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Abstract— Human Pose Estimation (HPE) to assess human
motion in sports, rehabilitation or work safety requires accurate
sensing without compromising the sensitive underlying personal
data. Therefore, local processing is necessary and the limited
energy budget in such systems can be addressed by Inertial
Measurement Units (IMU) instead of common camera sensing.
The central trade-off between accuracy and efficient use of
hardware resources is rarely discussed in research. We address
this trade-off by a simulative Design Space Exploration (DSE)
of a varying quantity and positioning of IMU-sensors. First,
we generate IMU-data from a publicly available body model
dataset for different sensor configurations and train a deep
learning model with this data. Additionally, we propose a
combined metric to assess the accuracy-resource trade-off. We
used the DSE as a tool to evaluate sensor configurations and
identify beneficial ones for a specific use case. Exemplary, for
a system with equal importance of accuracy and resources, we
identify an optimal sensor configuration of 4 sensors with a
mesh error of 6.03 cm, increasing the accuracy by 32.7% and
reducing the hardware effort by two sensors compared to state
of the art. Our work can be used to design health applications
with well-suited sensor positioning and attention to data privacy
and resource-awareness.

I. INTRODUCTION

Assessment of human motion enriches many applications
in sports, rehabilitation or work safety to monitor the move-
ment quality and correctness [1]. These applications require
both an accurate Human Pose Estimation (HPE) and sensitive
processing of the underlying personal data. Especially in re-
habilitation applications, privacy must be carefully respected
as the acceptance of continuous monitoring systems depends
on data security. To preserve personal information, data
locality and local computing is preferred over processing on
remote systems. However, due to battery-powered operation,
local computing systems have to operate on a strict energy
budget, which can be addressed by partitioning the data
processing on different compute nodes [2] or data-efficient
motion capture (mocap) with Inertial Measurement Units
(IMUs) instead of common camera sensing [3].

For IMU-based human motion tracking systems, the num-
ber and positioning of the sensors is crucial for an accurate
HPE. The more sensors are attached to the human body,
the more motion information is captured, but on the other
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Fig. 1. Methodology of our Design Space Exploration. We define a basic
sensor configuration and synthesize IMU-data for sensor subsets. With this
data, we train a deep neural network and evaluate diverse error metrics
for HPE of each subset. Finally, we analyse all experiments to identify a
beneficial sensor positioning.

hand, the hardware resource overhead, concerning e.g. en-
ergy consumption, available bandwidth or wiring, increases.
Therefore, a trade-off between accuracy and resources exists
and a compromise for sparse IMU-sensing has to be found
in each use case individually. To address this trade-off
and establish a general methodology to evaluate systems
with different sensor configurations, we perform a Design
Space Exploration (DSE) on the number and positioning of
IMU-sensors on the human body and propose a combined
metric for assessment of the accuracy-resource trade-off.
This metric allows to weigh the importance of hardware
resources in relation to prediction accuracy defined by the
system designer in a specific use case.

Since mounting the sensors is time-intense and error-
prone, we synthesize IMU-data for virtual sensors defined on
the body model in mocap datasets. To rank different sensor
configurations, we train a Deep Neural Network (DNN) on
the synthesized IMU-data and compare the resulting HPEs
with our combined metric.

We summarize our contribution as

• Synthesis of IMU-data from a body model dataset with
additional noise, including ground truth labeling for
supervised learning of HPE.

• Automated DSE of variable number and positioning of
sensors on the human body with analysis of different
sensor setups.

• Evaluation of beneficial sensor configuration in terms
of the accuracy-resource trade-off of the HPE using our
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introduced combined metric.

Real system design of body-mounted IMU motion tracking
is time-consuming, where our DSE can be used as a tool
to identify beneficial positions and accelerate the design of
fabric-integrated sensor systems. We consider our investiga-
tion of sparse IMU-sensing to enable data-efficient and at
the same time resource-aware health systems relying on an
accurate HPE to pave the way for appropriate application in
movement monitoring and pose correction.

II. RELATED WORK

Human Pose Estimation (HPE) from sparse IMU-sensing
and the assessment of different sensor configurations relies
on several areas spanning from the model estimating the
HPE, used learning data to positioning of the sensors. Previ-
ous work in those areas will be presented in the following.

