KIT | KIT-Bibliothek | Impressum | Datenschutz

Low-latency Visual Previews of Large Synchrotron Micro-CT Datasets

Tan Jerome, Nicholas ORCID iD icon 1; Chilingaryan, Suren ORCID iD icon 1; Kamp, Thomas Van de 2; Kopmann, Andreas ORCID iD icon 1
1 Institut für Prozessdatenverarbeitung und Elektronik (IPE), Karlsruher Institut für Technologie (KIT)
2 Institut für Photonenforschung und Synchrotronstrahlung (IPS), Karlsruher Institut für Technologie (KIT)

Abstract:

The unprecedented rate at which synchrotron radiation facilities are producing micro-computed (micro-CT) datasets has resulted in an overwhelming amount of data that scientists struggle to browse and interact with in real-time. Thousands of arthropods are scanned into micro-CT within the NOVA project, producing a large collection of gigabyte-sized datasets. In this work, we present methods to reduce the size of this data, scaling it from gigabytes to megabytes, enabling the micro-CT dataset to be delivered in real-time. In addition, arthropods can be identified by scientists even after implementing data reduction methodologies. ... mehr

Abstract (englisch):

The unprecedented rate at which synchrotron radiation facilities are producing micro-computed (micro-CT) datasets has resulted in an overwhelming amount of data that scientists struggle to browse and interact with in real-time. Thousands of arthropods are scanned into micro-CT within the NOVA project, producing a large collection of gigabyte-sized datasets. In this work, we present methods to reduce the size of this data, scaling it from gigabytes to megabytes, enabling the micro-CT dataset to be delivered in real-time. In addition, arthropods can be identified by scientists even after implementing data reduction methodologies. ... mehr


Zugehörige Institution(en) am KIT Institut für Photonenforschung und Synchrotronstrahlung (IPS)
Institut für Prozessdatenverarbeitung und Elektronik (IPE)
Publikationstyp Vortrag
Publikationsdatum 17.12.2023
Sprache Englisch
Identifikator KITopen-ID: 1000167713
HGF-Programm 54.12.02 (POF IV, LK 01) System Technologies
Veranstaltung IEEE International Conference on Big Data (IEEE BigData 2023), Sorrent, Italien, 15.12.2023 – 18.12.2023
Projektinformation 05K2016 - NOVA (BMBF, 05K16VKB)
Schlagwörter omputed tomography, Three-dimensional displays, Data visualization, Real-time systems, Rendering (computer graphics), Data reduction
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page