1
https://github.com/plkmo/BERT-Relation-Extraction

32



6.3 Trainings Process

HuggingFace website
2
. The training process involved pre-training and fine-tuning for

relation extraction using MTB.

6.3.1 Pre-Training

Pre-training MTB is done on a large corpus of text. This approach allows pre-training using

non-annotated data, followed by fine-tuning with annotated data. The CNN dataset is

used as the source of entity-linked text for pre-training. Relation statements are extracted

that contain at least two grounded entities within a fixed window of 50 tokens. One

or both entity mentions are replaced with a special [BLANK] symbol to create positive

and negative pairs of relation statements based on whether they share the same pair

of entities or not. The BERT model is then trained on them by minimizing estimation

loss that encourages the similarity between positive pairs and discourages the similarity

between negative pairs. During attempts to pre-train on the AI machine, it was found that

pre-training on BERT-base and BERT-large was unsuccessful. The training process would

terminate before reaching a checkpoint without any error message, making it difficult to

identify the cause. However, the author of the framework stated that fine-tuning without

pre-training still produces reasonable results, so this step is skipped for BERT-base and

BERT-large. It is believed that the resource requirements of the BERT models are the

cause of this issue. Therefore, a less resource-intensive variant of BERT, ALBERT [12],

was tested and found to be successfully pre-trained on the dataset. As a result, it will be

included in the approach.

6.3.2 Fine-Tuning

The annotated training dataset provided by SemEval2010 task 8 is used for fine-tuning.

This particular training data is suitable for the software architecture domain, some of

which are applicable to software architecture. The SemEval relations and the transferred

type for software architecture relation and a short description are depicted in Table 6.1.

Fine-tuning with the SemEval dataset could be successfully done without pre-training for

BERT-base, BERT-large, ALBERT, and pre-trained ALBERT. The results in Listing 6.1 show

classification for the tagged sentence mode and infer mode for two different sentences.

The results correctly identified the relation in the first sentence for the entity pair (visit,

frenzy) as Cause-Effect and the direction (e1,e2). The second sentence used the inferred

mode, for which entities in the sentence are recognized using Spacy NLP and then tagged.

The results correctly identified the relation Cause-Effect for the entity pair (After eating

the chicken, sore throat) and its direction.

Sen tence : The s u r p r i s e [ E1 ] v i s i t [ / E1 ] caused a [ E2 ] f r en zy [ /

E2 ] on the a l r e a d y c h a o t i c t r a d i n g f l o o r .

P r e d i c t e d : Cause − E f f e c t ( e1 , e2 )

2
HuggingFace.co

33



6 Relation Extraction with BERT

SemEval Relation Mapped Relation Description
Cause-Effect Dependency An event yields an effect

Instrument-Agency Dependency An agent uses an instrument

Product-Producer Dependency A producer creates a product

Content-Container Containment An object is stored in a container

Entity-Origin Dependency Entity coming from an origin

Entity-Destination Dependency Entity moving to a destination

Component-Whole Containment An object as part of a whole

Member-Collection Containment A member forms a collection

Communication-Topic Dependency Communication about a topic.

Other None If no relation can be assigned

Table 6.1: SemEval Relations and Relation Type Mapping

Sen tence : [ E2 ] A f t e r e a t i n g the ch i cken [ / E2 ] , [ E1 ] he [ / E1 ]

deve loped a so r e t h r o a t the nex t morning .

P r e d i c t e d : Other

Sen tence : A f t e r e a t i n g the ch i cken , [ E1 ] he [ / E1 ] deve loped

[ E2 ] a s o r e t h r o a t [ / E2 ] the nex t morning .

P r e d i c t e d : Other

Sen tence : [ E1 ] A f t e r e a t i n g the ch i cken [ / E1 ] , [ E2 ] he [ / E2 ]

deve loped a so r e t h r o a t the nex t morning .

P r e d i c t e d : Other

Sen tence : [ E1 ] A f t e r e a t i n g the ch i cken [ / E1 ] , he deve loped

[ E2 ] a s o r e t h r o a t [ / E2 ] the nex t morning .

P r e d i c t e d : Cause − E f f e c t ( e1 , e2 )

Sen tence : A f t e r e a t i n g the ch i cken , [ E2 ] he [ / E2 ] deve loped

[ E1 ] a s o r e t h r o a t [ / E1 ] the nex t morning .

P r e d i c t e d : Other

Sen tence : [ E2 ] A f t e r e a t i n g the ch i cken [ / E2 ] , he deve loped

[ E1 ] a s o r e t h r o a t [ / E1 ] the nex t morning .

P r e d i c t e d : Cause − E f f e c t ( e2 , e1 )

Listing 6.1: Result of BERT Large MTB with only Fine-Tuning

After fine-tuning the language model on the training dataset, the evaluation resulted in an

F1-score of 0.80 for BERT-large-uncased on the testing dataset. Figure 6.3 illustrates the

performance of the F1 score on the testing dataset after each of the ten epochs. An epoch

is completed when the language model has been trained on all the data of the dataset

34



6.3 Trainings Process

and adjusted its weight parameters. The model BERT-base-uncased achieved an F1-score

of 0.75, which is 0.02 points lower than the reference score provided by the author of

0.77, despite following the instructions diligently. ALBERT and pre-trained ALBERT both

achieved an F1 score of approximately 0.80 after fine-tuning.

In order to evaluate the effectiveness of models in detecting software architecture rela-

tionships, simple examples were used. The results for the BERT-Large model, as shown in

Listing 6.2, indicate that the trained model is proficient in recognizing ’contains’ relation-

ships and identifying the direction of the relationship (indicated with (e1,e2) or (e2,e1)).