A. Deep learning based Human Pose Estimation (HPE) from
sparse IMU-sensing

Different deep learning based models were investigated
to estimate human pose from sparse IMU-data, enabling
applications with lower mounting time and higher comfort
due to fewer sensors.

Sparse Inertial Poser (SIP) [4] showed the potential
of HPE from a sparse IMU-configuration of six sensors
to enable human motion capture in the wild. The human
pose is estimated offline in two stages. The authors further
introduced a new evaluation metric, the SIP-error, which
only takes the orientation error of upper arms and thighs
into consideration. However, this approach is not suited for
real-time application.

Deep Inertial Poser (DIP) [5] followed SIP with the
main goal to improve applicability in online-systems. Real-
time capability is enabled by considering a limited number
of past and future data and a Recurrent Neural Network
(RNN) is used to directly estimate body model parameters
from orientation and acceleration inputs. The authors further
published a synthesis method to generate IMU-data from
mocap datasets. Therefore, motions are mapped to a body
model, on which virtual IMU sensors are defined. For each
virtual sensor, orientation and acceleration are calculated.

TransPose [6] introduced a two-stage approach to estimate
pose as well as global translation of human motion. Similar
to DIP, bidirectional RNNs are used with Long Short-Term
Memory (LSTM) cells to estimate human pose. The authors
claim to be more accurate and computationally more efficient
and the model achieves processing at 90 fps.

Physical Inertial Poser (PIP) [7] was recently published
and extends TransPose by a physical-aware model to estimate
human pose, initial joint torques and ground reaction forces.
The term physical-aware refers to the property of respecting
physical constraints like jitter and ground penetrations.

Table I gives an overview of the currently available HPE-
systems. It can be seen that PIP achieves the most accurate
prediction, but it deployed the most complex estimator.

B. Database

In deep learning, the underlying database is crucial to train
a reliable model. Therefore, commonly used datasets for HPE
are presented.

DIP-IMU [5] recorded solely IMU-data captured by an
Xsens motion tracking system with 17 sensor nodes. The
placement on the body is similar to Vicon, but not identical.
The recording volume is 92 minutes of 330,178 frames
at 60 fps. Nine male and one female subject performed
five different motions classes, including controlled arm and
leg movements, locomotion, jumping jacks or boxing, and
interactions with objects while sitting.

AMASS [8] is an actively developing collection of mo-
cap datasets, including Skinned Multi-Person Linear Model
(SMPL)-data of currently 24 datasets. Overall, 500 subjects
performed 17,916 motions, totaling a recording volume of
3,772.45 minutes at 60 fps. Collected motions include whole-
body pose motions as well as detailed hand/finger exercises.

In addition to directly recording IMU-data from real
movements, [5] proposed synthesis from mocap datasets.
Therefore, the authors placed virtual IMU sensors in AMASS
and generated orientation and acceleration data for each
sensor in each frame of the motion.

Skinned Multi-Person Linear Model (SMPL) [9] is a
common body model to generically represent human motion
and is used in the AMASS dataset. As shown in Figure 2,
SMPL simplifies the human body to a skeletal system of
24 segments with 23 joints and provides a wide range of
body shapes. The shape consists of a mesh of 6,890 vertices
and deforms naturally with a given pose, mimicking soft-
tissue dynamics. For the synthesis of IMU-data, a virtual
sensor can be placed at any vertex of the SMPL mesh.

C. Sensor positioning

Xsens 1 is a commercial mocap system with 17 wearable
IMUs. It provides a sensor per limb segment, shoulder,
head, sternum and pelvis which is considered the root node.
This system has been used in, e.g. DIP to collect the DIP-
IMU dataset, but the high amount of sensors requires high
processing effort.

An optimal sensor positioning for instability detection was
investigated by Steffan et al. [11]. They evaluated different
IMU sensor configurations on the human body, including up
to six sensors out of a basic configuration of 34 sensors,
which was based on the optical marker placement of Master
Motor Map (MMM) [12]. For the DSE, they emulated IMU-
data from the Whole-Body Human Motion Database [13],
[14] which is included in AMASS. Depending on the F1-
score for the instability detection, the best suited sensor
configuration and best fitting model were identified. The best
instability detection was achieved with six sensors mounted
on the right foot, wrists, left elbow, sternum and pelvis.

