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Figure 1: Visualization of a combination of entity linking components.

ABSTRACT
Named entity recognition and disambiguation, often referred to as
entity linking systems, refers to the task of automatically identifying
knowledge graph entities in text documents. While a variety of en-
tity linking systems based on very different approaches exist, these
systems implicitly share certain processing steps in their pipeline.
Despite this fact, they have been mainly used as stand-alone solu-
tions. In this paper, we propose a framework for combining entity
linking methods. This allows multiple entity linking systems and
especially their components to be used in combination to an unlim-
ited extent, thus allowing to achieve the best possible performance.
In addition, the framework allows user-developed entity linking
systems or components to be easily tested and automatically evalu-
ated against other systems without having to set up other systems
first. Essentially, our framework is knowledge graph agnostic and
entity linking systems can be compared across knowledge graphs.

Furthermore, our framework enables entity linking method or com-
ponent recommendation, supporting the goal of achieving the best 
performance in a given context. We demonstrate that non-domain-
expert users are able to deploy the framework within minutes and 
integrate unknown homebrew systems into it in less than an hour. 
Our framework is fully open source and available on GitHub1 along 
with Docker containers and tutorials2 (incl. Jupyter Notebooks).

KEYWORDS
Entity Linking, Recommender System, Framework, FAIR, NLP, Se-
mantic Web, NERD Orchestration.
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1 INTRODUCTION
The field of entity linking is concerned with linking textual men-
tions in text-based documents to corresponding knowledge graph 
entities. Although entity linking has been successfully used in a 
variety of scenarios (e.g., semantic search), the design, analysis, eval-
uation of entity linking systems can be a tedious process [8, 24, 25].

First, this concerns the analysis of existing systems and their 
components. Each component (e.g., mention detection, candidate 
generation, ...) can affect the final outcome in unpredictable ways. 
For instance, if a candidate generator fails to find a particular en-
tity in a knowledge graph, the disambiguation of entities of other 
mentions may be affected. Consequently, due to the complexity of 
interactions in processing pipelines, the task of researchers per-
forming ablation studies is often a complex one. Comprehensive 
comparability with other entity linking systems is virtually impos-
sible without extensive manual efforts to untangle components of 
one entity linking system and link them to another. Thus, a work-
flow is needed to allow components of a given entity linking system 
to be easily exchanged and immediately executed and evaluated.

Second, there is a lack in that creating a custom entity linking sys-
tem including already-available components (e.g., disambiguation 
part) is still a tedious task. Until now, developers and researchers 
had to take care of the individual supported protocols as well as 
other specifics, such as supported knowledge graphs.

Third, while much research has been performed to improve the 
effectiveness of entity linking, no framework has yet been proposed 
to actually combine entity linking systems in a multi-subsystem 
fashion to achieve optimal performance based on output. To date, 
only individual research papers [12] have been published focusing 
on "AI methods" for ensemble learning rather than allowing any 
system to be reused and combined out-of-the-box.Further, these 
do not take into consideration individual components of entity 
linking systems. In addition, GERBIL [24] has been proposed as a 
related framework. However, it focuses on evaluating systems as a 
whole and ignores system components and their rich interactions. 
Moreover, GERBIL does not allow visual analysis of entity linking 
results or export of entity linking results based on arbitrary inputs; 
instead, only given benchmark datasets can be used. Thus, while 
GERBIL focuses on benchmarking, our system aims at (distributed, 
fine-grained) execution of an orchestra of entity linking systems.

To solve the described issues, we propose the full-featured entity 
linking framework Combining Linking Techniques (CLiT). Specifi-
cally, the framework provides the following features to address the 
issues discussed above:

(1) We enable visualisation of Entity Linking (EL) workflows and
certain interactions through a simple front-end demonstrator.
It serves as a demo implementing a subset of the provided
framework’s features.

(2) We introduce novel ways for combining entity linking sys-
tems and their components while ensuring backwards com-
patibility with existing natural language processing annota-
tion paradigms.