However, for the most part, it classifies ’dependency’ relationships as ’Other’. The other

model performed similarly to BERT-Large. This suggests that there is a lack of labeled

data for dependency-type relationships in the software domain for the models to train on.

As a result, an alternate dataset is being sought after.

S en t ence : [ E2 ] Log i c [ / E2 ] depends on [ E1 ] UI [ / E1 ]

P r e d i c t e d : Other

Sen tence : [ E2 ] Log i c [ / E2 ] c a l l s the [ E1 ] UI [ / E1 ]

P r e d i c t e d : Other

Sen tence : [ E2 ] Log i c [ / E2 ] u se s [ E1 ] UI [ / E1 ]

P r e d i c t e d : Ins t rument −Agency ( e1 , e2 )

Sen tence : [ E2 ] Log i c [ / E2 ] c on t a i n s [ E1 ] UI [ / E1 ]

P r e d i c t e d : Member− C o l l e c t i o n ( e2 , e1 )

Sen tence : [ E2 ] Log i c [ / E2 ] composes o f [ E1 ] UI [ / E1 ]

P r e d i c t e d : Member− C o l l e c t i o n ( e2 , e1 )

Sen tence : [ E2 ] Log i c [ / E2 ] i n c l u d e s [ E1 ] UI [ / E1 ]

P r e d i c t e d : Member− C o l l e c t i o n ( e2 , e1 )

Listing 6.2: BERT-Large-Uncased Easy Example Results

Tang et. al [23] created an annotated dataset using StackOverflow user content which

contains 17061 relation instances. This dataset is used for training relation extraction

using tagged entities, similar to the one created in SemEval. The dataset has four relation

types and the relation ’semantic’ which represents the other relation types. These relation

types are shown in Table 6.2. A request to access the dataset for use in the thesis has been

submitted since it is not publicly available, but no response has been received by the end

of this thesis.

35



6 Relation Extraction with BERT

Relations by Tang et. al Mapped Relations Description
Use Dependency An object uses another

Inclusion Containment An object includes another

Brother None An object is similar to another

Consensus None An object is a synonym of another

Semantic None Other semantic relations

Table 6.2: Relations by Work of Software Knowledge Relation ExtractionFramework

Figure 6.3: Evaluation of BERT Large Uncased MTB using SemEval Testing Dataset

36



7 Link Generation

This chapter discusses the approach of connecting relations in SAD with SAM. In Section

7.1, the representation of the trace link is presented. Section 7.2 explains the implementa-

tion for creating trace links.

7.1 Link Representation

Relation links are represented using the sentence number for the documentation and a list

of model interface IDs for the model. The sentence number points to where in the docu-

mentation the relation occurs. The model IDs are represented using different approaches.

The model representation for the type DEPENDENCY is explained in Subsection 7.1.1 and

for the type CONTAINMENT in Subsection 7.1.2. The relation type NONE is represented

using an empty list "[]". It is important to note that the ArDoCo Benchmark models do

not contain any composite components that classify as CONTAINS relations. Therefore, a

modified PCM repository is used to test the algorithm.

7.1.1 Dependency Representation in Model

A DEPENDENCY relation is only valid if the model components for the entity pair exist. In

addition, one component must provide an interface, and the other must require one. This

is shown in Figure 7.1 for direct connections and in Figure 7.2 for transitive connections.

Model data is provided by an ArDoCo interface which parses PCM repositories. As

the interface does not offer the IDs for the provided and required arrows, the interface

connecting the components is used to determine the relation instead.

Component A Interface Component B

Provided Required

Figure 7.1: Dependency Relation in Model with Direct Connection

Figure 7.1 shows a direct connection between Component A and Component B. The

interface between them represents the relation in the model, and the interface ID is saved

as the relation ID.

Figure 7.2 depicts a transitive connection between Component 1 and N. It is a path with

any amount of interfaces connected with components between the starting and end

37



7 Link Generation

Component N . . . Component 1

Provided Required

. . . Component n+1 Interface n
. . .

Required Provided Required

Figure 7.2: Dependency Relation in Model with Transitive Connection

components. Each component must have a provided and a required arrow to interfaces on

the path and has to alternate between required and provided. The relation is represented

using the ID of each interface between these components saved in a list. It starts from the

component with a required arrow and ends with the component with a provided arrow.

Therefore, the direction of the relation is: Component 1 depends on Component N.

7.1.2 Containment Representation in Model

A CONTAINMENT relation in the model is valid if a component is a composite of another.

In the model, this is represented using the IDs of the components starting from the

composite component. Figure 7.3 shows Composite component A containing Component

B. The direction of this relation is: Component A contains Component B.

Component B

Composite Component A

Figure 7.3: Containment Relation in Model

7.2 Link Generator Implementation

This section presents the implementation for creating trace links. It is done by explaining

the functions of the class LinkGenerator. The starting point for creating a trace link is

Algorithm 1. It determines, based on the relation type, whether to call Algorithm 2 to

find relation representation for DEPENDENCY or to call Algorithm 3 to look for model

reference of CONTAINMENT. As relation direction is not implemented, it checks for both

directions.