For motion classification of different displacement mo-
tions, Patzer et al. [15] investigated a minimal sensor setup on
an exoskeleton. Instead of exhaustively testing every sensor

1https://www.xsens.com



(a) Segmentation. Images from [9]

(b) Skeleton with Joint Indices. Inspired by [10]

Fig. 2. Segments and joint positions of SMPL [9]. (a) Segmentation
of SMPL, where the white dots depict joints of the body model detailed
in (b), shaded joints are not considered in [5] and equally not in ours. (b)
corresponds to the back view of the model, i.e., left side of (a)

configuration, they applied a wrapper-based method for three
IMUs and seven force sensors. Therefore, they started the
DSE with evaluation of a single-sensor-system and defined
the sensor with the most accurate motion classification as
basic subset. Iteratively, one new sensor was added to the
basic setup and the new best subset was identified. As a
result, they identified a subset of six sensors to achieve the
same accuracy as the basic configuration of ten sensors.

The latter DSEs both identify an optimal sensor config-
uration for their specific use case of instability detection
and motion classification, but lack generalization for other
applications and do not consider the hardware resources.

III. METHODOLOGY TO EVALUATE SENSOR
CONFIGURATIONS

We introduce a methodology to evaluate sensor configu-
rations with a constrained Design Space Exploration (DSE)
as a tool to support real system design of human motion

Fig. 3. Basic sensor configuration illustrating all possible sensor positions
considered for the DSE.

capture from sparse IMU, and propose a combined metric to
assess both accuracy and hardware resources. For illustration
of this methodology, we exemplary go through the design of
a motion tracking system in rehabilitation to monitor full-
body exercises of stroke patients [1]. In this use case, we
focus on monitoring the regain of symmetric performance
of the exercises after half-sided paralysis and show how a
suitable sensor configuration can be determined.

Therefore, we first define a basic sensor configuration as
shown in Figure 3, where the sensor positions are inspired
by the well-established configurations by Xsens and Steffan
et al. [11]. For full-body capture, we add sensors around
every limb joint and extend the sensor configuration to be
symmetric, ensuring observability of symmetric execution of
the rehabilitation exercises. Our definition of the basic sensor
configuration includes 25 sensors, i.e., five sensors per leg,
four sensors per arm, one at each shoulder, three along the
spine, one at the sternum, and one at the head. The exact
sensor positions on the SMPL model are depicted in Figure 3.

To ensure reliable full-body recognition and feasibility
in real systems, we restrict the maximum number of used
sensors to 10 out of the 25 sensors. Otherwise, this would
lead to a combinatorial explosion of over 7 million sensor
configurations. To limit the considered sensor setups and
therefore the computational effort of the DSE, we apply
further constraints and reduce redundant caption of the
segments by allowing only one sensor per segment, fixing
the pelvis node with ID 0 as the root node and focusing on
symmetric sensor configurations imposed by the use case.
These restrictions lead to a total of 2,249 configurations to
evaluate.

For each sensor configuration, we synthesize IMU-data
from a body-model dataset using the methods of DIP [5]. For
training, we use synthetic data from AMASS, for fine-tuning,
synthetic data from DIP-IMU subjects 1 to 8, and for testing
synthetic data from DIP-IMU subjects 9 and 10. A holdout



TABLE I
ERROR COMPARISON ON DIP-IMU DATASET. FOR EQUAL

IMPORTANCE OF ACCURACY AND RESOURCES, WE IDENTIFY A SENSOR

SETUP WITH TWO SENSORS LESS THAN THE DIP REFERENCE

CONFIGURATION AND IMPROVE SIP BY 10.9%, MESH BY 32.7% AND

JITTER BY 82.1%, RESPECTIVELY.

Method SIP Err (deg) Mesh Err (cm) Jitter ( km
s3

)
SIP (offline) [4] 21.02a 7.71a 0.38a

DIP [5] 17.10b 8.96b 3.01a

TransPose [6] 16.68b 7.09b 1.46b

PIP [7] 15.02b 5.95b 0.24b

DIP (ours, 6)c 13.63 5.89 0.49
DIP (ours, 4)d 15.24 6.03 0.54

DIP (ours, full)e 2.77 1.91 0.47
avalues are taken from [6], bvalues are taken from [7]
cDIP reference sensor configuration with 6 sensors
dbest sensor configuration M4(0.5) in terms of mesh error
efull basic sensor configuration with 25 sensors

of five sequences from DIP-IMU subjects 1 to 8 is reserved
as a validation dataset. For sensor configurations that match
the real IMU recordings in DIP-IMU, we proved feasibility
of using synthetic data and validated the synthesis approach.
We further add white noise during synthesis to map statistical
errors of real IMU-sensors and could therefore improve HPE
compared to synthesis of ideal sensors.