(3) We enable full configurability of all components.
(4) We enable down-stream processing of obtained entity linking

annotation results rather than pure evaluation metrics.

(5) We enhance the re-usability and functionalities of existing
entity linker components and ones to come, increasing the
degree of system interoperability in the field.

(6) We support and provide knowledge graph-agnostic andmulti-
knowledge graph-supporting annotations.

(7) We support configurable metrics, evaluation schemes, and
ways of recommending entity linking ensemble settings.

The source code of our framework, as well as detailed instructions,
Jupyter Notebooks, tutorials, an experiment, videos, etc. may be
found in our linked GitHub repository. Fig. 2 shows a front-end
user interface to access functionalities of our framework with Fig. 1
visualising connections between various components on multiple
levels. On one hand, the architecture of our framework is centralised
in terms of workflow management, task distribution, and annotator
tracking; on the other, all component- and sub-component-based
functions can be executed in a distributed manner, which gives
it decentralised characteristics, allowing for fine-grained resource
management. While this setup allows for effective reusability of
existing systems in the spirit of reuse over redo, the disadvantage
of system decentralization is the framework’s explicit reliance and
requirement on systems being online and accessible.

The Combining Linking Techniques (CLiT) framework will not
only enable higher performance of entity linking systems, but also
significantly advance researchers’ development and related appli-
cations, such as semantic search and recommender systems. A
compelling example: our framework enables the setup of state-
of-the-art entity linking combination workflows, as van Hulst et
al. [26] did, within minutes – instead of estimated hours or days
(see Section 6). An overview of some existing and potential use
cases for the presented framework is presented in Section 4.

2 RELATED WORK
A preliminary version of our framework formed the basis for a
demonstration system for combining entity linking systems [16].
However, the system presented in this paper differs significantly
from the preliminary version in several ways. Among other things,
our framework now features: (1) a data model that allows entity
linking systems and their subcomponents to be combined (thus
ensuring persistence and reproducibility of results), (2) user-defined
remote invocation functionalities, (3) machine learning based linker
recommendations, (4) novel extensible components (e.g., Evalua-
tor, Explainer; see Sec. 3.3.6), (5) datasets for comparability testing,
(6) sample pipelines & template components, (7) visualization front-
end module allowing interaction with a subset of features, and
(8) integration of other annotators relying on various knowledge
graphs (e.g., DBpedia, Wikidata), making our framework fully us-
able by everyone.

In [18], the authors describe a framework that provides a REST
API to easily request multiple entity linking systems. They also
propose the NERD ontology to standardize the output format of
the entity linking task. While the framework focuses on easily re-
trieving but not consolidating the results of multiple EL systems,
the ontology aims to represent the final output of the entity linking
task, not the partial steps. GERBIL [24] provides a benchmarking
platform for centralized evaluation of different Natural Language
Processing (NLP) mechanisms. We appreciate and support GERBIL
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Figure 2: A proposed user interface visualising a combination of entity linking components.

in their efforts to improve the comparability of systems and build
on their concepts and the tangential path they have paved that
facilitates our research efforts in this regard. To our understand-
ing, their influence has contributed greatly to the development of
NIF-based protocols for annotators that we use and extend. They
have also indirectly enabled us to further develop our conceptual
paradigm and test its generalizability. While GERBIL is primarily
for benchmarking NLP systems for comparison purposes, our in-
tention is to support the development of new systems by allowing
easy (re)use and combination of existing entity linking systems (see
differentiation in the Introduction).

An alternative breakdown of the entity linking pipeline as de-
fined by us is proposed by Sevgili et al. [21]. Their first of two main
steps is entity detection (equivalent to Mention Detection (MD)),
followed by entity disambiguation. The latter includes the substeps
candidate generation and entity ranking in combination. João et
al. [12] defines Meta Entity Linking (MetaEL) as the task of combin-
ing the results of multiple EL systems to find a good unified set of
annotations. When combining entity linking systems, João et al.
[12] do not refer to the granular substeps of EL systems, but to end-
to-end systems that implement the entire pipeline. Canale et al. [1]
treats the step of Named-Entity Recognition (NER) and Named-
Entity Disambiguation (NED) separately when it proposes a neural
network for each that integrates the results of eight NER/NED
systems-without proposing a framework. Like [12], they focus on
improving quality by combining existing approaches, but do not
attempt to make the underlying entity linking systems comparable
or interchangeable. Other approaches that focus on combining mul-
tiple end-to-end EL systems are [2], which provides rule-based and
supervised merging of micropost annotations, and Ruiz et al. [19],
which combine the results of five open source annotators through
weighted voting. Overall, a framework that focuses on the actual