38



7.2 Link Generator Implementation

Algorithm 1: Generating Trace Link
function generateTraceLink(recommendation, int sentenceId)

e1Id← recommendation.getEntity1().getId()

e2Id← recommendation.getEntity2().getId()

if recommendation.getRelationType() == RelationType.DEPENDENCY then
path← findDependencyPath(new List, e1Id, e2Id)

if path.isEmpty() then
path← findDependencyPath(new List, e2Id, e1Id)

else if recommendation.getRelationType() == RelationType.CONTAINMENT then
path← findContainmentPath(e1Id, e2Id)

if path.isEmpty() then
path← findContainmentPath(e2Id, e1Id)

recommendation.setRelationId(path)

return RelationTraceLink(recommendation, sentenceId)

7.2.1 Connecting Dependency Links

Algorithm 2 is used to get a List of interface IDs that connect two components. This list of

interface IDs is a path in which a component goes by alternating between provided and

required interfaces. If there is no path between these two components, an empty list is

returned. The algorithm searches the path starting with the provided interfaces. To look

for the direction E1 depends on E2. the algorithm has to use E2 as the component to start

and E1 as the component to find. The other way around would imply that E2 depends

on E1. But as the goal is to find the trace link representation regardless of direction, this

function is called for both cases.

The function is a recursive path-finding algorithm that takes three parameters: compId-

ToStart is the starting component ID to search from, compIdToFind is the component ID

to look for, and visitedComps is a list of component IDs to track which components have

been visited.

The algorithm starts iterating over every component that has a required interface that the

starting component provides. If the ID matches the component to find, then it returns a

list containing the provided interface ID. If no match is found, then it recursively calls this

function with the current component as the starting component. If the called function

returns a nonempty result, then it has found the ending component and returns the path

with the current interface ID added to it.

7.2.2 Connecting Containment Links

Algorithm 3 checks for the CONTAINMENT relation by getting the inner components

of the starting component. And looking for a match of an inner component with the

39



7 Link Generation

Algorithm 2: Algorithm for Finding Dependency Path

function findDependencyPath(List of visitedComps, compIdToFind, compIdToStart)
providedInterfaces← getProvInterfacesFromComp(compIdToStart)

for provInterface in providedInterfaces do
compWithReqInterface← getCompListWithReqInterface(provInterface)

for comp in compWithReqInterface do
if visitedComps.contains(comp) then

continue

visitedComponents.add(comp)

if comp.equals(compIdToFind) then
path.add(provInterface)

return path

path← findDependencyPath (visitedComps, compIdToFind, comp)

if not path.isEmpty() then
if not path.contains(provInterface) then

path.add(provInterface))

return path

return empty path

component to find. If there is a match, then a list with the IDs of both components will be

returned, else it returns an empty list.

Algorithm 3: Algorithm for Finding Containment Path

function findContainmentPath(compIdToFind, compIdToStart)
List<String> path← new ArrayList();

component← getComponentById(compIdToStart);

for innerComp in component.getInnerComponents() do
if inner.getId() == compIdToFind then

path.add(component.getId());

path.add(innerComp.getId());

return path;

return path;

40



8 Evaluation

This chapter evaluates the performance of different approaches to test the thesis goal

of traceability link recovery, intermediate goal relation extraction, and classification.

Both concepts have variations of models and parameter configurations to evaluate. The

GPT concept is evaluated for the model GPT-3.5-turbo and GPT-4. In addition, different

prompts are evaluated. The BERT concept has the model option for BERT-base, BERT-large,

ALBERT, and pre-trained ALBERT.

Model / Mode Entity Recognition Entity Set Entity Pair

GPT-3.5-turbo X X X

GPT-4 X X X

BERT-base X

BERT-large X

ALBERT X

ALBERT-pre X

Table 8.1: Evaluated Relation Extraction Modes for Different Models

The evaluated methods for relation extraction and the used models are depicted in Table

8.1. The table shows that the GPT models are used for entity recognition, inferring entity

pairs from a set of entities, and relation extraction using given entity pairs. In contrast, the

BERT-based models are trained to match the blank, which requires a tagged entity pair.

The following sections are structured as follows: Section 8.1 explains the process of creating

a gold standard for evaluating relation extraction. In Section 8.1.2, the additions made

to the gold standard to facilitate the evaluation of trace links are presented. Section 8.2

introduces the metrics used to measure the performance of the approaches. Section 2.1.3

details the implementation behind the evaluator for the relation extraction task, including

the results. Section 8.4 presents the trace link recovery step’s implementation and results.

Finally, Section 8.6 discusses possible issues that may affect the evaluation.

8.1 Gold Standard

In this section, the gold standard used in the evaluation is presented. First, a gold standard

is created for evaluating the relation extraction capabilities shown in Subsection 8.1.1.

Then Subsection 8.1.2 presents the gold standard for trace link recovery, which is created

by adding references of the model to the previously created gold standard. For creating this

41



8 Evaluation

gold standard, the ArDoCO Benchmark dataset [4] is used and is composed of extracted

data from open-source SAD and SAM.

8.1.1 Gold standard for Recognition and Classification of Relations

Two essential sub-goals are required before traceability links can be created. First, oc-

currences of potential software architecture relations in the documentation have to be

recognized. Then, the found relation needs to be classified. These two sub-goals can be

grouped as the relation extraction task. For this task, a relation extraction gold standard is

created.

Sentence Entity1 ID Entity2 ID Relation Relation Type
9 Logic _1 Model _2 depend on DEPENDENCY

122 Datastore _3 Logic _1 hides CONTAINMENT

Table 8.2: Relation Extraction Gold Standard Example.

The relation extraction gold standard entries contain all data required for identifying a

relation in text with the classified relation type depicted in Table 8.2. The table shows two

example entries for the gold standard. One is from the relation type DEPENDENCY, and

the other is of type CONTAINMENT. The required data consists of the sentence number,

the entity pairs, the relation, and the relation type. The entities in the gold standard are

identified using their model ID. For a better overview, the model name is also included. The

gold standard is created in Comma Separated Values (CSV) with ’,’ being the delimiter.