Since the focus of our work is on the evaluation of
different sensor configurations, we take the DNN-model
from [5] as is, and train it for each sensor subset. The training
procedure consists of 50 epochs of training and 20 epochs
of fine-tuning to achieve state-of-the-art accuracy and limit
training time.

We log the positional, angular, SIP- and mesh error as
well as jitter for each sensor combination. As positional and
angular errors are also expressed in the mesh error, we only
report the mesh error and therefore still allow for comparison
to [4-7]. The SIP-error is the mean orientation error of a
joint-subset, i.e., elbow and knee. The jitter evaluates the
jerk over a sequence of time frames and therefore estimates
the smootheness of the estimation. All metrics are defined
as L2-Norms and we average each metric over all sequences
of the test dataset.

To evaluate the accuracy-resource trade-off, we propose a
combined metric Mi given in Equation 1, where λ is a weight
for hardware resources in relation to accuracy ei, e.g. mesh
error. For assessment of hardware resources, we approximate
costs like energy consumption, bandwidth, latency or wiring
of a real sensor setup, by the number of sensors i.

Mi(λ) = ei · (1− λ) + λ · i = ei + λ · (i− ei) (1)

λ is a design parameter and has to be a value between
0 and 100%, where 0% corresponds to a system with a
high emphasis on accuracy and 100% to a high emphasis
on hardware resources, respectively. ei has to be given in
the same order of magnitude as the number of sensors to
ensure comparability and avoid an additional scaling factor,
i.e., mesh error has to be given in cm without unit. The

TABLE II
BEST SENSOR CONFIGURATIONS IDENTIFIED FOR MESH ERROR. THE

ERROR RANGE IS GIVEN FOR THE FIVE BEST CONFIGURATIONS. FOR

TWO SENSORS, ALL POSSIBLE CONFIGURATIONS ARE LISTED.

Number Error range
Sensors Best configurations (cm)

2 [2, 0], [7, 0], [1, 0], [20, 0] 12.80 - 13.50
3 [16, 17, 0], [21, 22, 0], [12, 13, 0],

[10, 11, 0], [5, 6, 0] 7.55 - 9.11
4 [2, 16, 17, 0], [7, 16, 17, 0],

[1, 16, 17, 0], [7, 21, 22, 0],
[1, 21, 22, 0] 6.03 - 6.66

5 [5, 6, 21, 22, 0],
[5, 6, 16, 17, 0],
[2, 20, 16, 17, 0],
[1, 20, 16, 17, 0],
[2, 20, 21, 22, 0] 5.59 - 5.79

6 [7, 12, 13, 21, 22, 0],
[2, 10, 11, 21, 22, 0],
[7, 10, 11, 21, 22, 0],
[20, 5, 6, 16, 17, 0],
[7, 16, 17, 18, 19, 0] 4.92 - 5.01

7 [2, 20, 12, 13, 21, 22, 0],
[2, 20, 10, 11, 16, 17, 0],
[7, 20, 12, 13, 21, 22, 0],
[7, 20, 16, 17, 23, 24, 0],
[2, 20, 10, 11, 21, 22, 0] 4.40 - 4.45

8 [2, 10, 11, 18, 19, 21, 22, 0],
[2, 10, 11, 16, 17, 23, 24, 0],
[2, 12, 13, 21, 22, 23, 24, 0],
[20, 5, 6, 18, 19, 21, 22, 0],
[2, 10, 11, 14, 15, 16, 17, 0] 3.80 - 3.90

9 [2, 20, 12, 13, 18, 19, 21, 22, 0],
[7, 20, 12, 13, 18, 19, 21, 22, 0],
[2, 20, 10, 11, 18, 19, 21, 22, 0],
[2, 20, 12, 13, 21, 22, 23, 24, 0],
[7, 20, 10, 11, 18, 19, 21, 22, 0] 3.22 - 3.28

10 [1, 2, 20, 3, 4, 12, 13, 21, 22, 0],
[2, 5, 6, 12, 13, 18, 19, 21, 22, 0],
[1, 5, 6, 10, 11, 21, 22, 23, 24, 0],
[1, 5, 6, 12, 13, 18, 19, 21, 22, 0],
[2, 5, 6, 12, 13, 21, 22, 23, 24, 0] 3.21 - 3.60

optimal configuration corresponds to the configuration with
minimal Mi(λ).