execution of entity linking systems and their components is lacking
so far.

3 THE COMBINING LINKING TECHNIQUES
FRAMEWORK

In the following we present components and subcomponents of the
framework, a subset of which may be accessed through a graph-
ical user interface via the provided demonstrator front-end. Our
framework is based on the Pipes and Filters3 design pattern, effec-
tively generating a dependency graph of nodes – so-called (sub-
)components – and edges representing connections between these
for information flow. For a graphical representation of said concepts,
we refer to Figures 2 and 3.

3.1 Classical Pipeline (Standard Linker)
While Named Entity Recognition and Disambiguation (NERD) sys-
tems, sometimes referred to as annotators or linkers, vary in terms
of approaches and workflow steps, in our definition of the classical
pipeline (see Figure 3) we identify the ones most commonly used.
Our general conceptualization of the classical pipeline is further con-
firmed by the separation of duties defined by van Hulst et al. [26].
In our case, the classical pipeline consists of an input document
as well as various mechanisms commonly referred to asmention
detection (MD), candidate generation (CG), and entity disam-
biguation (ED), and an annotated output document.

We have used this pipeline as a starting point for our frame-
work to maximising existing-system compatibility. Therefore, we
consider the paradigm of classical end-to-end pipeline instances as
standard linkers. Another common configuration splitting an anno-
tator into mention detection and a simultaneous "entity candidate

3https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters

https://docs.microsoft.com/en-us/azure/architecture/patterns/pipes-and-filters
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Figure 3: Classical Pipeline for an entity linking system, consisting of mention detection (MD), candidate generation (CG) and
entity disambiguation (ED).

generation and disambiguation" – these are referred to as linker
pipelines and can be easily tuned by the framework.

In the following, we characterize the single steps (mention detec-
tion, candidate generation, entity disambiguation) in more detail.
These are considered principal components within an entity linking
pipeline and may be combined, split, filtered, executed sequentially
to emulate a classical pipeline as well as executed in parallel with
other similar components in order to a create customized annota-
tion experience.

3.1.1 Mention Detection.

Preceded by: Input document.
Succeeded by: Candidate Generator or any subcomponent.
Commonly: A combination of tokenization and predefined

dictionary matching techniques.
A mention is a literal occurrence of a named entity as may be iden-
tified through textual information. A mention detection component
is a mechanism taking an input document, generally made up of
one or more plaintext sequences and yielding so-called mentions.

3.1.2 Candidate Generation.

Preceded by: Mention detection or any subcomponent;
technically any (sub)component with mentions
to be enriched with entity candidates).

Succeeded by: Entity disambiguator or any subcomponent.
Commonly: A mention to entity candidates dictionary, e.g.

generated from Wikipedia disambiguation pages.
Candidate generation refers to the fanning of candidates for each
detected mention. This results in a number of potential entity candi-
dates for each mention. Since the process is dependent on detected
mentions, a chosen mention detection mechanism (or combinations
thereof) will directly affect ensuing results.

3.1.3 Entity Disambiguation.

Preceded by: Candidate generator or any subcomponent;
technically any (sub)component leaving
mentions and related candidates to some degree.

Succeeded by: Result output possibilities or evaluator.
Commonly: A coherence ranking mechanism based on

global (’general knowledge’) and local
(context-dependant) features of entities.

Taking a group of mentions, each associated with related candidate
entities, entity disambiguation refers to identifying the most likely
entity (if any) a mention is referring to.