The gold standard is created using software architecture documentation from the ArDoCo

benchmark. This is done by writing down all the software architecture relations with the

required data for every sentence. For this process, only relations of type DEPENDENCY

and CONTAINMENT are considered. Every relation not included in the gold standard is

implicitly classified as the relation type NONE. This is because the NONE type represents

the negative case where the type is neither DEPENDENCY nor CONTAINMENT, which

includes entity pairs that are not in relation. Only relations between two valid software

architecture entities are considered. The ArDoCo Benchmark gold standard for entity

trace links determines valid entities. Every valid entity has a counterpart in the model.

From this standpoint, valid relations can be derived from valid entities in a relation.

8.1.2 Gold Standard for Traceability Links

The existing gold standard for relation extraction is expanded to create a gold standard

for trace link recovery. The sentence number and model IDs can represent a trace link,

as explained in Chapter 7.1. Table 8.3 provides an example of a gold standard entry. The

sentence number represents where the relation occurs in SAD, while entity IDs determine

the correct relation. The relation in the model is represented as a list of the model interface

IDs that connect the entities of that relation. Additionally, a relation type is used for

42



8.2 Metrics

classification. Since most of these values are already present in the relation extraction

gold standard, the Model Interface IDs are simply added to it.

Sentence Entity1 ID Entity2 ID Model Interface IDs Relation Type
3 _1 _2 [_1, _2] CONTAINMENT

Table 8.3: Traceability Link Gold Standard Example

This gold standard is created using the ArDoCo Benchmark PCM repositories. The process

is as follows: For each entry in the relation extraction gold standard, if it is a dependency

relation, check whether the entities are directly or transitively connected. Add the ID of

each model interface to the list of Model Interface IDs in the order they are connected. If

it is a containment relation, add the model IDs of both entities to the list.

8.2 Metrics

In this section, the metrics used for the evaluation are described. For the evaluation, a

confusion matrix is created. With this matrix, values like True Positive (TP), False Positive

(FP), True Negative (TN), and False Negative (FN) can be easily obtained. This is particularly

useful in calculating weighted metrics, which is essential as the used dataset is heavily

weighted in favor of DEPENDENCY against CONTAINMENT. The performance metrics

most useful for this approach are Recall, Precision, and the F1-Score. Another useful metric

is Accuracy, which takes TN into consideration, but because TN is not important for the

performance of this approach, it won’t be included.

Precision, also referred to as the positive predicted value, is a measure that indicates

the ratio of correctly identified positive instances out of all instances that were predicted

as positive (as demonstrated in Equation 8.1). This metric is useful in determining the

reliability of a positive prediction. In essence, it represents the proportion of true positives

to the total number of predicted positives for a particular class.

Precision =
True Positives

True Positives + False Positives (8.1)

Recall, also known as the true positive rate, is the proportion of correct positive results

out of all actual positive results (see Equation 8.2). This metric indicates the rate of actual

positive instances that have been correctly identified.

Recall =
True Positives

True Positives + False Negatives (8.2)

F1-Score is the harmonic mean of precision and recall. This metric represents a single

metric that considers both false positives (FP) and false negatives (FN), and is calculated

using the formula in Equation 8.3.

43



8 Evaluation

F1-Score =
2 · Precision · Recall
Precision + Recall (8.3)

Weighted Metrics can be a useful method for calculating averages in evaluations where

there is an imbalance in the number of instances across multiple classes. To compute a

weighted metric, the previous metric is multiplied by the weight of the positive class, which

is the ratio of actual class instances to the total number of instances, and then divided by

the total number of instances N. This approach provides a more accurate evaluation by

taking into account the data imbalance. Equation 8.4 demonstrates this calculation for

weighted precision.

Weighted Metric𝑖 =

∑𝐶
𝑖=1𝑤𝑖 ·Metric𝑖

𝑁
(8.4)

8.3 Relation extraction

The relation extraction gold standard mentioned in section 8.1.1 is used to evaluate the

relation recognition and classification task. The evaluation process involves creating

a confusion matrix using predicted results and the gold standard, which is done using

Algorithm 4. Next, the TP, FP, TN, and FN values are calculated by adding the corresponding

cells as indicated in Table 8.4. These values are then used to calculate the precision, recall,

and F1-Score.

The function Algorithm 4 requires two parameters, both of which are sentence numbers

to list of recommendations maps. The first map "resultsMap" contains the predictions

made by the framework, while the second map "gsMap" contains the data from the gold

standard. A two-dimensional integer array is created to represent the confusion matrix.

The size of this array depends on the number of relation types. The first dimension of the

array represents the actual relations, while the second represents the predicted relations.

To fill the confusion matrix, the function iterates over every sentence number key and

the corresponding recommendations of each sentence. If a predicted recommendation

matches a gold standard recommendation, the function increases the corresponding cell

in the confusion matrix by one and removes the matched gold standard recommenda-

tion from the map. The ordinal of the relation type determines the cell. If there is no

matching gold standard recommendation or the gold standard doesn’t have an entry for

this sentence number, the actual relation is assumed to be of type NONE. After iterating

over every predicted result in the sentence, the function fills the remaining gold standard

recommendations that have not been matched as predicted NONE.

Table 8.4 displays the entries that must be accumulated to compute a weighted average for

the metrics. The confusion matrix illustrates the classification of two positive categories,

namely DEPENDENCY and CONTAINMENT, and a negative category called NONE.