IV. RESULTS AND DISCUSSION

For analysis of our methodology, we first describe some
general findings and then go into detail of the Design Space
Exploration (DSE).

As shown in Table I, due to additional white noise in
the synthetic IMU-data, we improve the SIP and mesh error
compared to the DIP [5] reference configuration by 9.3%
and 34.4%, respectively. The smoothed synthesis with n = 4
frames reduces the jitter by 83.7%. Compared to [5], our
full basic configuration of all 25 sensors improves the SIP
error by 83.8%, mesh error by 78.4% and jitter by 84.4%,
compared to [7], only jitter is degraded.

However, the high number of sensors in the basic configu-
ration does not consider any hardware-awareness. Therefore,
we analyze the error metrics results of our DSE depicted
in Figure 4. For SIP- and mesh error, many sensor configura-
tions are more accurate than the state-of-the-art implementa-
tions from [4-7]. The jitter matches the scale of the two-step
methods, which optimize their first prediction with kinematic



Fig. 4. Accuracy of the sensor configurations for different numbers of sensors.

(a) Mi(λ) for SIP-error in cm (b) Mi(λ) for mesh in cm (c) Mi(λ) for jitter in 0.1 km
s3

Fig. 5. Combined metric Mi illustrating the accuracy-resource trade-off on varying hardware weight λ for most accurate sensor configuration of i
sensors. The jitter is scaled by 0.1 to ensure the error metric being at the same order of magnitude as the number of sensors. The vertical blue line indicates
a design with equal weight on prediction performance and hardware costs (λ = 50%).

constraints like SIP, TransPose and PIP. This originates from
the additional white noise in our smoothed synthetic data.

For each error metric, we present the five best sensor
configurations in Table II, and count the occurrence of each
sensor in the five best and worst setups, see Table III.

The sensor pair with ID 21 and 22, i.e., wrist, occurs
the most frequently in the most accurate configurations and
rarely appears in inaccurate configurations. Consequently, the
wrists are important positions to place sensors. Similarly, the
elbow sensors with ID 12 and 13 and the head sensor with
ID 20 are included in top-ranked configurations and therefore
contribute to an accurate Human Pose Estimation (HPE). In
contrast, the back sensors with ID 1 and 7 are the most
often part of inaccurate configurations, which is most likely
because of their redundancy to the root node and the higher
occurrence in setups with a low number of sensors with no
limb sensor available. Consequently, for an envisaged low
number of sensors, positions at the end of the extremities
should be preferred over an alignment at the back.

The foot sensors with ID 23 and 24 contribute to many in-
accurate configurations. In summary, sensors mounted on the
upper body can be found much more often in accurate con-
figurations and sensors mounted at the lower limbs contribute
more often to inaccurate configurations. This implies a higher
importance of upper-body sensing than lower-limb sensing
for an accurate full-body HPE. However, we are not sure if
this implies a general rule or results from imbalanced data,
which may be influenced by the dominance of upper-body

motions in the dataset. To finally conclude on the importance
of upper or lower body sensing, a detailed analysis of the
learning dataset and the focus of the exact application is
needed. In our exemplary use case of rehabilitation exercises
for stroke patients, the restriction to focus sensing on one
body-half would depend on the actual exercises and patients.

For a more precise analysis of the accuracy-resource trade-
off, we show our combined metric Mi(λ) from Equation 1
for each best sensor configuration with 2 to 10 sensors
separately for SIP-, mesh error and jitter in Figure 5. For
a low importance of hardware costs λ → 0%, Mi

equals exactly the HPE accuracy and for high λ → 100%,
Mi is defined by the number of sensors, respectively. In
between, the beneficial sensor configuration depends on the
relative importance of accuracy and resources, which has
to be defined by a system designer respecting the specific
requirements of the application.