3.2 Existing Entity Linkers
Our framework supports the combination of several entity linking
approaches and their single components. As of writing, a num-
ber of end-to-end annotators have been integrated out-of-the-box,
namely AIDA [6], Babelfy [10], DBpediaSpotlight [14], EntityClas-
sifierEU [4], Falcon 2.0 [20], FOX [22], OpenTapioca [3], REL [26],
spaCy [9], TagMe/WAT [17], TextRazor [23] – with more on the
way. For each of these, we have respectively introduced appropriate
mention detector and combined candidate generator & disambiguator
components for optimal intercompatibility. Further, for the specific
use of mention detection, we have introduced an API template with
a spaCy-based [9] detection mechanism and a step-by-step guide 4

to integrate FLAIR [5] (used in our user study). These templates
may easily be adapted to accommodate any desired novel compo-
nent. Please note that some of these online services are publicly
accessible and their status are out of our control.

3.3 Novel Components (Complex Pipeline)
The following subcomponents ideologically place in between (pro-
cessing) components presented within the classical model of a EL
pipeline, as well as before (preprocessing) and after (postprocessing)
of a given pipeline. To allow for individual experiences and con-
figurations, in addition to classical pipeline elements and standard
annotators, we introduce processing capabilities allowing for nearly
infinite combinations of system components (see Fig. 2). These are
coined subcomponents, which, among other things, handle post-
processing of the results of certain structures from previous tasks
and prepare them for possible further processing by subsequent
steps in a configured workflow. We define 7 types of subcomponents:
splitters, combiners, filters, translators, evaluators, explainers and
recommenders.

The motivation behind our choice of considering these subcom-
ponents is linked to:

(1) Maximising interoperability of linkers and knowledge graphs
(see Translator below);

(2) Allowing for ever-improving recommendations, learning
from pipeline results (see Recommender);

(3) Enabling leveraging strengths from multiple approaches si-
multaneously (see Splitter and its counterpart, Combiner);

(4) Allowing for pruning of noise that may have been introduced
through use of multiple systems (see Filter);

(5) Allowing for custom metric evaluation of results (see Evalu-
ator);

(6) Explaining results of linkers and their respective evaluation
results (see Explainer).

4https://colab.research.google.com/drive/1D0SgDqMA20w3PKodtOPAXTHsq9OsxkLr

https://colab.research.google.com/drive/1D0SgDqMA20w3PKodtOPAXTHsq9OsxkLr
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The following paragraphs detail the processing subcomponents
and their positioning relative to other pipeline components, their
role(s) within a defined pipeline, and their most common uses.

3.3.1 Recommender (Preprocessing).
Preceded by: Input document.

Succeeded by: Output document.
Commonly: By default, a multi-label SVM implementation

trained on CoNLL03-based generated labels.

Integrated into the core of our framework as a potential final
goal and usage feature, we allow for the definition of custom rec-
ommender systems for entity linkers. By default, an internal rec-
ommender is applied based on input characteristics, predicting the
most suitable (’standard’) entity linker available.

3.3.2 Translator (Processing).
Preceded by: Any component or subcomponent.

Succeeded by: Any component or subcomponent.
Commonly: owl:sameAs linking across Knowledge Graph (KG)s.

Enabling seamless use of annotation tools regardless of underlying
KG, the translator subcomponent is meant as a processing unit
capable of translating entities and potentially other features, allow-
ing further inter-system compatibility. It may be employed at any
level and succeeded by any (sub-)component due to its ubiquitous
characteristics and necessity when working with heterogeneous
systems. Simple use cases include intercompatibilities of entities
e.g. from DBpedia, Wikipedia and Wikidata.

3.3.3 Splitter (Processing).
Preceded by: Any single (sub)component.

Succeeded by: ≥2 (sub)components.
Commonly: Directly passing same information to two (or

more) components.
Allowing for processing of items prior to passing them on to a
subsequent step, a splitter is utilised in the case of a single stream
of data being sent to multiple components, potentially warranting
specific splitting of data streams (e.g. people-related entities being
handled by one system, while another processes movies). This step
encompasses both a post-processing step for a prior component,
as well as a pre-processing step for a following one. A potential
post-processing step may be to filter information from a prior step,
such as eliminating superfluous candidate entities or unwanted
mentions.