Correct classifications are marked in green, while incorrect ones are highlighted in red. The

darker color shading indicates the predicted negatives. The confusion matrix is utilized to

44



8.3 Relation extraction

Algorithm 4: Fill Evaluation Matrix

function fillEvaluationMatrix(resultsMap, gsMap)
relationTypes← [DEPENDENCY, CONTAINMENT, NONE]

relationTypeCount← length(RelationType.values())

confusionMatrix← 2D array of size [𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒𝐶𝑜𝑢𝑛𝑡] [𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒𝐶𝑜𝑢𝑛𝑡]
foreach resultEntries in resultsMap do

sentenceID← resultEntries.getKey()

foreach result in resultEntries.getValue() do
if gsMap contains sentenceID then

match← findMatch(gsMap[sentenceID], result)

if not match is null then
confusionMatrix[match.relationIndex()][result.relationIndex()]++

Remove match from gsMap[sentenceID]

else
confusionMatrix[RelationType.NONE][result.relationIndex()]++

else
confusionMatrix[RelationType.NONE][result.relationIndex()]++

foreach gs in gsMap[sentenceID] do
confusionMatrix[gs.relationIndex()][RelationType.NONE]++

foreach entry in gsMap do
if not resultsMap contains entry.getKey()) then

foreach gs in entry.getValue() do
confusionMatrix[gs.relationIndex()][RelationType.NONE]++

return confusionMatrix

Predicted

Dependency Containment None

A
c
t
u
a
l

Dependency True Positive FP & FN False Negative

Containment FP & FN True Positive False Negative

None False Positive False Positive True Negative

Table 8.4: Multi-Class Confusion Matrix for Relation Types Dependency, Containment,

and None

45



8 Evaluation

determine TP, FP, TN, and FN classifications. The entries (Dependency, Containment) and

(Containment, Dependency) are used as the FP and FN values. In multi-way classification,

these entries are used to calculate the total predictions for precision and the total actual

relations for recall.

8.3.1 GPT Relation Extraction Results

The relation extraction results for GPT-3.5-Turbo is shown in Figure 8.1 and for GPT-4 in

Figure 8.2.

Figure 8.1: Relation Extraction Performance Metrics by GPT-3.5-Turbo Mode

Entity Pair Entity Set Entity Recognition

0

0.2

0.4

0.6

0.8

1

0.33
0.41

0.53

0.81

0.69
0.63

0.47
0.51

0.57

GPT-3.5-Turbo Mode

S
c
o
r
e

Precision Recall F1

The results for the GPT-3.5-Turbo modes are presented in Figure 8.1. Each extraction

mode has three bars representing precision in blue, recall in red, and F1-Score in brown.

There is an observable pattern in the performance of Entity Pair (EP), Entity Set (ES), and

Entity Recognition (ER) modes. The precision of these modes is increasing from 0.33 EP,

0.41 ES, to 0.53 ER, while their recall is decreasing from 0.81 EP, 0.69 ES, to 0.63 ER. This

can be explained by the fact that EP mode has the highest number of total predictions,

followed by ES and ER. Using more attempts to make predictions increases the likelihood

of getting a correct prediction but reduces its precision. The low precision performance is

possibly caused by GPT’s responses favoring positives if there is even the slightest hint of

a relation. The harmonic mean for the modes is 0.47 EP, 0.51 ES, and 0.57 ER, and slightly

favors modes with fewer predictions, indicating that making more predictions is slightly

less effective in achieving the correct prediction.

The performance of GPT-4 modes is depicted in Figure 8.2. In contrast to GPT-3.5-Turbo,

GPT-4 consistently recalls 0.75 by correctly identifying three out of four actual relations for

46



8.3 Relation extraction

Figure 8.2: Relation Extraction Performance Metrics by GPT-4 Mode

Entity Pair Entity Set Entity Recognition

0

0.2

0.4

0.6

0.8

1

0.32
0.38

0.44

0.75 0.75 0.75

0.44
0.5

0.56

GPT-4 Mode

S
c
o
r
e

Precision Recall F1

all three modes. This observation indicates GPT-4 likely beingmore consistent in responses.

The precision of GPT-4 is similar to that of GPT-3.5-Turbo, with more predictions for EP,

followed by ES and ER. However, the precision is slightly lower than that of GPT-3.5-Turbo,

indicating more predictions made by GPT-4.

8.3.2 BERT Relation Extraction Results

The performance of various BERT variants in relation extraction is shown in Figure 8.3. The

graph displays performance metrics for the fine-tuned BERT models ALBERT, pre-trained

ALBERT, BERT-base, and BERT-large. The overall performance is quite low compared to

ChatGPT’s, with an average F1-score of 0.52 for GPT-3.5 and 0.52 for GPT-4. Another

comparison is the BERT using MTB performance on SemEval test data using the SemEval

training data for fine-tuning, which achieved an F1-score of 89.5. One of the reasons for

this difference is the lack of domain-specific training data for fine-tuning, which leads

to a high number of ’Other’ classifications. The variants exhibit a similar performance.

The precision ranges between 0.18 to 0.20 points, while the recall is consistent at 0.25

with the exception of BERT_BASE, which shows double the recall rate of 0.5. This means

that BERT_BASE is more likely to classify a positive relation than the other variants.

Regarding ALBERT and pre-trained ALBERT, their classifications are quite similar. In

contrast, BERT_LARGE has different classifications from both ALBERT and BERT_BASE.

This suggests that the size of the model has a greater influence on determining classification

than pre-training.

47



8 Evaluation

Figure 8.3: Relation Extraction Performance Metrics by BERT Model

ALBERT ALBERT_PRE BERT_BASE BERT_LARGE

0

0.2

0.4

0.6

0.8

1

0.19 0.18 0.2 0.2
0.25 0.25

0.5

0.25
0.22 0.21

0.28
0.22

BERT Model Variant

S
c
o
r
e

Precision Recall F1

8.4 Traceability Link Recovery

This section evaluates the approach’s ability to establish connections between text and

model using the extended gold standard defined in Subsection 8.1.2. The evaluation process

is a binary classification based on whether a trace link can be established or not, similar

to the one described in Section 8.3, and the evaluation algorithm is analog to Algorithm

4. A trace link is counted as established if a prediction exists for a given sentence with

matching entity IDs, relation IDs, and relation classification.