In case of an equal importance of accuracy and number of
sensors (λ = 50%), all our configurations achieve a better
SIP-resource trade-off than state of the art. We identify five
sensors as beneficial for SIP-, four sensors for mesh- and
two sensors for the jitter-resource trade-off, respectively. As
the mesh error captures the human body in total, we focus
on this error for a final decision and consider the sensor
configuration with sensor IDs 0, 2, 16 and 17 (Figure 6) as
optimal to fulfill the accuracy-resource trade-off with equal
importance of HPE accuracy and related hardware effort in
real applications. This configuration achieves a mesh error



TABLE III
OCCURRENCES OF A SENSOR IN THE FIVE BEST/WORST

CONFIGURATIONS PER SENSOR ID AND METRIC. THE FIRST AND

SECOND VALUE REPRESENT THE NUMBER OF OCCURRENCES IN THE

BEST AND WORST CONFIGURATIONS, RESPECTIVELY. THE ROOT SENSOR

WITH ID 0 IS PRESENT IN EACH CONFIGURATION. DUE TO SYMMETRY,
SOME SENSORS OCCUR IN PAIRS. ACCURATE CONFIGURATIONS ARE

HIGHLIGHTED IN BOLD AND INACCURATE CONFIGURATIONS WITH A

GRAY BACKGROUND, RESPECTIVELY.

ID SIP Mesh Jitter Limb location
0 44 44 44 Pelvis
1 14 / 15 7 / 16 5 / 32 Back
2 5 / 9 18 / 3 7 / 19 Sternum

3, 4 5 / 4 1 / 7 4 / 16 Thigh
5, 6 12 / 2 9 / 1 14 / 5 Shoulder

7 7 / 26 10 / 20 6 / 27 Upper back
8, 9 11 / 10 0 / 13 0 / 9 Thigh

10, 11 15 / 1 11 / 1 5 / 1 Upper arm
12, 13 22 / 14 12 / 14 21 / 4 Upper arm
14, 15 14 / 10 1 / 11 9 / 6 Thigh
16, 17 4 / 9 13 / 11 15 / 3 Elbow
18, 19 0 / 12 9 / 10 13 / 11 Shin

20 12 / 14 17 / 7 16 / 10 Head
21, 22 10 / 1 24 / 2 7 / 3 Wrist
23, 24 0 / 17 6 / 19 7 / 10 Ankle

Fig. 6. Resulting optimal sensor configuration for equal importance of
accuracy and related hardware effort.

of 6.03 cm reducing the reference of DIP by 32.7% and
increasing PIP by 1.3%, while using two sensors less.

V. CONCLUSION

In summary, we developed a methodology to perform
Design Space Exploration (DSE) for Human Pose Estimation
(HPE) from sparse IMU-sensing with regard to both pre-
diction performance and hardware costs in real systems and
exemplary showed its application in rehabilitation. We there-
fore synthesized IMU-data from a body model dataset for
different sensor setups, trained a deep learning model with
this data and evaluated over 2,000 different configurations.
Within this DSE, we observed more accurate HPEs with
sensors placed on the upper body than on the lower limbs. In

applications with a favored low number of sensors, sensors
should rather be placed on the limbs than in line at the back.
For assessment of the important accuracy-resource trade-off,
we proposed a combined metric with variable importance
of both prediction accuracy and hardware resources defined
by system requirements and usable by engineers to improve
the evaluation of their system. Applying this metric, we
identified a sensor network of four sensors at the pelvis,
sternum and elbows as beneficial for a system with equal
importance of accuracy and resources, resulting in a mesh
error of 6.03 cm, which improves state of the art by 32.7%
and reduces the hardware effort from six to four sensors. In
the future, we will improve our methodology to support the
development of real motion tracking systems with fabric-
integrated IMU-sensors and attention to data privacy and
resource-awareness in diverse health applications.
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[12] Ö. Terlemez, S. Ulbrich, C. Mandery, M. Do, N. Vahrenkamp, and
T. Asfour, “Master motor map (mmm)—framework and toolkit for
capturing, representing, and reproducing human motion on humanoid
robots,” in IEEE-RAS International Conference on Humanoid Robots
(Humanoids), 2014.
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