3.3.4 Combiner (Processing).
Preceded by: ≥2 (sub)components.

Succeeded by: Any single (sub)component.
Commonly: Union operation, intersection operation.

As a counterpart to a splitter, a combiner subcomponent must be
utilised in case multiple components were utilised in a prior step
and are meant to be consolidated through a variety of possible com-
bination actions (e.g., union and intersection). It combines results
from multiple inputs into a single output, passing merged partial
results on to a subsequent component.

3.3.5 Filter (Processing).
Preceded by: Any single (sub)component.

Succeeded by: Any single (sub)component.
Commonly: NER-, Part-of-Speech (POS)-specific or

rdf:type filtering.
To allow removal of particular sets of items through user-defined
rules or dynamic filtering, we introduce a subcomponent capable
of processing results on binary classifiers: a filter. The truth values
evaluated on passed partial results define which further outcomes
may be detected by a subsequent component or translator.

3.3.6 Evaluator (Post-processing).
Preceded by: Output document and an annotated NIF-based

document.
Succeeded by: Explainer or displaying mechanisms.
Commonly: Base metrics computations, such as precision,

recall, accuracy
and F1-measure.

The evaluator takes the pipeline results and generates evaluation
results based on them. These may be constituted of any custom
metrics and displayed accordingly in generic fashion.

3.3.7 Explainer (Post-processing).
Preceded by: Evaluator, input document and annotation pipeline.

Succeeded by: Displaying mechanisms.
Commonly: Explanations based on result groupings relying

on predefined evaluator metrics.
Takes evaluation results, as well as pipeline information in order
to explain potential reasons for specific results with the goal of
identifying patterns among results of qualitative differences.

3.4 Non-Integrated Custom Components
For novel system integrations that do not require programming
skills, we enable on-the-fly component customization by allowing
the definition of endpoints that can be integrated into our pipeline.
In practice, such components can be added via their IP address
(and port)through our REST API protocol definitions (see Sec. 3.5.2).
Therefore, extensive custom component interactions are even pos-
sible without requiring knowledge of the specific implementation,
lowering the barrier for groups of people who are not proficient
programmers.

3.5 Technical Usage
To build on a solid foundation, rather than reinventing the wheel,
we rely on as many existing entity linking systems and their com-
ponents as possible. We leverage existing annotator APIs, as this
allows for the most up-to-date results in case of system changes
and minimizes future effort. CLiT’s generic (JSON- / NIF-based)
API and associated metadata constitute a novel protocol, used by
our templates, guides, experiments and internal mechanisms. To
enable usage of existing systems, we have internally defined custom
adapter structures to easily integrate implementations – either lo-
cally or on remote services. To this end, interfaces5, abstract classes,

5https://github.com/kmdn/clit_backend/tree/main/src/structure/interfaces

https://github.com/kmdn/clit_backend/tree/main/src/structure/interfaces
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and common protocol implementations (e.g., GERBIL’s NIF6 anno-
tator protocol7) have been defined in Java. We refer to our GitHub 
repository for more relevant information.
3.5.1 Setup. We have streamlined the setup process by defining 
Docker8 images which may be run or built with a single line inde-
pendently of any underlying files, dependencies or system-specific 
settings. Specific instructions provided on GitHub.
3.5.2 Data Structure. To ensure reliable and diverse data enrich-
ment throughout our framework, we define a data structure in JSON 
format. It is passed from one (sub)component to the next, and in turn 
modified to meet the expectations of a subsequent (sub)component 
– meaning that input and output correspond to the same structure, 
with parts being modified or enriched a t each s tep. For details, 
we refer to our GitHub page.9 Said structure represents our main 
supported result format and contains component-enriched infor-
mation as well as metadata be usable by components for dynamic 
customization.