Predicted

Positive Negative

A
c
t
.

Positive True Positive False Negative

Negative False Positive True Negative

Table 8.5: Binary Confusion Matrix for Trace Link

Table 8.5 shows the cases where TP, FP, FN, and TN occur. Each value appears only once

in the matrix so that it can be taken directly from it. Correct classifications are marked in

green, while incorrect ones are highlighted in red. The darker color shading indicates the

predicted negatives and the lighter shading indicates the predicted positives.

8.4.1 GPT Traceability Link Recovery Results

The TLR results depend on the relation extraction result calculated earlier and are shown

in Figure 8.4 for GPT-3.5-Turbo and in Figure 8.5 for GPT-4. Only valid recommendations

48



8.4 Traceability Link Recovery

and existing model relations are taken into account for the performance evaluation. GPT-

3.5-Turbo has a precision score of 0.67 EP, 0.71 ES, and 0.73 ER, following the trend of

its relation extraction performance. Its recall achieved 1.0 for both EP and ES, with ER

performing worse at 0.8 and is high overall, with EP and ES modes finding all existing

relation trace links. However, it is crucial to note that the evaluation only considered links

with a valid model entity and a modeled relation between them. For the right predictions,

the algorithm only needs a correctly predicted entity pair and relation type and avoids

existing relations that are not mentioned in the documentation, provided it is correctly

implemented. GPT-4 performed similarly to GPT-3.5-Turbo in recall with a score of 1.0

for both EP and ES, but its ER mode is slightly better at 0.9. Its precision is going against

the previous trend with a score of 0.71 EP, 0.71 ES, and 0.64 ER. This is also caused by the

evaluation environment only including predictions with matching entity pairs.

Figure 8.4: Traceability Link Recovery Performance Metrics by GPT-3.5-Turbo Mode

Entity Pair Entity Set Entity Recognition

0

0.2

0.4

0.6

0.8

1

0.67
0.71 0.73

1 1

0.80.8
0.83

0.76

GPT-3.5-Turbo Mode

S
c
o
r
e

Precision Recall F1

8.4.2 BERT Traceability Link Recovery Results

The TLR performance of the BERT-based variants is shown in Figure 8.6. The precision

of the models is 0.23 ALBERT, 0.38 ALBERT-pre, 0.8 BERT-base, and 0.6 BERT-large. The

TLR performance of the models has a greater variety and better performance than the

similar RE performance. This indicates that for some models, the FP of the RE step could

be filtered out. The recall performance has a similar distribution to the RE results, with 0.3

for ALBERT, ALBERT-pre, and BERT-large. BERT-base performed better with a score of

0.8. After filtering out invalid relations, the performance of BERT_BASE is overall better

in the TLR evaluation than in the relation extraction step, with both precision and recall

at 80%. BERT_LARGE has significantly increased its precision, followed by ALBERT.

49



8 Evaluation

Figure 8.5: Traceability Link Recovery Performance Metrics by GPT-4 Mode

Entity Pair Entity Set Entity Recognition

0

0.2

0.4

0.6

0.8

1

0.71 0.71
0.64

1 1

0.9
0.83 0.83

0.75

GPT-4 Mode

S
c
o
r
e

Precision Recall F1

Figure 8.6: Traceability Link Recovery Performance Metrics by BERT Model

ALBERT ALBERT_PRE BERT_BASE BERT_LARGE

0

0.2

0.4

0.6

0.8

1

0.23

0.38

0.8

0.6

0.3 0.3

0.8

0.3
0.26

0.33

0.8

0.4

BERT Model Variant

S
c
o
r
e

Precision Recall F1

50



8.5 Performance of GPT and BERT

8.5 Performance of GPT and BERT

After evaluating each GPT extraction mode and BERT model, this section discusses how

they performed against each other. For relation extraction, ChatGPT based on GPT-3.5-

turbo and GPT-4 performed well across all extraction modes with an average recall of 0.71

and F1-score of 0.52 for GPT-3.5-turbo and an average recall of 0.75 and F1-score of 0.56 for

GPT-4. BERT, on the other hand, scored across all models an average of 0.31 for recall and

0.23 for F1-score. Even though fine-tuned BERT models using the SemEval dataset showed

an average F1-score of 0.77 on the SemEval test data, indicating the problem is at the

adaptation of SemEval dataset for software architecture domain purposes. This is further

underlined by the fine-tunedmodels having difficulties classifying DEPENDENCY relations,

as shown in Figure 6.2 on trivial dependency cases. The occurrence of DEPENDENCY

relations vastly outnumbers the CONTAINMENT relation in SAD, causing the result of

BERT models to underperform as it would mostly classify DEPENDENCY relations as

NONE type. For TLR, ChatGPT performed on average 0.8 for GPT-3.5-turbo and GPT-4

and is better than the relation extraction results, as the model is taken into account to filter

out most of the false positives. The BERT models also increased in performance and could

score an average of 0.45 F1-score. It is important to note that these results only depend on

the extracted relations and did not use the PLMs in recovering these links.

8.6 Threats to Validity

This section discusses the validity threats faced by the evaluation. One of the main issues

is that the gold standard is created by only a single person and is prone to bias and

subjectivity, which affects the validity of the evaluation. An issue is also the small number

of different relation types with only DEPENDENCY, CONTAINMENT, and NONE. Also,

DEPENDENCY and CONTAINMENT relations are not mutually exclusive and, in some

cases, ambiguous, making it hard to decide which relation to assign. Another threat is

the small sample size of SAD and SAM, as the gold standard is based on five open-source

projects but has only 14 software architecture relations in the text. Additionally, out of

these five projects, only four had a complete SAM, which further reduced the possible

model relations to ten. This is worsened by the lack of occurrences of the CONTAINMENT

type in SAD and no occurrence of it in SAM. Therefore, steps are taken to confirm that

the approach can correctly identify CONTAINMENT relations by extending the existing

benchmark project TEAMMATES with composite components using PCM bench IDE.

Further, the existing XML parser of ArDoCo has also been extended to include composite

components, which was done by ArDoCo’s maintainer. The approach previously included a

fourth relation type INVALID, for faulty predictions and was also included in the evaluation.

But as this would distort the evaluation, it has been taken out.

51





9 Conclusion

This thesis aims to present a methodology for extracting relationships and restoring trace-

ability links between software architecture documentation and models. The framework

utilizes large language models, such as ChatGPT and BERT, to perform zero-shot and fine-

tuned relation extraction from textual documentation and generate trace links to software

architecture models. The methodology has been implemented as a project that integrates

with ArDoCo, a framework for trace link recovery and inconsistency detection. Three

different extraction modes have been implemented with the GPT approach, and more

have been manually tested. The BERT approach was tested using different BERT-based

models and varying degrees of training. The GPT approach yielded promising results

in relation extraction, with a recall of 0.81 for EP mode and an F1-score of 0.57 for ER

mode. However, the BERT-based approach did not perform well in the relation extraction

step due to the lack of domain-specific training data. Through filtering and utilizing trace

link entities from ArDoCo, the TLR step could achieve an F1-score of 0.83 for ES mode

using GPT-3.5-turbo and achieved detection of all possible relation trace links in EP and

ES mode.

Insights are made by comparing these LLMs with the prompting modes and different

models. For GPT, the extraction modes entity pair, entity set, and entity recognition

received different amounts of predictions by ChatGPT, resulting in the option to balance

recall against precision. Another observation is that GPT-4 evaluated more consistent

performance, with a recall of 0.75 across all extraction modes, than GPT-3.5-turbo, which

ranges in recall between 0.63 and 0.81. For BERT approaches, an observation is that the

resource-intensive pre-training of model-variant ALBERT indicated no increase in relation

extraction performance without domain-specific fine-tuning. This also underlines the

importance of labeled domain-specific training data for PLMs like BERT as it performed

worse across all model variants with an average F1-score of 0.23 against ChatGPT based

on GPT-3.5 with an average F1-score of 0.52 and GPT-4 with an average of 0.5.

Potential avenues for future research could be optimizing the prompt engineering process

to include document-level extraction to find cross-sentence relations to increase recall and

adding additional filters for removing unlikely predictions to increase precision. To improve

the BERT approach, domain-specific annotated training data is needed, which would

enable a method that does not depend on third-party services. Expanding the benchmark

documentation and model dataset to include more samples, especially for containment

relations, would improve the evaluation’s validity. Overall, this approach serves as a step

towards more advanced and efficient methodologies in software architecture traceability

link recovery. It provides insights into the performance of different LLMs and their

applicability in relation extraction from SAD.

53





Bibliography

[1] Steffen Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio component model

for model-driven performance prediction”. In: Journal of Systems and Software 82.1
(2009), pp. 3–22.

[2] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[3] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language

understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[4] Dominik Fuchß et al. “Establishing a Benchmark Dataset for Traceability Link

Recovery Between Software Architecture Documentation and Models”. In: Software
Architecture. ECSA 2022 Tracks and Workshops. Ed. by Thais Batista et al. Cham:

Springer International Publishing, 2023, pp. 455–464. isbn: 978-3-031-36889-9.

[5] David Garlan and Mary Shaw. “An introduction to software architecture”. In: Ad-
vances in software engineering and knowledge engineering. World Scientific, 1993,

pp. 1–39.

[6] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. “Semantically enhanced software

traceability using deep learning techniques”. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE. 2017, pp. 3–14.

[7] Marti A Hearst. “Automatic acquisition of hyponyms from large text corpora”.

In: COLING 1992 Volume 2: The 14th International Conference on Computational
Linguistics. 1992.

[8] Iris Hendrickx et al. SemEval-2010 Task 8: Multi-Way Classification of Semantic
Relations Between Pairs of Nominals. 2019. arXiv: 1911.10422 [cs.CL].

[9] Scott B Huffman. “Learning information extraction patterns from examples”. In:

International Joint Conference on Artificial Intelligence. Springer. 1995, pp. 246–260.

[10] Jan Keim et al. “Detecting Inconsistencies in Software Architecture Documentation

Using Traceability Link Recovery”. In: 2023 IEEE 20th International Conference on
Software Architecture (ICSA). IEEE. 2023, pp. 141–152.

[11] Jan Keim et al. “Trace link recovery for software architecture documentation”. In:

European Conference on Software Architecture. Springer. 2021, pp. 101–116.

[12] Zhenzhong Lan et al. “Albert: A lite bert for self-supervised learning of language

representations”. In: arXiv preprint arXiv:1909.11942 (2019).

55

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1911.10422


Bibliography

[13] Joohong Lee, Sangwoo Seo, and Yong Suk Choi. Semantic Relation Classification via
Bidirectional LSTM Networks with Entity-aware Attention using Latent Entity Typing.
2019. arXiv: 1901.08163 [cs.CL].

[14] Bo Li et al. “Evaluating ChatGPT’s Information Extraction Capabilities: An As-

sessment of Performance, Explainability, Calibration, and Faithfulness”. In: arXiv
preprint arXiv:2304.11633 (2023).

[15] Jinfeng Lin et al. “Traceability transformed: Generating more accurate links with pre-

trained bert models”. In: 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE. 2021, pp. 324–335.