Our general structure lists information crucial for result per-
sistence, e.g., an experiment identifier (experimentId) and a col-
lection of experiment tasks (experimentTasks). The latter con-
sists of (1) the currently active component (currentComponent),
(2) pipeline configuration information (pipelineConfig, see Fig. 3, 
GitHub README and our Jupyter Notebook tutorials10), (3) type of 
pipeline executed (pipelineType, e.g. complex), (4) task identifier 
(taskId), and (5) documents to be processed containing mentions 
and (optionally) entity annotations. Pipeline configurations con-
tain information about the nature of connections between compo-
nents, constituting a dependency graph with nodes representing 
(sub)components. For instance, in Fig. 3, we see a complex pipeline 
configuration utilising Babelfy as a mention detector component 
and Babelfy as a combined candidate generator and entity disam-
biguation component.

4 USE CASES
Due to the high degree of modularity, extension, ease of execution 
and setup, our framework may be utilised for a variety of use cases 
– we list a few of them.

4.1 Use Case 1: Entity Linking Orchestration for
Best Performance

As seen in van Hulst et al. [26], a state-of-the-art entity linker can
be created by standing on the shoulders of giants. The authors con-
catenated individual approaches for mention detection, candidate
generation, and entity disambiguation. Specifically, for mention
detection, they used FLAIR [5]. Their candidates for entity dis-
ambiguation are produced through approaches based on [11, 27].
Finally, disambiguation takes place with help of Le and Titov’s
approach [13]. CLiT allows for these types of combinations to be
produced within minutes.

6NLP Interchange Format definition: https://persistence.uni-leipzig.org/nlp2rdf/
7https://github.com/dice-group/gerbil/wiki/How-to-create-a-NIF-based-web-
service
8https://www.docker.com/
9https://github.com/kmdn/combining-linking-techniques#json-result-structure
10https://github.com/kmdn/clit-tutorials/tree/main/2.%20Use%20Own%20Pipeline%
20Components

4.2 Use Case 2: Component Development
One of our main uses includes the development of novel compo-
nents. Presumably, the most efficient way to develop novel compo-
nents and gain insightful knowledge is to compare with existing
ones. Through the simplified execution of techniques, NLP devel-
opers may notice patterns (e.g., domain-relatedness) relating to
specific similar components and easily extend these. Furthermore,
they may improve upon developed components by leveraging exist-
ing approaches to counteract their own limitations, for instance by
merging newly-generated intermediary results with existing ones.
Proper interoperability and comparability of developed techniques
may be further tested and executed on multiple knowledge graphs
through translator subcomponents, among others.

4.3 Use Case 3: Analysis and Evaluation of
Entity Linking Components

By running fine-grained experiments, results may be analyzed with
our framework and the systems strengths and limitations can be
evaluated with a single execution. Moreover, by running the same
pipeline with a single component replaced, its quality and complex
ensuing effects may be evaluated in an objective, repeatable, and
easily comparable environment. For instance, a researcher may
switch out a mention detection technique and notice different spans,
directly affecting results in positive or negative ways.

4.4 Use Case 4: Contextual Linker
Recommendation

A relatively novel area of research is the recommendation [12] and
combination [15, 16, 19] of entity annotators. So far, no framework
has been proposed to combine entity linking systems or specific
system components in an orchestra to achieve the best performance.
By performing complex interactions of possible workflows, docu-
ments can be annotated through a variety of pipelines with differing
results. These resulting outputs may be used for the development of
AI models predicting metadata-dependent workflows. In addition,
explanations of the results can serve as labels that allow entity
linking approaches to be classified into specific categories, generat-
ing rich information on which document-based recommendations
for linker predictions can be based. Our framework’s front-end
provides a proof-of-concept implementation of linker recommen-
dation.