[16] Andrea De Lucia et al. “Recovering traceability links in software artifact management

systems using information retrieval methods”. In: ACM Transactions on Software
Engineering and Methodology (TOSEM) 16.4 (2007), 13–es.

[17] Youmi Ma, An Wang, and Naoaki Okazaki. “DREEAM: Guiding Attention with

Evidence for Improving Document-Level Relation Extraction”. In: arXiv preprint
arXiv:2302.08675 (2023).

[18] Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. “Building a large

annotated corpus of English: The Penn Treebank”. In: (1993).

[19] David Lorge Parnas. “Software aging”. In: Proceedings of 16th International Conference
on Software Engineering. IEEE. 1994, pp. 279–287.

[20] Alec Radford et al. “Improving language understanding by generative pre-training”.

In: (2018).

[21] Sophie Schulz. “Linking Software Architecture Documentation and Models”. MA

thesis. Karlsruher Institut für Technologie (KIT), 2020. doi: 10.5445/IR/1000126194.

[22] Livio Baldini Soares et al. Matching the Blanks: Distributional Similarity for Relation
Learning. 2019. arXiv: 1906.03158 [cs.CL].

[23] Mingjing Tang et al. “Software Knowledge Entity Relation Extraction with Entity-

Aware and Syntactic Dependency Structure Information”. In: Scientific Programming
2021 (2021), pp. 1–13.

[24] Yuanhe Tian et al. “Dependency-driven Relation Extraction with Attentive Graph

Convolutional Networks”. In: Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers). Online: Association for

Computational Linguistics, Aug. 2021, pp. 4458–4471. doi: 10.18653/v1/2021.acl-

long.344. url: https://aclanthology.org/2021.acl-long.344.

[25] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information
processing systems 30 (2017).

[26] Linlin Wang et al. “Relation Classification via Multi-Level Attention CNNs”. In:

Proceedings of the 54th AnnualMeeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Berlin, Germany: Association for Computational Linguistics,

Aug. 2016, pp. 1298–1307. doi: 10.18653/v1/P16-1123. url: https://aclanthology.

org/P16-1123.

56

https://arxiv.org/abs/1901.08163
https://doi.org/10.5445/IR/1000126194
https://arxiv.org/abs/1906.03158
https://doi.org/10.18653/v1/2021.acl-long.344
https://doi.org/10.18653/v1/2021.acl-long.344
https://aclanthology.org/2021.acl-long.344
https://doi.org/10.18653/v1/P16-1123
https://aclanthology.org/P16-1123
https://aclanthology.org/P16-1123


[27] SohWee Tee. BERT-Relation-Extraction. https://github.com/plkmo/BERT-Relation-
Extraction. 2020.

[28] Xiang Wei et al. “Zero-shot information extraction via chatting with chatgpt”. In:

arXiv preprint arXiv:2302.10205 (2023).

[29] Jules White et al. A Prompt Pattern Catalog to Enhance Prompt Engineering with
ChatGPT. 2023. arXiv: 2302.11382 [cs.SE].

[30] Rebekka Wohlrab et al. “Improving the consistency and usefulness of architecture

descriptions: Guidelines for architects”. In: 2019 IEEE International Conference on
Software Architecture (ICSA). IEEE. 2019, pp. 151–160.

[31] Yuan Yao et al. “DocRED: A large-scale document-level relation extraction dataset”.

In: arXiv preprint arXiv:1906.06127 (2019).

[32] Daojian Zeng et al. “Distant supervision for relation extraction via piecewise convo-

lutional neural networks”. In: Proceedings of the 2015 conference on empirical methods
in natural language processing. 2015, pp. 1753–1762.

[33] Ningyu Zhang et al. “Document-level relation extraction as semantic segmentation”.

In: arXiv preprint arXiv:2106.03618 (2021).

[34] Shu Zhang et al. “Bidirectional long short-term memory networks for relation classi-

fication”. In: Proceedings of the 29th Pacific Asia conference on language, information
and computation. 2015, pp. 73–78.

57

https://github.com/plkmo/BERT-Relation-Extraction
https://github.com/plkmo/BERT-Relation-Extraction
https://arxiv.org/abs/2302.11382

	Abstract
	Zusammenfassung
	Introduction
	Fundamentals
	Natural Language Processing
	Part of Speech Tagging
	Dependency Parsing
	Relation Extraction

	Large Language Model
	Generative Pretrained Transformer
	Bidirectional Encoder Representations from Transformers

	Palladio Component Model
	Architecture Documentation Consistency

	Related Work
	Relation Extraction
	Traceability Link Recovery
	Prompt Engineering

	Relation Extraction for Software Architecture Documentation
	General Approach
	Entity Provider
	Representing Relation Extraction Result

	Relation Extraction with ChatGPT
	Overview
	Implementation
	Relation Extraction
	GPT Communicator

	Prompting
	First Iterations
	Advanced Cases
	Prompt Variations
	Prompt for Cross Sentence Relation
	Other Prompting Approaches


	Relation Extraction with BERT
	Overview
	Implementation
	Trainings Process
	Pre-Training
	Fine-Tuning


	Link Generation
	Link Representation
	Dependency Representation in Model
	Containment Representation in Model

	Link Generator Implementation
	Connecting Dependency Links
	Connecting Containment Links


	Evaluation
	Gold Standard
	Gold standard for Recognition and Classification of Relations
	Gold Standard for Traceability Links

	Metrics
	Relation extraction
	GPT Relation Extraction Results
	BERT Relation Extraction Results

	Traceability Link Recovery
	GPT Traceability Link Recovery Results
	BERT Traceability Link Recovery Results

	Performance of GPT and BERT
	Threats to Validity

	Conclusion
	Bibliography