https://persistence.uni-leipzig.org/nlp2rdf/
https://github.com/dice-group/gerbil/wiki/How-to-create-a-NIF-based-web-service
https://github.com/dice-group/gerbil/wiki/How-to-create-a-NIF-based-web-service
https://www.docker.com/
https://github.com/kmdn/combining-linking-techniques#json-result-structure
https://github.com/kmdn/clit-tutorials/tree/main/2.%20Use%20Own%20Pipeline%20Components
https://github.com/kmdn/clit-tutorials/tree/main/2.%20Use%20Own%20Pipeline%20Components
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5 CORE VALUES AND PRINCIPLES
Impact. We target researchers working in areas such as Semantic

Web (SW), KG, and NLP, including NER and NERD, benefitting from
high-quality annotations and techniques enabling in-depth, and tai-
lored analysis of entity linking results, provided by CLiT. In partic-
ular, Semantic Web-related areas relying on entity linking, such as
semantic search, recommender systems, knowledge graph creation
and enrichment, and relation extraction, can particularly benefit
and be influenced by our efforts and novel conceptual paradigms.
Not only can experts in related fields leverage our framework, but
many functionalities are accessible without prior domain-specific
knowledge through a single line of execution.
For intercomponent communication we relied on common best
practices for APIs and utilised state-of-the-art RESTful principles
to execute multi-component workflows. Where applicable, we re-
lied on Semantic Web (SW)-based NLP Interchange Format (NIF)
endpoints and included them (rather than reimplementing them)
to maximize resource reuse. Unfortunately, not all annotator end-
points support the aforementioned protocol. Therefore, JSON and
custom communication formats were used in our adapters when
needed to unify their execution modes with standardised API calls.
To validate the generalizability of our paradigms, we implemented
annotators based on a variety of knowledge graphs and different
design philosophies, additionally to (sub)components enabling rich
system interactions. Throughout execution workflows, a single data
structure enriched with relevant (meta)data is employed. Thus far,
we have not been subject to limitations thereof, seemingly strength-
ening its notion of generalizability.
Our framework follows the FAIR principles:

(1) Findable: All experimental (meta)data is available in persis-
tent JSON and NLP interchange formats (NIF) with persistent
identifiers.

(2) Accessible: The framework including source code, tem-
plates, Docker (configurations, build files) and Maven gener-
ation of executables, along with all relevant files allowing for
setup and execution, are provided on our GitHub repository.

(3) Interoperable: We ensure the interoperability of our frame-
work on several levels. First, all result (meta)data is provided
in machine-processable JSON documents, providing an eas-
ily customizable experience based on user needs, readily
interoperable with respect to results from other systems and
systems themselves. Second, each component may be ac-
cessed separately, making them completely interoperable
with existing paradigms. More specifically, the same JSON
format is used between all components, maximizing flexible
on-the-fly interoperability. Finally, we provide interoperabil-
ity between systems of different knowledge graphs through
easily extensible translator components (see our guides for
customizations).

(4) Re-Usable: Re-usability as well as reproducibility are maxi-
mized through a multitude of factors, namely: (1) provided
Docker containers; (2) providedmodular and extensible source
code; (3) templates for easy re-implementation and execution
of integrated approaches; (4) videos and guides to enable

interoperability with existing systems; (5) all data sets may
be easily used or added to the framework (e.g. NIF format).

Availability. Our code and necessary file dependencies for single-
line execution (via Docker) and build are published as permanent
URLs in the form of DOI11, W3ID12, posted on our corresponding
GitHub pages13 under the MIT license with a demo14 allowing
certain limited front-end interactions. CLiT is in development at
the authors’ research institute and actively utilised in two multi-
year projects and related doctoral theses – with plans to include
further areas of NLP research in order to maximise its sustainability
and longevity.

6 EVALUATION
To facilitate rich and complex entity linking system interactions
in our domain, CLiT simplifies processes and provides tools for
easy integration of novel systems. To evaluate CLiT, we designed
an experiment to test user experience for common scenarios and
allow participants to familiarize themselves with a running system.
We also conducted two standardized usability assessment question-
naires.

Experiment. We designed an experiment15 comprising a series
of tasks introducing testers to the Combining Linking Techniques
ecosystem. Testers were guided through a series of tasks via Jupyter
Notebook [7] (on Google Colab) utilising code snippets based on our
tutorials 16. The experiment consists of setting up an API for a cus-
tom system, allowing for smooth integration into the entity linking
workflow, execution thereof, a series of pipeline re-configurations
and adaptations, as well as combination of multiple systems within
workflows. Further, testers played around with the system, creating
complex workflows making use of a multitude of entity linking
(sub-)systems.

User Study. We assessed the usability of our system by having
13 testers fill out established tests for software usability assess-
ment, namely User Experience Questionnaire (UEQ)17 and System
Usability Scale (SUS)18.

Based on our study, the average expertise level of testers in the
domains of semantic web (SW), natural language processing (NLP),
and machine learning (ML) was 3.23 out of 5. Additionally, testers
were found to be reasonably knowledgeable with programming and
the uses of APIs, with an average expertise level of 3.69 out of 5.
During the experiment, most users took between 10 to 20 minutes
to complete it, while the majority claimed they would need over 2 to
4 hours or more to complete it without CLiT. It is worth noting that
our testing subjects included both experts and non-experts, and we
observed a higher level of overall satisfaction among more expert
testers. Our study also found that it took testers less than 20 minutes
to integrate a novel system into our framework, indicating that
we have greatly lowered the barrier of entry for developers to add

11Zenodo DOI: https://doi.org/10.5281/zenodo.8318674
12W3ID: https://w3id.org/combining-linking-techniques/
13GitHub: https://github.com/kmdn/combining-linking-techniques
14http://clit.tech
15https://colab.research.google.com/drive/1D0SgDqMA20w3PKodtOPAXTHsq9OsxkLr
16https://github.com/kmdn/clit-tutorials
17https://www.ueq-online.org/
18https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
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Figure 4: User Experience Questionnaire results

their own systems. This finding is encouraging and suggests that
our framework can be easily adopted by developers with varying
levels of expertise in the domains of SW, NLP, and ML. As scores for
both standardised questionnaires average to above standard mean
values (exclusively good, very good or excellent), we consider CLiT
to have an above average usability and assume it could be of great
use in the domain of EL.

System Usability Score (SUS). The System Usability Score ques-
tionnaire is a simple 10-question questionnaire, evaluating usability,
outputting a single score out of 100. CLiT scored 77 out of 100
points. For this questionnaire, 68 is considered the mean threshold
and our score translates to a very good19. Below 68 signifies below
average usability, above 68 implies a above average usability.

User Experience Questionnaire. This questionnaire comprises
a comprehensive impression of user experience and measures 6
dimensions, each on a scale from -3 to +3. These dimensions are
(1) attractiveness, (2) perspicuity, (3) efficiency, (4) dependability,
(5) stimulation and (6) novelty. Results for this questionnaire are
illustrated in Fig. 4. CLiT scores exclusively in the Excellent and
Good categories of the questionnaire. Specifically, in the domains
of Attractiveness (2.09), Efficiency (2.13) and Stimulation (2.08), our
framework reached mean values within the defined Excellent range,
whereas Novelty (1.60) and Dependability (1.65) reach means in
the upper segment of the Good range - visually on the threshold
between Excellent and Good. Only Perspicuity (1.81) reaches a mean
in the lower half of Good.

7 CONCLUSION & FUTUREWORK
In this paper, we introduced a decentralized execution framework
called CLiT that allows for rich combination and execution of mul-
tiple entity linking approaches. It supports a variety of end-to-end
entity linking systems based on different principles, technologies,
and knowledge graphs. We demonstrate how the systems can be
leveraged, extended, and modified through sub-components, in-
cluding interactions for data enrichment, noise reduction, and pre-
processing, as well as simultaneous use of multiple techniques.
Additionally, we introduce post-processing steps for evaluation and
result explanation, along with a use case for recommending entity
linkers. We evaluated CLiT by conducting a user study, putting
the overall usability of the framework around good to excellent.
In the future, we plan working on semi-automated deep analysis
capabilities that enable collaborative evaluation and lead to more
fine-grained evaluations of both annotators and datasets.

19https://measuringu.com/sus/
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